1
|
Gao ZG, Auchampach JA, Jacobson KA. Species dependence of A 3 adenosine receptor pharmacology and function. Purinergic Signal 2023; 19:523-550. [PMID: 36538251 PMCID: PMC9763816 DOI: 10.1007/s11302-022-09910-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022] Open
Abstract
Efforts to fully understand pharmacological differences between G protein-coupled receptor (GPCR) species homologues are generally not pursued in detail during the drug development process. To date, many GPCRs that have been successfully targeted are relatively well-conserved across species in amino acid sequence and display minimal variability of biological effects. However, the A3 adenosine receptor (AR), an exciting drug target for a multitude of diseases associated with tissue injury, ischemia, and inflammation, displays as little as 70% sequence identity among mammalian species (e.g., rodent vs. primate) commonly used in drug development. Consequently, the pharmacological properties of synthetic A3AR ligands vary widely, not only in binding affinity, selectivity, and signaling efficacy, but to the extent that some function as agonists in some species and antagonists in others. Numerous heterocyclic antagonists that have nM affinity at the human A3AR are inactive or weakly active at the rat and mouse A3ARs. Positive allosteric modulators, including the imidazo [4,5-c]quinolin-4-amine derivative LUF6000, are only active at human and some larger animal species that have been evaluated (rabbit and dog), but not rodents. A3AR agonists evoke systemic degranulation of rodent, but not human mast cells. The rat A3AR undergoes desensitization faster than the human A3AR, but the human homologue can be completely re-sensitized and recycled back to the cell surface. Thus, comprehensive pharmacological evaluation and awareness of potential A3AR species differences are critical in studies to further understand the basic biological functions of this unique AR subtype. Recombinant A3ARs from eight different species have been pharmacologically characterized thus far. In this review, we describe in detail current knowledge of species differences in genetic identity, G protein-coupling, receptor regulation, and both orthosteric and allosteric A3AR pharmacology.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0810, USA.
| | - John A Auchampach
- Department of Pharmacology and Toxicology, and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0810, USA.
| |
Collapse
|
2
|
Stoddart LA, Vernall AJ, Briddon SJ, Kellam B, Hill SJ. Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist. Neuropharmacology 2015; 98:68-77. [PMID: 25937210 DOI: 10.1016/j.neuropharm.2015.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/19/2015] [Accepted: 04/14/2015] [Indexed: 11/25/2022]
Abstract
Fluorescence based probes provide a novel way to study the dynamic internalization process of G protein-coupled receptors (GPCRs). Recent advances in the rational design of fluorescent ligands for GPCRs have been used here to generate new fluorescent agonists containing tripeptide linkers for the adenosine A3 receptor. The fluorescent agonist BY630-X-(D)-A-(D)-A-G-ABEA was found to be a highly potent agonist at the adenosine A3 receptor in both reporter gene (pEC50 = 8.48 ± 0.09) and internalization assays (pEC50 = 7.47 ± 0.11). Confocal imaging studies showed that BY630-X-(D)-A-(D)-A-G-ABEA was internalized with A3 linked to yellow fluorescent protein, which was blocked by the competitive antagonist MRS1220. Internalization of untagged adenosine A3 could also be visualized with BY630-X-(D)-A-(D)-A-G-ABEA treatment. Further, BY630-X-(D)-A-(D)-A-G-ABEA stimulated the formation of receptor-arrestin3 complexes and was found to localize with these intracellular complexes. This highly potent agonist with excellent imaging properties should be a valuable tool to study receptor internalization. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling Research Group, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, UK
| | - Andrea J Vernall
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stephen J Briddon
- Cell Signalling Research Group, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, UK
| | - Barrie Kellam
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stephen J Hill
- Cell Signalling Research Group, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, UK.
