1
|
Warschkau D, Klein S, Schadt E, Doellinger J, Schares G, Seeber F. Proteomic identification of a Toxoplasma gondii sporozoite-specific antigen using HDAC3 inhibitor-treated tachyzoites as surrogate. FEMS MICROBES 2024; 6:xtae034. [PMID: 39802703 PMCID: PMC11719624 DOI: 10.1093/femsmc/xtae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
The apicomplexan parasite Toxoplasma gondii has a complex life cycle. Access to sexual stages and sporozoite-containing oocysts, essential for studying the parasite's environmental transmission, is limited and requires animal experiments with cats. Thus, alternatives and resource-efficient methods are needed. Several molecular factors and transcriptional switches responsible for differentiation have been identified in recent years. In tachyzoites, drug-induced inhibition of the histone deacetylase HDAC3, or genetic depletion of transcription factors regulating HDAC3, leads to the expression of genes that are specific to sexual stages and oocysts. Here, we applied this concept and showed that the commercially available HDAC3 inhibitor apicidin could be used to identify the hitherto unknown antigen of the sporozoite-specific monoclonal antibody G1/19 in tachyzoites. Using mass spectrometry of immunoprecipitated G1/19 target protein from apicidin-treated cultures, we identified it as SporoSAG. In addition, for the much less abundant sporozoite-specific protein LEA860, apicidin treatment was still sufficient to induce a detectable protein level in immunofluorescence microscopy. We also discuss further applications and the limitations of this approach. This allows to overcome issues with the paucity of material of sexual stages and oocysts from T. gondii to some extent without the need for cat-derived material.
Collapse
Affiliation(s)
- David Warschkau
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353 Berlin, Germany
- Humboldt-Universität zu Berlin, Department of Biology, 10099 Berlin, Germany
| | - Sandra Klein
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353 Berlin, Germany
| | - Ella Schadt
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353 Berlin, Germany
| | - Joerg Doellinger
- ZBS6: Proteomics and Spectroscopy, Robert Koch Institute, 13353 Berlin, Germany
| | - Gereon Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Laboratory for Toxoplasmosis, 17493 Greifswald-Insel Riems, Germany
| | - Frank Seeber
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353 Berlin, Germany
| |
Collapse
|
2
|
Luo Z, Liao T, Zhang Y, Zheng H, Sun Q, Han F, Ma M, Ye Y, Sun Q. Ex vivo anchored PD-L1 functionally prevent in vivo renal allograft rejection. Bioeng Transl Med 2022; 7:e10316. [PMID: 36176616 PMCID: PMC9472007 DOI: 10.1002/btm2.10316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Organ transplantation is the optimal treatment for patients with end-stage diseases. T cell activation is a major contributing factor toward the trigger of rejection. Induction therapy with T cell depleting agent is a common option but increases the risk of severe systemic infections. The ideal therapy should precisely target the allograft. Here, we developed a membrane-anchored-protein PD-L1 (map-PD-L1), which effectively anchored onto the surface of rat glomerular endothelial cells (rgEC). The expression of PD-L1 increased directly with map-PD-L1 concentration and incubation time. Moreover, map-PD-L1 was even stably anchored to rgEC at low temperature. Map-PD-L1 could bind to PD-1 and significantly promote T cell apoptosis and inhibited T cell activation. Using kidney transplantation models, we found that ex vivo perfusion of donor kidneys with map-PD-L1 significantly protected grafts against acute injury without using any immunosuppressant. We found map-PD-L1 could reduce T cell graft infiltration and increase intragraft Treg infiltration, suggesting a long-term effect in allograft protection. More importantly, modifying donor organs in vitro was not only safe, but also significantly reduced the side effects of systemic application. Our results suggested that ex vivo perfusion of donor organ with map-PD-L1 might provide a viable clinical option for organ-targeted induction therapy in organ transplantation.
Collapse
Affiliation(s)
- Zihuan Luo
- Department of Renal TransplantationGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Tao Liao
- Department of Renal TransplantationGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yannan Zhang
- Department of Renal TransplantationGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Haofeng Zheng
- Department of Renal TransplantationGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Qipeng Sun
- Department of Renal TransplantationGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Fei Han
- Organ Transplantation Research InstituteThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Maolin Ma
- Organ Transplantation Research InstituteThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yongrong Ye
- Organ Transplantation Research InstituteThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Qiquan Sun
- Department of Renal TransplantationGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
3
|
A Role for Basigin in Toxoplasma gondii Infection. Infect Immun 2022; 90:e0020522. [PMID: 35913173 PMCID: PMC9387297 DOI: 10.1128/iai.00205-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The role of specific host cell surface receptors during Toxoplasma gondii invasion of host cells is poorly defined. Here, we interrogated the role of the well-known malarial invasion receptor, basigin, in T. gondii infection of astrocytes. We found that primary astrocytes express two members of the BASIGIN (BSG) immunoglobulin family, basigin and embigin, but did not express neuroplastin. Antibody blockade of either basigin or embigin caused a significant reduction of parasite infectivity in astrocytes. The specific role of basigin during T. gondii invasion was further examined using a mouse astrocytic cell line (C8-D30), which exclusively expresses basigin. CRISPR-mediated deletion of basigin in C8-D30 cells resulted in decreased T. gondii infectivity. T. gondii replication and invasion efficiency were not altered by basigin deficiency, but parasite attachment to astrocytes was markedly reduced. We also conducted a proteomic screen to identify T. gondii proteins that interact with basigin. Toxoplasma-encoded cyclophilins, the protein 14-3-3, and protein disulfide isomerase (TgPDI) were among the putative basigin-ligands identified. Recombinant TgPDI produced in E. coli bound to basigin and pretreatment of tachyzoites with a PDI inhibitor decreased parasite attachment to host cells. Finally, mutagenesis of the active site cysteines of TgPDI abolished enzyme binding to basigin. Thus, basigin and its related immunoglobulin family members may represent host receptors that mediate attachment of T. gondii to diverse cell types.
Collapse
|
4
|
Klein S, Stern D, Seeber F. Expression of in vivo biotinylated recombinant antigens SAG1 and SAG2A from Toxoplasma gondii for improved seroepidemiological bead-based multiplex assays. BMC Biotechnol 2020; 20:53. [PMID: 33023547 PMCID: PMC7542104 DOI: 10.1186/s12896-020-00646-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Few bead-based multiplex assays have been described that detect antibodies against the protozoan parasite Toxoplasma gondii in large-scale seroepidemiological surveys. Moreover, each multiplex assay has specific variations or limitations, such as the use of truncated or fusion proteins as antigens, potentially masking important epitopes. Consequently, such an assay must be developed by interested groups as none is commercially available. RESULTS We report the bacterial expression and use of N-terminal fusion-free, soluble, in vivo biotinylated recombinant surface antigens SAG1 and SAG2A for the detection of anti-T. gondii IgG antibodies. The expression system relies on three compatible plasmids. An expression construct produces a fusion of maltose-binding protein with SAG1 (or SAG2A), separated by a TEV protease cleavage site, followed by a peptide sequence recognized by E. coli biotin ligase BirA (AviTag), and a terminal six histidine tag for affinity purification. TEV protease and BirA are encoded on a second plasmid, and their expression leads to proteolytic cleavage of the fusion protein and a single biotinylated lysine within the AviTag by BirA. Correct folding of the parasite proteins is dependent on proper disulfide bonding, which is facilitated by a sulfhydryl oxidase and a protein disulfide isomerase, encoded on the third plasmid. The C-terminal biotinylation allowed the oriented, reproducible coupling of the purified surface antigens to magnetic Luminex beads, requiring only minute amounts of protein per determination. We showed that an N-terminal fusion partner such as maltose-binding protein negatively influenced antibody binding, confirming that access to SAG1's N-terminal epitopes is important for antibody recognition. We validated our bead-based multiplex assay with human sera previously tested with commercial diagnostic assays and found concordance of 98-100% regarding both, sensitivity and specificity, even when only biotinylated SAG1 was used as antigen. CONCLUSIONS Our recombinant in vivo-biotinylated T. gondii antigens offer distinct advantages compared to previously described proteins used in multiplex serological assays for T. gondii. They offer a cheap, specific and sensitive alternative to either parasite lysates or eukaryotic-cell expressed SAG1/SAG2A for BBMA and other formats. The described general expression strategy can also be used for other antigens where oriented immobilization is key for sensitive recognition by antibodies and ligands.
