1
|
Kokoulin MS, Kuzmich AS, Filshtein AP, Prassolov VS, Romanenko LA. Capsular polysaccharide from the marine bacterium Cobetia marina induces apoptosis via both caspase-dependent and mitochondria-mediated pathways in HL-60 cells. Carbohydr Polym 2025; 347:122791. [PMID: 39487004 DOI: 10.1016/j.carbpol.2024.122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/18/2024] [Accepted: 09/20/2024] [Indexed: 11/04/2024]
Abstract
In the present study, we investigated the antiproliferative effect of the capsular polysaccharide (CPS) from marine Gram-negative bacterium Cobetia marina (formerly C. pacifica) KMM 3878 against human leukemia cells in vitro and the potential molecular mechanism underlying this activity. Our results showed that the CPS could inhibit the proliferation of HL-60 cells in a dose-dependent manner with no effect on normal PBMC cells. HL-60 cells treated with the CPS exhibited typical morphologic and biochemical signs of apoptosis. We found that the CPS caused the collapse of mitochondrial transmembrane potential (ΔΨm), activated caspases-8,-9, and - 3, decreased the ratio of anti-apoptotic Bcl-2 and pro-apoptotic Bax proteins, increased ROS production and TNF-α secretion, and stimulated phosphorylation of p38 MAPK and p53 in HL-60 cells. Taken together, these data suggest that both extracellular and intracellular signaling pathways contribute to the CPS-induced apoptosis in HL-60 cells.
Collapse
Affiliation(s)
- Maxim S Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russian Federation.
| | - Alexandra S Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russian Federation
| | - Alina P Filshtein
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russian Federation
| | - Vladimir S Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, 119991 Moscow, Russian Federation
| | - Lyudmila A Romanenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russian Federation
| |
Collapse
|
2
|
Zohar H, Lindenboim L, Gozlan O, Gundersen GG, Worman HJ, Stein R. Apoptosis-induced translocation of nesprin-2 from the nuclear envelope to mitochondria is associated with mitochondrial dysfunction. Nucleus 2024; 15:2413501. [PMID: 39402980 PMCID: PMC11486236 DOI: 10.1080/19491034.2024.2413501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Accumulating evidence suggests that the nuclear envelope (NE) is not just a target, but also a mediator of apoptosis. We showed recently that the NE protein nesprin-2 has pro-apoptotic activity, which involves its subcellular redistribution and Bcl-2 proteins. Here we further characterize the pro-apoptotic activity of nesprin-2 focusing on its redistribution. We assessed the redistribution kinetics of endogenous nesprin-2 tagged with GFP relative to apoptosis-associated mitochondrial dysfunction. The results show apoptosis-induced GFP-nesprin-2G redistribution occurred by two different modes - complete and partial, both lead to appearance of nesprin-2G near the mitochondria. Moreover, GFP-nesprin-2 redistribution is associated with reduction in mitochondrial membrane potential and mitochondrial outer membrane permeabilization and precedes the appearance of morphological features of apoptosis. Our results show that nesprin-2G redistribution and translocation near mitochondria is an early apoptotic effect associated with mitochondrial dysfunction, which may be responsible for the pro-apoptotic function of nesprin-2.
Collapse
Affiliation(s)
- Hila Zohar
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liora Lindenboim
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oren Gozlan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Howard J Worman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Reuven Stein
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Ivin Y, Butusova A, Gladneva E, Gmyl A, Ishmukhametov A. Comprehensive Elucidation of the Role of L and 2A Security Proteins on Cell Death during EMCV Infection. Viruses 2024; 16:280. [PMID: 38400055 PMCID: PMC10892303 DOI: 10.3390/v16020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The EMCV L and 2A proteins are virulence factors that counteract host cell defense mechanisms. Both L and 2A exhibit antiapoptotic properties, but the available data were obtained in different cell lines and under incomparable conditions. This study is aimed at checking the role of these proteins in the choice of cell death type in three different cell lines using three mutants of EMCV lacking functional L, 2A, and both proteins together. We have found that both L and 2A are non-essential for viral replication in HeLa, BHK, and RD cell lines, as evidenced by the viability of the virus in the absence of both functional proteins. L-deficient infection led to the apoptotic death of HeLa and RD cells, and the necrotic death of BHK cells. 2A-deficient infection induced apoptosis in BHK and RD cells. Infection of HeLa cells with the 2A-deficient mutant was finalized with exclusive caspase-dependent death with membrane permeabilization, morphologically similar to pyroptosis. We also demonstrated that inactivation of both proteins, along with caspase inhibition, delayed cell death progression. The results obtained demonstrate that proteins L and 2A play a critical role in choosing the path of cell death during infection, but the result of their influence depends on the properties of the host cells.
Collapse
Affiliation(s)
- Yury Ivin
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
| | - Anna Butusova
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
| | - Ekaterina Gladneva
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
| | - Anatoly Gmyl
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
| | - Aydar Ishmukhametov
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
- Institute of Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
4
|
Ziegler AR, Dufour A, Scott NE, Edgington-Mitchell LE. Ion Mobility-Based Enrichment-Free N-Terminomics Analysis Reveals Novel Legumain Substrates in Murine Spleen. Mol Cell Proteomics 2024; 23:100714. [PMID: 38199506 PMCID: PMC10862022 DOI: 10.1016/j.mcpro.2024.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Aberrant levels of the asparaginyl endopeptidase legumain have been linked to inflammation, neurodegeneration, and cancer, yet our understanding of this protease is incomplete. Systematic attempts to identify legumain substrates have been previously confined to in vitro studies, which fail to mirror physiological conditions and obscure biologically relevant cleavage events. Using high-field asymmetric waveform ion mobility spectrometry (FAIMS), we developed a streamlined approach for proteome and N-terminome analyses without the need for N-termini enrichment. Compared to unfractionated proteomic analysis, we demonstrate FAIMS fractionation improves N-termini identification by >2.5 fold, resulting in the identification of >2882 unique N-termini from limited sample amounts. In murine spleens, this approach identifies 6366 proteins and 2528 unique N-termini, with 235 cleavage events enriched in WT compared to legumain-deficient spleens. Among these, 119 neo-N-termini arose from asparaginyl endopeptidase activities, representing novel putative physiological legumain substrates. The direct cleavage of selected substrates by legumain was confirmed using in vitro assays, providing support for the existence of physiologically relevant extra-lysosomal legumain activity. Combined, these data shed critical light on the functions of legumain and demonstrate the utility of FAIMS as an accessible method to improve depth and quality of N-terminomics studies.
Collapse
Affiliation(s)
- Alexander R Ziegler
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Dultz E, Wojtynek M, Medalia O, Onischenko E. The Nuclear Pore Complex: Birth, Life, and Death of a Cellular Behemoth. Cells 2022; 11:1456. [PMID: 35563762 PMCID: PMC9100368 DOI: 10.3390/cells11091456] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the only transport channels that cross the nuclear envelope. Constructed from ~500-1000 nucleoporin proteins each, they are among the largest macromolecular assemblies in eukaryotic cells. Thanks to advances in structural analysis approaches, the construction principles and architecture of the NPC have recently been revealed at submolecular resolution. Although the overall structure and inventory of nucleoporins are conserved, NPCs exhibit significant compositional and functional plasticity even within single cells and surprising variability in their assembly pathways. Once assembled, NPCs remain seemingly unexchangeable in post-mitotic cells. There are a number of as yet unresolved questions about how the versatility of NPC assembly and composition is established, how cells monitor the functional state of NPCs or how they could be renewed. Here, we review current progress in our understanding of the key aspects of NPC architecture and lifecycle.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
| | - Matthias Wojtynek
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Evgeny Onischenko
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
6
|
Lunin SM, Novoselova EG, Glushkova OV, Parfenyuk SB, Novoselova TV, Khrenov MO. Cell Senescence and Central Regulators of Immune Response. Int J Mol Sci 2022; 23:ijms23084109. [PMID: 35456927 PMCID: PMC9028919 DOI: 10.3390/ijms23084109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pathways regulating cell senescence and cell cycle underlie many processes associated with ageing and age-related pathologies, and they also mediate cellular responses to exposure to stressors. Meanwhile, there are central mechanisms of the regulation of stress responses that induce/enhance or weaken the response of the whole organism, such as hormones of the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic systems, thymic hormones, and the pineal hormone melatonin. Although there are many analyses considering relationships between the HPA axis and organism ageing, we found no systematic analyses of relationships between the neuroendocrine regulators of stress and inflammation and intracellular mechanisms controlling cell cycle, senescence, and apoptosis. Here, we provide a review of the effects of neuroendocrine regulators on these mechanisms. Our analysis allowed us to postulate a multilevel system of central regulators involving neurotransmitters, glucocorticoids, melatonin, and the thymic hormones. This system finely regulates the cell cycle and metabolic/catabolic processes depending on the level of systemic stress, stage of stress response, and energy capabilities of the body, shifting the balance between cell cycle progression, cell cycle stopping, senescence, and apoptosis. These processes and levels of regulation should be considered when studying the mechanisms of ageing and the proliferation on the level of the whole organism.
Collapse
|
7
|
Peng Y, Tang Q, Xiao F, Fu N. Regulation of Lipid Metabolism by Lamin in Mutation-Related Diseases. Front Pharmacol 2022; 13:820857. [PMID: 35281936 PMCID: PMC8914069 DOI: 10.3389/fphar.2022.820857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Nuclear lamins, known as type 5 intermediate fibers, are composed of lamin A, lamin C, lamin B1, and lamin B2, which are encoded by LMNA and LMNB genes, respectively. Importantly, mutations in nuclear lamins not only participate in lipid disorders but also in the human diseases, such as lipodystrophy, metabolic-associated fatty liver disease, and dilated cardiomyopathy. Among those diseases, the mechanism of lamin has been widely discussed. Thereby, this review mainly focuses on the regulatory mechanism of the mutations in the lamin gene in lipid alterations and the human diseases. Considering the protean actions, targeting nuclear lamins may be a potent therapeutic avenue for lipid metabolic disorders and human diseases in the future.
