1
|
Deng X, Higaki T, Lin HH, Lee YRJ, Liu B. The unconventional TPX2 family protein TPXL3 regulates α Aurora kinase function in spindle morphogenesis in Arabidopsis. THE PLANT CELL 2025; 37:koaf065. [PMID: 40139933 PMCID: PMC12012799 DOI: 10.1093/plcell/koaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025]
Abstract
Spindle assembly in vertebrates requires the Aurora kinase, which is targeted to microtubules and activated by TPX2 (Targeting Protein of XKLP2). In Arabidopsis (Arabidopsis thaliana), TPX2-LIKE 3 (TPXL3), but not the highly conserved TPX2, is essential. To test the hypothesis that TPXL3 regulates the function of α Aurora kinase in spindle assembly, we generated transgenic Arabidopsis lines expressing an artificial microRNA targeting TPXL3 mRNA (amiR-TPXL3). The resulting mutants exhibited growth retardation, which was linked to compromised TPXL3 expression. In the mutant cells, α Aurora was delocalized from spindle microtubules to the cytoplasm, and spindles were assembled without recognizable poles. A functional TPXL3-GFP fusion protein first prominently appeared on the prophase nuclear envelope. Then, TPXL3-GFP localized to spindle microtubules (primarily toward the spindle poles, like γ-tubulin), and finally to the re-forming nuclear envelope during telophase and cytokinesis. However, TPXL3 was absent from phragmoplast microtubules. In addition, we found that the TPXL3 N-terminal Aurora-binding motif, microtubule-binding domain, and importin-binding motif, but not the C-terminal segment, were required for its mitotic function. Expression of truncated TPXL3 variants enhanced the defects in spindle assembly and seedling growth of amiR-TPXL3 plants. Taken together, our findings uncovered the essential function of TPXL3, but not TPX2, in targeting and activating α Aurora kinase for spindle apparatus assembly in Arabidopsis.
Collapse
Affiliation(s)
- Xingguang Deng
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860–8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860–8555, Japan
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
2
|
Damodaran AP, Gavard O, Gagné JP, Rogalska ME, Behera AK, Mancini E, Bertolin G, Courtheoux T, Kumari B, Cailloce J, Mereau A, Poirier GG, Valcárcel J, Gonatopoulos-Pournatzis T, Watrin E, Prigent C. Proteomic study identifies Aurora-A-mediated regulation of alternative splicing through multiple splicing factors. J Biol Chem 2025; 301:108000. [PMID: 39551136 PMCID: PMC11732490 DOI: 10.1016/j.jbc.2024.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
The cell cycle regulator Aurora-A kinase presents an attractive target for cancer therapies, though its inhibition is also associated with toxic side effects. To gain a more nuanced understanding of Aurora-A function, we applied shotgun proteomics to identify 407 specific protein partners, including several splicing factors. Supporting a role in alternative splicing, we found that Aurora-A localizes to nuclear speckles, the storehouse of splicing proteins. Aurora-A interacts with and phosphorylates splicing factors both in vitro and in vivo, suggesting that it regulates alternative splicing by modulating the activity of these splicing factors. Consistently, Aurora-A inhibition significantly impacts the alternative splicing of 505 genes, with RNA motif analysis revealing an enrichment for Aurora-A interacting splicing factors. Additionally, we observed a significant positive correlation between the splicing events regulated by Aurora-A and those modulated by its interacting splicing factors. An interesting example is represented by CLK1 exon 4, which appears to be regulated by Aurora-A through SRSF3. Collectively, our findings highlight a broad role of Aurora-A in the regulation of alternative splicing.
Collapse
Affiliation(s)
- Arun Prasath Damodaran
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France; RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA.
| | - Olivia Gavard
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Quebec, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Malgorzata Ewa Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Amit K Behera
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Giulia Bertolin
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Thibault Courtheoux
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Bandana Kumari
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA
| | - Justine Cailloce
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Agnès Mereau
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Quebec, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institut Catalá de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Thomas Gonatopoulos-Pournatzis
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA.
| | - Erwan Watrin
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France.
| | - Claude Prigent
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France; Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
3
|
Li X, You Q. Sanguinarine identified as a natural dual inhibitor of AURKA and CDK2 through network pharmacology and bioinformatics approaches. Sci Rep 2024; 14:29608. [PMID: 39609491 PMCID: PMC11605095 DOI: 10.1038/s41598-024-81063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
Cervical cancer (CA) continues to be a female malignant tumor with limited therapeutic options, resulting in a high mortality rate. Sanguinarine (SANG), a naturally occurring alkaloid, has demonstrated notable efficacy in preclinical treatment of CA. However, the mechanism through which SANG acts against CA is not fully understood. To address this, utilizing nine drug target prediction databases, we have successfully identified 379 potential targets for SANG. Venn diagram analysis compared 2367 CA-related targets from the GeneCards disease database, 2618 CA-closely related targets derived from multiple datasets in GEO through WGCNA analysis, and the 379 potential targets of SANG, resulting in 35 shared targets. Subsequently, by employing PPI network analysis, the Cytohubba plugin, the Human Protein Atlas, TCGA database data, and ROC curve analysis, we have identified AURKA and CDK2 as key targets of SANG in combating CA. Single-gene GSEA results suggest that the overexpression of AURKA and CDK2 is closely correlated with DNA replication, cell cycle progression, and various DNA repair pathways in CA. Molecular docking and molecular simulation dynamics analyses have confirmed the stable binding of both AURKA and CDK2 to SANG. In summary, by integrating diverse methodological approaches, this study discovered that SANG potentially inhibits the malignant features of CA by targeting AURKA and CDK2, thereby regulating DNA replication, cell cycle progression, and multiple DNA repair pathways. This lays a solid foundation for further exploring the pharmacological role of SANG in CA therapy. However, further in-depth in vitro and in vivo experiments are required to corroborate our findings.
Collapse
Affiliation(s)
- Xiang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Qi You
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
4
|
Holder J, Miles JA, Batchelor M, Popple H, Walko M, Yeung W, Kannan N, Wilson AJ, Bayliss R, Gergely F. CEP192 localises mitotic Aurora-A activity by priming its interaction with TPX2. EMBO J 2024; 43:5381-5420. [PMID: 39327527 PMCID: PMC11574021 DOI: 10.1038/s44318-024-00240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Aurora-A is an essential cell-cycle kinase with critical roles in mitotic entry and spindle dynamics. These functions require binding partners such as CEP192 and TPX2, which modulate both kinase activity and localisation of Aurora-A. Here we investigate the structure and role of the centrosomal Aurora-A:CEP192 complex in the wider molecular network. We find that CEP192 wraps around Aurora-A, occupies the binding sites for mitotic spindle-associated partners, and thus competes with them. Comparison of two different Aurora-A conformations reveals how CEP192 modifies kinase activity through the site used for TPX2-mediated activation. Deleting the Aurora-A-binding interface in CEP192 prevents centrosomal accumulation of Aurora-A, curtails its activation-loop phosphorylation, and reduces spindle-bound TPX2:Aurora-A complexes, resulting in error-prone mitosis. Thus, by supplying the pool of phosphorylated Aurora-A necessary for TPX2 binding, CEP192:Aurora-A complexes regulate spindle function. We propose an evolutionarily conserved spatial hierarchy, which protects genome integrity through fine-tuning and correctly localising Aurora-A activity.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jennifer A Miles
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Harrison Popple
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Wayland Yeung
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Andrew J Wilson
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| | - Fanni Gergely
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Uzbekov R, Uzbekova S, Severin F, Prigent C, Arlot-Bonnemains Y. Aurora A Kinase Begins to Localize to the Centrosome in the S-phase of the Cell Cycle in the XL2 Cell Line. FRONT BIOSCI-LANDMRK 2024; 29:317. [PMID: 39344321 DOI: 10.31083/j.fbl2909317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The centrosome is one of the principal cell hubs, where numerous proteins important for intracellular regulatory processes are concentrated. One of them, serine-threonine kinase 6, alias Aurora A, is involved in centrosome duplication and mitotic spindle formation and maintenance. METHODS Long-term vital observations of cells, immunofluorescence analysis of protein localization, synchronization of cells at different phases of the cell cycle, Western blot analysis of protein content were used in the work. RESULTS In this study, we investigated the dynamics of Aurora A protein accumulation and degradation in the XL2 Xenopus cell line during its 28-hour cell cycle. Using Western blot and immunofluorescence analyses, we demonstrated that Aurora A disappeared from the centrosome within one hour following mitosis and was not redistributed to other cell compartments. Using double Aurora A/Bromodeoxyuridine immunofluorescence labeling of the cells with precisely determined cell cycle stages, we observed that Aurora A reappeared in the centrosome during the S-phase, which was earlier than reported for all other known proteins with mitosis-specific centrosomal localization. Moreover, Aurora A accumulation in the centrosomal region and centrosome separation were asynchronous in the sister cells. CONCLUSIONS The reported data allowed us to hypothesize that Aurora A is one of the primary links in coordinating centrosome separation and constructing the mitotic spindle.