| |
Collapse
|
3
|
Kurko D, Kapui Z, Nagy J, Lendvai B, Kolok S. Analysis of functional selectivity through G protein-dependent and -independent signaling pathways at the adrenergic α(2C) receptor. Brain Res Bull 2014; 107:89-101. [PMID: 25080296 DOI: 10.1016/j.brainresbull.2014.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 01/01/2023]
Abstract
Although G protein-coupled receptors (GPCRs) are traditionally categorized as Gs-, Gq-, or Gi/o-coupled, their signaling is regulated by multiple mechanisms. GPCRs can couple to several effector pathways, having the capacity to interact not only with more than one G protein subtype but also with alternative signaling or effector proteins such as arrestins. Moreover, GPCR ligands can have different efficacies for activating these signaling pathways, a characteristic referred to as biased agonism or functional selectivity. In this work our aim was to detect differences in the ability of various agonists acting at the α2C type of adrenergic receptors (α2C-ARs) to modulate cAMP accumulation, cytoplasmic Ca(2+) release, β-arrestin recruitment and receptor internalization. A detailed comparative pharmacological characterization of G protein-dependent and -independent signaling pathways was carried out using adrenergic agonists (norepinephrine, phenylephrine, brimonidine, BHT-920, oxymetazoline, clonidine, moxonidine, guanabenz) and antagonists (MK912, yohimbine). As initial analysis of agonist Emax and EC50 values suggested possible functional selectivity, ligand bias was quantified by applying the relative activity scale and was compared to that of the endogenous agonist norepinephrine. Values significantly different from 0 between pathways indicated an agonist that promoted different level of activation of diverse effector pathways most likely due to the stabilization of a subtly different receptor conformation from that induced by norepinephrine. Our results showed that a series of agonists acting at the α2C-AR displayed different degree of functional selectivity (bias factors ranging from 1.6 to 36.7) through four signaling pathways. As signaling via these pathways seems to have distinct functional and physiological outcomes, studying all these stages of receptor activation could have further implications for the development of more selective therapeutics with improved efficacy and/or fewer side effects.
Collapse
Affiliation(s)
- Dalma Kurko
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary.
| | - Zoltán Kapui
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - József Nagy
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Lendvai
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Sándor Kolok
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| |
Collapse
|
4
|
Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140:92-111. [DOI: 10.1016/j.pharmthera.2013.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022]
|
5
|
von Zastrow M, Williams JT. Modulating neuromodulation by receptor membrane traffic in the endocytic pathway. Neuron 2012; 76:22-32. [PMID: 23040804 DOI: 10.1016/j.neuron.2012.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular responsiveness to many neuromodulators is controlled by endocytosis of the transmembrane receptors that transduce their effects. Endocytic membrane trafficking of particular neuromodulator receptors exhibits remarkable diversity and specificity, determined largely by molecular sorting operations that guide receptors at trafficking branchpoints after endocytosis. In this Review, we discuss recent progress in elucidating mechanisms mediating the molecular sorting of neuromodulator receptors in the endocytic pathway. There is emerging evidence that endocytic trafficking of neuromodulator receptors, in addition to influencing longer-term cellular responsiveness under conditions of prolonged or repeated activation, may also affect the acute response. Physiological and pathological consequences of defined receptor trafficking events are only now being elucidated, but it is already apparent that endocytosis of neuromodulator receptors has a significant impact on the actions of therapeutic drugs. The present data also suggest, conversely, that mechanisms of receptor endocytosis and molecular sorting may themselves represent promising targets for therapeutic manipulation.
Collapse
Affiliation(s)
- Mark von Zastrow
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158, USA.
| | | |
Collapse
|
6
|
Rebois RV, Hébert TE. Protein Complexes Involved in Heptahelical Receptor-Mediated Signal Transduction. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Verzijl D, IJzerman AP. Functional selectivity of adenosine receptor ligands. Purinergic Signal 2011; 7:171-92. [PMID: 21544511 PMCID: PMC3146648 DOI: 10.1007/s11302-011-9232-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/05/2011] [Indexed: 12/11/2022] Open
Abstract
Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as β-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the β-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins.
Collapse
Affiliation(s)
- Dennis Verzijl
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Ad P. IJzerman
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
8
|
Thangaraju A, Sawyer GW. Comparison of the kinetics and extent of muscarinic M1-M5 receptor internalization, recycling and downregulation in Chinese hamster ovary cells. Eur J Pharmacol 2011; 650:534-43. [PMID: 21044619 PMCID: PMC3005630 DOI: 10.1016/j.ejphar.2010.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 10/04/2010] [Accepted: 10/16/2010] [Indexed: 11/18/2022]
Abstract
We characterized agonist-induced internalization, recycling and downregulation of each muscarinic receptor subtype (M(1)-M(5)) stably expressed in Chinese hamster ovary (CHO) cells. The radioligands [(3)H]QNB and [(3)H]NMS were used to measure the total and plasma membrane populations of muscarinic receptors, respectively. Following carbachol treatment (1 mM), the rank orders for the rate of carbachol-induced internalization of the muscarinic subtypes were M(2)>M(4)=M(5)>M(3)=M(1), respectively. Unlike the M(2) receptor, M(1), M(3), M(4) and M(5) receptors recycled back to the plasma membrane after 1 h carbachol treatment. The receptor downregulation elicited to 24h carbachol treatment was similar for M(2), M(3), M(4) and M(5) receptors, whereas that for the M(1) receptor was greater. Our results indicate that there are subtype-specific differences in the rate and extent of agonist-induced muscarinic receptor internalization, recycling and downregulation in CHO cells.