Collapse
Affiliation(s)
- Yue Peng
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang, China
| | - Qianyu Tang
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang, China
| | - Fan Xiao
- The Affiliated Nanhua Hospital, Clinical Research Institute, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Nian Fu, ; Fan Xiao,
| | - Nian Fu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang, China
- The Affiliated Nanhua Hospital, Clinical Research Institute, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Nian Fu, ; Fan Xiao,
| |
Collapse
|
8
|
Morimoto H, Ueno M, Tanabe H, Kono T, Ogawa H. Progesterone depletion results in Lamin B1 loss and induction of cell death in mouse trophoblast giant cells. PLoS One 2021; 16:e0254674. [PMID: 34260661 PMCID: PMC8279370 DOI: 10.1371/journal.pone.0254674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 01/04/2023] Open
Abstract
Trophoblast giant cells (TGCs), a mouse trophoblast subtype, have large amounts of cytoplasm and high ploidy levels via endocycles. The diverse functions and gene expression profiles of TGCs have been studied well, but their nuclear structures remain unknown. In this study, we focus on Lamin B1, a nuclear lamina, and clarify its expression dynamics, regulation and roles in TGC functions. TGCs that differentiated from trophoblast stem cells were used. From days 0 to 9 after differentiation, the number of TGCs gradually increased, but the amount of LMNB1 peaked at day 3 and then slightly decreased. An immunostaining experiment showed that LMNB1-depleted TGCs increased after day 6 of differentiation. These LMNB1-depleted TGCs diffused peripheral localization of the heterochromatin marker H3K9me2 in the nuclei. However, LMINB1-knock down was not affected TGCs specific gene expression. We found that the death of TGCs also increased after day 6 of differentiation. Moreover, Lamin B1 loss and the cell death in TGCs were protected by 10-6 M progesterone. Our results conclude that progesterone protects against Lamin B1 loss and prolongs the life and function of TGCs.
Collapse
Affiliation(s)
- Hiromu Morimoto
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Misuzu Ueno
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hideyuki Tanabe
- Department of Evolutionary Studies of Biosystems Science, School of Advanced Sciences, The Graduate University for Advanced Studies, SOKENDAI, Shonan Village, Hayama, Kanagawa, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
9
|
Lunin S, Khrenov M, Glushkova O, Parfenyuk S, Novoselova T, Novoselova E. Precursors of thymic peptides as stress sensors. Expert Opin Biol Ther 2020; 20:1461-1475. [PMID: 32700610 DOI: 10.1080/14712598.2020.1800636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION A large volume of data indicates that the known thymic hormones, thymulin, thymopoietin, thymosin-α, thymosin-β, and thymic humoral factor-y2, exhibit different spectra of activities. Although large in volume, available data are rather fragmented, resulting in a lack of understanding of the role played by thymic hormones in immune homeostasis. AREA COVERED Existing data compartmentalizes the effect of thymic peptides into 2 categories: influence on immune cells and interconnection with neuroendocrine systems. The current study draws attention to a third aspect of the thymic peptide effect that has not been clarified yet, wherein ubiquitous and highly abundant intranuclear precursors of so called 'thymic peptides' play a fundamental role in all somatic cells. EXPERT OPINION Our analysis indicated that, under certain stress-related conditions, these precursors are cleaved to form immunologically active peptides that rapidly leave the nucleus and intracellular spaces, to send 'distress signals' to the immune system, thereby acting as stress sensors. We propose that these peptides may form a link between somatic cells and immune as well as neuroendocrine systems. This model may provide a better understanding of the mechanisms underlying immune homeostasis, leading thereby to the development of new therapeutic regimes utilizing the characteristics of thymic peptides.
Collapse
Affiliation(s)
- Sergey Lunin
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - Maxim Khrenov
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - Olga Glushkova
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - Svetlana Parfenyuk
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - Tatyana Novoselova
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - E Novoselova
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| |
Collapse
|
10
|
Lindenboim L, Zohar H, Worman HJ, Stein R. The nuclear envelope: target and mediator of the apoptotic process. Cell Death Discov 2020; 6:29. [PMID: 32351716 PMCID: PMC7184752 DOI: 10.1038/s41420-020-0256-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is characterized by the destruction of essential cell organelles, including the cell nucleus. The nuclear envelope (NE) separates the nuclear interior from the cytosol. During apoptosis, the apoptotic machinery, in particular caspases, increases NE permeability by cleaving its proteins, such as those of the nuclear pore complex (NPC) and the nuclear lamina. This in turns leads to passive diffusion of cytosolic apoptogenic proteins, such as caspases and nucleases, through NPCs into the nucleus and the subsequent breakdown of the NE and destruction of the nucleus. However, NE leakiness at early stages of the apoptotic process can also occur in a caspase-independent manner, where Bax, by a non-canonical action, promotes transient and repetitive localized generation and subsequent rupture of nuclear protein-filled nuclear bubbles. This NE rupture leads to discharge of apoptogenic nuclear proteins from the nucleus to the cytosol, a process that can contribute to the death process. Therefore, the NE may play a role as mediator of cell death at early stages of apoptosis. The NE can also serve as a platform for assembly of complexes that regulate the death process. Thus, the NE should be viewed as both a mediator of the cell death process and a target.
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Hila Zohar
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Howard J. Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032 USA
| | - Reuven Stein
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| |
Collapse
|
11
|
Booy EP, McRae EK, Ezzati P, Choi T, Gussakovsky D, McKenna SA. Comprehensive analysis of the BC200 ribonucleoprotein reveals a reciprocal regulatory function with CSDE1/UNR. Nucleic Acids Res 2019; 46:11575-11591. [PMID: 30247708 PMCID: PMC6265466 DOI: 10.1093/nar/gky860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
BC200 is a long non-coding RNA primarily expressed in brain but aberrantly expressed in various cancers. To gain a further understanding of the function of BC200, we performed proteomic analyses of the BC200 ribonucleoprotein (RNP) by transfection of 3′ DIG-labelled BC200. Protein binding partners of the functionally related murine RNA BC1 as well as a scrambled BC200 RNA were also assessed in both human and mouse cell lines. Stringent validation of proteins identified by mass spectrometry confirmed 14 of 84 protein binding partners and excluded eight proteins that did not appreciably bind BC200 in reverse experiments. Gene ontology analyses revealed general roles in RNA metabolic processes, RNA processing and splicing. Protein/RNA interaction sites were mapped with a series of RNA truncations revealing three distinct modes of interaction involving either the 5′ Alu-domain, 3′ A-rich or 3′ C-rich regions. Due to their high enrichment values in reverse experiments, CSDE1 and STRAP were further analyzed demonstrating a direct interaction between CSDE1 and BC200 and indirect binding of STRAP to BC200 via heterodimerization with CSDE1. Knock-down studies identified a reciprocal regulatory relationship between CSDE1 and BC200 and immunofluorescence analysis of BC200 knock-down cells demonstrated a dramatic reorganization of CSDE1 into distinct nuclear foci.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ewan Ks McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peyman Ezzati
- Manitoba Centre for Proteomics and Systems Biology, Section of Biomedical Proteomics, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba and Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Taegi Choi
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Kopeina GS, Prokhorova EA, Lavrik IN, Zhivotovsky B. Alterations in the nucleocytoplasmic transport in apoptosis: Caspases lead the way. Cell Prolif 2018; 51:e12467. [PMID: 29947118 DOI: 10.1111/cpr.12467] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a mode of regulated cell death that is indispensable for the morphogenesis, development and homeostasis of multicellular organisms. Caspases are cysteine-dependent aspartate-specific proteases, which function as initiators and executors of apoptosis. Caspases are cytosolic proteins that can cleave substrates located in different intracellular compartments during apoptosis. Many years ago, the involvement of caspases in the regulation of nuclear changes, a hallmark of apoptosis, was documented. Accumulated data suggest that apoptosis-associated alterations in nucleocytoplasmic transport are also linked to caspase activity. Here, we aim to discuss the current state of knowledge regarding this process. Particular attention will be focused on caspase nuclear entry and their functions in the demolition of the nucleus upon apoptotic stimuli.
Collapse
Affiliation(s)
- Gelina S Kopeina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Inna N Lavrik
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Boris Zhivotovsky
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Espinosa-Cueto P, Magallanes-Puebla A, Castellanos C, Mancilla R. Dendritic cells that phagocytose apoptotic macrophages loaded with mycobacterial antigens activate CD8 T cells via cross-presentation. PLoS One 2017; 12:e0182126. [PMID: 28767693 PMCID: PMC5540487 DOI: 10.1371/journal.pone.0182126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 01/25/2023] Open
Abstract
While homeostatic apoptosis is immunologically silent, macrophage apoptosis during Mycobacterium tuberculosis infection can potentially induce an immune response against the mycobacteria. To examine the role of dendritic cells in this response, macrophage apoptosis was induced by incubating the macrophage with cell wall extracts of mycobacteria expressing LpqH. The apoptogenic proteins of the cell wall extracts were engulfed by the macrophage and then were translocated from the cytosol to the nuclei of the dying cells. Dendritic cells that engulfed the apoptotic macrophages acquired an immunogenic phenotype that included upregulation of MHC-I, increased expression of the costimulatory molecules, CD40, CD80, and CD86, and increased production of IL-12, IL-10, TNF-α, and TGF-β. In addition, the dendritic cells triggered a proliferative response of CD8+ T cells with IFN-γ production via cross-presentation. Taken together, these findings support a model in which phagocytosis of whole apoptotic cells carrying mycobacterial antigens promotes a potentially protective immune response.