Collapse
Affiliation(s)
- Rustem Uzbekov
- Laboratoire Biologie Cellulaire et Microscopie Electronique, Faculté Médecine, University François Rabelais, 37032 Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119991 Moscow, Russia
| | - Svetlana Uzbekova
- Physiology of Reproduction and Behavior (PRC) mixed Research Unit of National Research Institute for Agriculture, Food and the Environment (INRAE), National Center for Scientific Research (CNRS), French Institute of Horses and Riding (IFCE), University of Tours, 37380 Nouzilly, France
| | - Fedor Severin
- A.N. Belozersky Institute of Physico-chemical Biology, Moscow State University, 119991 Moscow, Russia
| | - Claude Prigent
- University of Montpellier, Centre National de la Recherche Scientifique (CNRS), 34000 Montpellier, France
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Yannick Arlot-Bonnemains
- Mixed Research Unit 6290, National Center for Scientific Research (CNRS), Institute of Genetics and Development of Rennes, University of Rennes 1, 35043 Rennes, France
| |
Collapse
|
6
|
Milletti G, Colicchia V, Cecconi F. Cyclers' kinases in cell division: from molecules to cancer therapy. Cell Death Differ 2023; 30:2035-2052. [PMID: 37516809 PMCID: PMC10482880 DOI: 10.1038/s41418-023-01196-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Faithful eucaryotic cell division requires spatio-temporal orchestration of multiple sequential events. To ensure the dynamic nature of these molecular and morphological transitions, a swift modulation of key regulatory pathways is necessary. The molecular process that most certainly fits this description is phosphorylation, the post-translational modification provided by kinases, that is crucial to allowing the progression of the cell cycle and that culminates with the separation of two identical daughter cells. In detail, from the early stages of the interphase to the cytokinesis, each critical step of this process is tightly regulated by multiple families of kinases including the Cyclin-dependent kinases (CDKs), kinases of the Aurora, Polo, Wee1 families, and many others. While cell-cycle-related CDKs control the timing of the different phases, preventing replication machinery errors, the latter modulate the centrosome cycle and the spindle function, avoiding karyotypic abnormalities typical of chromosome instability. Such chromosomal abnormalities may result from replication stress (RS) and chromosome mis-segregation and are considered a hallmark of poor prognosis, therapeutic resistance, and metastasis in cancer patients. Here, we discuss recent advances in the understanding of how different families of kinases concur to govern cell cycle, preventing RS and mitotic infidelity. Additionally, considering the growing number of clinical trials targeting these molecules, we review to what extent and in which tumor context cell-cycle-related kinases inhibitors are worth exploiting as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Giacomo Milletti
- DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| | - Valeria Colicchia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- IRBM S.p.A., Via Pontina Km 30.60, 00070, Pomezia, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
7
|
Tang X, Wei W, Snowball JM, Nakayasu ES, Bell SM, Ansong C, Lin X, Whitsett JA. EMC3 regulates mesenchymal cell survival via control of the mitotic spindle assembly. iScience 2022; 26:105667. [PMID: 36624844 PMCID: PMC9823123 DOI: 10.1016/j.isci.2022.105667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic cells transit through the cell cycle to produce two daughter cells. Dysregulation of the cell cycle leads to cell death or tumorigenesis. Herein, we found a subunit of the ER membrane complex, EMC3, as a key regulator of cell cycle. Conditional deletion of Emc3 in mouse embryonic mesoderm led to reduced size and patterning defects of multiple organs. Emc3 deficiency impaired cell proliferation, causing spindle assembly defects, chromosome mis-segregation, cell cycle arrest at G2/M, and apoptosis. Upon entry into mitosis, mesenchymal cells upregulate EMC3 protein levels and localize EMC3 to the mitotic centrosomes. Further analysis indicated that EMC3 works together with VCP to tightly regulate the levels and activity of Aurora A, an essential factor for centrosome function and mitotic spindle assembly: while overexpression of EMC3 or VCP degraded Aurora A, their loss led to increased Aurora A stability but reduced Aurora A phosphorylation in mitosis.
Collapse
Affiliation(s)
- Xiaofang Tang
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, 2nd Nanjiang Rd, Nansha District, Guangzhou 511458, China
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, No. 2005 Songhu Rd, Shanghai 200438, China
| | - John M. Snowball
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Sheila M. Bell
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Xinhua Lin
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, 2nd Nanjiang Rd, Nansha District, Guangzhou 511458, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, No. 2005 Songhu Rd, Shanghai 200438, China,Corresponding author
| | - Jeffrey A. Whitsett
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA,Corresponding author
| |
Collapse
|
8
|
Gerber T, Loureiro C, Schramma N, Chen S, Jain A, Weber A, Weigert A, Santel M, Alim K, Treutlein B, Camp JG. Spatial transcriptomic and single-nucleus analysis reveals heterogeneity in a gigantic single-celled syncytium. eLife 2022; 11:e69745. [PMID: 35195068 PMCID: PMC8865844 DOI: 10.7554/elife.69745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
In multicellular organisms, the specification, coordination, and compartmentalization of cell types enable the formation of complex body plans. However, some eukaryotic protists such as slime molds generate diverse and complex structures while remaining in a multinucleate syncytial state. It is unknown if different regions of these giant syncytial cells have distinct transcriptional responses to environmental encounters and if nuclei within the cell diversify into heterogeneous states. Here, we performed spatial transcriptome analysis of the slime mold Physarum polycephalum in the plasmodium state under different environmental conditions and used single-nucleus RNA-sequencing to dissect gene expression heterogeneity among nuclei. Our data identifies transcriptome regionality in the organism that associates with proliferation, syncytial substructures, and localized environmental conditions. Further, we find that nuclei are heterogenous in their transcriptional profile and may process local signals within the plasmodium to coordinate cell growth, metabolism, and reproduction. To understand how nuclei variation within the syncytium compares to heterogeneity in single-nucleus cells, we analyzed states in single Physarum amoebal cells. We observed amoebal cell states at different stages of mitosis and meiosis, and identified cytokinetic features that are specific to nuclei divisions within the syncytium. Notably, we do not find evidence for predefined transcriptomic states in the amoebae that are observed in the syncytium. Our data shows that a single-celled slime mold can control its gene expression in a region-specific manner while lacking cellular compartmentalization and suggests that nuclei are mobile processors facilitating local specialized functions. More broadly, slime molds offer the extraordinary opportunity to explore how organisms can evolve regulatory mechanisms to divide labor, specialize, balance competition with cooperation, and perform other foundational principles that govern the logic of life.
Collapse
Affiliation(s)
- Tobias Gerber
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Cristina Loureiro
- Department of Biosystems Science and Engineering, ETH ZürichBaselSwitzerland
| | - Nico Schramma
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
| | - Siyu Chen
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
- Physics Department, Technical University of MunichMünchenGermany
| | - Akanksha Jain
- Department of Biosystems Science and Engineering, ETH ZürichBaselSwitzerland
| | - Anne Weber
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
| | - Anne Weigert
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Malgorzata Santel
- Department of Biosystems Science and Engineering, ETH ZürichBaselSwitzerland
| | - Karen Alim
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
- Physics Department, Technical University of MunichMünchenGermany
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Department of Biosystems Science and Engineering, ETH ZürichBaselSwitzerland
| | - J Gray Camp
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation CenterBaselSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
9
|
Liu M, Li Y, Zhang C, Zhang Q. Role of aurora kinase B in regulating resistance to paclitaxel in breast cancer cells. Hum Cell 2022; 35:678-693. [PMID: 35088239 PMCID: PMC8866333 DOI: 10.1007/s13577-022-00675-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/16/2022] [Indexed: 12/24/2022]
Abstract
Aurora kinase B (AURKB) is a type of functional kinase with primary functions of participating in cell mitosis, which has been identified to be involved in the occurrence and development of malignant tumors strongly. However, it still remains a controversial with respect to the relationship between the phosphorylation level of AURKB and its function. In our initial research, there was no significant difference in the relative content of AURKB protein between drug-resistant breast cancer cells and wild-type cells; however, its phosphorylation level in drug-resistant cells was significantly higher than that in wild-type cells. Subsequent cell and animal experiments both confirmed the positive correlation between AURKB phosphorylation and drug resistance. Furthermore, PRKCE in the upstream was identified to regulate the phosphorylation of AURKB, which promoted the change of spatial localization of AURKB from nucleus to cytoplasm. Accordingly, phosphorylated AURKB reduced the negative regulation of downstream RAB27B transcription physically, and interacted with RAB27B in cytoplasm to maintain its protein stability. Eventually, it promoted exosome secretion of drug-resistant cells and drug efflux. Using shRNA to knockdown AURKB expression, using hesperadin to inhibit AURKB activity, mutating the AURKB phosphorylation site, or using siRNA as well as BIM to inhibit the activity of the upstream AURKB phosphorylation regulatory protein PRKCE, all of which directly or indirectly reduce AURKB phosphorylation, are effective in reversing PTX resistance in cells. Collectively, this study provides experimental evidence for PRKCE/AURKB/RAB27B axis in regulating the resistance to paclitaxel (PTX) in breast cancer cells, offering a potential intervention target for reversing drug resistance.
Collapse
Affiliation(s)
- Min Liu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23 Art museum Back street, Dongcheng District, Beijing, 100010, China
| | - Yinan Li
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23 Art museum Back street, Dongcheng District, Beijing, 100010, China.,Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.,Graduate School of Beijing University of Chinese Medicine, North Third Ring East Road 15, Chaoyang District, Beijing, 100029, China
| | - Cui Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23 Art museum Back street, Dongcheng District, Beijing, 100010, China
| | - Qing Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23 Art museum Back street, Dongcheng District, Beijing, 100010, China.
| |
Collapse
|
10
|
Lacroix B, Dumont J. Spatial and Temporal Scaling of Microtubules and Mitotic Spindles. Cells 2022; 11:cells11020248. [PMID: 35053364 PMCID: PMC8774166 DOI: 10.3390/cells11020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/01/2023] Open
Abstract
During cell division, the mitotic spindle, a macromolecular structure primarily comprised of microtubules, drives chromosome alignment and partitioning between daughter cells. Mitotic spindles can sense cellular dimensions in order to adapt their length and mass to cell size. This scaling capacity is particularly remarkable during early embryo cleavage when cells divide rapidly in the absence of cell growth, thus leading to a reduction of cell volume at each division. Although mitotic spindle size scaling can occur over an order of magnitude in early embryos, in many species the duration of mitosis is relatively short, constant throughout early development and independent of cell size. Therefore, a key challenge for cells during embryo cleavage is not only to assemble a spindle of proper size, but also to do it in an appropriate time window which is compatible with embryo development. How spatial and temporal scaling of the mitotic spindle is achieved and coordinated with the duration of mitosis remains elusive. In this review, we will focus on the mechanisms that support mitotic spindle spatial and temporal scaling over a wide range of cell sizes and cellular contexts. We will present current models and propose alternative mechanisms allowing cells to spatially and temporally coordinate microtubule and mitotic spindle assembly.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
- Correspondence:
| | - Julien Dumont
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France;
| |
Collapse
|
11
|
Lester WC, Johnson T, Hale B, Serra N, Elgart B, Wang R, Geyer CB, Sperry AO. Aurora a kinase (AURKA) is required for male germline maintenance and regulates sperm motility in the mouse. Biol Reprod 2021; 105:1603-1616. [PMID: 34518881 DOI: 10.1093/biolre/ioab168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/12/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Aurora A kinase (AURKA) is an important regulator of cell division and is required for assembly of the mitotic spindle. We recently reported the unusual finding that this mitotic kinase is also found on the sperm flagellum. To determine its requirement in spermatogenesis, we generated conditional knockout animals with deletion of the Aurka gene in either spermatogonia or spermatocytes to assess its role in mitotic and postmitotic cells, respectively. Deletion of Aurka in spermatogonia resulted in disappearance of all developing germ cells in the testis, as expected given its vital role in mitotic cell division. Deletion of Aurka in spermatocytes reduced testis size, sperm count, and fertility, indicating disruption of meiosis or an effect on spermiogenesis in developing mice. Interestingly, deletion of Aurka in spermatocytes increased apoptosis in spermatocytes along with an increase in the percentage of sperm with abnormal morphology. Despite the increase in abnormal sperm, sperm from spermatocyte Aurka knockout mice displayed increased progressive motility. In addition, sperm lysate prepared from Aurka knockout animals had decreased protein phosphatase 1 (PP1) activity. Together, our results show that AURKA plays multiple roles in spermatogenesis, from mitotic divisions of spermatogonia to sperm morphology and motility.