Collapse
Affiliation(s)
- Sandra Klein
- FG 16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353, Berlin, Germany
| | - Daniel Stern
- ZBS 3 - Biological Toxins, Robert Koch Institute, 13353, Berlin, Germany
| | - Frank Seeber
- FG 16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353, Berlin, Germany.
| |
Collapse
|
5
|
Fabian BT, Hedar F, Koethe M, Bangoura B, Maksimov P, Conraths FJ, Villena I, Aubert D, Seeber F, Schares G. Fluorescent bead-based serological detection of Toxoplasma gondii infection in chickens. Parasit Vectors 2020; 13:388. [PMID: 32736581 PMCID: PMC7393333 DOI: 10.1186/s13071-020-04244-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Free-ranging chickens are often infected with Toxoplasma gondii and seroconvert upon infection. This indicates environmental contamination with T. gondii. METHODS Here, we established a bead-based multiplex assay (BBMA) using the Luminex technology for the detection of T. gondii infections in chickens. Recombinant biotinylated T. gondii surface antigen 1 (TgSAG1bio) bound to streptavidin-conjugated magnetic Luminex beads served as antigen. Serum antibodies were detected by a fluorophore-coupled secondary antibody. Beads of differing color codes were conjugated with anti-chicken IgY or chicken serum albumin and served for each sample as an internal positive or negative control, respectively. The assay was validated with sera from experimentally and naturally infected chickens. The results were compared to those from reference methods, including other serological tests, PCRs and bioassay in mice. RESULTS In experimentally infected chickens, the vast majority (98.5%, n = 65/66) of birds tested seropositive in the BBMA. This included all chickens positive by magnetic-capture PCR (100%, n = 45/45). Most, but not all inoculated and TgSAG1bio-BBMA-positive chickens were also positive in two previously established TgSAG1-ELISAs (TgSAG1-ELISASL, n = 61/65; or TgSAG1-ELISASH, n = 60/65), or positive in an immunofluorescence assay (IFAT, n = 64/65) and in a modified agglutination test (MAT, n = 61/65). All non-inoculated control animals (n = 28/28, 100%) tested negative. In naturally exposed chickens, the TgSAG1bio-BBMA showed a high sensitivity (98.5%; 95% confidence interval, CI: 90.7-99.9%) and specificity (100%; 95% CI: 85.0-100%) relative to a reference standard established using ELISA, IFAT and MAT. Almost all naturally exposed chickens that were positive in bioassay or by PCR tested positive in the TgSAG1bio-BBMA (93.5%; 95% CI: 77.1-98.9%), while all bioassay- or PCR-negative chickens remained negative (100%; 95% CI: 85.0-100%). CONCLUSIONS The TgSAG1bio-BBMA represents a suitable method for the detection of T. gondii infections in chickens with high sensitivity and specificity, which is comparable or even superior to other tests. Since assays based on this methodology allow for the simultaneous analysis of a single biological sample with respect to multiple analytes, the described assay may represent a component in future multiplex assays for broad serological monitoring of poultry and other farm animals for various pathogens.
Collapse
Affiliation(s)
- Benedikt T. Fabian
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Fatima Hedar
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Centre for Toxoplasmosis, Greifswald-Insel Riems, Germany
| | - Martin Koethe
- Faculty of Veterinary Medicine, Institute of Food Hygiene, Leipzig University, Leipzig, Germany
| | - Berit Bangoura
- Faculty of Veterinary Medicine, Institute of Parasitology, Leipzig University, Leipzig, Germany
- Department of Veterinary Sciences, Wyoming State Veterinary Laboratory, University of Wyoming, Laramie, USA
| | - Pavlo Maksimov
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Centre for Toxoplasmosis, Greifswald-Insel Riems, Germany
| | - Franz J. Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Centre for Toxoplasmosis, Greifswald-Insel Riems, Germany
| | - Isabelle Villena
- EA 7510, UFR Medecine, University of Reims Champagne Ardenne, Reims, France
- Laboratory of Parasitology, National Reference Centre on Toxoplasmosis, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Dominique Aubert
- EA 7510, UFR Medecine, University of Reims Champagne Ardenne, Reims, France
- Laboratory of Parasitology, National Reference Centre on Toxoplasmosis, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Frank Seeber
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Gereon Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Centre for Toxoplasmosis, Greifswald-Insel Riems, Germany
| |
Collapse
|
6
|
Chang L, Zhang X, Gong P, Wang Y, Du B, Li J. Identification and characterization of Letm1 gene in Toxoplasma gondii. Acta Biochim Biophys Sin (Shanghai) 2019; 51:78-87. [PMID: 30423025 DOI: 10.1093/abbs/gmy138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/11/2018] [Indexed: 01/22/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan that causes toxoplasmosis. Previous studies have shown that the perturbation of mitochondrial metabolism in T. gondii results in growth deficiency in host cells and lack of virulence in animals. Members of this Letm1 protein family are inner mitochondrial membrane proteins which play a role in potassium and hydrogen ion exchange. Letm1 has not been characterized in T. gondii. In this study, a potential TgLetm1 gene (TgGT1_288400) with Letm1-like protein domain coding sequence was identified in T. gondii. Indirect immunofluorescence assays suggested that TgLetm1 localized to the mitochondria in tachyzoites, as indicated by the colocalization with mitochondrial marker Mitotracker. TgLetm1 was found in the membrane fraction by western blot analysis. To investigate the role of TgLetm1 in T. gondii, we generated a tetracycline-inducible TgLetm1-knock-down mutant. The conditional deletion of TgLetm1 resulted in mitochondrial swelling. Functional studies showed that the conditional deletion of TgLetm1 resulted in growth inhibition, deficiency in invasion and replication, and lack of virulence in mice.