Collapse
Affiliation(s)
- Patricia Espinosa-Cueto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Magallanes-Puebla
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Castellanos
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raul Mancilla
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
14
|
Shahin V. Strategic disruption of nuclear pores structure, integrity and barrier for nuclear apoptosis. Semin Cell Dev Biol 2017; 68:85-90. [DOI: 10.1016/j.semcdb.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
|
15
|
Takada M, Zhang W, Suzuki A, Kuroda TS, Yu Z, Inuzuka H, Gao D, Wan L, Zhuang M, Hu L, Zhai B, Fry CJ, Bloom K, Li G, Karpen GH, Wei W, Zhang Q. FBW7 Loss Promotes Chromosomal Instability and Tumorigenesis via Cyclin E1/CDK2-Mediated Phosphorylation of CENP-A. Cancer Res 2017; 77:4881-4893. [PMID: 28760857 DOI: 10.1158/0008-5472.can-17-1240] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/19/2017] [Accepted: 07/21/2017] [Indexed: 01/16/2023]
Abstract
The centromere regulates proper chromosome segregation, and its dysfunction is implicated in chromosomal instability (CIN). However, relatively little is known about how centromere dysfunction occurs in cancer. Here, we define the consequences of phosphorylation by cyclin E1/CDK2 on a conserved Ser18 residue of centromere-associated protein CENP-A, an essential histone H3 variant that specifies centromere identity. Ser18 hyperphosphorylation in cells occurred upon loss of FBW7, a tumor suppressor whose inactivation leads to CIN. This event on CENP-A reduced its centromeric localization, increased CIN, and promoted anchorage-independent growth and xenograft tumor formation. Overall, our results revealed a pathway that cyclin E1/CDK2 activation coupled with FBW7 loss promotes CIN and tumor progression via CENP-A-mediated centromere dysfunction. Cancer Res; 77(18); 4881-93. ©2017 AACR.
Collapse
Affiliation(s)
- Mamoru Takada
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Weiguo Zhang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Aussie Suzuki
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Taruho S Kuroda
- Open Innovation Center Japan, Bayer Yakuhin, Ltd., Kita-ku, Osaka, Japan
| | - Zhouliang Yu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Daming Gao
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Ming Zhuang
- Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianxin Hu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Bo Zhai
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Gary H Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, California.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina. .,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
16
|
Wobst HJ, Delsing L, Brandon NJ, Moss SJ. Truncation of the TAR DNA-binding protein 43 is not a prerequisite for cytoplasmic relocalization, and is suppressed by caspase inhibition and by introduction of the A90V sequence variant. PLoS One 2017; 12:e0177181. [PMID: 28510586 PMCID: PMC5433705 DOI: 10.1371/journal.pone.0177181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/23/2017] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding and -processing protein TAR DNA-binding protein 43 (TDP-43) is heavily linked to the underlying causes and pathology of neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In these diseases, TDP-43 is mislocalized, hyperphosphorylated, ubiquitinated, aggregated and cleaved. The importance of TDP-43 cleavage in the disease pathogenesis is still poorly understood. Here we detail the use of D-sorbitol as an exogenous stressor that causes TDP-43 cleavage in HeLa cells, resulting in a 35 kDa truncated product that accumulates in the cytoplasm within one hour of treatment. We confirm that the formation of this 35 kDa cleavage product is mediated by the activation of caspases. Inhibition of caspases blocks the cleavage of TDP-43, but does not prevent the accumulation of full-length protein in the cytoplasm. Using D-sorbitol as a stressor and caspase activator, we also demonstrate that the A90V variant of TDP-43, which lies adjacent to the caspase cleavage site within the nuclear localization sequence of TDP-43, confers partial resistance against caspase-mediated generation of the 35 kDa cleavage product.
Collapse
Affiliation(s)
- Heike J. Wobst
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Tufts University, Boston, MA, United States of America
| | - Louise Delsing
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Tufts University, Boston, MA, United States of America
- AstraZeneca, Discovery Science, Innovative Medicines and Early Development Biotech Unit, Mölndal, Sweden
| | - Nicholas J. Brandon
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Tufts University, Boston, MA, United States of America
- AstraZeneca, Neuroscience, Innovative Medicines and Early Development, Waltham, MA, United States of America
| | - Stephen J. Moss
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Tufts University, Boston, MA, United States of America
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States of America
| |
Collapse
|
17
|
Duclos C, Lavoie C, Denault JB. Caspases rule the intracellular trafficking cartel. FEBS J 2017; 284:1394-1420. [PMID: 28371378 DOI: 10.1111/febs.14071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022]
Abstract
During apoptosis, caspases feast on several hundreds of cellular proteins to orchestrate rapid cellular demise. Indeed, caspases are known to get a taste of every cellular process in one way or another, activating some, but most often shutting them down. Thus, it is not surprising that caspases proteolyze proteins involved in intracellular trafficking with particularly devastating consequences for this important process. This review article focuses on how caspases target the machinery responsible for smuggling goods within and outside the cell.
Collapse
Affiliation(s)
- Catherine Duclos
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC, Canada
| | - Christine Lavoie
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC, Canada
| | - Jean-Bernard Denault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC, Canada
| |
Collapse
|
18
|
Lunin SM, Khrenov MO, Glushkova OV, Vinogradova EV, Yashin VA, Fesenko EE, Novoselova EG. Extrathymic production of thymulin induced by oxidative stress, heat shock, apoptosis, or necrosis. Int J Immunopathol Pharmacol 2017; 30:58-69. [PMID: 28281875 PMCID: PMC5806779 DOI: 10.1177/0394632017694625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Thymic peptides are immune regulators produced mainly in the thymus. However, thymic peptides such as thymosin-α and thymopoietin have precursors widely expressed outside the thymus, localized in cell nuclei, and involved in vital nuclear functions. In stress-related conditions, they can relocalize. We hypothesized that another thymic peptide, thymulin, could be similarly produced by non-thymic cells during stress and have a precursor therein. Non-thymic cells, including macrophages and fibroblasts, were exposed to oxidative stress, heat, apoptosis, or necrosis. Extracellular thymulin was identified in media of both cell types 2 h after exposure to stress or lethal signals. Therefore, thymulin is released by non-thymic cells. To examine possible thymulin precursors in non-thymic cells, macrophage lysates were analyzed by western blotting. Bands stained with anti-thymulin antibody were detected in two locations, approximately 60 kDa and 10 kDa, which may be a possible precursor and intermediate. All of the exposures except for heat were effective for induction of the 10 kDa protein. BLAST search using thymulin sequence identified SPATS2L, an intranucleolar stress-response protein with molecular weight of 62 kDa, containing thymulin-like sequence. Comparisons of blots stained with anti-thymulin and anti-SPATS2L antibodies indicate that SPATS2L may be a possible candidate for the precursor of thymulin.
Collapse
Affiliation(s)
- Sergey M Lunin
- Institute of Cell Biophysics, Pushchino, Moscow region, Russia
| | - Maxim O Khrenov
- Institute of Cell Biophysics, Pushchino, Moscow region, Russia
| | | | | | - Valery A Yashin
- Institute of Cell Biophysics, Pushchino, Moscow region, Russia
| | | | | |
Collapse
|
19
|
Shin HJ, Kwon HK, Lee JH, Anwar MA, Choi S. Etoposide induced cytotoxicity mediated by ROS and ERK in human kidney proximal tubule cells. Sci Rep 2016; 6:34064. [PMID: 27666530 PMCID: PMC5036097 DOI: 10.1038/srep34064] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
Etoposide (ETO) is a commonly used chemotherapeutic drug that inhibits topoisomerase II activity, thereby leading to genotoxicity and cytotoxicity. However, ETO has limited application due to its side effects on normal organs, especially the kidney. Here, we report the mechanism of ETO-induced cytotoxicity progression in human kidney proximal tubule (HK-2) cells. Our results show that ETO perpetuates DNA damage, activates mitogen-activated protein kinase (MAPK), and triggers morphological changes, such as cell and nuclear swelling. When NAC, a well-known reactive oxygen species (ROS) scavenger, is co-treated with ETO, it inhibits an ETO-induced increase in mitochondrial mass, mitochondrial DNA (ND1 and ND4) copy number, intracellular ATP level, and mitochondrial biogenesis activators (TFAM, PGC-1α and PGC-1β). Moreover, co-treatment with ETO and NAC inhibits ETO-induced necrosis and cell swelling, but not apoptosis. Studies using MAPK inhibitors reveal that inhibition of extracellular signal regulated kinase (ERK) protects ETO-induced cytotoxicity by inhibiting DNA damage and caspase 3/7 activity. Eventually, ERK inhibitor treated cells are protected from ETO-induced nuclear envelope (NE) rupture and DNA leakage through inhibition of caspase activity. Taken together, these data suggest that ETO mediates cytotoxicity in HK-2 cells through ROS and ERK pathways, which highlight the preventive avenues in ETO-induced cytotoxicity in kidney.