Collapse
Affiliation(s)
- Arunkumar Thangaraju
- Oklahoma State University, Center for Health Sciences, College of Osteopathic Medicine, Department of Biochemistry and Microbiology, 1111 W. 17th Street, Tulsa, OK 74107-1898, USA
| | | |
Collapse
|
9
|
Mundell S, Kelly E. Adenosine receptor desensitization and trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1319-28. [PMID: 20550943 DOI: 10.1016/j.bbamem.2010.06.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 05/28/2010] [Accepted: 06/06/2010] [Indexed: 11/26/2022]
Abstract
As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field.
Collapse
Affiliation(s)
- Stuart Mundell
- Department of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | | |
Collapse
|
10
|
Marat AL, McPherson PS. The connecdenn family, Rab35 guanine nucleotide exchange factors interfacing with the clathrin machinery. J Biol Chem 2010; 285:10627-37. [PMID: 20154091 PMCID: PMC2856271 DOI: 10.1074/jbc.m109.050930] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/15/2009] [Indexed: 11/06/2022] Open
Abstract
Rabs constitute the largest family of monomeric GTPases, yet for the majority of Rabs relatively little is known about their activation and recruitment to vesicle-trafficking pathways. We recently identified connecdenn (DENND1A), which contains an N-terminal DENN (differentially expressed in neoplastic versus normal cells) domain, a common and evolutionarily ancient protein module. Through its DENN domain, connecdenn functions enzymatically as a guanine-nucleotide exchange factor (GEF) for Rab35. Here we identify two additional connecdenn family members and demonstrate that all connecdenns function as Rab35 GEFs, albeit with different levels of activity. The DENN domain of connecdenn 1 and 2 binds Rab35, whereas connecdenn 3 does not, indicating that Rab35 binding and activation are separable functions. Through their highly divergent C termini, each of the connecdenns binds to clathrin and to the clathrin adaptor AP-2. Interestingly, all three connecdenns use different mechanisms to bind AP-2. Characterization of connecdenn 2 reveals binding to the beta2-ear of AP-2 on a site that overlaps with that used by the autosomal recessive hypercholesterolemia protein and betaarrestin, although the sequence used by connecdenn 2 is unique. Loss of connecdenn 2 function through small interference RNA knockdown results in an enlargement of early endosomes, similar to what is observed upon loss of Rab35 activity. Our studies reveal connecdenn DENN domains as generalized GEFs for Rab35 and identify a new AP-2-binding motif, demonstrating a complex link between the clathrin machinery and Rab35 activation.
Collapse
Affiliation(s)
- Andrea L. Marat
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Peter S. McPherson
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
11
|
Thomas RL, Langmead CJ, Wood MD, Challiss RAJ. Contrasting effects of allosteric and orthosteric agonists on m1 muscarinic acetylcholine receptor internalization and down-regulation. J Pharmacol Exp Ther 2009; 331:1086-95. [PMID: 19767446 PMCID: PMC2784718 DOI: 10.1124/jpet.109.160242] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 09/17/2009] [Indexed: 11/22/2022] Open
Abstract
A new class of subtype-selective muscarinic acetylcholine (mACh) receptor agonist that activates the receptor through interaction at a site distinct from the orthosteric acetylcholine binding site has been reported recently. Here, we have compared the effects of orthosteric (oxotremorine-M, arecoline, pilocarpine) and allosteric [4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl] piperidine (AC-42); 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone (77-LH-28-1)] agonists on M(1) mACh receptor internalization and down-regulation, as well as functional coupling in a Chinese hamster ovary (CHO) cell line. In contrast to full and partial orthosteric agonists, which cause significant receptor internalization and down-regulation, prolonged exposure to AC-42 did not significantly alter either cell-surface or total cellular M(1) mACh receptor expression. 77-LH-28-1, an AC-42 homolog, did cause some receptor internalization, but not down-regulation. The presence of atropine completely prevented the orthosteric agonist-induced adaptive changes in receptor populations; however, in contrast, the copresence of atropine and AC-42 significantly increased both cell-surface receptor and total M(1) mACh receptor expression. Maximal phosphoinositide hydrolysis responses to the partial agonist arecoline were similar in CHO-M(1) cells pretreated for 24 h with either AC-42 or vehicle; in contrast, these responses were markedly reduced when cells were pretreated with oxotremorine-M or pilocarpine. These data indicate that, whereas AC-42 binding to the M(1) mACh receptor can initiate signal transduction, the AC-42-liganded receptor is resistant to the usual mechanisms regulating receptor internalization and down-regulation. In addition, our data suggest unusual interactions between allosteric agonists and orthosteric antagonists to regulate cell-surface and total cellular receptor expression.