Collapse
Affiliation(s)
- William C Lester
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| | - Taylor Johnson
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Ben Hale
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Nicholas Serra
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Brian Elgart
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| | - Rong Wang
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Ann O Sperry
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| |
Collapse
|
12
|
Naik A, Decock J. Targeting of lactate dehydrogenase C dysregulates the cell cycle and sensitizes breast cancer cells to DNA damage response targeted therapy. Mol Oncol 2021; 16:885-903. [PMID: 34050611 PMCID: PMC8847988 DOI: 10.1002/1878-0261.13024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
The cancer testis antigen (CTA) lactate dehydrogenase C (LDHC) is a promising anticancer target with tumor-specific expression and immunogenicity. Interrogation of breast cancer patient cohorts from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) indicate that upregulation of LDHC expression correlates with unfavorable prognosis. Although the role of LDHC is well characterized in spermatocytes, its role in tumors remains largely unknown. We investigated whether LDHC is involved in regulating genomic stability and whether it could be targeted to affect tumor cellular fitness. Silencing LDHC in four breast cancer cell lines significantly increased the presence of giant cells, nuclear aberrations, DNA damage, and apoptosis. LDHC-silenced cells demonstrated aberrant cell cycle progression with differential expression of cell cycle checkpoint and DNA damage response regulators. In addition, LDHC silencing-induced microtubule destabilization, culminating in increased mitotic catastrophe and reduced long-term survival. Notably, the clonogenicity of LDHC-silenced cells was further reduced by treatment with the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib and with the DNA-damaging drug cisplatin. This study supports the therapeutic potential of targeting LDHC to mitigate cancer cell survival and improve sensitivity to agents that cause DNA damage or inhibit its repair.
Collapse
Affiliation(s)
- Adviti Naik
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
13
|
Bertolin G, Alves-Guerra MC, Cheron A, Burel A, Prigent C, Le Borgne R, Tramier M. Mitochondrial Aurora kinase A induces mitophagy by interacting with MAP1LC3 and Prohibitin 2. Life Sci Alliance 2021; 4:4/6/e202000806. [PMID: 33820826 PMCID: PMC8046421 DOI: 10.26508/lsa.202000806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
The multifunctional Ser/Thr kinase AURKA uses the Inner Mitochondrial Membrane receptor PHB2 and MAP1LC3 as a signalling platform to orchestrate the elimination of dysfunctional mitochondria. Epithelial and haematologic tumours often show the overexpression of the serine/threonine kinase AURKA. Recently, AURKA was shown to localise at mitochondria, where it regulates mitochondrial dynamics and ATP production. Here we define the molecular mechanisms of AURKA in regulating mitochondrial turnover by mitophagy. AURKA triggers the degradation of Inner Mitochondrial Membrane/matrix proteins by interacting with core components of the autophagy pathway. On the inner mitochondrial membrane, the kinase forms a tripartite complex with MAP1LC3 and the mitophagy receptor PHB2, which triggers mitophagy in a PARK2/Parkin–independent manner. The formation of the tripartite complex is induced by the phosphorylation of PHB2 on Ser39, which is required for MAP1LC3 to interact with PHB2. Last, treatment with the PHB2 ligand xanthohumol blocks AURKA-induced mitophagy by destabilising the tripartite complex and restores normal ATP production levels. Altogether, these data provide evidence for a role of AURKA in promoting mitophagy through the interaction with PHB2 and MAP1LC3. This work paves the way to the use of function-specific pharmacological inhibitors to counteract the effects of the overexpression of AURKA in cancer.
Collapse
Affiliation(s)
- Giulia Bertolin
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Marie-Clotilde Alves-Guerra
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, Paris, France
| | - Angélique Cheron
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Agnès Burel
- University of Rennes, MRic CNRS, INSERM, Structure Fédérative de Recherche (SFR) Biosit, UMS 3480, Rennes, France
| | - Claude Prigent
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Roland Le Borgne
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Marc Tramier
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| |
Collapse
|
14
|
Bertolin G, Tramier M. Insights into the non-mitotic functions of Aurora kinase A: more than just cell division. Cell Mol Life Sci 2020; 77:1031-1047. [PMID: 31562563 PMCID: PMC11104877 DOI: 10.1007/s00018-019-03310-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/02/2023]
Abstract
AURKA is a serine/threonine kinase overexpressed in several cancers. Originally identified as a protein with multifaceted roles during mitosis, improvements in quantitative microscopy uncovered several non-mitotic roles as well. In physiological conditions, AURKA regulates cilia disassembly, neurite extension, cell motility, DNA replication and senescence programs. In cancer-like contexts, AURKA actively promotes DNA repair, it acts as a transcription factor, promotes cell migration and invasion, and it localises at mitochondria to regulate mitochondrial dynamics and ATP production. Here we review the non-mitotic roles of AURKA, and its partners outside of cell division. In addition, we give an insight into how structural data and quantitative fluorescence microscopy allowed to understand AURKA activation and its interaction with new substrates, highlighting future developments in fluorescence microscopy needed to better understand AURKA functions in vivo. Last, we will recapitulate the most significant AURKA inhibitors currently in clinical trials, and we will explore how the non-mitotic roles of the kinase may provide new insights to ameliorate current pharmacological strategies against AURKA overexpression.
Collapse
Affiliation(s)
- Giulia Bertolin
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000, Rennes, France.
| | - Marc Tramier
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000, Rennes, France.
| |
Collapse
|
15
|
Tsuchiya Y, Byrne DP, Burgess SG, Bormann J, Baković J, Huang Y, Zhyvoloup A, Yu BYK, Peak-Chew S, Tran T, Bellany F, Tabor AB, Chan AE, Guruprasad L, Garifulin O, Filonenko V, Vonderach M, Ferries S, Eyers CE, Carroll J, Skehel M, Bayliss R, Eyers PA, Gout I. Covalent Aurora A regulation by the metabolic integrator coenzyme A. Redox Biol 2020; 28:101318. [PMID: 31546169 PMCID: PMC6812009 DOI: 10.1016/j.redox.2019.101318] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/14/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022] Open
Abstract
Aurora A kinase is a master mitotic regulator whose functions are controlled by several regulatory interactions and post-translational modifications. It is frequently dysregulated in cancer, making Aurora A inhibition a very attractive antitumor target. However, recently uncovered links between Aurora A, cellular metabolism and redox regulation are not well understood. In this study, we report a novel mechanism of Aurora A regulation in the cellular response to oxidative stress through CoAlation. A combination of biochemical, biophysical, crystallographic and cell biology approaches revealed a new and, to our knowledge, unique mode of Aurora A inhibition by CoA, involving selective binding of the ADP moiety of CoA to the ATP binding pocket and covalent modification of Cys290 in the activation loop by the thiol group of the pantetheine tail. We provide evidence that covalent CoA modification (CoAlation) of Aurora A is specific, and that it can be induced by oxidative stress in human cells. Oxidising agents, such as diamide, hydrogen peroxide and menadione were found to induce Thr 288 phosphorylation and DTT-dependent dimerization of Aurora A. Moreover, microinjection of CoA into fertilized mouse embryos disrupts bipolar spindle formation and the alignment of chromosomes, consistent with Aurora A inhibition. Altogether, our data reveal CoA as a new, rather selective, inhibitor of Aurora A, which locks this kinase in an inactive state via a "dual anchor" mechanism of inhibition that might also operate in cellular response to oxidative stress. Finally and most importantly, we believe that these novel findings provide a new rationale for developing effective and irreversible inhibitors of Aurora A, and perhaps other protein kinases containing appropriately conserved Cys residues.
Collapse
Affiliation(s)
- Yugo Tsuchiya
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Selena G Burgess
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jenny Bormann
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jovana Baković
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Yueyang Huang
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Alexander Zhyvoloup
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Sew Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Trang Tran
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Fiona Bellany
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Aw Edith Chan
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | | | - Oleg Garifulin
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv 143, Ukraine
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv 143, Ukraine
| | - Matthias Vonderach
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Samantha Ferries
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK; Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - John Carroll
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Richard Bayliss
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv 143, Ukraine.
| |
Collapse
|
16
|
Su ZL, Su CW, Huang YL, Yang WY, Sampurna BP, Ouchi T, Lee KL, Wu CS, Wang HD, Yuh CH. A Novel AURKA Mutant-Induced Early-Onset Severe Hepatocarcinogenesis Greater than Wild-Type via Activating Different Pathways in Zebrafish. Cancers (Basel) 2019; 11:cancers11070927. [PMID: 31269749 PMCID: PMC6678475 DOI: 10.3390/cancers11070927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Aurora A kinase (AURKA) is an important regulator in mitotic progression and is overexpressed frequently in human cancers, including hepatocellular carcinoma (HCC). Many AURKA mutations were identified in cancer patients. Overexpressing wild-type Aurka developed a low incidence of hepatic tumors after long latency in mice. However, none of the AURKA mutant animal models have ever been described. The mechanism of mutant AURKA-mediated hepatocarcinogenesis is still unclear. A novel AURKA mutation with a.a.352 Valine to Isoleucine (V352I) was identified from clinical specimens. By using liver-specific transgenic fish overexpressing both the mutant and wild-type AURKA, the AURKA(V352I)-induced hepatocarcinogenesis was earlier and much more severe than wild-type AURKA. Although an increase of the expression of lipogenic enzyme and lipogenic factor was observed in both AURKA(V352I) and AURKA(WT) transgenic fish, AURKA(V352I) has a greater probability to promote fibrosis at 3 months compared to AURKA(WT). Furthermore, the expression levels of cell cycle/proliferation markers were higher in the AURKA(V352I) mutant than AURKA(WT) in transgenic fish, implying that the AURKA(V352I) mutant may accelerate HCC progression. Moreover, we found that the AURKA(V352I) mutant activates AKT signaling and increases nuclear β-catenin, but AURKA(WT) only activates membrane form β-catenin, which may account for the differences. In this study, we provide a new insight, that the AURKA(V352I) mutation contributes to early onset hepatocarcinogenesis, possibly through activation of different pathways than AURKA(WT). This transgenic fish may serve as a drug-screening platform for potential precision medicine therapeutics.
Collapse
Affiliation(s)
- Zhong-Liang Su
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Wei Su
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Luen Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Wan-Yu Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Bonifasius Putera Sampurna
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Toru Ouchi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Kuan-Lin Lee
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chen-Sheng Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan.
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
17
|
Magnaghi-Jaulin L, Eot-Houllier G, Gallaud E, Giet R. Aurora A Protein Kinase: To the Centrosome and Beyond. Biomolecules 2019; 9:biom9010028. [PMID: 30650622 PMCID: PMC6359016 DOI: 10.3390/biom9010028] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Accurate chromosome segregation requires the perfect spatiotemporal rearrangement of the cellular cytoskeleton. Isolated more than two decades ago from Drosophila, Aurora A is a widespread protein kinase that plays key roles during cell division. Numerous studies have described the localisation of Aurora A at centrosomes, the mitotic spindle, and, more recently, at mitotic centromeres. In this review, we will summarise the cytoskeletal rearrangements regulated by Aurora A during cell division. We will also discuss the recent discoveries showing that Aurora A also controls not only the dynamics of the cortical proteins but also regulates the centromeric proteins, revealing new roles for this kinase during cell division.