Collapse
Affiliation(s)
- Hyeon-Jun Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Hyuk-Kwon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jae-Hyeok Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| |
Collapse
|
20
|
Zhao B, Mei Y, Schipma MJ, Roth EW, Bleher R, Rappoport JZ, Wickrema A, Yang J, Ji P. Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening. Dev Cell 2016; 36:498-510. [PMID: 26954545 DOI: 10.1016/j.devcel.2016.02.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 11/18/2015] [Accepted: 02/02/2016] [Indexed: 11/29/2022]
Abstract
Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step toward chromatin condensation during erythropoiesis in mice.
Collapse
Affiliation(s)
- Baobing Zhao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 3-210, Chicago, IL 60611, USA
| | - Yang Mei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 3-210, Chicago, IL 60611, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric Wayne Roth
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Reiner Bleher
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Joshua Z Rappoport
- Center for Advanced Microscopy, Nikon Imaging Center at Northwestern University, Chicago, IL 60611, USA
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 3-210, Chicago, IL 60611, USA
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 3-210, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Nordin N, Fadaeinasab M, Mohan S, Mohd Hashim N, Othman R, Karimian H, Iman V, Ramli N, Mohd Ali H, Abdul Majid N. Pulchrin A, a New Natural Coumarin Derivative of Enicosanthellum pulchrum, Induces Apoptosis in Ovarian Cancer Cells via Intrinsic Pathway. PLoS One 2016; 11:e0154023. [PMID: 27136097 PMCID: PMC4852948 DOI: 10.1371/journal.pone.0154023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 04/07/2016] [Indexed: 12/27/2022] Open
Abstract
Drug resistance presents a challenge in chemotherapy and has attracted research interest worldwide and particular attention has been given to natural compounds to overcome this difficulty. Pulchrin A, a new compound isolated from natural products has demonstrated novel potential for development as a drug. The identification of pulchrin A was conducted using several spectroscopic techniques such as nuclear magnetic resonance, liquid chromatography mass spectrometer, infrared and ultraviolet spectrometry. The cytotoxicity effects on CAOV-3 cells indicates that pulchrin A is more active than cisplatin, which has an IC50 of 22.3 μM. Significant changes in cell morphology were present, such as cell membrane blebbing and formation of apoptotic bodies. The involvement of phosphatidylserine (PS) in apoptosis was confirmed by Annexin V-FITC after a 24 h treatment. Apoptosis was activated through the intrinsic pathway by activation of procaspases 3 and 9 as well as cleaved caspases 3 and 9 and ended at the executioner pathway, with the occurrence of DNA laddering. Apoptosis was further confirmed via gene and protein expression levels, in which Bcl-2 protein was down-regulated and Bax protein was up-regulated. Furthermore, the CAOV-3 cell cycle was disrupted at the G0/G1 phase, leading to apoptosis. Molecular modeling of Bcl-2 proteins demonstrated a high- binding affinity, which inhibited the function of Bcl-2 proteins and led to cell death. Results of the current study can shed light on the development of new therapeutic agents, particularly, human ovarian cancer treatments.
Collapse
Affiliation(s)
- Noraziah Nordin
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mehran Fadaeinasab
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Syam Mohan
- Medical Research Center, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Najihah Mohd Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamed Karimian
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Venus Iman
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Noorlela Ramli
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
22
|
Han MH, Lee WS, Nagappan A, Kim HJ, Park C, Kim GY, Hong SH, Kim ND, Kim G, Ryu CH, Shin SC, Choi YH. Polyphenols from Korean prostrate spurge Euphorbia supina induce apoptosis through the Fas-associated extrinsic pathway and activation of ERK in human leukemic U937 cells. Oncol Rep 2016; 36:99-107. [PMID: 27122127 PMCID: PMC4899010 DOI: 10.3892/or.2016.4778] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/10/2016] [Indexed: 11/05/2022] Open
Abstract
The Korean prostrate spurge Euphorbia supina (Euphorbiaceae family) has been used as a folk medicine in Korea against a variety of ailments such as bronchitis, hemorrhage, jaundice and multiple gastrointestinal diseases. Polyphenols from Korean E. supina (PES) which include quercetin and kaempferol derivatives have anticancer properties. Hence, we investigated the anticancer effects of PES on U937 human leukemic cells. Firstly, PES significantly inhibited the proliferation of U937 cells in a dose-dependent manner. PES induced accumulation of the sub-G1 DNA content (apoptotic cell population), apoptotic bodies and chromatin condensation and DNA fragmentation in the U937 cells. PES also induced activation of caspase-3, -8 and -9, subsequent cleavage of PARP, and significantly suppressed XIAP, cIAP-1 and cIAP-2 in a dose-dependent manner. Furthermore, PES activated Bid, and induced the loss of mitochondrial membrane potential (MMP, ΔΨm) along with upregulation of pro-apoptotic proteins (Bax and Bad), and downregulation of anti-apoptotic proteins (Bcl-2 and Bcl-xL) and cytochrome c release. The Fas receptor was upregulated by PES in a dose-dependent manner, suggesting that the extrinsic pathway was also involved in the PES-induced apoptosis. Moreover, the PES-induced apoptosis was at least in part associated with extracellular signal-regulated kinase (ERK) activation in the U937 human leukemic cells. This study provides evidence that PES may be useful in the treatment of leukemia.
Collapse
Affiliation(s)
- Min-Ho Han
- Natural Products Research Team, National Marine Biodiversity Institute of Korea, Seocheon 325-902, Republic of Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Republic of Korea
| | - Arulkumar Nagappan
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 614-714, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Gonsup Kim
- School of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Chung Ho Ryu
- Division of Applied Life Science (BK 21 Program), Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| |
Collapse
|
23
|
Ramasamy VS, Islam MI, Haque MA, Shin SY, Park IS. β-Amyloid induces nuclear protease-mediated lamin fragmentation independent of caspase activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1189-99. [PMID: 26876308 DOI: 10.1016/j.bbamcr.2016.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/18/2016] [Accepted: 02/09/2016] [Indexed: 01/22/2023]
Abstract
β-Amyloid (Aβ), a hallmark peptide of Alzheimer's disease, induces both caspase-dependent apoptosis and non-apoptotic cell death. In this study, we examined caspase-independent non-apoptotic cell death preceding caspase activation in Aβ42-treated cells. We first determined the optimal treatment conditions for inducing cell death without caspase activation and selected a double-treatment method involving the incubation of cells with Aβ42 for 4 and 6 h (4+6 h sample). We observed that levels of lamin A (LA) and lamin B (LB) were reduced in the 4+6 h samples. This reduction was decreased by treatment with suc-AAPF-CMK, an inhibitor of nuclear scaffold (NS) protease, but not by treatment with z-VAD-FMK, a pan-caspase inhibitor. In addition, suc-AAPF-CMK decreased the changes in nuclear morphology observed in cells in the 4+6 h samples, which were different from nuclear fragmentation observed in STS-treated cells. Furthermore, suc-AAPF-CMK inhibited cell death in the 4+6 h samples. LA and LB fragmentation occurred in the isolated nuclei and was also inhibited by suc-AAPF-CMK. Together, these data indicated that the fragmentation of LA and LB in the Aβ42-treated cells was induced by an NS protease, whose identity is not clearly determined yet. A correlation between Aβ42 toxicity and the lamin fragmentation by NS protease suggests that inhibition of the protease could be an effective method for controlling the pathological process of AD.
Collapse
Affiliation(s)
- Vijay Sankar Ramasamy
- Department of Bio-Materials Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Md Imamul Islam
- Department of Bio-Materials Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Md Aminul Haque
- Department of Bio-Materials Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Song Yub Shin
- Department of Bio-Materials Engineering, Chosun University, Gwangju 501-759, Republic of Korea; Cellular and Molecular Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | - Il-Seon Park
- Department of Bio-Materials Engineering, Chosun University, Gwangju 501-759, Republic of Korea; Cellular and Molecular Medicine, Chosun University, Gwangju 501-759, Republic of Korea.
| |
Collapse
|
24
|
Kwon HK, Lee JH, Shin HJ, Kim JH, Choi S. Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death. Sci Rep 2015; 5:15623. [PMID: 26490051 PMCID: PMC4614995 DOI: 10.1038/srep15623] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/28/2015] [Indexed: 01/19/2023] Open
Abstract
The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies.
Collapse
Affiliation(s)
- Hyuk-Kwon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Jae-Hyeok Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Hyeon-Jun Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| |
Collapse
|
25
|
Saralamma VVG, Nagappan A, Hong GE, Lee HJ, Yumnam S, Raha S, Heo JD, Lee SJ, Lee WS, Kim EH, Kim GS. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand. Int J Mol Sci 2015; 16:22676-91. [PMID: 26393583 PMCID: PMC4613330 DOI: 10.3390/ijms160922676] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 01/01/2023] Open
Abstract
Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies’ results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.
Collapse
Affiliation(s)
- Venu Venkatarame Gowda Saralamma
- Research Institute of Life Science and College of Veterinary Medicine (BK21 Plus Project), Gyeongsang National University, Gazwa, Jinju 660-701, Korea.
| | - Arulkumar Nagappan
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Korea.
| | - Gyeong Eun Hong
- Research Institute of Life Science and College of Veterinary Medicine (BK21 Plus Project), Gyeongsang National University, Gazwa, Jinju 660-701, Korea.
| | - Ho Jeong Lee
- Research Institute of Life Science and College of Veterinary Medicine (BK21 Plus Project), Gyeongsang National University, Gazwa, Jinju 660-701, Korea.
| | - Silvia Yumnam
- Research Institute of Life Science and College of Veterinary Medicine (BK21 Plus Project), Gyeongsang National University, Gazwa, Jinju 660-701, Korea.
| | - Suchismita Raha
- Research Institute of Life Science and College of Veterinary Medicine (BK21 Plus Project), Gyeongsang National University, Gazwa, Jinju 660-701, Korea.
| | - Jeong Doo Heo
- Gyeongnam Department of Environment Toxicology and Chemistry, Toxicity Screening Research Center, Korea Institute of Toxicology, Jinju 666-844, Korea.
| | - Sang Joon Lee
- Gyeongnam Department of Environment Toxicology and Chemistry, Toxicity Screening Research Center, Korea Institute of Toxicology, Jinju 666-844, Korea.