Collapse
Affiliation(s)
- Le Chang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuru Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Boya Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
7
|
Ferreira SCM, Torelli F, Klein S, Fyumagwa R, Karesh WB, Hofer H, Seeber F, East ML. Evidence of high exposure to Toxoplasma gondii in free-ranging and captive African carnivores. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 8:111-117. [PMID: 30740303 PMCID: PMC6356113 DOI: 10.1016/j.ijppaw.2018.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 11/12/2022]
Abstract
Toxoplasma gondii is an ubiquitous intracellular protozoan parasite. Mammals and birds are intermediate hosts and felid species are definitive hosts. In most human altered habitats the domestic cat is the predominant definitive host. Current knowledge of T. gondii infection in African ecosystems is limited. This study aimed to assess exposure to T. gondii in wild carnivores in the Serengeti ecosystem in East Africa. Carnivores can be infected by the consumption of tissue cysts when feeding on infected animals and by incidental ingestion of oocysts from environmental contamination. Incidental ingestion should occur regardless of a species’ diet whereas the consumption of cysts should increase the chance of infection in carnivorous species. This predicts higher seropositivity in carnivorous than in insectivorous carnivores and lower seropositivity in juvenile carnivores with a long dependency on milk than in adults. We found high seropositivity in carnivorous species: 100% (15 of 15 samples) in adult African lions, 93% (38 of 41 samples) in adult spotted hyenas and one striped hyena sample was positive, whereas all four samples from the insectivorous bat-eared fox were negative. Juvenile hyenas (11 of 19 sera) had significantly lower seropositivity than adults (38 of 41 sera). Long-term monitoring of spotted hyenas revealed no significant difference in seropositivity between two periods (1988–1992 and 2000 to 2016). Identical results were produced in lion and hyena samples by a commercial multi-species ELISA (at serum dilution 1:10) and an in-house ELISA based on a recombinant T. gondii protein (at serum dilution 1:100), making the latter a useful alternative for small amounts of serum. We suggest that diet, age and lifetime range are factors determining seropositivity in carnivores in the Serengeti ecosystem and suggest that the role of small wild felids in the spread of T. gondii in the African ecosystem warrants investigation. Most Serengeti lions and spotted hyenas had anti-T. gondii antibodies. Spotted hyenas' seropositivity remains similar in two time periods across 28 years. The proportion of seropositive juvenile spotted hyenas was lower than in adults. No evidence of infection in 4 wild bat-eared foxes, which are insectivorous canids. An in-house ELISA permits the use of small amounts of serum.
Collapse
Affiliation(s)
- Susana Carolina Martins Ferreira
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Alfred Kowalke Straße 17, 10315, Berlin, Germany.,Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14195, Berlin, Germany
| | - Francesca Torelli
- Department of Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Seestraße 10, 13353, Berlin, Germany.,Department of Biology, Humboldt University Berlin, Invalidenstraße 110, 10115, Berlin, Germany
| | - Sandra Klein
- Department of Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Seestraße 10, 13353, Berlin, Germany
| | - Robert Fyumagwa
- Serengeti Wildlife Research Centre, Tanzania, Wildlife Research Institute, Arusha, United Republic of Tanzania, PO Box 661, Arusha, Tanzania
| | - William B Karesh
- Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY, NY, 10460, USA.,Ecohealth Alliance, 460 West 34th Street - 17th Floor, New York, NY, 10001, USA
| | - Heribert Hofer
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Alfred Kowalke Straße 17, 10315, Berlin, Germany.,Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14195, Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Frank Seeber
- Department of Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Seestraße 10, 13353, Berlin, Germany
| | - Marion L East
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Alfred Kowalke Straße 17, 10315, Berlin, Germany
| |
Collapse
|
8
|
Lévêque MF, Berry L, Yamaryo-Botté Y, Nguyen HM, Galera M, Botté CY, Besteiro S. TgPL2, a patatin-like phospholipase domain-containing protein, is involved in the maintenance of apicoplast lipids homeostasis in Toxoplasma. Mol Microbiol 2017; 105:158-174. [PMID: 28419631 DOI: 10.1111/mmi.13694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2017] [Indexed: 01/05/2023]
Abstract
Patatin-like phospholipases are involved in numerous cellular functions, including lipid metabolism and membranes remodeling. The patatin-like catalytic domain, whose phospholipase activity relies on a serine-aspartate dyad and an anion binding box, is widely spread among prokaryotes and eukaryotes. We describe TgPL2, a novel patatin-like phospholipase domain-containing protein from the parasitic protist Toxoplasma gondii. TgPL2 is a large protein, in which the key motifs for enzymatic activity are conserved in the patatin-like domain. Using immunofluorescence assays and immunoelectron microscopy analysis, we have shown that TgPL2 localizes to the apicoplast, a non-photosynthetic plastid found in most apicomplexan parasites. This plastid hosts several important biosynthetic pathways, which makes it an attractive organelle for identifying new potential drug targets. We thus addressed TgPL2 function by generating a conditional knockdown mutant and demonstrated it has an essential contribution for maintaining the integrity of the plastid. In absence of TgPL2, the organelle is rapidly lost and remaining apicoplasts appear enlarged, with an abnormal accumulation of membranous structures, suggesting a defect in lipids homeostasis. More precisely, analyses of lipid content upon TgPL2 depletion suggest this protein is important for maintaining levels of apicoplast-generated fatty acids, and also regulating phosphatidylcholine and lysophosphatidylcholine levels in the parasite.
Collapse
Affiliation(s)
- Maude F Lévêque
- DIMNP - UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Laurence Berry
- DIMNP - UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Advanced Biosciences, UMR5309 CNRS, Inserm U1209, Université Grenoble Alpes, Grenoble, France
| | - Hoa Mai Nguyen
- DIMNP - UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Marine Galera
- Apicolipid Team, Institute for Advanced Biosciences, UMR5309 CNRS, Inserm U1209, Université Grenoble Alpes, Grenoble, France
| | - Cyrille Y Botté
- Apicolipid Team, Institute for Advanced Biosciences, UMR5309 CNRS, Inserm U1209, Université Grenoble Alpes, Grenoble, France
| | | |
Collapse
|
9
|
Chasen NM, Asady B, Lemgruber L, Vommaro RC, Kissinger JC, Coppens I, Moreno SNJ. A Glycosylphosphatidylinositol-Anchored Carbonic Anhydrase-Related Protein of Toxoplasma gondii Is Important for Rhoptry Biogenesis and Virulence. mSphere 2017; 2:e00027-17. [PMID: 28529974 PMCID: PMC5437132 DOI: 10.1128/msphere.00027-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023] Open
Abstract
Carbonic anhydrase-related proteins (CARPs) have previously been described as catalytically inactive proteins closely related to α-carbonic anhydrases (α-CAs). These CARPs are found in animals (both vertebrates and invertebrates) and viruses as either independent proteins or domains of other proteins. We report here the identification of a new CARP (TgCA_RP) in the unicellular organism Toxoplasma gondii that is related to the recently described η-class CA found in Plasmodium falciparum. TgCA_RP is posttranslationally modified at its C terminus with a glycosylphosphatidylinositol anchor that is important for its localization in intracellular tachyzoites. The protein localizes throughout the rhoptry bulbs of mature tachyzoites and to the outer membrane of nascent rhoptries in dividing tachyzoites, as demonstrated by immunofluorescence and immunoelectron microscopy using specific antibodies. T. gondii mutant tachyzoites lacking TgCA_RP display a growth and invasion phenotype in vitro and have atypical rhoptry morphology. The mutants also exhibit reduced virulence in a mouse model. Our results show that TgCA_RP plays an important role in the biogenesis of rhoptries. IMPORTANCEToxoplasma gondii is an intracellular pathogen that infects humans and animals. The pathogenesis of T. gondii is linked to its lytic cycle, which starts when tachyzoites invade host cells and secrete proteins from specialized organelles. Once inside the host cell, the parasite creates a parasitophorous vacuole (PV) where it divides. Rhoptries are specialized secretory organelles that contain proteins, many of which are secreted during invasion. These proteins have important roles not only during the initial interaction between parasite and host but also in the formation of the PV and in the modification of the host cell. We report here the identification of a new T. gondii carbonic anhydrase-related protein (TgCA_RP), which localizes to rhoptries of mature tachyzoites. TgCA_RP is important for the morphology of rhoptries and for invasion and growth of parasites. TgCA_RP is also critical for parasite virulence. We propose that TgCA_RP plays a role in the biogenesis of rhoptries.