Collapse
Affiliation(s)
- Laura Magnaghi-Jaulin
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Grégory Eot-Houllier
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Emmanuel Gallaud
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Régis Giet
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| |
Collapse
|
18
|
Willems E, Dedobbeleer M, Digregorio M, Lombard A, Lumapat PN, Rogister B. The functional diversity of Aurora kinases: a comprehensive review. Cell Div 2018; 13:7. [PMID: 30250494 PMCID: PMC6146527 DOI: 10.1186/s13008-018-0040-6] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Aurora kinases are serine/threonine kinases essential for the onset and progression of mitosis. Aurora members share a similar protein structure and kinase activity, but exhibit distinct cellular and subcellular localization. AurA favors the G2/M transition by promoting centrosome maturation and mitotic spindle assembly. AurB and AurC are chromosome-passenger complex proteins, crucial for chromosome binding to kinetochores and segregation of chromosomes. Cellular distribution of AurB is ubiquitous, while AurC expression is mainly restricted to meiotically-active germ cells. In human tumors, all Aurora kinase members play oncogenic roles related to their mitotic activity and promote cancer cell survival and proliferation. Furthermore, AurA plays tumor-promoting roles unrelated to mitosis, including tumor stemness, epithelial-to-mesenchymal transition and invasion. In this review, we aim to understand the functional interplay of Aurora kinases in various types of human cells, including tumor cells. The understanding of the functional diversity of Aurora kinases could help to evaluate their relevance as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Estelle Willems
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Matthias Dedobbeleer
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Marina Digregorio
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Arnaud Lombard
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,2Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| |
Collapse
|
19
|
The multifaceted allosteric regulation of Aurora kinase A. Biochem J 2018; 475:2025-2042. [PMID: 29946042 PMCID: PMC6018539 DOI: 10.1042/bcj20170771] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022]
Abstract
The protein kinase Aurora A (AurA) is essential for the formation of bipolar mitotic spindles in all eukaryotic organisms. During spindle assembly, AurA is activated through two different pathways operating at centrosomes and on spindle microtubules. Recent studies have revealed that these pathways operate quite differently at the molecular level, activating AurA through multifaceted changes to the structure and dynamics of the kinase domain. These advances provide an intimate atomic-level view of the finely tuned regulatory control operating in protein kinases, revealing mechanisms of allosteric cooperativity that provide graded levels of regulatory control, and a previously unanticipated mechanism for kinase activation by phosphorylation on the activation loop. Here, I review these advances in our understanding of AurA function, and discuss their implications for the use of allosteric small molecule inhibitors to address recently discovered roles of AurA in neuroblastoma, prostate cancer and melanoma.
Collapse
|
20
|
Courtheoux T, Diallo A, Damodaran AP, Reboutier D, Watrin E, Prigent C. Aurora A kinase activity is required to maintain an active spindle assembly checkpoint during prometaphase. J Cell Sci 2018; 131:jcs.191353. [PMID: 29555820 DOI: 10.1242/jcs.191353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
During the prometaphase stage of mitosis, the cell builds a bipolar spindle of microtubules that mechanically segregates sister chromatids between two daughter cells in anaphase. The spindle assembly checkpoint (SAC) is a quality control mechanism that monitors proper attachment of microtubules to chromosome kinetochores during prometaphase. Segregation occurs only when each chromosome is bi-oriented with each kinetochore pair attached to microtubules emanating from opposite spindle poles. Overexpression of the protein kinase Aurora A is a feature of various cancers and is thought to enable tumour cells to bypass the SAC, leading to aneuploidy. Here, we took advantage of a chemical and chemical-genetic approach to specifically inhibit Aurora A kinase activity in late prometaphase. We observed that a loss of Aurora A activity directly affects SAC function, that Aurora A is essential for maintaining the checkpoint protein Mad2 on unattached kinetochores and that inhibition of Aurora A leads to loss of the SAC, even in the presence of nocodazole or Taxol. This is a new finding that should affect the way Aurora A inhibitors are used in cancer treatments.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Thibault Courtheoux
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, Équipe labellisée Ligue contre le Cancer 2014-2016, F-35000 Rennes, France
| | - Alghassimou Diallo
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, Équipe labellisée Ligue contre le Cancer 2014-2016, F-35000 Rennes, France
| | - Arun Prasath Damodaran
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, Équipe labellisée Ligue contre le Cancer 2014-2016, F-35000 Rennes, France
| | - David Reboutier
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, Équipe labellisée Ligue contre le Cancer 2014-2016, F-35000 Rennes, France
| | - Erwan Watrin
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, Équipe labellisée Ligue contre le Cancer 2014-2016, F-35000 Rennes, France
| | - Claude Prigent
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, Équipe labellisée Ligue contre le Cancer 2014-2016, F-35000 Rennes, France
| |
Collapse
|
21
|
McIntyre PJ, Collins PM, Vrzal L, Birchall K, Arnold LH, Mpamhanga C, Coombs PJ, Burgess SG, Richards MW, Winter A, Veverka V, Delft FV, Merritt A, Bayliss R. Characterization of Three Druggable Hot-Spots in the Aurora-A/TPX2 Interaction Using Biochemical, Biophysical, and Fragment-Based Approaches. ACS Chem Biol 2017; 12:2906-2914. [PMID: 29045126 DOI: 10.1021/acschembio.7b00537] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mitotic kinase Aurora-A and its partner protein TPX2 (Targeting Protein for Xenopus kinesin-like protein 2) are overexpressed in cancers, and it has been proposed that they work together as an oncogenic holoenzyme. TPX2 is responsible for activating Aurora-A during mitosis, ensuring proper cell division. Disruption of the interface with TPX2 is therefore a potential target for novel anticancer drugs that exploit the increased sensitivity of cancer cells to mitotic stress. Here, we investigate the interface using coprecipitation assays and isothermal titration calorimetry to quantify the energetic contribution of individual residues of TPX2. Residues Tyr8, Tyr10, Phe16, and Trp34 of TPX2 are shown to be crucial for robust complex formation, suggesting that the interaction could be abrogated through blocking any of the three pockets on Aurora-A that complement these residues. Phosphorylation of Aurora-A on Thr288 is also necessary for high-affinity binding, and here we identify arginine residues that communicate the phosphorylation of Thr288 to the TPX2 binding site. With these findings in mind, we conducted a high-throughput X-ray crystallography-based screen of 1255 fragments against Aurora-A and identified 59 hits. Over three-quarters of these hits bound to the pockets described above, both validating our identification of hotspots and demonstrating the druggability of this protein-protein interaction. Our study exemplifies the potential of high-throughput crystallography facilities such as XChem to aid drug discovery. These results will accelerate the development of chemical inhibitors of the Aurora-A/TPX2 interaction.
Collapse
Affiliation(s)
- Patrick J McIntyre
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester , Leicester, LE1 9HN, United Kingdom
| | - Patrick M Collins
- Diamond Light Source, Harwell Science and Innovation Campus , Didcot, OX11 0DE, United Kingdom
| | - Lukáš Vrzal
- University of Chemistry and Technology , Technická 5, Prague 6 - Dejvice, Prague, 166 28, Czech Republic
- Institute of Organic Chemistry and Biochemistry , Flemingovo nám. 542/2, Prague 6, Prague, 166 10, Czech Republic
| | - Kristian Birchall
- LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom
| | - Laurence H Arnold
- LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom
| | - Chido Mpamhanga
- LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom
| | - Peter J Coombs
- LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom
| | - Selena G Burgess
- Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds , Leeds LS2 9JT, United Kingdom
| | - Mark W Richards
- Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds , Leeds LS2 9JT, United Kingdom
| | - Anja Winter
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester , Leicester, LE1 9HN, United Kingdom
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry , Flemingovo nám. 542/2, Prague 6, Prague, 166 10, Czech Republic
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus , Didcot, OX11 0DE, United Kingdom
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
- Department of Biochemistry, University of Johannesburg , Auckland Park, 2006, South Africa
| | - Andy Merritt
- LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds , Leeds LS2 9JT, United Kingdom
| |
Collapse
|
22
|
Abstract
The centrosome is a key component of the cell is involved in the processes of cell division, cell motility, intracellular transport, organization of the microtubules (MT) network and the production of cilia and flagella. The peculiarity of this organelle is that its boundaries are not clearly defined, the centrioles at the center of the centrosome are surrounded by electron dense pericentriolar material, the size and protein composition of this centrosome component experiences significant transformation during the cell cycle. It has been shown in this study that within the centrosome different proteins occupy different areas corresponding to: MT nucleation region (defined as gamma-tubulin-stained area), regulatory region (defined as kinase pEg2-stained area) and motor proteins region (kinesin-like motor XlEg5-stained area). The boundary of pEg2 is near 1.3 times greater while XlEg5 is 3.0 times greater than that of gamma-tubulin. Thus, the size of the centrosome, determined according to the structural electron microscopy (EM) analysis (about 1 µm) corresponds to the regulatory proteins area, but the actual functional centrosome size defined at the motor proteins region, is more than twice the size.
Collapse
Affiliation(s)
- Irina B Alieva
- a A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University , Moscow , Russia
| | - Rustem E Uzbekov
- b Laboratory of Cell Biology and Electron Microscopy, Faculty of Medicine, François Rabelais University , Tours , France.,c Faculty of Bioengineering and Bioinformatics, Moscow State University , Moscow , Russia
| |
Collapse
|
23
|
Damodaran AP, Vaufrey L, Gavard O, Prigent C. Aurora A Kinase Is a Priority Pharmaceutical Target for the Treatment of Cancers. Trends Pharmacol Sci 2017; 38:687-700. [DOI: 10.1016/j.tips.2017.05.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 01/23/2023]
|
24
|
Liu SZ, Wei ZF, Meng XQ, Han XY, Cheng D, Zhong T, Zhang TL, Wang ZB. Exposure to Aroclor-1254 impairs spindle assembly during mouse oocyte maturation. ENVIRONMENTAL TOXICOLOGY 2016; 31:1652-1662. [PMID: 26174069 DOI: 10.1002/tox.22169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/17/2015] [Accepted: 06/27/2015] [Indexed: 06/04/2023]
Abstract
Polychlorinated biphenyls (PCBs), as typical environmental estrogen disruptors, are a structurally-related group of halogenated aromatic hydrocarbons that are composed of 209 isomers and present as a mixture in the environment. PCBs congener with different numbers and positions of chlorine atoms substituted on the biphenyl moiety. Aroclor-1254 is a mixture of more than 60 PCB congeners. Previous studies have provided the evidence that PCBs have severe negative effects on reproductive functions, but the effects of PCBs on spindle assembly during mouse oocyte maturation in vitro have not been reported. In the present study, female ICR mouse immature oocytes were cultured in M2 medium with 1 and 10 μg mL-1 Aroclor-1254 separately in vitro. The percentage of germinal vesicle breakdown (GVBD) and the first polar body extrusion were recorded. The results showed no significant difference in the percentage of GVBD or the first polar body extrusion between control oocytes and Aroclor-1254-treated oocytes. Further studies showed that the normal localization of γ-tubulin and Aurora-A kinase was interfered and α-tubulin assembling into spindle was affected when mouse oocytes were exposed to Aroclor-1254. The length of spindle from 10 μg mL-1 Aroclor-1254-treated oocytes was longer than that from control oocytes, and the spindle area in the Aroclor-1254-treated groups were decreased. Furthermore, the percentage of DNA damage in cumulus cells revealed an increase after exposed to Aroclor-1254. These results will provide the important reference for the prevention of reproductive disorders caused by PCBs. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1652-1662, 2016.