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Korea.
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Jinju 660-759, Korea.
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine (BK21 Plus Project), Gyeongsang National University, Gazwa, Jinju 660-701, Korea.
| |
Collapse
|
26
|
Pachymic Acid Induces Apoptosis of EJ Bladder Cancer Cells by DR5 Up-Regulation, ROS Generation, Modulation of Bcl-2 and IAP Family Members. Phytother Res 2015; 29:1516-24. [DOI: 10.1002/ptr.5402] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/06/2015] [Accepted: 05/28/2015] [Indexed: 11/07/2022]
|
27
|
Flather D, Semler BL. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Front Microbiol 2015; 6:594. [PMID: 26150805 PMCID: PMC4471892 DOI: 10.3389/fmicb.2015.00594] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/29/2015] [Indexed: 11/13/2022] Open
Abstract
The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review.
Collapse
Affiliation(s)
- Dylan Flather
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| |
Collapse
|
28
|
Liu Y, Bi T, Dai W, Wang G, Qian L, Gao Q, Shen G. Effects of Oxymatrine on the Proliferation and Apoptosis of Human Hepatoma Carcinoma Cells. Technol Cancer Res Treat 2015; 15:487-97. [PMID: 26009496 DOI: 10.1177/1533034615587616] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022] Open
Abstract
Oxymatrine, one of the main active components of extracts from the dry roots of Sophora flavescens, has been reported to possess anticancer activities in vitro and in vivo However, the precise mechanism involved remains largely unknown. The present study is conducted to investigate the anticancer activity and the underlying mechanisms of oxymatrine in human hepatoma cells (Hep-G2 and SMMC-7721) in vitro and in vivo Hep-G2 and SMMC-7721 cells were treated by oxymatrine and subjected to methyl thiazolyl tetrazolium analysis, Hoechst 33342 staining, annexin V/propidium iodide double staining, reverse transcription polymerase chain reaction, and Western blot analysis. In addition, SMMC-7721 xenograft tumors were established in male nude BALB/c mice, and oxymatrine was intravenously administered to evaluate the anticancer capacity in vivo Our results showed that oxymatrine inhibited the proliferation and induced apoptosis of Hep-G2 and SMMC-7721 cells in a dose-dependent manner in vitro Furthermore, the RNA and protein expression of Bax and caspase 3 levels were significantly upregulated, whereas the expression of Bcl-2 was downregulated. These protein interactions may play a pivotal role in the regulation of proliferation and apoptosis. More importantly, our in vivo studies showed that administration of oxymatrine decreased tumor growth in a dose-dependent manner. Immunohistochemistry analysis demonstrated an increase of Bax and caspase 3 and a decrease of Bcl-2 in tumor tissues following oxymatrine treatment which are consistent with the in vitro results. Taken together, our findings indicated that oxymatrine can inhibit cell proliferation and induce apoptosis of human hepatoma Hep-G2 and SMMC-7721 cells and might offer a therapeutic potential advantage for human hepatoma chemoprevention or chemotherapy.
Collapse
Affiliation(s)
- Yan Liu
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, China
| | - Tingting Bi
- Department of Geriatric Ward, Wujiang No. 1 People's Hospital, Suzhou, China
| | - Wei Dai
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, China
| | - Gang Wang
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, China
| | - Liqiang Qian
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, China
| | - Quangen Gao
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, China
| | - Genhai Shen
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, China
| |
Collapse
|
29
|
Lu JN, Lee WS, Nagappan A, Chang SH, Choi YH, Kim HJ, Kim GS, Ryu CH, Shin SC, Jung JM, Hong SC. Anthocyanins From the Fruit of Vitis coignetiae Pulliat Potentiate the Cisplatin Activity by Inhibiting PI3K/Akt Signaling Pathways in Human Gastric Cancer Cells. J Cancer Prev 2015; 20:50-6. [PMID: 25853103 PMCID: PMC4384714 DOI: 10.15430/jcp.2015.20.1.50] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/23/2022] Open
Abstract
Background: Cisplatin (cis-diaminedichloroplatinum, CDDP) is a widely used chemotherapeutic agent for the treatment of many cancers. However, initial resistance to CDDP is a serious problem in treating these cancers. Vitis coignetiae Pulliat (Meoru in Korea) have shown anti-nuclear factor kappa B and anti-epidermal growth factor receptor activities in cancer cells. Methods: In this study, in order to seeking an approach to increase the anti-cancer effects of CDDP with natural products. Here, we investigated anthocyanins isolated from Vitis coignetiae Pulliat (anthocyanidins isolated from meoru, AIMs) can enhance anti-cancer effects of cisplatin (CDDP) in stomach cancer cells. The cell viability of SNU-1 and SNU-16 cells after treated with AIMs and CDDP were analyzed by MTT assay. The expressions of Akt and X-linked inhibitor of apoptosis protein (XIAP) proteins were examined by western blot in AIMs- and CDDP-treated cells. Results: We found that AIMs enhanced anticancer effects of CDDP, which activity was additive but not synergistic. AIMs suppressed Akt activity of the cancer cells activated by CDDP. AIMs also suppressed in XIAP an anti-apoptotic protein. Conclusions: This study suggests that the anthocyanins isolated from fruits of Vitis coignetiae Pulliat enhanced anti-cancer effects of CDDP by inhibiting Akt activity activated by CDDP.
Collapse
Affiliation(s)
- Jing Nan Lu
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju
| | - Won Sup Lee
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju
| | - Arulkumar Nagappan
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju
| | - Seong-Hwan Chang
- Department of Surgery, Konkuk University School of Medicine, Seoul
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine and Department of Biomaterial Control (BK21 program), Dongeui University Graduate School, Busan
| | - Hye Jung Kim
- Department of Pharmacology, Gyeongsang National University School of Medicine
| | - Gon Sup Kim
- School of Veterinary Medicine, Institute of Agriculture and Life Science
| | - Chung Ho Ryu
- Division of Applied Life Science (BK 21 Program), Institute of Agriculture and Life Science
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University
| | - Jin-Myung Jung
- Departments of Neurosurgery, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Soon Chan Hong
- Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| |
Collapse
|
30
|
|
31
|
Park C, Lee WS, Go SI, Nagappan A, Han MH, Hong SH, Kim GS, Kim GY, Kwon TK, Ryu CH, Shin SC, Choi YH. Morin, a flavonoid from moraceae, induces apoptosis by induction of BAD protein in human leukemic cells. Int J Mol Sci 2014; 16:645-59. [PMID: 25561222 PMCID: PMC4307266 DOI: 10.3390/ijms16010645] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/11/2014] [Indexed: 11/16/2022] Open
Abstract
Evidence suggests that phytochemicals can safely modulate cancer cell biology and induce apoptosis. Here, we investigated the anti-cancer activity of morin, a flavone originally isolated from members of the Moraceae family in human leukemic cells, focusing on apoptosis. An anti-cancer effect of morin was screened with several human leukemic cell lines. U937 cells were most sensitive to morin, where it induced caspase-dependent apoptosis in a dose-dependent manner. It also induced loss of MMP (ΔΨm) along with cytochrome c release, down-regulated Bcl-2 protein, and up-regulated BAX proteins. The apoptotic activity of morin was significantly attenuated by Bcl-2 augmentation. In conclusion, morin induced caspase-dependent apoptosis through an intrinsic pathway by upregulating BAD proteins. In addition, Bcl-2 protein expression is also important in morin-induced apoptosis of U937 cells. This study provides evidence that morin might have anticancer properties in human leukemic cells.
Collapse
Affiliation(s)
- Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dongeui University, Busan 614-714, Korea.
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Korea.
| | - Se-Il Go
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Korea.
| | - Arulkumar Nagappan
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Korea.
| | - Min Ho Han
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052, Korea.
| | - Su Hyun Hong
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052, Korea.
| | - Gon Sup Kim
- School of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Gi Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea.
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701, Korea.
| | - Chung Ho Ryu
- Division of Applied Life Science (BK 21 Program), Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052, Korea.
| |
Collapse
|
32
|
Liu Y, Bi T, Wang G, Dai W, Wu G, Qian L, Gao Q, Shen G. Lupeol inhibits proliferation and induces apoptosis of human pancreatic cancer PCNA-1 cells through AKT/ERK pathways. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:295-304. [PMID: 25418891 DOI: 10.1007/s00210-014-1071-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/13/2014] [Indexed: 01/05/2023]
Abstract
Lupeol, a dietary triterpene, present in many fruits and medicinal plants, has been reported to possess many pharmacological properties including anti-cancer activities both in vitro and in vivo. However, the precise mechanism involved remains largely unknown. The present study is conducted to investigate the anti-cancer activity and the underlying mechanisms of lupeol on human pancreatic cancer proliferating cell nuclear antigen 1 (PCNA-1) cells in vitro and in vivo. Lupeol significantly inhibited the proliferation of the cells in dose- and time-dependent manners and induced apoptosis as well as cell cycle arrest in G0/G1 phase by upregulating P21 and P27 and downregulating cyclin D1. The expression of apoptosis-related proteins in cells was evaluated by western blot analysis, and we found that lupeol induced cell apoptosis by decreasing the levels of p-AKT and p-ERK. In addition, pretreatment with a specific PI3K/AKT activator (IGF-1) significantly neutralized the pro-apoptotic activity of lupeol in PCNA-1 cells, demonstrating the important role of AKT in this process. More importantly, our in vivo studies showed that administration of lupeol decreased tumor growth in a dose-dependent manner. Immunohistochemistry analysis demonstrated the downregulation of p-AKT and p-ERK in tumor tissues following lupeol treatment, consistent with the in vitro results. Therefore, these findings indicate that lupeol can inhibit cell proliferation and induce apoptosis as well as cell cycle arrest of PCNA-1 cells and might offer a therapeutic potential advantage for human pancreatic cancer chemoprevention or chemotherapy.