Collapse
Affiliation(s)
- Nathan M. Chasen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Beejan Asady
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Leandro Lemgruber
- Instituto Nacional de Metrologia, Inmetro-RJ, UFRJ, Rio de Janeiro, Brazil
| | | | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
10
|
In Vivo Biotinylation of the Toxoplasma Parasitophorous Vacuole Reveals Novel Dense Granule Proteins Important for Parasite Growth and Pathogenesis. mBio 2016; 7:mBio.00808-16. [PMID: 27486190 PMCID: PMC4981711 DOI: 10.1128/mbio.00808-16] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that invades host cells and replicates within a unique parasitophorous vacuole. To maintain this intracellular niche, the parasite secretes an array of dense granule proteins (GRAs) into the nascent parasitophorous vacuole. These GRAs are believed to play key roles in vacuolar remodeling, nutrient uptake, and immune evasion while the parasite is replicating within the host cell. Despite the central role of GRAs in the Toxoplasma life cycle, only a subset of these proteins have been identified, and many of their roles have not been fully elucidated. In this report, we utilize the promiscuous biotin ligase BirA* to biotinylate GRA proteins secreted into the vacuole and then identify those proteins by affinity purification and mass spectrometry. Using GRA-BirA* fusion proteins as bait, we have identified a large number of known and candidate GRAs and verified localization of 13 novel GRA proteins by endogenous gene tagging. We proceeded to functionally characterize three related GRAs from this group (GRA38, GRA39, and GRA40) by gene knockout. While Δgra38 and Δgra40 parasites showed no altered phenotype, disruption of GRA39 results in slow-growing parasites that contain striking lipid deposits in the parasitophorous vacuole, suggesting a role in lipid regulation that is important for parasite growth. In addition, parasites lacking GRA39 showed dramatically reduced virulence and a lower tissue cyst burden in vivo. Together, the findings from this work reveal a partial vacuolar proteome of T. gondii and identify a novel GRA that plays a key role in parasite replication and pathogenesis. Most intracellular pathogens reside inside a membrane-bound vacuole within their host cell that is extensively modified by the pathogen to optimize intracellular growth and avoid host defenses. In Toxoplasma, this vacuole is modified by a host of secretory GRA proteins, many of which remain unidentified. Here we demonstrate that in vivo biotinylation of proximal and interacting proteins using the promiscuous biotin ligase BirA* is a powerful approach to rapidly identify vacuolar GRA proteins. We further demonstrate that one factor identified by this approach, GRA39, plays an important role in the ability of the parasite to replicate within its host cell and cause disease.
Collapse
|
11
|
Hsiao CHC, Luisa Hiller N, Haldar K, Knoll LJ. A HT/PEXEL motif in Toxoplasma dense granule proteins is a signal for protein cleavage but not export into the host cell. Traffic 2013; 14:519-31. [PMID: 23356236 DOI: 10.1111/tra.12049] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 01/22/2023]
Abstract
Apicomplexan parasites, such as Toxoplasma gondii and Plasmodium, secrete proteins for attachment, invasion and modulation of their host cells. The host targeting (HT), also known as the Plasmodium export element (PEXEL), directs Plasmodium proteins into erythrocytes to remodel the host cell and establish infection. Bioinformatic analysis of Toxoplasma revealed a HT/PEXEL-like motif at the N-terminus of several hypothetical unknown and dense granule proteins. Hemagglutinin-tagged versions of these uncharacterized proteins show co-localization with dense granule proteins found on the parasitophorous vacuole membrane (PVM). In contrast to Plasmodium, these Toxoplasma HT/PEXEL containing proteins are not exported into the host cell. Site directed mutagenesis of the Toxoplasma HT/PEXEL motif, RxLxD/E, shows that the arginine and leucine residues are permissible for protein cleavage. Mutations within the HT/PEXEL motif that prevent protein cleavage still allow for targeting to the PV but the proteins have a reduced association with the PVM. Addition of a Myc tag before and after the cleavage site shows that processed HT/PEXEL protein has increased PVM association. These findings suggest that while Toxoplasma and Plasmodium share similar HT/PEXEL motifs, Toxoplasma HT/PEXEL containing proteins interact with but do not cross the PVM.
Collapse
|
12
|
Gregg B, Dzierszinski F, Tait E, Jordan KA, Hunter CA, Roos DS. Subcellular antigen location influences T-cell activation during acute infection with Toxoplasma gondii. PLoS One 2011; 6:e22936. [PMID: 21829561 PMCID: PMC3145783 DOI: 10.1371/journal.pone.0022936] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/04/2011] [Indexed: 11/19/2022] Open
Abstract
Effective control of the intracellular protozoan parasite Toxoplasma gondii depends on the activation of antigen-specific CD8(+) T-cells that manage acute disease and prevent recrudescence during chronic infection. T-cell activation in turn, requires presentation of parasite antigens by MHC-I molecules on the surface of antigen presenting cells. CD8(+) T-cell epitopes have been defined for several T. gondii proteins, but it is unclear how these antigens enter into the presentation pathway. We have exploited the well-characterized model antigen ovalbumin (OVA) to investigate the ability of parasite proteins to enter the MHC-I presentation pathway, by engineering recombinant expression in various organelles. CD8(+) T-cell activation was assayed using 'B3Z' reporter cells in vitro, or adoptively-transferred OVA-specific 'OT-I' CD8(+) T-cells in vivo. As expected, OVA secreted into the parasitophorous vacuole strongly stimulated antigen-presenting cells. Lower levels of activation were observed using glycophosphatidyl inositol (GPI) anchored OVA associated with (or shed from) the parasite surface. Little CD8(+) T-cell activation was detected using parasites expressing intracellular OVA in the cytosol, mitochondrion, or inner membrane complex (IMC). These results indicate that effective presentation of parasite proteins to CD8(+) T-cells is a consequence of active protein secretion by T. gondii and escape from the parasitophorous vacuole, rather than degradation of phagocytosed parasites or parasite products.