Collapse
Affiliation(s)
- Shu-Zhen Liu
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, China.
| | - Ze-Feng Wei
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiao-Qian Meng
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiao-Ying Han
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Dong Cheng
- Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Tao Zhong
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Tian-Liang Zhang
- Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Mesic A, Rogar M, Hudler P, Juvan R, Komel R. Association of the AURKA and AURKC gene polymorphisms with an increased risk of gastric cancer. IUBMB Life 2016; 68:634-44. [PMID: 27270838 DOI: 10.1002/iub.1521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/18/2016] [Indexed: 12/19/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in mitotic checkpoint genes can contribute to susceptibility of human cancer, including gastric cancer (GC). We aimed to investigate the effects of Aurora kinase A (AURKA), Aurora kinase B (AURKB), and Aurora kinase C (AURKC) gene polymorphisms on GC risk in Slovenian population. We genotyped four SNPs in AURKA (rs2273535 and rs1047972), AURKB (rs2241909), and AURKC (rs758099) in a total of 128 GC patients and 372 healthy controls using TaqMan allelic discrimination assays to evaluate their effects on GC risk. Our results showed that genotype frequencies between cases and controls were significantly different for rs1047972 and rs758099 (P < 0.05). Our study demonstrated that AURKA rs1047972 TT and (CC + CT) genotypes were significantly associated with an increased risk of gastric cancer. Our results additionally revealed that AURKC rs758099 TT and (CC + CT) genotypes were also associated with increased GC risk. In stratified analysis, genotypes TT and (CC + CT) of AURKA rs1047972 SNP were associated with increased risk of both, intestinal and diffuse, types of GC. In addition, AURKC rs758099 TT and (CC + CT) genotypes were positively associated with increased intestinal type GC risk, but not with an increased diffuse type GC risk. Based on these results, we can conclude that AURKA rs1047972 and AURKC rs758099 polymorphisms could affect the risk of GC development. Further larger studies are needed to confirm these findings. © 2016 IUBMB Life, 68(8):634-644, 2016.
Collapse
Affiliation(s)
- Aner Mesic
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Marija Rogar
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Juvan
- Clinical Department for Abdominal Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Reboutier D, Benaud C, Prigent C. Aurora A's Functions During Mitotic Exit: The Guess Who Game. Front Oncol 2015; 5:290. [PMID: 26734572 PMCID: PMC4685928 DOI: 10.3389/fonc.2015.00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/07/2015] [Indexed: 11/24/2022] Open
Abstract
Until recently, the knowledge of Aurora A kinase functions during mitosis was limited to pre-metaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. However, an involvement of Aurora A in post-metaphase events was also suspected, but not clearly demonstrated due to the technical difficulty to perform the appropriate experiments. Recent developments of both an analog-specific version of Aurora A and small molecule inhibitors have led to the first demonstration that Aurora A is required for the early steps of cytokinesis. As in pre-metaphase, Aurora A plays diverse functions during anaphase, essentially participating in astral microtubules dynamics and central spindle assembly and functioning. The present review describes the experimental systems used to decipher new functions of Aurora A during late mitosis and situate these functions into the context of cytokinesis mechanisms.
Collapse
Affiliation(s)
- David Reboutier
- Unité Mixte de Recherche 6290, Équipe labellisée Ligue, Centre National de la Recherche Scientifique, Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, Rennes, France
| | - Christelle Benaud
- Unité Mixte de Recherche 6290, Équipe labellisée Ligue, Centre National de la Recherche Scientifique, Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, Rennes, France
| | - Claude Prigent
- Unité Mixte de Recherche 6290, Équipe labellisée Ligue, Centre National de la Recherche Scientifique, Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, Rennes, France
| |
Collapse
|
27
|
Carmena M, Earnshaw WC, Glover DM. The Dawn of Aurora Kinase Research: From Fly Genetics to the Clinic. Front Cell Dev Biol 2015; 3:73. [PMID: 26636082 PMCID: PMC4646952 DOI: 10.3389/fcell.2015.00073] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022] Open
Abstract
Aurora kinases comprise a family of highly conserved serine-threonine protein kinases that play a pivotal role in the regulation of cell cycle. Aurora kinases are not only involved in the control of multiple processes during cell division but also coordinate chromosomal and cytoskeletal events, contributing to the regulation of checkpoints and ensuring the smooth progression of the cell cycle. Because of their fundamental contribution to cell cycle regulation, Aurora kinases were originally identified in independent genetic screens designed to find genes involved in the regulation of cell division. The first aurora mutant was part of a collection of mutants isolated in C. Nusslein-Volhard's laboratory. This collection was screened in D. M. Glover's laboratory in search for mutations disrupting the centrosome cycle in embryos derived from homozygous mutant mothers. The mutants identified were given names related to the "polar regions," and included not only aurora but also the equally famous polo. Ipl1, the only Aurora in yeast, was identified in a genetic screen looking for mutations that caused chromosome segregation defects. The discovery of a second Aurora-like kinase in mammals opened a new chapter in the research of Aurora kinases. The rat kinase AIM was found to be highly homologous to the fly and yeast proteins, but localized at the midzone and midbody and was proposed to have a role in cytokinesis. Homologs of the equatorial Aurora (Aurora B) were identified in metazoans ranging from flies to humans. Xenopus Aurora B was found to be in a complex with the chromosomal passenger INCENP, and both proteins were shown to be essential in flies for chromosome structure, segregation, central spindle formation and cytokinesis. Fifteen years on, Aurora kinase research is an active field of research. After the successful introduction of the first anti-mitotic agents in cancer therapy, both Auroras have become the focus of attention as targets for the development of new anti-cancer drugs. In this review we will aim to give a historical overview of the research on Aurora kinases, highlighting the most relevant milestones in the advance of the field.
Collapse
Affiliation(s)
- Mar Carmena
- Wellcome Trust Centre for Cell Biology, The University of EdinburghEdinburgh, UK
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, The University of EdinburghEdinburgh, UK
| | - David M. Glover
- Department of Genetics, University of CambridgeCambridge, UK
| |
Collapse
|
28
|
Quartuccio SM, Schindler K. Functions of Aurora kinase C in meiosis and cancer. Front Cell Dev Biol 2015; 3:50. [PMID: 26347867 PMCID: PMC4542505 DOI: 10.3389/fcell.2015.00050] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/04/2015] [Indexed: 12/16/2022] Open
Abstract
The mammalian genome encodes three Aurora kinase protein family members: A, B, and C. While Aurora kinase A (AURKA) and B (AURKB) are found in cells throughout the body, significant protein levels of Aurora kinase C (AURKC) are limited to cells that undergo meiosis (sperm and oocyte). Despite its discovery nearly 20 years ago, we know little about the function of AURKC compared to that of the other 2 Aurora kinases. This lack of understanding can be attributed to the high sequence homology between AURKB and AURKC preventing the use of standard approaches to understand non-overlapping and meiosis I (MI)-specific functions of the two kinases. Recent evidence has revealed distinct functions of AURKC in meiosis and may aid in our understanding of why chromosome segregation during MI often goes awry in oocytes. Many cancers aberrantly express AURKC, but because we do not fully understand AURKC function in its normal cellular context, it is difficult to predict the biological significance of this expression on the disease. Here, we consolidate and update what is known about AURKC signaling in meiotic cells to better understand why it has oncogenic potential.
Collapse
Affiliation(s)
- Suzanne M Quartuccio
- Department of Genetics, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| |
Collapse
|
29
|
Arquint C, Gabryjonczyk AM, Nigg EA. Centrosomes as signalling centres. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0464. [PMID: 25047618 DOI: 10.1098/rstb.2013.0464] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Centrosomes-as well as the related spindle pole bodies (SPBs) of yeast-have been extensively studied from the perspective of their microtubule-organizing roles. Moreover, the biogenesis and duplication of these organelles have been the subject of much attention, and the importance of centrosomes and the centriole-ciliary apparatus for human disease is well recognized. Much less developed is our understanding of another facet of centrosomes and SPBs, namely their possible role as signalling centres. Yet, many signalling components, including kinases and phosphatases, have been associated with centrosomes and spindle poles, giving rise to the hypothesis that these organelles might serve as hubs for the integration and coordination of signalling pathways. In this review, we discuss a number of selected studies that bear on this notion. We cover different processes (cell cycle control, development, DNA damage response) and organisms (yeast, invertebrates and vertebrates), but have made no attempt to be comprehensive. This field is still young and although the concept of centrosomes and SPBs as signalling centres is attractive, it remains primarily a concept-in need of further scrutiny. We hope that this review will stimulate thought and experimentation.
Collapse
Affiliation(s)
- Christian Arquint
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | - Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
30
|
Kang Q, Srividhya J, Ipe J, Pomerening JR. Evidence toward a dual phosphatase mechanism that restricts Aurora A (Thr-295) phosphorylation during the early embryonic cell cycle. J Biol Chem 2014; 289:17480-96. [PMID: 24825897 DOI: 10.1074/jbc.m113.527622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mitotic kinase Aurora A (AurA) is regulated by a complex network of factors that includes co-activator binding, autophosphorylation, and dephosphorylation. Dephosphorylation of AurA by PP2A (human, Ser-51; Xenopus, Ser-53) destabilizes the protein, whereas mitotic dephosphorylation of its T-loop (human, Thr-288; Xenopus, Thr-295) by PP6 represses AurA activity. However, AurA(Thr-295) phosphorylation is restricted throughout the early embryonic cell cycle, not just during M-phase, and how Thr-295 is kept dephosphorylated during interphase and whether or not this mechanism impacts the cell cycle oscillator were unknown. Titration of okadaic acid (OA) or fostriecin into Xenopus early embryonic extract revealed that phosphatase activity other than PP1 continuously suppresses AurA(Thr-295) phosphorylation during the early embryonic cell cycle. Unexpectedly, we observed that inhibiting a phosphatase activity highly sensitive to OA caused an abnormal increase in AurA(Thr-295) phosphorylation late during interphase that corresponded with delayed cyclin-dependent kinase 1 (CDK1) activation. AurA(Thr-295) phosphorylation indeed influenced this timing, because AurA isoforms retaining an intact Thr-295 residue further delayed M-phase entry. Using mathematical modeling, we determined that one phosphatase would be insufficient to restrict AurA phosphorylation and regulate CDK1 activation, whereas a dual phosphatase topology best recapitulated our experimental observations. We propose that two phosphatases target Thr-295 of AurA to prevent premature AurA activation during interphase and that phosphorylated AurA(Thr-295) acts as a competitor substrate with a CDK1-activating phosphatase in late interphase. These results suggest a novel relationship between AurA and protein phosphatases during progression throughout the early embryonic cell cycle and shed new light on potential defects caused by AurA overexpression.