Collapse
Affiliation(s)
- Yan Liu
- Department of General Surgery, Wujiang No.1 People's Hospital, Suzhou, 215200, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tursiella ML, Bowman ER, Wanzeck KC, Throm RE, Liao J, Zhu J, Sample CE. Epstein-Barr virus nuclear antigen 3A promotes cellular proliferation by repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1. PLoS Pathog 2014; 10:e1004415. [PMID: 25275486 PMCID: PMC4183747 DOI: 10.1371/journal.ppat.1004415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 08/21/2014] [Indexed: 11/20/2022] Open
Abstract
Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14ARF and p16INK4a expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14ARF and p16INK4a. By contrast, p16INK4a was not detectably expressed in Wp-R BL and the low-level expression of p14ARF was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21WAF1/CIP1, a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21WAF1/CIP1 expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the proliferation of Wp-R BL cells and LCLs. Epstein-Barr virus (EBV) infects over 98% of the population worldwide and is associated with a variety of human cancers. In the healthy host, the virus represses expression of its proteins to avoid detection by the immune system to enable it to remain in the body for the lifetime of its host, a situation known as latency. This downregulation was first observed in EBV-associated Burkitt lymphoma (BL), which classically express only one viral protein, EBNA-1. A subset of BL named Wp-restricted (Wp-R) BL express additional latency-associated viral proteins. Because Wp-R BL also express wild-type p53 (which normally prevents cellular proliferation), we wanted to explore the possibility that these viral proteins play a role in tumorigenesis. Indeed, we have demonstrated that Wp-R BL cells are more tumorigenic in immunocompromised mice than other BL. Here, we have investigated the role of one of these viral proteins, EBNA-3A. If we inhibit the expression of EBNA-3A, Wp-R BL cells fail to proliferate and express increased p21WAF1/CIP1, a cellular protein that inhibits cell proliferation. These results suggest that this previously undescribed function of EBNA-3A plays a role in the proliferation and likely contributes to tumorigenesis in Wp-R BL.
Collapse
Affiliation(s)
- Melissa L. Tursiella
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Emily R. Bowman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Keith C. Wanzeck
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Robert E. Throm
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jason Liao
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Junjia Zhu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Clare E. Sample
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
34
|
Wu Z, Sun H, Li J, Ma C, Zhao S, Guo Z, Lin Y, Lin Y, Liu L. A polysaccharide from Sanguisorbae radix induces caspase-dependent apoptosis in human leukemia HL-60 cells. Int J Biol Macromol 2014; 70:615-20. [PMID: 25036608 DOI: 10.1016/j.ijbiomac.2014.06.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/18/2014] [Accepted: 06/25/2014] [Indexed: 11/17/2022]
Abstract
One polysaccharide (SRP) was purified from Sanguisorbae radix by DEAE-cellulose-52 anion-exchange and Sephacryl S-400 gel filtration chromatography. The aim of this study was to evaluate the anticancer efficacy of SRP on human leukemia HL-60 cells in vitro and unveil the underlying mechanisms. Our results showed that SRP was able to suppress the proliferation of HL-60 cells in a dose-dependent manner by the mechanism involved in the induction of apoptosis. The increase in SRP-induced apoptosis was correlated with a rapid and sustained loss of mitochondrial transmembrane potential (ΔΨm) and a release of cytochrome c from the mitochondria into the cytosol. Furthermore, Western blot and RT-PCR analysis revealed that the protein and mRNA levels of antiapoptotic Bcl-2 were downregulated, whereas those of pro-apoptotic Bax were upregulated. Besides, caspase-9 and caspase-3 were activated, while caspase-8 was intact. Additionally, the apoptotic cells by SRP were significantly inhibited by a caspase-3 inhibitor (z-DEVD-fmk) or a caspase-9 inhibitor (Z-LETD-FMK), demonstrating the important role of caspase-9 and -3 in the process. Taken together, these findings provided evidence that SRP induced the apoptosis of HL-60 cells through an intrinsic mitochondria-mediated signaling pathway and SRP may be a promising chemotherapeutic agent for treatment of leukemia.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Honghui Sun
- Department of Orthopaedics Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Jingzhong Li
- Department of Oncology, Center Hospital of Shengli Oilfield, Dongying 257034, China
| | - Chijiao Ma
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Siqiao Zhao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Zheng Guo
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yao Lin
- The Second Department of Surgery, No. 518 Hospital of the PLA, Xi'an 710043, China
| | - Yaping Lin
- The Second Department of Surgery, No. 518 Hospital of the PLA, Xi'an 710043, China
| | - Li Liu
- Department of Haematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
35
|
Oxymatrine triggers apoptosis by regulating Bcl-2 family proteins and activating caspase-3/caspase-9 pathway in human leukemia HL-60 cells. Tumour Biol 2014; 35:5409-15. [PMID: 24563336 DOI: 10.1007/s13277-014-1705-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/27/2014] [Indexed: 01/02/2023] Open
Abstract
With the objective of identifying promising antitumor agents for human leukemia, we carried out to determine the anticancer ability of oxymatrine on the human leukemia HL-60 cell line. In vitro experiments demonstrated that oxymatrine reduced the proliferation of HL-60 cells in a dose- and time-dependent manner via the induction of apoptosis and cell cycle arrest at G2/M and S phases. The proteins involved in oxymatrine-induced apoptosis in HL-60 cells were also examined using Western blot. The increase in apoptosis upon treatment with oxymatrine was correlated with downregulation of anti-apoptotic Bcl-2 expression and upregulation of pro-apoptotic Bax expression. Furthermore, oxymatrine induced the activation of caspase-3 and caspase-9 and the cleavage of poly(ADP-ribose) polymerase (PARP) in HL-60 cells. In addition, pretreatment with a specific caspase-3 (Z-DEVD-FMK) or caspase-9 (Z-LEHD-FMK) inhibitor significantly neutralized the pro-apoptotic activity of oxymatrine in HL-60 cells, demonstrating the important role of caspase-3 and caspase-9 in this process. Taken together, these results indicated that oxymatrine-induced apoptosis may occur through the activation of the caspase-9/caspase-3-mediated intrinsic pathway. Therefore, oxymatrine may be a potential candidate for the treatment of human leukemia.
Collapse
|
36
|
Lindenboim L, Sasson T, Worman HJ, Borner C, Stein R. Cellular stress induces Bax-regulated nuclear bubble budding and rupture followed by nuclear protein release. Nucleus 2014; 5:527-41. [PMID: 25482068 PMCID: PMC4615202 DOI: 10.4161/19491034.2014.970105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/31/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
Cellular stress triggers many pathways including nuclear protein redistribution. We previously discovered that this process is regulated by Bax but the underlying mechanism has not yet been studied. Here we define this mechanism by showing that apoptotic stimuli cause Bax-regulated disturbances in lamin A/C and nuclear envelope (NE)-associated proteins which results in the generation and subsequent rupture of nuclear protein-containing bubbles. The bubbles do not contain DNA and are encapsulated by impaired nuclear pore-depleted NE. Stress-induced generation and rupture of nuclear bubbles ultimately leads to the discharge of nuclear proteins into the cytoplasm. This process precedes morphological changes of apoptosis and occurs independently of caspases. Rescue experiments revealed that this Bax effect is non-canonical, i.e. it requires the BH3 domain and α-helices 5 and 6 but it is not inhibited by Bcl(-)xL. Targeting Bax to the NE by the Klarsicht/ANC-1/Syne-1 homology (KASH) domain effectively triggers the generation and rupture of nuclear bubbles. Overall, our findings provide evidence for a novel stress-response, which is regulated by a non-canonical action of Bax on the NE.
Collapse
Key Words
- Bax
- Bax/Bak, Bax and Bak
- DKO, double knockout
- INM, inner nuclear membrane
- KASH, Klarsicht: ANC-1, Syne homology
- LAP, lamina-associated polypeptide
- LINC, links nucleoskeleton and cytoskeleton
- MEFs, mouse embryonic fibroblasts
- MOMP, mitochondrial outer membrane permeabilization
- NE, nuclear envelope
- NPCs, nuclear pore complexes
- NPM, nucleophosmin
- NPR, nuclear protein redistribution
- ONM, outer nuclear membrane
- PI, propidium iodide
- Q-VD-OPH, quinoline-Val-Asp(OMe)-CH2-OPH.