Collapse
Affiliation(s)
- Beth Gregg
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Florence Dzierszinski
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elia Tait
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kimberly A. Jordan
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Zhang G, Huang X, Boldbaatar D, Battur B, Battsetseg B, Zhang H, Yu L, Li Y, Luo Y, Cao S, Goo YK, Yamagishi J, Zhou J, Zhang S, Suzuki H, Igarashi I, Mikami T, Nishikawa Y, Xuan X. Construction of Neospora caninum stably expressing TgSAG1 and evaluation of its protective effects against Toxoplasma gondii infection in mice. Vaccine 2010; 28:7243-7. [PMID: 20832493 DOI: 10.1016/j.vaccine.2010.08.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
Toxoplasma gondii and Neospora caninum are closely related apicomplexan parasites. The surface antigen 1 of T. gondii (TgSAG1) is a major immunodominant antigen and, therefore, is considered to be a good candidate for the development of an effective recombinant vaccine against toxoplasmosis. In this study, N. caninum stably expressing the TgSAG1 gene (Nc/TgSAG1) was constructed using pyrimethamine-resistant DHFR-TS and GFP genes as double-selection markers. The expression level, molecular weight, and antigenic property of recombinant TgSAG1 expressed by the Nc/TgSAG1 were similar to those of the native TgSAG1. The mice immunized with Nc/TgSAG1 induced TgSAG1-specific Th1-dominant immune responses and protected the mice from a lethal challenge infection with T. gondii. These results indicate that N. caninum may provide a new tool for the production of a live recombinant vector vaccine against toxoplasmosis in animals. To our knowledge, this is the first report to evaluate the usefulness of N. caninum-based live vaccine.
Collapse
Affiliation(s)
- Guohong Zhang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Post-translational membrane sorting of the Toxoplasma gondii GRA6 protein into the parasite-containing vacuole is driven by its N-terminal domain. Int J Parasitol 2010; 40:1325-34. [PMID: 20420842 DOI: 10.1016/j.ijpara.2010.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/24/2010] [Accepted: 03/30/2010] [Indexed: 11/20/2022]
Abstract
How eukaryotic pathogens export and sort membrane-bound proteins destined for host-cell compartments is still poorly understood. The dense granules of the intracellular protozoan Toxoplasma gondii constitute an unusual secretory pathway that allows soluble export of the GRA proteins which become membrane-associated within the parasite replicative vacuole. This process relies on both the segregation of the proteins routed to the dense granules from those destined to the parasite plasma membrane and on the sorting of the secreted GRA proteins to their proper final membranous system. Here, we provide evidence that the soluble trafficking of GRA6 to the dense granules relies on the N-terminal domain of the protein, which is sufficient to prevent GRA6 targeting to the parasite plasma membrane. We also show that the GRA6 N-terminal domain, possibly by interacting with negatively charged lipids, is fundamental for proper GRA6 association with the vacuolar membranous network of nanotubes. These results support our emerging model: sorting of transmembrane GRA proteins to the host cell vacuole is mainly driven by the dual role of their N-terminal hydrophilic domain and is compartmentally regulated.
Collapse
|
15
|
Gendrin C, Mercier C, Braun L, Musset K, Dubremetz JF, Cesbron-Delauw MF. Toxoplasma gondiiUses Unusual Sorting Mechanisms to Deliver Transmembrane Proteins into the Host-Cell Vacuole. Traffic 2008; 9:1665-80. [DOI: 10.1111/j.1600-0854.2008.00793.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Intervacuolar transport and unique topology of GRA14, a novel dense granule protein in Toxoplasma gondii. Infect Immun 2008; 76:4865-75. [PMID: 18765740 DOI: 10.1128/iai.00782-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that resides in the cytoplasm of its host in a unique membrane-bound vacuole known as the parasitophorous vacuole (PV). The membrane surrounding the parasite is remodeled by the dense granules, secretory organelles that release an array of proteins into the vacuole and to the PV membrane (PVM). Only a small portion of the protein constituents of the dense granules have been identified, and little is known regarding their roles in infection or how they are trafficked within the infected host cell. In this report, we identify a novel secreted dense granule protein, GRA14, and show that it is targeted to membranous structures within the vacuole known as the intravacuolar network and to the vacuolar membrane surrounding the parasite. We disrupted GRA14 and exploited the knockout strain to show that GRA14 can be transferred between vacuoles in a coinfection experiment with wild-type parasites. We also show that GRA14 has an unexpected topology in the PVM with its C terminus facing the host cytoplasm and its N terminus facing the vacuolar lumen. These findings have important implications both for the trafficking of GRA proteins to their ultimate destinations and for expectations of functional domains of GRA proteins at the host-parasite interface.
Collapse
|
17
|
Gilk SD, Raviv Y, Hu K, Murray JM, Beckers CJM, Ward GE. Identification of PhIL1, a novel cytoskeletal protein of the Toxoplasma gondii pellicle, through photosensitized labeling with 5-[125I]iodonaphthalene-1-azide. EUKARYOTIC CELL 2006; 5:1622-34. [PMID: 17030994 PMCID: PMC1595352 DOI: 10.1128/ec.00114-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pellicle of the protozoan parasite Toxoplasma gondii is a unique triple bilayer structure, consisting of the plasma membrane and two tightly apposed membranes of the underlying inner membrane complex. Integral membrane proteins of the pellicle are likely to play critical roles in host cell recognition, attachment, and invasion, but few such proteins have been identified. This is in large part because the parasite surface is dominated by a family of abundant and highly immunogenic glycosylphosphatidylinositol (GPI)-anchored proteins, which has made the identification of non-GPI-linked proteins difficult. To identify such proteins, we have developed a radiolabeling approach using the hydrophobic, photoactivatable compound 5-[(125)I]iodonaphthalene-1-azide (INA). INA can be activated by photosensitizing fluorochromes; by restricting these fluorochromes to the pellicle, [(125)I]INA labeling will selectively target non-GPI-anchored membrane-embedded proteins of the pellicle. We demonstrate here that three known membrane proteins of the pellicle can indeed be labeled by photosensitization with INA. In addition, this approach has identified a novel 22-kDa protein, named PhIL1 (photosensitized INA-labeled protein 1), with unexpected properties. While the INA labeling of PhIL1 is consistent with an integral membrane protein, the protein has neither a transmembrane domain nor predicted sites of lipid modification. PhIL1 is conserved in apicomplexan parasites and localizes to the parasite periphery, concentrated at the apical end just basal to the conoid. Detergent extraction and immunolocalization data suggest that PhIL1 associates with the parasite cytoskeleton.
Collapse
Affiliation(s)
- Stacey D Gilk
- Department of Microbiology and Molecular Genetics, 316 Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
18
|
Gilbert LA, Ravindran S, Turetzky JM, Boothroyd JC, Bradley PJ. Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells. EUKARYOTIC CELL 2006; 6:73-83. [PMID: 17085638 PMCID: PMC1800361 DOI: 10.1128/ec.00309-06] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intracellular pathogens have evolved a wide array of mechanisms to invade and co-opt their host cells for intracellular survival. Apicomplexan parasites such as Toxoplasma gondii employ the action of unique secretory organelles named rhoptries for internalization of the parasite and formation of a specialized niche within the host cell. We demonstrate that Toxoplasma gondii also uses secretion from the rhoptries during invasion to deliver a parasite-derived protein phosphatase 2C (PP2C-hn) into the host cell and direct it to the host nucleus. Delivery to the host nucleus does not require completion of invasion, as evidenced by the fact that parasites blocked in the initial stages of invasion with cytochalasin D are able to target PP2C-hn to the host nucleus. We have disrupted the gene encoding PP2C-hn and shown that PP2C-hn-knockout parasites exhibit a mild growth defect that can be rescued by complementation with the wild-type gene. The delivery of parasite effector proteins via the rhoptries provides a novel mechanism for Toxoplasma to directly access the command center of its host cell during infection by the parasite.