Collapse
Affiliation(s)
- Qing Kang
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405-7003
| | - Jeyaraman Srividhya
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405-7003
| | - Joseph Ipe
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405-7003
| | - Joseph R Pomerening
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405-7003
| |
Collapse
|
31
|
Pérez de Castro I, Aguirre-Portolés C, Fernández-Miranda G, Cañamero M, Cowley DO, Van Dyke T, Malumbres M. Requirements for Aurora-A in tissue regeneration and tumor development in adult mammals. Cancer Res 2014; 73:6804-15. [PMID: 24242071 DOI: 10.1158/0008-5472.can-13-0586] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aurora-A is a kinase involved in the formation and maturation of the mitotic spindle and chromosome segregation. This kinase is frequently overexpressed in human cancer, and its activity may confer resistance to antitumoral drugs such as Taxol. Inhibition of Aurora-A results in mitotic defects, and this kinase is considered as an attractive therapeutic target for cancer. Nevertheless, the specific requirements for this kinase in adult mammalian tissues remain unclear. Conditional genetic ablation of Aurora-A in adult tissues results in polyploid cells that display a DNA-damage-like response characterized by the upregulation of p53 and the cell-cycle inhibitor p21(Cip1). This is accompanied by apoptotic, differentiation, or senescence markers in a tissue-specific manner. Therapeutic elimination of Aurora-A prevents the progression of skin and mammary gland tumors. However, this is not due to significant levels of apoptosis or senescence, but because Aurora-A-deficient tumors accumulate polyploid cells with limited proliferative potential. Thus, Aurora-A is required for tumor formation in vivo, and the differential response observed in various tissues might have relevant implications in current therapeutic strategies aimed at inhibiting this kinase in the treatment of human cancer.
Collapse
Affiliation(s)
- Ignacio Pérez de Castro
- Authors' Affiliations: Cell Division and Cancer Group; Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; and Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | | | | | | | | | | | | |
Collapse
|
32
|
Aurora kinases in cancer: an opportunity for targeted therapy. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
33
|
Reboutier D, Troadec MB, Cremet JY, Chauvin L, Guen V, Salaun P, Prigent C. Aurora A is involved in central spindle assembly through phosphorylation of Ser 19 in P150Glued. ACTA ACUST UNITED AC 2013; 201:65-79. [PMID: 23547029 PMCID: PMC3613693 DOI: 10.1083/jcb.201210060] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A human Aurora A kinase engineered to be specifically inhibited by the ATP analog 1-Na-PP1 allows dissection of a novel role for this protein in central spindle assembly. Knowledge of Aurora A kinase functions is limited to premetaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. The involvement of Aurora A in events after metaphase has only been suggested because appropriate experiments are technically difficult. We report here the design of the first human Aurora A kinase (as-AurA) engineered by chemical genetics techniques. This kinase is fully functional biochemically and in cells, and is rapidly and specifically inhibited by the ATP analogue 1-Naphthyl-PP1 (1-Na-PP1). By treating cells exclusively expressing the as-AurA with 1-Na-PP1, we discovered that Aurora A is required for central spindle assembly in anaphase through phosphorylation of Ser 19 of P150Glued. This paper thus describes a new Aurora A function that takes place after the metaphase-to-anaphase transition and a new powerful tool to search for and study new Aurora A functions.
Collapse
Affiliation(s)
- David Reboutier
- Unité Mixte de Recherche 6290, Centre National de la Recherche Scientifique, F-35043 Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Hochegger H, Hégarat N, Pereira-Leal JB. Aurora at the pole and equator: overlapping functions of Aurora kinases in the mitotic spindle. Open Biol 2013; 3:120185. [PMID: 23516109 PMCID: PMC3718339 DOI: 10.1098/rsob.120185] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The correct assembly and timely disassembly of the mitotic spindle is crucial for the propagation of the genome during cell division. Aurora kinases play a central role in orchestrating bipolar spindle establishment, chromosome alignment and segregation. In most eukaryotes, ranging from amoebas to humans, Aurora activity appears to be required both at the spindle pole and the kinetochore, and these activities are often split between two different Aurora paralogues, termed Aurora A and B. Polar and equatorial functions of Aurora kinases have generally been considered separately, with Aurora A being mostly involved in centrosome dynamics, whereas Aurora B coordinates kinetochore attachment and cytokinesis. However, double inactivation of both Aurora A and B results in a dramatic synergy that abolishes chromosome segregation. This suggests that these two activities jointly coordinate mitotic progression. Accordingly, recent evidence suggests that Aurora A and B work together in both spindle assembly in metaphase and disassembly in anaphase. Here, we provide an outlook on these shared functions of the Auroras, discuss the evolution of this family of mitotic kinases and speculate why Aurora kinase activity may be required at both ends of the spindle microtubules.
Collapse
Affiliation(s)
- Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, UK.
| | | | | |
Collapse
|
35
|
Nikonova AS, Astsaturov I, Serebriiskii IG, Dunbrack RL, Golemis EA. Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci 2013; 70:661-87. [PMID: 22864622 PMCID: PMC3607959 DOI: 10.1007/s00018-012-1073-7] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/05/2012] [Accepted: 06/21/2012] [Indexed: 12/20/2022]
Abstract
Temporally and spatially controlled activation of the Aurora A kinase (AURKA) regulates centrosome maturation, entry into mitosis, formation and function of the bipolar spindle, and cytokinesis. Genetic amplification and mRNA and protein overexpression of Aurora A are common in many types of solid tumor, and associated with aneuploidy, supernumerary centrosomes, defective mitotic spindles, and resistance to apoptosis. These properties have led Aurora A to be considered a high-value target for development of cancer therapeutics, with multiple agents currently in early-phase clinical trials. More recently, identification of additional, non-mitotic functions and means of activation of Aurora A during interphase neurite elongation and ciliary resorption have significantly expanded our understanding of its function, and may offer insights into the clinical performance of Aurora A inhibitors. Here we review the mitotic and non-mitotic functions of Aurora A, discuss Aurora A regulation in the context of protein structural information, and evaluate progress in understanding and inhibiting Aurora A in cancer.
Collapse
Affiliation(s)
- Anna S. Nikonova
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Igor Astsaturov
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Ilya G. Serebriiskii
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Roland L. Dunbrack
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Erica A. Golemis
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| |
Collapse
|
36
|
Inoko A, Matsuyama M, Goto H, Ohmuro-Matsuyama Y, Hayashi Y, Enomoto M, Ibi M, Urano T, Yonemura S, Kiyono T, Izawa I, Inagaki M. Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. ACTA ACUST UNITED AC 2012; 197:391-405. [PMID: 22529102 PMCID: PMC3341160 DOI: 10.1083/jcb.201106101] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The trichoplein–AurA pathway must suppress primary cilia assembly in order for cells to exit G1. The primary cilium is an antenna-like organelle that modulates differentiation, sensory functions, and signal transduction. After cilia are disassembled at the G0/G1 transition, formation of cilia is strictly inhibited in proliferating cells. However, the mechanisms of this inhibition are unknown. In this paper, we show that trichoplein disappeared from the basal body in quiescent cells, whereas it localized to mother and daughter centrioles in proliferating cells. Exogenous expression of trichoplein inhibited primary cilia assembly in serum-starved cells, whereas ribonucleic acid interference–mediated depletion induced primary cilia assembly upon cultivation with serum. Trichoplein controlled Aurora A (AurA) activation at the centrioles predominantly in G1 phase. In vitro analyses confirmed that trichoplein bound and activated AurA directly. Using trichoplein mutants, we demonstrate that the suppression of primary cilia assembly by trichoplein required its ability not only to localize to centrioles but also to bind and activate AurA. Trichoplein or AurA knockdown also induced G0/G1 arrest, but this phenotype was reversed when cilia formation was prevented by simultaneous knockdown of IFT-20. These data suggest that the trichoplein–AurA pathway is required for G1 progression through a key role in the continuous suppression of primary cilia assembly.
Collapse
Affiliation(s)
- Akihito Inoko
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ma Y, Yuan X, Wyatt WR, Pomerening JR. Expression of constitutively active CDK1 stabilizes APC-Cdh1 substrates and potentiates premature spindle assembly and checkpoint function in G1 cells. PLoS One 2012; 7:e33835. [PMID: 22479455 PMCID: PMC3315497 DOI: 10.1371/journal.pone.0033835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/17/2012] [Indexed: 01/13/2023] Open
Abstract
Mitotic progression in eukaryotic cells depends upon the activation of cyclin-dependent kinase 1 (CDK1), followed by its inactivation through the anaphase-promoting complex (APC)/cyclosome-mediated degradation of M-phase cyclins. Previous work revealed that expression of a constitutively active CDK1 (CDK1AF) in HeLa cells permitted their division, but yielded G1 daughter cells that underwent premature S-phase and early mitotic events. While CDK1AF was found to impede the sustained activity of APC-Cdh1, it was unknown if this defect improperly stabilized mitotic substrates and contributed to the occurrence of these premature M phases. Here, we show that CDK1AF expression in HeLa cells improperly stabilized APC-Cdh1 substrates in G1-phase daughter cells, including mitotic kinases and the APC adaptor, Cdc20. Division of CDK1AF-expressing cells produced G1 daughters with an accelerated S-phase onset, interrupted by the formation of premature bipolar spindles capable of spindle assembly checkpoint function. Further characterization of these phenotypes induced by CDK1AF expression revealed that this early spindle formation depended upon premature CDK1 and Aurora B activities, and their inhibition induced rapid spindle disassembly. Following its normal M-phase degradation, we found that the absence of Wee1 in these prematurely cycling daughter cells permitted the endogenous CDK1 to contribute to these premature mitotic events, since expression of a non-degradable Wee1 reduced the number of cells that exhibited premature cyclin B1oscillations. Lastly, we discovered that Cdh1-ablated cells could not be forced into a premature M phase, despite cyclin B1 overexpression and proteasome inhibition. Together, these results demonstrate that expression of constitutively active CDK1AF hampers the destruction of critical APC-Cdh1 targets, and that this type of condition could prevent newly divided cells from properly maintaining a prolonged interphase state. We propose that this more subtle type of defect in activity of the APC-driven negative-feedback loop may have implications for triggering genome instability and tumorigenesis.