- SIGRUNB, stress-induced generation and rupture of nuclear bubbles
- apoptosis
- lamin
- nuclear envelope
- nucleus
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv, Israel
| | - Tiki Sasson
- Department of Neurobiology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv, Israel
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology; College of Physicians and Surgeons; Columbia University; New York, NY, USA
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research; Albert Ludwigs University Freiburg; Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM); Albert Ludwigs University Freiburg; Freiburg, Germany
- Excellence Cluster, Centre for Biological Signaling Studies (BIOSS); Albert Ludwigs University Freiburg; Freiburg, Germany
| | - Reuven Stein
- Department of Neurobiology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv, Israel
| |
Collapse
|
37
|
Godefroy N, Foveau B, Albrecht S, Goodyer CG, LeBlanc AC. Expression and activation of caspase-6 in human fetal and adult tissues. PLoS One 2013; 8:e79313. [PMID: 24265764 PMCID: PMC3827169 DOI: 10.1371/journal.pone.0079313] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022] Open
Abstract
Caspase-6 is an effector caspase that has not been investigated thoroughly despite the fact that Caspase-6 is strongly activated in Alzheimer disease brains. To understand the full physiological impact of Caspase-6 in humans, we investigated Caspase-6 expression. We performed western blot analyses to detect the pro-Caspase-6 and its active p20 subunit in fetal and adult lung, kidney, brain, spleen, muscle, stomach, colon, heart, liver, skin, and adrenals tissues. The levels were semi-quantitated by densitometry. The results show a ubiquitous expression of Caspase-6 in most fetal tissues with the lowest levels in the brain and the highest levels in the gastrointestinal system. Caspase-6 active p20 subunits were only detected in fetal stomach. Immunohistochemical analysis of a human fetal embryo showed active Caspase-6 positive apoptotic cells in the dorsal root ganglion, liver, lung, kidney, ovary, skeletal muscle and the intestine. In the adult tissues, the levels of Caspase-6 were lower than in fetal tissues but remained high in the colon, stomach, lung, kidney and liver. Immunohistological analyses revealed that active Caspase-6 was abundant in goblet cells and epithelial cells sloughing off the intestinal lining of the adult colon. These results suggest that Caspase-6 is likely important in most tissues during early development but is less involved in adult tissues. The low levels of Caspase-6 in fetal and adult brain indicate that increased expression as observed in Alzheimer Disease is a pathological condition. Lastly, the high levels of Caspase-6 in the gastrointestinal system indicate a potential specific function of Caspase-6 in these tissues.
Collapse
Affiliation(s)
- Nelly Godefroy
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | - Bénédicte Foveau
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | - Steffen Albrecht
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | | | - Andréa C. LeBlanc
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
38
|
Wong J, Si X, Angeles A, Zhang J, Shi J, Fung G, Jagdeo J, Wang T, Zhong Z, Jan E, Luo H. Cytoplasmic redistribution and cleavage of AUF1 during coxsackievirus infection enhance the stability of its viral genome. FASEB J 2013; 27:2777-87. [PMID: 23572232 DOI: 10.1096/fj.12-226498] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coxsackievirus B3 (CVB3) is a causative agent of viral myocarditis, hepatitis, pancreatitis, and meningitis in humans. The adenosine-uridine (AU)-rich element RNA binding factor 1 (AUF1) is an integral component in the regulation of gene expression. AUF1 destabilizes mRNAs and targets them for degradation by binding to AU-rich elements in the 3' untranslated region (UTR) of mRNAs. The 3'-UTR of the CVB3 genome contains canonical AU-rich sequences, raising the possibility that CVB3 RNA may also be subjected to AUF1-mediated degradation. Here, we reported that CVB3 infection led to cytoplasmic redistribution and cleavage of AUF1. These events are independent of CVB3-induced caspase activation but require viral protein production. Overexpression of viral protease 2A reproduced CVB3-induced cytoplasmic redistribution of AUF1, while in vitro cleavage assay revealed that viral protease 3C contributed to AUF1 cleavage. Furthermore, we showed that knockdown of AUF1 facilitated viral RNA, protein, and progeny production, suggesting an antiviral property for AUF1 against CVB3 infection. Finally, an immunoprecipitation study demonstrated the physical interaction between AUF1 and the 3'-UTR of CVB3, potentially targeting CVB3 genome toward degradation. Together, our results suggest that cleavage of AUF1 may be a strategy employed by CVB3 to enhance the stability of its viral genome.
Collapse
Affiliation(s)
- Jerry Wong
- James Hogg Research Center, Providence Heart and Lung Institute, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Caspase-mediated cleavage of C53/LZAP protein causes abnormal microtubule bundling and rupture of the nuclear envelope. Cell Res 2013; 23:691-704. [PMID: 23478299 DOI: 10.1038/cr.2013.36] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Apoptotic nucleus undergoes distinct morphological and biochemical changes including nuclear shrinkage, chromatin condensation and DNA fragmentation, which are attributed to caspase-mediated cleavage of several nuclear substrates such as lamins. As most of active caspases reside in the cytoplasm, disruption of the nuclear-cytoplasmic barrier is essential for caspases to reach their nuclear targets. The prevailing proposed mechanism is that the increase in the permeability of nuclear pores induced by caspases allows the caspases and other apoptotic factors to diffuse into the nucleus, thereby resulting in the nuclear destruction. Here, we report a novel observation that physical rupture of the nuclear envelope (NE) occurs in the early stage of apoptosis. We found that the NE rupture was caused by caspase-mediated cleavage of C53/LZAP, a protein that has been implicated in various signaling pathways, including NF-κB signaling and DNA damage response, as well as tumorigenesis and metastasis. We also demonstrated that C53/LZAP bound indirectly to the microtubule (MT), and expression of the C53/LZAP cleavage product caused abnormal MT bundling and NE rupture. Taken together, our findings suggest a novel role of C53/LZAP in the regulation of MT dynamics and NE structure during apoptotic cell death. Our study may provide an additional mechanism for disruption of the nuclear-cytoplasmic barrier during apoptosis.
Collapse
|
40
|
Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification. ISRN MOLECULAR BIOLOGY 2013; 2013:374385. [PMID: 27335676 PMCID: PMC4890873 DOI: 10.1155/2013/374385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/01/2013] [Indexed: 11/23/2022]
Abstract
The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification.
Collapse
|
41
|
Strasser C, Grote P, Schäuble K, Ganz M, Ferrando-May E. Regulation of nuclear envelope permeability in cell death and survival. Nucleus 2012; 3:540-51. [PMID: 22929227 DOI: 10.4161/nucl.21982] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nuclear pore complex (NPC) mediates macromolecular exchange between nucleus and cytoplasm. It is a regulated channel whose functional properties are modulated in response to the physiological status of the cell. Identifying the factors responsible for regulating NPC activity is crucial to understand how intracellular signaling cues are integrated at the level of this channel to control nucleocytoplasmic trafficking. For proteins lacking active translocation signals the NPC acts as a molecular sieve limiting passage across the nuclear envelope (NE) to proteins with a MW below ~40 kD. Here, we investigate how this permeability barrier is altered in paradigms of cell death and cell survival, i.e., apoptosis induction via staurosporine, and enhanced viability via overexpression of Bcl-2. We monitor dynamic changes of the NPC's size-exclusion limit for passive diffusion by confocal time-lapse microscopy of cells undergoing apoptosis, and use different diffusion markers to determine how Bcl-2 expression affects steady-state NE permeability. We show that staurosporine triggers an immediate and gradual leakiness of the NE preceding the appearance of apoptotic hallmarks. Bcl-2 expression leads to a constitutive increase in NE permeability, and its localization at the NE is sufficient for the effect, evincing a functional role for Bcl-2 at the nuclear membrane. In both settings, NPC leakiness correlates with reduced Ca²⁺ in internal stores, as demonstrated by fluorometric measurements of ER/NE Ca²⁺ levels. By comparing two cellular models with opposite outcome these data pinpoint ER/NE Ca²⁺ as a general and physiologically relevant regulator of the permeability barrier function of the NPC.
Collapse
Affiliation(s)
- Christine Strasser
- Bioimaging Center, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | |
Collapse
|
42
|
Sörgel S, Fraedrich K, Votteler J, Thomas M, Stamminger T, Schubert U. Perinuclear localization of the HIV-1 regulatory protein Vpr is important for induction of G2-arrest. Virology 2012; 432:444-51. [PMID: 22832123 DOI: 10.1016/j.virol.2012.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/07/2012] [Accepted: 06/21/2012] [Indexed: 11/30/2022]
Abstract
The HIV-1 accessory protein Vpr induces G2 cell cycle arrest and apoptosis. Previous studies indicate that the induction of G2-arrest requires the localization of Vpr to the nuclear envelope. Here we show that treatment of Vpr-expressing HeLa cells with the caspase 3 inhibitor Z-DEVD-fmk induced accumulation of Vpr at the nuclear lamina, while other proteins or structures of the nuclear envelope were not influenced. Furthermore, Z-DEVD-fmk enhances the Vpr-mediated G2-arrest that even occurred in HIV-1(NL4-3)-infected T-cells. Mutation of Pro-35, which is important for the integrity of helix-α1 in Vpr, completely abrogated the Z-DEVD-fmk-mediated accumulation of Vpr at the nuclear lamina and the enhancement of G2-arrest. As expected, inhibition of caspase 3 reduced the induction of apoptosis by Vpr. Taken together, we could show that besides its role in Vpr-mediated apoptosis induction caspase 3 influences the localization of Vpr at the nuclear envelope and thereby augments the Vpr-induced G2-arrest.