Collapse
Affiliation(s)
- Rachel L Thomas
- Department of Cell Physiology and Pharmacology, University of Leicester, Room 4/04, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, United Kingdom
| | | | | | | |
Collapse
|
12
|
Ali H. Regulation of human mast cell and basophil function by anaphylatoxins C3a and C5a. Immunol Lett 2009; 128:36-45. [PMID: 19895849 DOI: 10.1016/j.imlet.2009.10.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 10/21/2009] [Accepted: 10/23/2009] [Indexed: 12/18/2022]
Abstract
Allergic diseases such as asthma result from inappropriate immunologic responses to common environmental allergens in genetically susceptible individuals. Following allergen exposure, interaction of dendritic cells (DC) with CD4(+) T cells leads to the production of Th2 cytokines, which induce B cells to synthesize IgE molecules (sensitization phase). These IgE molecules bind to their high affinity receptors (FcvarepsilonRI) on the surface of mast cells and basophils and their subsequent cross-linking by allergen results in the release of preformed and newly synthesized mediators, which cause bronchoconstriction, lung inflammation and airway hyperresponsiveness (AHR) in asthma (effector phase). The complement components C3a and C5a levels are increased in the lungs of patients with asthma and are likely generated via the actions of both allergen and mast cell proteases. In vivo studies with rodents have shown that while C3a facilitates allergen sensitization in some models C5a inhibits this response. Despite this difference, both anaphylatoxins promote lung inflammation and AHR in vivo indicating that cells other than DC and T cells likely mediate the functional effects of C3a and C5a in asthma. This review focuses on the contribution of C3a and C5a in the pathogenesis of asthma with a particular emphasis on mast cells and basophils. It discusses the mechanisms by which anaphylatoxins activate mast cells and basophils and the associated signaling pathways via which their receptors are regulated by priming and desensitization.
Collapse
Affiliation(s)
- Hydar Ali
- Department of Pathology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104-6030, USA.
| |
Collapse
|
13
|
Ciruela F, Albergaria C, Soriano A, Cuffí L, Carbonell L, Sánchez S, Gandía J, Fernández-Dueñas V. Adenosine receptors interacting proteins (ARIPs): Behind the biology of adenosine signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:9-20. [PMID: 19883624 DOI: 10.1016/j.bbamem.2009.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/26/2009] [Accepted: 10/27/2009] [Indexed: 01/18/2023]
Abstract
Adenosine is a well known neuromodulator in the central nervous system. As a consequence, adenosine can be beneficial in certain disorders and adenosine receptors will be potential targets for therapy in a variety of diseases. Adenosine receptors are G protein-coupled receptors, and are also expressed in a large variety of cells and tissues. Using these receptors as a paradigm of G protein-coupled receptors, the present review focus on how protein-protein interactions might contribute to neurotransmitter/neuromodulator regulation, based on the fact that accessory proteins impinge on the receptor/G protein interaction and therefore modulate receptor functioning. Besides affecting receptor signaling, these accessory components also play a key role in receptor trafficking, internalization and desensitization, as it will be reviewed here. In conclusion, the finding of an increasing number of adenosine receptors interacting proteins, and specially the molecular and functional integration of these accessory proteins into receptorsomes, will open new perspectives in the understanding of particular disorders where these receptors have been proved to be involved.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina-Bellvitge, Pavelló de Govern, Universitat de Barcelona, 08907 L'Hospitalet del Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sawyer GW, Ehlert FJ, Shults CA. Cysteine pairs in the third intracellular loop of the muscarinic m1 acetylcholine receptor play a role in agonist-induced internalization. J Pharmacol Exp Ther 2008; 324:196-205. [PMID: 17540859 DOI: 10.1124/jpet.107.123695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We determined the functional role of a small domain in the third intracellular loop of the human muscarinic M(1) (hM(1)) receptor. Using site-directed mutagenesis, several mutant hM(1) receptors were made possessing either a deletion or point mutations within the third intracellular loop domain (252)PETPPGRCCRCC(263). Wild-type and mutant hM(1) receptors were transiently expressed in Chinese hamster ovary cells, and the effects of each mutation on radioligand binding, agonist-mediated phosphoinositide hydrolysis, and agonist-induced internalization were determined. The mutant receptors exhibited a modest reduction in affinity for [(3)H]N-methylscopolamine (pK(D) = approximately 9.0) and a moderately increased binding capacity relative to the wild-type receptor. This moderate increase in binding capacity was associated with small increases in the maximal response and potency of carbachol for eliciting phosphoinositide hydrolysis through the mutant receptors (pEC(50) = approximately 5.5) relative to wild-type (pEC(50) = 5.35 +/- 0.05). In contrast, carbachol-induced internalization of mutant hM(1) receptors possessing either C259A/C260A or C262A/C263A or both double point mutations was significantly reduced compared to the wild-type hM(1) receptor. Of the hM(1) receptor mutants tested, those possessing a C262D/C263D double point mutation had the least carbachol-induced internalization. The desensitization and down-regulation of receptors possessing either Cys/Ala or Cys/Asp double point mutations were similar to those observed for the wild-type hM(1) receptor. Collectively, these observations suggest that Cys pairs Cys259/Cys260 and Cys262/Cys263 play an important role in the agonist-induced internalization of hM(1) receptors.