Collapse
Affiliation(s)
- Luke A Gilbert
- Department of Microbiology, Immunology and Molecular Genetics, University of California--Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | | | |
Collapse
|
19
|
Bradley PJ, Li N, Boothroyd JC. A GFP-based motif-trap reveals a novel mechanism of targeting for the Toxoplasma ROP4 protein. Mol Biochem Parasitol 2005; 137:111-20. [PMID: 15279957 DOI: 10.1016/j.molbiopara.2004.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 05/05/2004] [Accepted: 05/06/2004] [Indexed: 11/27/2022]
Abstract
The protozoan parasite Toxoplasma gondii is a highly specialized eukaryote that contains a remarkable number of intracellular compartments, some unique to Apicomplexans and others typical of eukaryotes in general. We have established a green fluorescent protein (GFP)-based motif-trap to identify proteins targeted to different intracellular locations and subsequently the signals responsible for this sorting. The motif-trap involves the transfection and integration of a linearized GFP construct which lacks a promoter and an initiator methionine codon. FACS is used to isolate parasites in which GFP fuses in-frame into a coding region followed by screening by fluorescence microscopy for those containing GFP targeted to specific intracellular compartments. GFP trapping was successful using vectors designed for integration into regions encoding exons and vectors that were engineered with a splice acceptor site for integration into regions encoding introns. This strategy differs from most protein traps in that the resulting fusions are expressed from the endogenous promoter and starting methionine. Thus, problems from inappropriate expression levels or the creation of fortuitous targeting signals seen in library-based traps are diminished. Using this approach, we have trapped GFP localized to a number of intracellular compartments including the nucleus, nucleolus, endoplasmic reticulum, cytosol, parasite surface and rhoptries of Toxoplasma. Further analysis of a parasite clone containing GFP targeted to the rhoptries shows GFP fused to the gene encoding the rhoptry protein ROP4 and has elucidated an additional mechanism for targeting of this protein.
Collapse
Affiliation(s)
- Peter J Bradley
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5124, USA
| | | | | |
Collapse
|
20
|
Singh U, Brewer JL, Boothroyd JC. Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction. Mol Microbiol 2002; 44:721-33. [PMID: 11994153 DOI: 10.1046/j.1365-2958.2002.02903.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developmental switching in Toxoplasma gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for disease propagation and reactivation. We have generated tachyzoite to bradyzoite differentiation (Tbd-) mutants in T. gondii and used these in combination with a cDNA microarray to identify developmental pathways in bradyzoite formation. Four independently generated Tbd- mutants were analysed and had defects in bradyzoite development in response to multiple bradyzoite-inducing conditions, a stable phenotype after in vivo passages and a markedly reduced brain cyst burden in a murine model of chronic infection. Transcriptional profiles of mutant and wild-type parasites, growing under bradyzoite conditions, revealed a hierarchy of developmentally regulated genes, including many bradyzoite-induced genes whose transcripts were reduced in all mutants. A set of non-developmentally regulated genes whose transcripts were less abundant in Tbd- mutants were also identified. These may represent genes that mediate downstream effects and/or whose expression is dependent on the same transcription factors as the bradyzoite-induced set. Using these data, we have generated a model of transcription regulation during bradyzoite development in T. gondii. Our approach shows the utility of this system as a model to study developmental biology in single-celled eukaryotes including protozoa and fungi.
Collapse
Affiliation(s)
- Upinder Singh
- D305 Fairchild Building, Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5124, USA
| | | | | |
Collapse
|
21
|
Marti M, Li Y, Köhler P, Hehl AB. Conformationally correct expression of membrane-anchored Toxoplasma gondii SAG1 in the primitive protozoan Giardia duodenalis. Infect Immun 2002; 70:1014-6. [PMID: 11796643 PMCID: PMC127713 DOI: 10.1128/iai.70.2.1014-1016.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2001] [Revised: 09/19/2001] [Accepted: 11/12/2001] [Indexed: 11/20/2022] Open
Abstract
To explore the possibility of expressing membrane-anchored exodomains of heterologous surface antigens in Giardia, a chimeric construct containing the Toxoplasma gondii SAG1 gene was made. The Giardia system is shown here to provide a means of generating correctly folded chimeric surface proteins in a native and unmodified form.
Collapse
Affiliation(s)
- Matthias Marti
- Institute of Parasitology, University of Zürich, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
22
|
Abstract
Toxoplasma gondii is an obligate intracellular protozoan that infects an astonishing variety of vertebrate hosts including humans. Classified in the phylum Apicomplexa, T. gondii causes an opportunistic disease, toxoplasmosis, in individuals with immune dysfunction and congenital disease in infected infants. Re-emergence of toxoplasmosis as a life-threatening disease in patients with AIDS is anticipated in the wake of emerging multi-drug resistant strains of HIV. In immunodeficient patients, the available evidence suggests that tissue pathology associated with T. gondii infection is due to parasite-directed lytic destruction of individual host cells. The Toxoplasma lytic cycle begins when the parasite actively invades a target cell. In association with invasion, T. gondii sequentially discharges three sets of secretory organelles beginning with the micronemes, which contain adhesive proteins involved in parasite attachment to a host cell. Deployed as protein complexes, several micronemal proteins possess vertebrate-derived adhesive sequences that function in binding receptors on the surface of a target cell. Each protein in these adhesive complexes fulfills a specific role in movement through the secretory pathway, targeting to the micronemes, or adhesion. It is anticipated that these adhesive complexes recognize a variety of host receptors, including some that are expressed on multiple cell types, and that this diversity in host cell receptors contributes to the remarkably broad tissue- and host-range of T. gondii.
Collapse
Affiliation(s)
- Vern B Carruthers
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Robibaro B, Hoppe HC, Yang M, Coppens I, Ngô HM, Stedman TT, Paprotka K, Joiner KA. Endocytosis in different lifestyles of protozoan parasitism: role in nutrient uptake with special reference to Toxoplasma gondii. Int J Parasitol 2001; 31:1343-53. [PMID: 11566302 DOI: 10.1016/s0020-7519(01)00252-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A fundamental property of any eukaryotic cell is endocytosis, that is the ability to take up external fluid, solutes and particulate matter into membrane-bound intracellular vesicles by various mechanisms. Toxoplasma gondii is an intracellular protozoan parasite of the phylum Apicomplexa with a wide geographical and host range distribution. Significant progress in studying the cell biology of this parasite has been accomplished over the last few years. Only recently endocytic compartments and endocytic trafficking have come to a closer dissection in T. gondii. In this review, we discuss the evidence for an endocytic compartment and present a model for an endocytic pathway in Toxoplasma against a background of endocytosis in kinetoplastida and the extensive insights gained from mammalian and yeast cells.