Collapse
Affiliation(s)
- Stefan Sörgel
- Institute of Virology, University of Erlangen-Nuremberg, Erlangen 91054, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The ubiquitin hybrid genes Uba80 and Uba52 encode ubiquitin (Ub), which is fused to the ribosomal proteins S27a (RPS27a) and L40 (RPL40), respectively. Here, we show that these genes are preferentially over-expressed during hepatoma cell apoptosis. Experiments using the tet-inducible transgenic system revealed that over-expression of the ubiquitin hybrid genes sensitized the cells to apoptosis. Further analysis suggested that Ub, and not RPS27a or RPL40, was associated with apoptotic cell death. Cleavage-resistant mutation analysis revealed that the N-terminal portion and the last two amino acids (GG) of Ub are critical for cleavage at the junction between the two protein moieties. An apoptogenic stimulus enhances the nuclear targeting and aggregation of Ub in the nucleus, resulting in histone H2A deubiquitylation followed by abnormal ubiquitylation of the nuclear envelope and the lamina. These events accompany the apoptotic nuclear morphology in the late stage of apoptosis. Each fused RP is localized in the nucleoli. These results suggest a role for Ub hybrid proteins in the altered nuclear dynamics of Ub during tumor cell apoptosis induced by apoptogenic stimuli.
Collapse
|
44
|
Plasma membrane and nuclear envelope integrity during the blebbing stage of apoptosis: a time‐lapse study. Biol Cell 2012; 102:25-35. [DOI: 10.1042/bc20090077] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Cohen S, Etingov I, Panté N. Effect of viral infection on the nuclear envelope and nuclear pore complex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:117-59. [PMID: 22959302 DOI: 10.1016/b978-0-12-394310-1.00003-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear envelope (NE) is a vital structure that separates the nucleus from the cytoplasm. Because the NE is such a critical cellular barrier, many viral pathogens have evolved to modulate its permeability. They do this either by breaching the NE or by disrupting the integrity and functionality of the nuclear pore complex (NPC). Viruses modulate NE permeability for different reasons. Some viruses disrupt NE to deliver the viral genome into the nucleus for replication, while others cause NE disruption during nuclear egress of newly assembled capsids. Yet, other viruses modulate NE permeability and affect the compartmentalization of host proteins or block the nuclear transport of host proteins involved in the host antiviral response. Recent scientific advances demonstrated that other viruses use proteins of the NPC for viral assembly or disassembly. Here we review the ways in which various viruses affect NE and NPC during infection.
Collapse
Affiliation(s)
- Sarah Cohen
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
46
|
Álvarez E, Castelló A, Carrasco L, Izquierdo JM. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease. Biochem Biophys Res Commun 2011; 414:142-7. [PMID: 21945619 DOI: 10.1016/j.bbrc.2011.09.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/08/2011] [Indexed: 11/29/2022]
Abstract
Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A(pro) modulating the alternative splicing of pre-mRNAs. Expression of 2A(pro) potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A(pro) abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A(pro), leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A(pro) on splicing is to selectively block the second catalytic step.
Collapse
Affiliation(s)
- Enrique Álvarez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera, 1 Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
47
|
Butin-Israeli V, Ben-nun-Shaul O, Kopatz I, Adam SA, Shimi T, Goldman RD, Oppenheim A. Simian virus 40 induces lamin A/C fluctuations and nuclear envelope deformation during cell entry. Nucleus 2011; 2:320-30. [PMID: 21941111 PMCID: PMC3260569 DOI: 10.4161/nucl.2.4.16371] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/27/2011] [Accepted: 07/02/2011] [Indexed: 12/25/2022] Open
Abstract
The canonical gate of viruses and viral genomes into the nucleus in non-dividing cells is the nuclear pore, embedded within the nuclear envelope. However, we found that for SV40, the nuclear envelope poses a major hurdle to infection: FISH analysis revealed that the majority of viral DNA remains trapped in the ER; silencing of Lamin A/C rendered the cells more susceptible to infection; and proliferating cells are more susceptible to infection than quiescent cells. Surprisingly, we observed that following SV40 infection the nuclear envelope, including lamins A/C, B1, B2 and the nuclear pore complex, was dramatically deformed, as seen by immunohistochemistry. The infection induced fluctuations in the level of lamin A/C, dephosphorylation of an unknown epitope and leakage to the cytoplasm just prior to and during nuclear entry. Deformations were transient, and the spherical structure of the nuclear envelope was restored subsequent to nuclear entry. Nuclear envelope deformations and lamin A/C dephosphorylation depended on caspase-6 cleavage of lamin A/C. Notably, we have previously reported that inhibition of caspase-6 abolishes SV40 infection. Taken together the results suggest that alterations of the nuclear lamina, induced by the infecting virus, are involved in the nuclear entry of the SV40 genome. We propose that SV40 utilize this unique, previously unknown mechanism for direct trafficking of its genome from the ER to the nucleus. As SV40 serves as a paradigm for the pathogenic human BK, JC and Merkel cell polyomavirus, this study suggests nuclear entry as a novel drug target for these infections.
Collapse
Affiliation(s)
- Veronika Butin-Israeli
- Department of Hematology; Hebrew University-Hadassah Medical School; Jerusalem, Israel
- Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Orly Ben-nun-Shaul
- Department of Hematology; Hebrew University-Hadassah Medical School; Jerusalem, Israel
| | - Idit Kopatz
- Department of Hematology; Hebrew University-Hadassah Medical School; Jerusalem, Israel
| | - Stephen A Adam
- Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Ariella Oppenheim
- Department of Hematology; Hebrew University-Hadassah Medical School; Jerusalem, Israel
| |
Collapse
|
48
|
Sadeqzadeh E, Rahbarizadeh F, Ahmadvand D, Rasaee MJ, Parhamifar L, Moghimi SM. Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumour cells. J Control Release 2011; 156:85-91. [PMID: 21704663 DOI: 10.1016/j.jconrel.2011.06.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 05/30/2011] [Accepted: 06/10/2011] [Indexed: 01/09/2023]
Abstract
We provide evidence for combining a single domain antibody (nanobody)-based targeting approach with transcriptional targeting as a safe way to deliver lethal transgenes to MUC1 over-expressing cancer cells. From a nanobody immune library, we have isolated an anti-DF3/Mucin1 (MUC1) nanobody with high specificity for the MUC1 antigen, which is an aberrantly glycosylated glycoprotein over-expressed in tumours of epithelial origin. The anti-MUC1 nanobody was covalently linked to the distal end of poly(ethylene glycol)(3500) (PEG(3500)) in PEG(3500)-25kDa polyethylenimine (PEI) conjugates and the resultant macromolecular entity successfully condensed plasmids coding a transcriptionally targeted truncated-Bid (tBid) killer gene under the control of the cancer-specific MUC1 promoter. The engineered polyplexes exhibited favourable physicochemical characteristics for transfection and dramatically elevated the level of Bid/tBid expression in both MUC1 over-expressing caspase 3-deficient (MCF7 cells) and caspase 3-positive (T47D and SKBR3) tumour cell lines and, concomitantly, induced considerable cell death. Neither transgene expression nor cell death occurred when the MUC1 promoter was replaced with the CNS-specific synapsin I promoter. Since PEGylated PEI was only responsible for DNA compaction and played no significant role in direct transfection and cell killing, our attempts overcome previously reported PEI-mediated apoptotic and necrotic cell death, which is advantageous for future in vivo transcriptional targeting as this will minimize (or eliminate) non-targeted cell damage.
Collapse
Affiliation(s)
- Elham Sadeqzadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
49
|
The multifaceted poliovirus 2A protease: regulation of gene expression by picornavirus proteases. J Biomed Biotechnol 2011; 2011:369648. [PMID: 21541224 PMCID: PMC3085340 DOI: 10.1155/2011/369648] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 02/17/2011] [Indexed: 11/17/2022] Open
Abstract
After entry into animal cells, most viruses hijack essential components involved in gene expression. This is the case of poliovirus, which abrogates cellular translation soon after virus internalization. Abrogation is achieved by cleavage of both eIF4GI and eIF4GII by the viral protease 2A. Apart from the interference of poliovirus with cellular protein synthesis, other gene expression steps such as RNA and protein trafficking between nucleus and cytoplasm are also altered. Poliovirus 2Apro is capable of hydrolyzing components of the nuclear pore, thus preventing an efficient antiviral response by the host cell. Here, we compare in detail poliovirus 2Apro with other viral proteins (from picornaviruses and unrelated families) as regard to their activity on key host factors that control gene expression. It is possible that future analyses to determine the cellular proteins targeted by 2Apro will uncover other cellular functions ablated by poliovirus infection. Further understanding of the cellular proteins hydrolyzed by 2Apro will add further insight into the molecular mechanism by which poliovirus and other viruses interact with the host cell.
Collapse
|
50
|
Decordier I, Mateuca R, Kirsch-Volders M. Micronucleus assay and labeling of centromeres with FISH technique. Methods Mol Biol 2011; 691:115-36. [PMID: 20972750 DOI: 10.1007/978-1-60761-849-2_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cytokinesis-block micronucleus (CBMN) assay has since many years been applied for in vitro genotoxicity testing and biomonitoring of human populations. The standard in vitro/ex vivo micronucleus test is usually performed on human lymphocytes and has become a comprehensive method to assess genetic damage, cytostasis, and cytotoxicity. The predictive association between the frequency of micronuclei (MN) in cytokinesis-blocked lymphocytes and cancer risk has recently been demonstrated. MN frequencies can be influenced by inherited (or acquired) genetic polymorphisms (or mutations) in genes responsible for the metabolic activation, detoxification of clastogens, and for the fidelity of DNA replication. An important advantage of the CBMN assay is its ability to detect both clastogenic and aneugenic events by centromere and kinetochore identification and contributes to the high sensitivity of the method. The objective of the present chapter is to review the mechanisms of induction of micronuclei, the method of the micronucleus assay and its combination with centromeric labeling in the FISH technique. Furthermore, an overview is given of recent results obtained by our laboratory by the application of the micronucleus assay.
Collapse
Affiliation(s)
- Ilse Decordier
- Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | |
Collapse
|