Collapse
Affiliation(s)
- Gregory W Sawyer
- Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University, 1111 W. 17th Street, Tulsa, OK 74107-1898, USA.
| | | | | |
Collapse
|
15
|
Internalization and desensitization of adenosine receptors. Purinergic Signal 2007; 4:21-37. [PMID: 18368531 PMCID: PMC2245999 DOI: 10.1007/s11302-007-9086-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 10/02/2007] [Indexed: 01/28/2023] Open
Abstract
Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A1, A2A, A2B and A3 receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body and involved in a variety of physiological processes and diseases, there is great interest in understanding how the different subtypes are regulated, as a basis for designing therapeutic drugs that either avoid or make use of this regulation. The major GPCR regulatory pathway involves phosphorylation of activated receptors by G protein-coupled receptor kinases (GRKs), a process that is followed by binding of arrestin proteins. This prevents receptors from activating downstream heterotrimeric G protein pathways, but at the same time allows activation of arrestin-dependent signalling pathways. Upon agonist treatment, adenosine receptor subtypes are differently regulated. For instance, the A1Rs are not (readily) phosphorylated and internalize slowly, showing a typical half-life of several hours, whereas the A2AR and A2BR undergo much faster downregulation, usually shorter than 1 h. The A3R is subject to even faster downregulation, often a matter of minutes. The fast desensitization of the A3R after agonist exposure may be therapeutically equivalent to antagonist occupancy of the receptor. This review describes the process of desensitization and internalization of the different adenosine subtypes in cell systems, tissues and in vivo studies. In addition, molecular mechanisms involved in adenosine receptor desensitization are discussed.
Collapse
|
16
|
Zaidi AK, Ali H. C3a receptors signaling in mast cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 598:126-40. [PMID: 17892209 DOI: 10.1007/978-0-387-71767-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Asifa K Zaidi
- University of Pennsylvania School of Dental Medicine, Department of Pathology, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
17
|
Laroche G, Giguère PM, Dupré E, Dupuis G, Parent JL. The N-terminal coiled-coil domain of the cytohesin/ARNO family of guanine nucleotide exchange factors interacts with Galphaq. Mol Cell Biochem 2007; 306:141-52. [PMID: 17846866 DOI: 10.1007/s11010-007-9564-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 07/12/2007] [Indexed: 01/06/2023]
Abstract
Cytohesins are guanine-nucleotide exchange factors (GEF) for the Arf family of GTPases. One member of the Arf family, ARF6, plays an active role in the intracellular trafficking of G protein-coupled receptors. We have previously reported that Galphaq signaling leads to the activation of ARF6, possibly through a direct interaction with cytohesin-2/ARNO. Here, we report that Galphaq can directly interact with cytohesin-1, another Arf-GEF of the ARNO/cytohesin family. Cytohesin-1 preferentially associated with a constitutively active mutant of Galphaq (Galphaq-Q209L) compared to wild-type Galphaq in HEK293 cells. Stimulation of TPbeta, a Galphaq-coupled receptor, to activate Galphaq resulted in the promotion of a protein complex between Galphaq and cytohesin-1. Confocal immunofluorescence microscopy revealed that wild-type Galphaq and cytohesin-1 co-localized in intracellular compartments and at or near the plasma membrane. In contrast, expression of Galphaq-Q209L induced a drastic increase in the localization of cytohesin-1 at the plasma membrane. Expression of a dominant-negative mutant of cytohesin-1 reduced by 40% the agonist-induced internalization of TPbeta, a process that we previously demonstrated to be dependent on Galphaq-mediated signaling and Arf6 activation. Using deletion mutants, we show that cytohesin-1 interacts with Galphaq through its N-terminal coiled-coil domain. Cytohesin-1 and cytohesin-2/ARNO mutants lacking the coiled-coil domain were unable to relay Galphaq-mediated activation of Arf6. This is the first report of an interaction between the coiled-coil domain of the cytohesin/ARNO family of Arf-GEFs and a member of the heterotrimeric G proteins.