Collapse
Affiliation(s)
- Yan Ma
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Xi Yuan
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - William R. Wyatt
- Department of Statistics, Indiana University, Bloomington, Indiana, United States of America
| | - Joseph R. Pomerening
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
38
|
Reboutier D, Troadec MB, Cremet JY, Fukasawa K, Prigent C. Nucleophosmin/B23 activates Aurora A at the centrosome through phosphorylation of serine 89. ACTA ACUST UNITED AC 2012; 197:19-26. [PMID: 22451695 PMCID: PMC3317798 DOI: 10.1083/jcb.201107134] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aurora A, which is known to be activated by autophosphorylation at Thr288, is also locally activated during centrosomal maturation by nucleophosmin-mediated phosphorylation at Ser89. Aurora A (AurA) is a major mitotic protein kinase involved in centrosome maturation and spindle assembly. Nucleophosmin/B23 (NPM) is a pleiotropic nucleolar protein involved in a variety of cellular processes including centrosome maturation. In the present study, we report that NPM is a strong activator of AurA kinase activity. NPM and AurA coimmunoprecipitate and colocalize to centrosomes in G2 phase, where AurA becomes active. In contrast with previously characterized AurA activators, NPM does not trigger autophosphorylation of AurA on threonine 288. NPM induces phosphorylation of AurA on serine 89, and this phosphorylation is necessary for activation of AurA. These data were confirmed in vivo, as depletion of NPM by ribonucleic acid interference eliminated phosphorylation of CDC25B on S353 at the centrosome, indicating a local loss of AurA activity. Our data demonstrate that NPM is a strong activator of AurA kinase activity at the centrosome and support a novel mechanism of activation for AurA.
Collapse
Affiliation(s)
- David Reboutier
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR6290, 35043 Rennes, France
| | | | | | | | | |
Collapse
|
39
|
Brodie KM, Henderson BR. Characterization of BRCA1 protein targeting, dynamics, and function at the centrosome: a role for the nuclear export signal, CRM1, and Aurora A kinase. J Biol Chem 2012; 287:7701-16. [PMID: 22262852 PMCID: PMC3293534 DOI: 10.1074/jbc.m111.327296] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/16/2012] [Indexed: 02/04/2023] Open
Abstract
BRCA1 is a DNA damage response protein and functions in the nucleus to stimulate DNA repair and at the centrosome to inhibit centrosome overduplication in response to DNA damage. The loss or mutation of BRCA1 causes centrosome amplification and abnormal mitotic spindle assembly in breast cancer cells. The BRCA1-BARD1 heterodimer binds and ubiquitinates γ-tubulin to inhibit centrosome amplification and promote microtubule nucleation; however regulation of BRCA1 targeting and function at the centrosome is poorly understood. Here we show that both N and C termini of BRCA1 are required for its centrosomal localization and that BRCA1 moves to the centrosome independently of BARD1 and γ-tubulin. Mutations in the C-terminal phosphoprotein-binding BRCT domain of BRCA1 prevented localization to centrosomes. Photobleaching experiments identified dynamic (60%) and immobilized (40%) pools of ectopic BRCA1 at the centrosome, and these are regulated by the nuclear export receptor CRM1 (chromosome region maintenance 1) and BARD1. CRM1 mediates nuclear export of BRCA1, and mutation of the export sequence blocked BRCA1 regulation of centrosome amplification in irradiated cells. CRM1 binds to undimerized BRCA1 and is displaced by BARD1. Photobleaching assays implicate CRM1 in driving undimerized BRCA1 to the centrosome and revealed that when BRCA1 subsequently binds to BARD1, it is less well retained at centrosomes, suggesting a mechanism to accelerate BRCA1 release after formation of the active heterodimer. Moreover, Aurora A binding and phosphorylation of BRCA1 enhanced its centrosomal retention and regulation of centrosome amplification. Thus, CRM1, BARD1 and Aurora A promote the targeting and function of BRCA1 at centrosomes.
Collapse
Affiliation(s)
- Kirsty M. Brodie
- From the Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, Darcy Road (P.O. Box 412), Westmead, New South Wales 2145, Australia
| | - Beric R. Henderson
- From the Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, Darcy Road (P.O. Box 412), Westmead, New South Wales 2145, Australia
| |
Collapse
|
40
|
Mahadevan D, Stejskal A, Cooke LS, Manziello A, Morales C, Persky DO, Fisher RI, Miller TP, Qi W. Aurora A inhibitor (MLN8237) plus vincristine plus rituximab is synthetic lethal and a potential curative therapy in aggressive B-cell non-Hodgkin lymphoma. Clin Cancer Res 2012; 18:2210-9. [PMID: 22374334 DOI: 10.1158/1078-0432.ccr-11-2413] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Aurora A and B are oncogenic serine/threonine kinases that regulate mitosis. Overexpression of Auroras promotes resistance to microtubule-targeted agents. We investigated mechanistic synergy by inhibiting the mitotic spindle apparatus in the presence of MLN8237 [M], an Aurora A inhibitor with either vincristine [MV] or docetaxel [MD] in aggressive B-cell non-Hodgkin lymphoma (B-NHL). The addition of rituximab [R] to MV or MD was evaluated for synthetic lethality. EXPERIMENTAL DESIGN Aggressive B-NHL cell subtypes were evaluated in vitro and in vivo for target modulation and anti-NHL activity with single agents, doublets, and triplets by analyzing cell proliferation, apoptosis, tumor growth, survival, and mechanisms of response/relapse by gene expression profiling with protein validation. RESULTS MV is synergistic whereas MD is additive for cell proliferation inhibition in B-NHL cell culture models. Addition of rituximab to MV is superior to MD, but both significantly induce apoptosis compared with doublet therapy. Mouse xenograft models of mantle cell lymphoma showed modest single-agent activity for MLN8237, rituximab, docetaxel, and vincristine with tumor growth inhibition (TGI) of approximately 10% to 15%. Of the doublets, MV caused tumor regression, whereas TGI was observed with MD (approximately 55%-60%) and MR (approximately 25%-50%), respectively. Although MV caused tumor regression, mice relapsed 20 days after stopping therapy. In contrast, MVR was curative, whereas MDR led to TGI of approximately 85%. Proliferation cell nuclear antigen, Aurora B, cyclin B1, cyclin D1, and Bcl-2 proteins of harvested tumors confirmed response and resistance to therapy. CONCLUSIONS Addition of rituximab to MV is a novel therapeutic strategy for aggressive B-NHL and warrants clinical trial evaluation.
Collapse
Affiliation(s)
- Daruka Mahadevan
- Arizona Cancer Center, the University of Arizona, Tucson, Arizona 85724, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abal M, Keryer G, Bornens M. Centrioles resist forces applied on centrosomes during G2/M transition. Biol Cell 2012; 97:425-34. [PMID: 15898952 DOI: 10.1042/bc20040112] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND INFORMATION Centrosome movements at the onset of mitosis result from a balance between the pulling and pushing forces mediated by microtubules. The structural stability of the centrosome core structure, the centriole pair, is correlated with a heavy polyglutamylation of centriole tubulin. RESULTS Using HeLa cells stably expressing centrin-green fluorescent protein as a centriole marker, we monitored the effect of microinjecting an anti-(polyglutamylated tubulin) monoclonal antibody, GT335, in G1/S or G2 cells. In contrast with the slow effect of the monoclonal antibody GT335 during interphase, a dramatic and rapid centrosome fragmentation occurred in cells microinjected in G2 that was both Eg5- and dynein-dependent. Inhibition of either one of these two motors significantly decreased the scattering of centrosome fragments, and inhibition of centrosome segregation by impairing microtubule dynamics abolished centrosome fragmentation. CONCLUSIONS Our results demonstrate that the compact structure of the mitotic centrosome is capable of absorbing most of the pulling and pushing forces during G2/M transition and suggest that centrosomes could act as mechanosensors integrating tensions during cell division.
Collapse
Affiliation(s)
- Miguel Abal
- Institut Curie, UMR 144-CNRS, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | | | |
Collapse
|
42
|
Spindle assembly defects leading to the formation of a monopolar mitotic apparatus. Biol Cell 2012; 101:1-11. [DOI: 10.1042/bc20070162] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Qi W, Liu X, Cooke LS, Persky DO, Miller TP, Squires M, Mahadevan D. AT9283, a novel aurora kinase inhibitor, suppresses tumor growth in aggressive B-cell lymphomas. Int J Cancer 2011; 130:2997-3005. [DOI: 10.1002/ijc.26324] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/22/2011] [Indexed: 12/25/2022]
|
44
|
Kashatus DF, Lim KH, Brady DC, Pershing NLK, Cox AD, Counter CM. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 2011; 13:1108-15. [PMID: 21822277 PMCID: PMC3167028 DOI: 10.1038/ncb2310] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/28/2011] [Indexed: 12/13/2022]
Abstract
Mitochondria exist as dynamic interconnected networks that are maintained through a balance of fusion and fission1. Equal distribution of mitochondria to daughter cells during mitosis requires fission2. Mitotic mitochondrial fission depends upon both the relocalization of large GTPase Drp1 to the outer mitochondrial membrane and phosphorylation of S616 on Drp1 by the mitotic kinase cyclin B/Cdk12. We now report that these processes are mediated by the small Ras-like GTPase RalA and its effector RalBP1 (RLIP76/RLIP1/RIP1)3,4. Specifically, the mitotic kinase Aurora A phosphorylates S194 of RalA, relocalizing it to the mitochondria, where it concentrates RalBP1 and Drp1. Furthermore, RalBP1 associates with cyclin B/Cdk1 kinase activity to foster phosphorylation of Drp1 on S616. Disrupting either RalA or RalBP1 leads to a loss of mitochondrial fission at mitosis, improper segregation of mitochondria during cytokinesis and a decrease in ATP levels and cell number. Thus, the two mitotic kinases Aurora A and cyclin B/Cdk1 converge upon RalA and RalBP1 to promote mitochondrial fission, the appropriate distribution of mitochondria to daughter cells and ultimately proper mitochondrial function.