Collapse
Affiliation(s)
- B Robibaro
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, LCI, 808333 Cedar Street, New Haven, CT 06520-8022, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lüder CG, Seeber F. Toxoplasma gondii and MHC-restricted antigen presentation: on degradation, transport and modulation. Int J Parasitol 2001; 31:1355-69. [PMID: 11566303 DOI: 10.1016/s0020-7519(01)00260-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Resistance against Toxoplasma gondii, an obligate intracellular protozoan parasite surrounded by a parasitophorous vacuolar membrane, is mediated by the cellular arm of the immune system, namely CD8+ and CD4+ T cells. Thus, priming and activation of these cells by presentation of antigenic peptides in the context of major histocompatibility complex class I and class II molecules have to take place. This is despite the fact that the vacuolar membrane avoids fusion with the endocytic compartment and acts like a molecular sieve, restricting passive diffusion of larger molecules. This raises several cell biological and immunological questions which will be discussed in this review in the context of our current knowledge about major histocompatibility complex-restricted antigen presentation in other systems: (1) By which pathways are parasite-derived antigens presented to T cells? (2) Has the parasite evolved mechanisms to interfere with major histocompatibility complex-restricted antigen presentation in order to avoid immune recognition? (3) To what extent and by which mechanism is antigenic material, originating from the parasite, able to pass through the vacuolar membrane into the cytosol of the infected cell and is it then accessible to the antigen presentation machinery of the infected cell? (4) What are the actual antigen-presenting cells which prime specific T cells in lymphoid organs? An understanding of these mechanisms will not only provide new insights into the pathogenesis of Toxoplasma gondii and possibly other intravacuolar parasites, but will also improve vaccination strategies.
Collapse
Affiliation(s)
- C G Lüder
- Department of Bacteriology, Georg-August-Universität Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany.
| | | |
Collapse
|
25
|
He CY, Striepen B, Pletcher CH, Murray JM, Roos DS. Targeting and processing of nuclear-encoded apicoplast proteins in plastid segregation mutants of Toxoplasma gondii. J Biol Chem 2001; 276:28436-42. [PMID: 11319231 DOI: 10.1074/jbc.m102000200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The apicoplast is a distinctive organelle associated with apicomplexan parasites, including Plasmodium sp. (which cause malaria) and Toxoplasma gondii (the causative agent of toxoplasmosis). This unusual structure (acquired by the engulfment of an ancestral alga and retention of the algal plastid) is essential for long-term parasite survival. Similar to other endosymbiotic organelles (mitochondria, chloroplasts), the apicoplast contains proteins that are encoded in the nucleus and post-translationally imported. Translocation across the four membranes surrounding the apicoplast is mediated by an N-terminal bipartite targeting sequence. Previous studies have described a recombinant "poison" that blocks plastid segregation during mitosis, producing parasites that lack an apicoplast and siblings containing a gigantic, nonsegregating plastid. To learn more about this remarkable phenomenon, we examined the localization and processing of the protein produced by this construct. Taking advantage of the ability to isolate apicoplast segregation mutants, we also demonstrated that processing of the transit peptide of nuclear-encoded apicoplast proteins requires plastid-associated activity.
Collapse
Affiliation(s)
- C Y He
- Department of Biology, Cancer Center Flow Cytometry Shared Resource, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Recent advances in understanding toxoplasmosis have been made in the areas of the basic biology of the parasite and the host-parasite interaction, especially the cellular immune response. There is new insight into the biology of the cyst stage that is responsible for meat-associated transmission of infection and for the reactivation of disease in chronically infected humans. Fewer recent advances have been made in clinical diagnosis and treatment of toxoplasmosis. The fascinating revelation that Toxoplasma gondii contains an organelle--now known as the apicoplast--that derives from an algal endosymbiont, has opened many avenues of basic investigation. An understanding of the fundamental biology of T. gondii promises future progress in prevention or treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Joseph D. Schwartzman
- Dartmouth Medical School, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| |
Collapse
|
27
|
Di Cristina M, Spaccapelo R, Soldati D, Bistoni F, Crisanti A. Two conserved amino acid motifs mediate protein targeting to the micronemes of the apicomplexan parasite Toxoplasma gondii. Mol Cell Biol 2000; 20:7332-41. [PMID: 10982850 PMCID: PMC86287 DOI: 10.1128/mcb.20.19.7332-7341.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The micronemal protein 2 (MIC2) of Toxoplasma gondii shares sequence and structural similarities with a series of adhesive molecules of different apicomplexan parasites. These molecules accumulate, through a yet unknown mechanism, in secretory vesicles (micronemes), which together with tubular and membrane structures form the locomotion and invasion machinery of apicomplexan parasites. Our findings indicated that two conserved motifs placed within the cytoplasmic domain of MIC2 are both necessary and sufficient for targeting proteins to T. gondii micronemes. The first motif is based around the amino acid sequence SYHYY. Database analysis revealed that a similar sequence is present in the cytoplasmic tail of all transmembrane micronemal proteins identified so far in different apicomplexan species. The second signal consists of a stretch of acidic residues, EIEYE. The creation of an artificial tail containing only the two motifs SYHYY and EIEYE in a preserved spacing configuration is sufficient to target the surface protein SAG1 to the micronemes of T. gondii. These findings shed new light on the molecular mechanisms that control the formation of the microneme content and the functional relationship that links these organelles with the endoplasmic reticulum of the parasite.
Collapse
Affiliation(s)
- M Di Cristina
- Imperial College of Science, Technology, and Medicine, Department of Biology, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Weiss LM, Kim K. The development and biology of bradyzoites of Toxoplasma gondii. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2000; 5:D391-405. [PMID: 10762601 PMCID: PMC3109641 DOI: 10.2741/weiss] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Toxoplasma gondii is a protozoan parasite of mammals and birds that is an important human pathogen. Infection with this Apicomplexan parasite results in its dissemination throughout its host via the tachyzoite life-stage. After dissemination these tachyzoites differentiate into bradyzoites within cysts that remain latent. These bradyzoites can transform back into tachyzoites and in immunosupressed individuals this often results in symptomatic disease. Both tachyzoites and bradyzoites develop in tissue culture and thus this crucial differentiation event can be studied. Recent advances in the genetic manipulation of T. gondii have expanded the molecular tools that can be applied to studies on bradyzoite differentiation. Evidence is accumulating that this differentiation event is stress mediated and may share common pathways with other stress-induced differentiation events in other eukaryotic organisms. Study of the stress response and signaling pathways are areas of active research in this organism. In addition, characterization of unique bradyzoite-specific structures, such as the cyst wall, should lead to a further understanding of T. gondii biology. This review focuses on the biology and development of bradyzoites and current approaches to the study of the tachyzoite to bradyzoite differentiation process.