Collapse
Affiliation(s)
- Geneviève Laroche
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, Centre de Recherche Clinique Etienne-Lebel, University of Sherbrooke, 3001, 12th Avenue North, J1H 5N4 Fleurimont, Sherbrooke, QC, Canada
| | | | | | | | | |
Collapse
|
18
|
Hanson SM, Cleghorn WM, Francis DJ, Vishnivetskiy SA, Raman D, Song X, Nair KS, Slepak VZ, Klug CS, Gurevich VV. Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. J Mol Biol 2007; 368:375-87. [PMID: 17359998 PMCID: PMC1904837 DOI: 10.1016/j.jmb.2007.02.053] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/03/2007] [Accepted: 02/12/2007] [Indexed: 12/29/2022]
Abstract
Arrestins regulate the activity and subcellular localization of G protein-coupled receptors and other signaling molecules. Here, we demonstrate that arrestins bind microtubules (MTs) in vitro and in vivo. The MT-binding site on arrestins overlaps significantly with the receptor-binding site, but the conformations of MT-bound and receptor-bound arrestin are different. Arrestins recruit ERK1/2 and the E3 ubiquitin ligase Mdm2 to MTs in cells, similar to the arrestin-dependent mobilization of these proteins to the receptor. Arrestin-mediated sequestration of ERK to MTs reduces the level of ERK activation. In contrast, recruitment of Mdm2 to MTs by arrestin channels Mdm2 activity toward cytoskeleton-associated proteins, increasing their ubiquitination dramatically. The mobilization of signaling molecules to MTs is a novel biological function of arrestin proteins.
Collapse
Affiliation(s)
- Susan M. Hanson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Whitney M. Cleghorn
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Derek J. Francis
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - Dayanidhi Raman
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Xiufeng Song
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - K. Saidas Nair
- Department of Molecular and Cellular Pharmacology and Neuroscience Program University of Miami, Miami, FL 33136
| | - Vladlen Z. Slepak
- Department of Molecular and Cellular Pharmacology and Neuroscience Program University of Miami, Miami, FL 33136
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
19
|
Abstract
To ensure that extracellular stimuli are translated into intracellular signals of appropriate magnitude and specificity, most signaling cascades are tightly regulated. One of the major mechanisms involved in the regulation of G protein-coupled receptors (GPCRs) involves their endocytic trafficking. GPCR endocytic trafficking entails the targeting of receptors to discrete endocytic sites at the plasma membrane, followed by receptor internalization and intracellular sorting. This regulates the level of cell surface receptors, the sorting of receptors to degradative or recycling pathways, and in some cases the specific signaling pathways. In this chapter we discuss the mechanisms that regulate receptor endocytic trafficking, emphasizing the role of GPCR kinases (GRKs) and arrestins in this process.
Collapse
Affiliation(s)
- Catherine A C Moore
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
20
|
Storez H, Scott MGH, Issafras H, Burtey A, Benmerah A, Muntaner O, Piolot T, Tramier M, Coppey-Moisan M, Bouvier M, Labbé-Jullié C, Marullo S. Homo- and hetero-oligomerization of beta-arrestins in living cells. J Biol Chem 2005; 280:40210-5. [PMID: 16199535 DOI: 10.1074/jbc.m508001200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arrestins are important proteins, which regulate the function of serpentine heptahelical receptors and contribute to multiple signaling pathways downstream of receptors. The ubiquitous beta-arrestins are believed to function exclusively as monomers, although self-association is assumed to control the activity of visual arrestin in the retina, where this isoform is particularly abundant. Here the oligomerization status of beta-arrestins was investigated using different approaches, including co-immunoprecipitation of epitope-tagged beta-arrestins and resonance energy transfer (BRET and FRET) in living cells. At steady state and at physiological concentrations, beta-arrestins constitutively form both homo- and hetero-oligomers. Co-expression of beta-arrestin2 and beta-arrestin1 prevented beta-arrestin1 accumulation into the nucleus, suggesting that hetero-oligomerization may have functional consequences. Our data clearly indicate that beta-arrestins can exist as homo- and hetero-oligomers in living cells and raise the hypothesis that the oligomeric state may regulate their subcellular distribution and functions.