Collapse
Affiliation(s)
- David F Kashatus
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
45
|
Alexander J, Lim D, Joughin BA, Hegemann B, Hutchins JRA, Ehrenberger T, Ivins F, Sessa F, Hudecz O, Nigg EA, Fry AM, Musacchio A, Stukenberg PT, Mechtler K, Peters JM, Smerdon SJ, Yaffe MB. Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling. Sci Signal 2011; 4:ra42. [PMID: 21712545 PMCID: PMC3939359 DOI: 10.1126/scisignal.2001796] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The timing and localization of events during mitosis are controlled by the regulated phosphorylation of proteins by the mitotic kinases, which include Aurora A, Aurora B, Nek2 (never in mitosis kinase 2), Plk1 (Polo-like kinase 1), and the cyclin-dependent kinase complex Cdk1/cyclin B. Although mitotic kinases can have overlapping subcellular localizations, each kinase appears to phosphorylate its substrates on distinct sites. To gain insight into the relative importance of local sequence context in kinase selectivity, identify previously unknown substrates of these five mitotic kinases, and explore potential mechanisms for substrate discrimination, we determined the optimal substrate motifs of these major mitotic kinases by positional scanning oriented peptide library screening (PS-OPLS). We verified individual motifs with in vitro peptide kinetic studies and used structural modeling to rationalize the kinase-specific selection of key motif-determining residues at the molecular level. Cross comparisons among the phosphorylation site selectivity motifs of these kinases revealed an evolutionarily conserved mutual exclusion mechanism in which the positively and negatively selected portions of the phosphorylation motifs of mitotic kinases, together with their subcellular localizations, result in proper substrate targeting in a coordinated manner during mitosis.
Collapse
Affiliation(s)
- Jes Alexander
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Lim
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian A. Joughin
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Björn Hegemann
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - James R. A. Hutchins
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Tobias Ehrenberger
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Frank Ivins
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Fabio Sessa
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, I-20139 Milan, Italy
| | - Otto Hudecz
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Erich A. Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70 CH - 4056 Basel, Switzerland
| | - Andrew M. Fry
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK
| | - Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, I-20139 Milan, Italy
| | - P. Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Stephen J. Smerdon
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Michael B. Yaffe
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
46
|
Tsai CY, Ngo B, Tapadia A, Hsu PH, Wu G, Lee WH. Aurora-A phosphorylates Augmin complex component Hice1 protein at an N-terminal serine/threonine cluster to modulate its microtubule binding activity during spindle assembly. J Biol Chem 2011; 286:30097-106. [PMID: 21705324 DOI: 10.1074/jbc.m111.266767] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proper assembly of mitotic spindles requires Hice1, a spindle-associated protein. Hice1 possesses direct microtubule binding activity at its N-terminal region and contributes to intraspindle microtubule nucleation as a subunit of the Augmin complex. However, whether microtubule binding activity of Hice1 is modulated by mitotic regulators remains unexplored. Here, we found that Aurora-A kinase, a major mitotic kinase, specifically binds to and phosphorylates Hice1. We identified four serine/threonine clusters on Hice1 that can be phosphorylated by Aurora-A in vitro. Of the four clusters, the Ser/Thr-17-21 cluster was the most critical for bipolar spindle assembly, whereas other phospho-deficient point mutants had a minimal effect on spindle assembly. Immunostaining with a phospho-Ser-19/20 phospho-specific antibody revealed that phosphorylated Hice1 primarily localizes to spindle poles during prophase to metaphase but gradually diminishes after anaphase. Consistently, the phospho-mimic 17-21E mutant reduced microtubule binding activity in vitro and diminished localization to spindles in vivo. Furthermore, expression of the 17-21E mutant led to decreased association of Fam29a, an Augmin component, with spindles. On the other hand, expression of the phospho-deficient 17-21A mutant permitted intraspindle nucleation but delayed the separation of early mitotic spindle poles and the timely mitotic progression. Taken together, these results suggest that Aurora-A modulates the microtubule binding activity of Hice1 in a spatiotemporal manner for proper bipolar spindle assembly.
Collapse
Affiliation(s)
- Connie Y Tsai
- Department of Biological Chemistry, University of California, Irvine, California 92697-4037, USA
| | | | | | | | | | | |
Collapse
|
47
|
Qi W, Cooke LS, Liu X, Rimsza L, Roe DJ, Manziolli A, Persky DO, Miller TP, Mahadevan D. Aurora inhibitor MLN8237 in combination with docetaxel enhances apoptosis and anti-tumor activity in mantle cell lymphoma. Biochem Pharmacol 2011; 81:881-90. [PMID: 21291867 DOI: 10.1016/j.bcp.2011.01.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
Auroras (A and B) are oncogenic serine/threonine kinases that play key roles in the mitotic phase of the eukaryotic cell cycle. Analysis of the leukemia lymphoma molecular profiling project (LLMPP) database indicates Aurora over-expression correlates with poor prognosis. A tissue microarray (TMA) composed of 20 paired mantle cell lymphoma (MCL) patients demonstrated >75% of patients had high levels Aurora expression. Aurora A and B were also found elevated in 13 aggressive B-NHL cell lines. MLN8237, an Aurora inhibitor induced G2/M arrest with polyploidy and abrogated Aurora A and histone-H3 phosphorylation. MLN8237 inhibited aggressive B-NHL cell proliferation at an IC(50) of 10-50 nM and induced apoptosis in a dose- and time-dependent manner. Low dose combinations of MLN8237+docetaxel enhanced apoptosis by ~3-4-fold in cell culture compared to single agents respectively. A mouse xenograft model of MCL demonstrated that MLN8237 (10 or 30 mg/kg) or docetaxel (10mg/kg) alone had modest anti-tumor activity. However, MLN8237 plus docetaxel demonstrated a statistically significant tumor growth inhibition and enhanced survival compared to single agent therapy. Together, our results suggest that MLN8237 plus docetaxel may represent a novel therapeutic strategy that could be evaluated in early phase trials in relapsed/refractory aggressive B-cell NHL.
Collapse
Affiliation(s)
- Wenqing Qi
- Arizona Cancer Center, University of Arizona, 1515 N. Campbell Avenue, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zeng K, Bastos RN, Barr FA, Gruneberg U. Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. J Cell Biol 2010; 191:1315-32. [PMID: 21187329 PMCID: PMC3010072 DOI: 10.1083/jcb.201008106] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/23/2010] [Indexed: 01/08/2023] Open
Abstract
Many protein kinases are activated by a conserved regulatory step involving T-loop phosphorylation. Although there is considerable focus on kinase activator proteins, the importance of specific T-loop phosphatases reversing kinase activation has been underappreciated. We find that the protein phosphatase 6 (PP6) holoenzyme is the major T-loop phosphatase for Aurora A, an essential mitotic kinase. Loss of PP6 function by depletion of catalytic or regulatory subunits interferes with spindle formation and chromosome alignment because of increased Aurora A activity. Aurora A T-loop phosphorylation and the stability of the Aurora A-TPX2 complex are increased in cells depleted of PP6 but not other phosphatases. Furthermore, purified PP6 acts as a T-loop phosphatase for Aurora A-TPX2 complexes in vitro, whereas catalytically inactive mutants cannot dephosphorylate Aurora A or rescue the PPP6C depletion phenotype. These results demonstrate a hitherto unappreciated role for PP6 as the T-loop phosphatase regulating Aurora A activity during spindle formation and suggest the general importance of this form of regulation.
Collapse
Affiliation(s)
- Kang Zeng
- University of Liverpool, Cancer Research Centre, Liverpool L3 9TA, England, UK
| | | | | | | |
Collapse
|
49
|
Lens SMA, Voest EE, Medema RH. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 2010; 10:825-41. [PMID: 21102634 DOI: 10.1038/nrc2964] [Citation(s) in RCA: 497] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large numbers of inhibitors for polo-like kinases and aurora kinases are currently being evaluated as anticancer drugs. Interest in these drugs is fuelled by the idea that these kinases have unique functions in mitosis. Within the polo-like kinase family, the emphasis for targeted therapies has been on polo-like kinase 1 (PLK1), and in the aurora kinase family drugs have been developed to specifically target aurora kinase A (AURKA; also known as STK6) and/or aurora kinase B (AURKB; also known as STK12). Information on the selectivity of these compounds in vivo is limited, but it is likely that off-target effects within the same kinase families will affect efficacy and toxicity profiles. In addition, it is becoming clear that interplay between polo-like kinases and aurora kinases is much more extensive than initially anticipated, and that both kinase families are important factors in the response to classical chemotherapeutics that damage the genome or the mitotic spindle. In this Review we discuss the implications of these novel insights on the clinical applicability of polo-like kinase and aurora kinase inhibitors.
Collapse
Affiliation(s)
- Susanne M A Lens
- Department of Medical Oncology and Cancer Genomics Centre, UMC Utrecht, Universiteitsweg 100, Stratenum 2. 118, Utrecht 3584 CG, The Netherlands.
| | | | | |
Collapse
|
50
|
Romé P, Montembault E, Franck N, Pascal A, Glover DM, Giet R. Aurora A contributes to p150(glued) phosphorylation and function during mitosis. J Cell Biol 2010; 189:651-9. [PMID: 20479466 PMCID: PMC2872913 DOI: 10.1083/jcb.201001144] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 04/19/2010] [Indexed: 11/22/2022] Open
Abstract
Aurora A is a spindle pole-associated protein kinase required for mitotic spindle assembly and chromosome segregation. In this study, we show that Drosophila melanogaster aurora A phosphorylates the dynactin subunit p150(glued) on sites required for its association with the mitotic spindle. Dynactin strongly accumulates on microtubules during prophase but disappears as soon as the nuclear envelope breaks down, suggesting that its spindle localization is tightly regulated. If aurora A's function is compromised, dynactin and dynein become enriched on mitotic spindle microtubules. Phosphorylation sites are localized within the conserved microtubule-binding domain (MBD) of the p150(glued). Although wild-type p150(glued) binds weakly to spindle microtubules, a variant that can no longer be phosphorylated by aurora A remains associated with spindle microtubules and fails to rescue depletion of endogenous p150(glued). Our results suggest that aurora A kinase participates in vivo to the phosphoregulation of the p150(glued) MBD to limit the microtubule binding of the dynein-dynactin complex and thus regulates spindle assembly.
Collapse
Affiliation(s)
- Pierre Romé
- Centre National de la Recherche Scientifique UMR6061, Institut de Génétique et Dévelopement de Rennes, Université de Rennes, 35043 Rennes, France
| | - Emilie Montembault
- Centre National de la Recherche Scientifique UMR6061, Institut de Génétique et Dévelopement de Rennes, Université de Rennes, 35043 Rennes, France
| | - Nathalie Franck
- Centre National de la Recherche Scientifique UMR6061, Institut de Génétique et Dévelopement de Rennes, Université de Rennes, 35043 Rennes, France
| | - Aude Pascal
- Centre National de la Recherche Scientifique UMR6061, Institut de Génétique et Dévelopement de Rennes, Université de Rennes, 35043 Rennes, France
| | - David M. Glover
- Department of Genetics, Cancer Research UK Cell Cycle Genetics Research Group, University of Cambridge, Cambridge CB23EH, England, UK
| | - Régis Giet
- Centre National de la Recherche Scientifique UMR6061, Institut de Génétique et Dévelopement de Rennes, Université de Rennes, 35043 Rennes, France
| |
Collapse
|