Collapse
Affiliation(s)
- Louis M. Weiss
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
| | - Kami Kim
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
| |
Collapse
|
29
|
Hunter S, Ashbaugh L, Hair P, Bozic CM, Milhausen M. Baculovirus-directed expression and secretion of a truncated version of Toxoplasma SAG1. Mol Biochem Parasitol 1999; 103:267-72. [PMID: 10551369 DOI: 10.1016/s0166-6851(99)00119-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S Hunter
- Heska Corporation, Ft. Collins, CO 80525, USA
| | | | | | | | | |
Collapse
|
30
|
Seeber F, Beuerle B, Schmidt HH. Cloning and functional expression of the calmodulin gene from Toxoplasma gondii. Mol Biochem Parasitol 1999; 99:295-9. [PMID: 10340495 DOI: 10.1016/s0166-6851(99)00030-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F Seeber
- FB Biologie/Parasitologie, Philipps-Universität, Marburg, Germany.
| | | | | |
Collapse
|
31
|
Lecordier L, Mercier C, Sibley LD, Cesbron-Delauw MF. Transmembrane insertion of the Toxoplasma gondii GRA5 protein occurs after soluble secretion into the host cell. Mol Biol Cell 1999; 10:1277-87. [PMID: 10198072 PMCID: PMC25268 DOI: 10.1091/mbc.10.4.1277] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii resides within a specialized compartment, the parasitophorous vacuole (PV), that resists fusion with host cell endocytic and lysosomal compartments. The PV is extensively modified by secretion of parasite proteins, including the dense granule protein GRA5 that is specifically targeted to the delimiting membrane of the PV (PVM). We show here that GRA5 is present both in a soluble form and in hydrophobic aggregates. GRA5 is secreted as a soluble form into the PV after which it becomes stably associated with the PVM. Topological studies demonstrated that GRA5 was inserted into the PVM as a transmembrane protein with its N-terminal domain extending into the cytoplasm and its C terminus in the vacuole lumen. Deletion of 8 of the 18 hydrophobic amino acids of the single predicted transmembrane domain resulted in the failure of GRA5 to associate with the PVM; yet it remained correctly packaged in the dense granules and was secreted as a soluble protein into the PV. Collectively, these studies demonstrate that the secretory pathway in Toxoplasma is unusual in two regards; it allows soluble export of proteins containing typical transmembrane domains and provides a mechanism for their insertion into a host cell membrane after secretion from the parasite.
Collapse
Affiliation(s)
- L Lecordier
- Mécanismes Moléculaires de la Pathogénèse des Sporozoaires, Institut Pasteur de Lille, Institut de Biologie de Lille, 59019 Lille cedex, France
| | | | | | | |
Collapse
|
32
|
Flötenmeyer M, Momayezi M, Plattner H. Immunolabeling analysis of biosynthetic and degradative pathways of cell surface components (glycocalyx) in Paramecium cells. Eur J Cell Biol 1999; 78:67-77. [PMID: 10082425 DOI: 10.1016/s0171-9335(99)80008-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biosynthetic and degradative pathways of glycocalyx components are largely unknown in Paramecium and in some related parasitic protozoa. We isolated cell surface (glyco-)proteins, i.e., surface antigens (SAg) and used them in the native (nSAg) or denatured (dSAg) state to produce antibodies (AB) for immunolocalization by confocal imaging and by quantitative immunogold EM-labeling of ultrathin sections or of freeze-fracture replicas. Antibodies against nSAg or dSAg, respectively, yield different labeling densities over individual structures, thus indicating biosynthetic or degradative pathways, respectively. We derive the following biosynthetic way: ER --> Golgi apparatus --> non-regulated/non-dense core vesicle transport --> diffusional spread over non-ciliary (somatic) and ciliary cell membrane. For degradation we show the following pathways: Concentration of nSAg in the cytostome --> nascent digestive vacuole --> mature vacuoles --> release of dSAg at cytoproct, with partial retrieval by "discoidal vesicles". A second internalization pathway proceeds via coated pits ("parasomal sacs") --> early endosomes ("terminal cisternae") --> digestive vacuoles. Dense packing of SAg in the glycocalyx may drive them into the endo-/phagocytic pathway. Still more intriguing is the site of nSAg integration into the cell membrane by unstimulated exocytosis. We consider unconspicuous clear vesicles relevant for nSAg export, probably via sites which most of the time are occupied by coated pits. This could compensate for membrane retrieval by coated pits, while scarcity of smooth profiles at these sites may be explained by the much longer time period required for coated pit formation as compared to exocytosis.
Collapse
|
33
|
En route to the vacuole. ADVANCES IN CELLULAR AND MOLECULAR BIOLOGY OF MEMBRANES AND ORGANELLES 1999. [DOI: 10.1016/s1874-5172(99)80014-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Letscher-Bru V, Villard O, Risse B, Zauke M, Klein JP, Kien TT. Protective effect of vaccination with a combination of recombinant surface antigen 1 and interleukin-12 against toxoplasmosis in mice. Infect Immun 1998; 66:4503-6. [PMID: 9712808 PMCID: PMC108546 DOI: 10.1128/iai.66.9.4503-4506.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the immune response induced in mice by recombinant Toxoplasma gondii surface antigen 1 (rSAG1) protein, alone or combined with interleukin-12 (IL-12) as an adjuvant, and the protective effect against toxoplasmosis. Immunization with rSAG1 alone induced a specific humoral type 2 immunity and did not protect the animals from infection. In contrast, immunization with rSAG1 plus IL-12 redirected humoral and cellular immunity toward a type 1 pattern and reduced the brain parasite load by 40%.
Collapse
Affiliation(s)
- V Letscher-Bru
- Institut de Parasitologie et de Pathologie Tropicale, Inserm U392, Faculté de Médecine, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
35
|
Karsten V, Qi H, Beckers CJ, Reddy A, Dubremetz JF, Webster P, Joiner KA. The protozoan parasite Toxoplasma gondii targets proteins to dense granules and the vacuolar space using both conserved and unusual mechanisms. J Cell Biol 1998; 141:1323-33. [PMID: 9628889 PMCID: PMC2132784 DOI: 10.1083/jcb.141.6.1323] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1997] [Revised: 04/30/1998] [Indexed: 02/07/2023] Open
Abstract
All known proteins that accumulate in the vacuolar space surrounding the obligate intracellular protozoan parasite Toxoplasma gondii are derived from parasite dense granules. To determine if constitutive secretory vesicles could also mediate delivery to the vacuolar space, T. gondii was stably transfected with soluble Escherichia coli alkaline phosphatase and E. coli beta-lactamase. Surprisingly, both foreign secretory reporters were delivered quantitatively into parasite dense granules and efficiently secreted into the vacuolar space. Addition of a glycosylphosphatidylinositol membrane anchor rerouted alkaline phosphatase to the parasite surface. Alkaline phosphatase fused to the transmembrane domain and cytoplasmic tail from the endogenous dense granule protein GRA4 localized to dense granules. The protein was secreted into a tuboreticular network in the vacuolar space, in a fashion dependent upon the cytoplasmic tail, but not upon a tyrosine-based motif within the tail. Alkaline phosphatase fused to the vesicular stomatitis virus G protein transmembrane domain and cytoplasmic tail localized primarily to the Golgi, although staining of dense granules and the intravacuolar network was also detected; truncating the cytoplasmic tail decreased Golgi staining and increased delivery to dense granules but blocked delivery to the intravacuolar network. Targeting of secreted proteins to T. gondii dense granules and the plasma membrane uses general mechanisms identified in higher eukaryotic cells but is simplified and exaggerated in scope, while targeting of secreted proteins beyond the boundaries of the parasite involves unusual sorting events.
Collapse
Affiliation(s)
- V Karsten
- Section of Infectious Diseases, Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA
| | | | | | | | | | | | | |
Collapse
|