Collapse
Affiliation(s)
- Hélène Storez
- Department of Cell Biology, Institut Cochin, Paris, F-75014 France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Laroche G, Rochdi MD, Laporte SA, Parent JL. Involvement of Actin in Agonist-induced Endocytosis of the G Protein-coupled Receptor for Thromboxane A2. J Biol Chem 2005; 280:23215-24. [PMID: 15845539 DOI: 10.1074/jbc.m414071200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of actin in endocytosis of G protein-coupled receptors is poorly defined. In the present study, we demonstrate that agents that depolymerize (latrunculin B and cytochalasin D) or stabilize (jasplakinolide) the actin cytoskeleton blocked agonist-induced endocytosis of the beta isoform of the thromboxane A(2) receptor (TPbeta) in HEK293 cells. This suggests that endocytosis of TPbeta requires active remodeling of the actin cytoskeleton. On the other hand, disruption of microtubules with colchicine did not affect endocytosis of the receptor. Expression of wild-type and mutant forms of the small GTPases RhoA and Cdc42 potently inhibited endocytosis of TPbeta, further indicating a role for the dynamic regulation of the actin cytoskeleton in this pathway. Agonist treatment of TPbeta in HEK293 cells resulted in the formation of actin stress fibers through Galpha(q/11) signaling. Because we previously showed that endocytosis of TPbeta is dependent on arrestins, we decided to explore the relation between arrestin-2 and -3 and actin in endocytosis of this receptor. Interestingly, we show that the inhibition of TPbeta endocytosis by the actin toxins in HEK293 cells was overcome by the overexpression of arrestin-3, but not of arrestin-2. These results indicate that the actin cytoskeleton is not essential in arrestin-3-mediated endocytosis of TPbeta. However, arrestin-3 could not promote endocytosis of the TPbetaY339A and TPbetaI343A carboxyl-terminal mutants when the actin cytoskeleton was disrupted. Our data provide new evidence that the actin cytoskeleton plays an essential role in TPbeta endocytosis. Furthermore, our work suggests the existence of actin-dependent and -independent arrestin-mediated pathways of endocytosis.
Collapse
MESH Headings
- Actins/chemistry
- Actins/metabolism
- Actins/physiology
- Antineoplastic Agents/pharmacology
- Arrestins/physiology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line
- Clathrin/metabolism
- Cloning, Molecular
- Colchicine/pharmacology
- Cytochalasin D/pharmacology
- Cytoskeleton/metabolism
- Depsipeptides/pharmacology
- Endocytosis
- Enzyme-Linked Immunosorbent Assay
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Humans
- Marine Toxins/pharmacology
- Microscopy, Fluorescence
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Phosphoproteins/physiology
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/chemistry
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Signal Transduction
- Thiazoles/pharmacology
- Thiazolidines
- Time Factors
- Transfection
- cdc42 GTP-Binding Protein/metabolism
- rhoA GTP-Binding Protein/chemistry
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Geneviève Laroche
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine and Centre de Recherche Clinique, Université de Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
22
|
Willets JM, Nahorski SR, Challiss RAJ. Roles of phosphorylation-dependent and -independent mechanisms in the regulation of M1 muscarinic acetylcholine receptors by G protein-coupled receptor kinase 2 in hippocampal neurons. J Biol Chem 2005; 280:18950-8. [PMID: 15743771 DOI: 10.1074/jbc.m412682200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
When co-expressed with the inositol 1,4,5-trisphosphate biosensor eGFP-PH(PLC delta), G protein-coupled receptor kinase 2 (GRK2) can suppress M1 muscarinic acetylcholine (mACh) receptor-mediated phospholipase C signaling in hippocampal neurons through a phosphorylation-independent mechanism, most likely involving the direct binding of the RGS homology domain of GRK2 to G alpha(q/11). To define the importance of this mechanism in comparison with classical, phosphorylation-dependent receptor regulation by GRKs, we have examined M1 mACh receptor signaling in hippocampal neurons following depletion of GRK2 and also in the presence of non-G alpha(q/11)-binding GRK2 mutants. Depletion of neuronal GRK2 using an antisense strategy almost completely inhibited M1 mACh receptor desensitization without enhancing acute agonist-stimulated phospholipase C activity. By stimulating neurons with a submaximal agonist concentration before (R1) and after (R2) a period of exposure to a maximal agonist concentration, an index (R2/R1) of agonist-induced desensitization of signaling could be obtained. Co-transfection of neurons with either a non-G alpha(q/11)-binding (D110A) GRK2 mutant or the catalytically inactive (D110A,K220R)GRK2 did not suppress acute M1 mACh receptor-stimulated inositol 1,4,5-trisphosphate production. However, using the desensitization (R2/R1) protocol, it could be shown that expression of (D110A)GRK2 enhanced, whereas (D110A,K220R)GRK2 inhibited, agonist-induced M1 mACh receptor desensitization. In Chinese hamster ovary cells, the loss of G alpha(q/11) binding did not affect the ability of the (D110A)GRK2 mutant to phosphorylate M1 mACh receptors, whereas expression of (D110A,K220R)GRK2 had no effect on receptor phosphorylation. These data indicate that in hippocampal neurons endogenous GRK2 is a key regulator of M1 mACh receptor signaling and that the regulatory process involves both phosphorylation-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Jonathon M Willets
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 9HN, United Kingdom.
| | | | | |
Collapse
|
23
|
Mishra SK, Keyel PA, Edeling MA, Dupin AL, Owen DJ, Traub LM. Functional dissection of an AP-2 beta2 appendage-binding sequence within the autosomal recessive hypercholesterolemia protein. J Biol Chem 2005; 280:19270-80. [PMID: 15728179 DOI: 10.1074/jbc.m501029200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The autosomal recessive hypercholesterolemia (ARH) protein plays a critical role in regulating plasma low density lipoprotein (LDL) levels. Inherited defects in ARH lead to a hypercholesterolemia that closely phenocopies that caused by a defective LDL receptor. The elevated serum LDL-cholesterol levels typical of ARH patients and the pronounced accumulation of the LDL receptor at the cell surface of hepatocytes in ARH-null mice argue that ARH operates by promoting the internalization of the LDL receptor within clathrin-coated vesicles. ARH contains an amino-terminal phosphotyrosine-binding domain that associates physically with the LDL receptor internalization sequence and with phosphoinositides. The carboxyl-terminal half of ARH contains a clathrin-binding sequence and a separate AP-2 adaptor binding region providing a plausible mechanism for how ARH can act as an endocytic adaptor or CLASP (clathrin-associated sorting protein) to couple LDL receptors with the clathrin machinery. Because the interaction with AP-2 is highly selective for the independently folded appendage domain of the beta2 subunit, we have characterized the ARH beta2 appendage-binding sequence in detail. Unlike the known alpha appendage-binding motifs, ARH requires an extensive sequence tract to bind the beta appendage with comparably high affinity. A minimal 16-residue sequence functions autonomously and depends upon ARH residues Asp253, Phe259, Leu262, and Arg266. We suggested that biased beta subunit engagement by ARH and the only other beta2 appendage selective adaptor, beta-arrestin, promotes efficient incorporation of this mechanistically distinct subset of CLASPs into clathrin-coated buds.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Alanine/chemistry
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Arginine/chemistry
- Arrestins/metabolism
- Calorimetry
- Carbocyanines/pharmacology
- Cholesterol, LDL/blood
- Clathrin/metabolism
- Cytosol/metabolism
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/physiology
- Endocytosis
- Fluorescent Dyes/pharmacology
- Genes, Recessive
- Glutathione Transferase/metabolism
- Green Fluorescent Proteins/chemistry
- Green Fluorescent Proteins/metabolism
- Humans
- Hypercholesterolemia/genetics
- Kinetics
- Lipoproteins, LDL/metabolism
- Mice
- Microtubule-Associated Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis
- Peptides/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, LDL
- Sequence Homology, Amino Acid
- Transcription Factor AP-2
- Transcription Factors/chemistry
- Transcription Factors/physiology
- Two-Hybrid System Techniques
- beta-Arrestins
Collapse
Affiliation(s)
- Sanjay K Mishra
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
24
|
Naik S, Billington CK, Pascual RM, Deshpande DA, Stefano FP, Kohout TA, Eckman DM, Benovic JL, Penn RB. Regulation of cysteinyl leukotriene type 1 receptor internalization and signaling. J Biol Chem 2004; 280:8722-32. [PMID: 15590629 DOI: 10.1074/jbc.m413014200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteinyl leukotrienes activate the cysteinyl leukotriene type 1 receptor (CysLT1R) to regulate numerous cell functions important in inflammatory processes and diseases such as asthma. Despite its physiologic importance, no studies to date have examined the regulation of CysLT1R signaling or trafficking. We have established model systems for analyzing recombinant human CysLT1R and found regulation of internalization and signaling of the CysLT1R to be unique among G protein-coupled receptors. Rapid and profound LTD4-stimulated internalization was observed for the wild type (WT) CysLT1R, whereas a C-terminal truncation mutant exhibited impaired internalization yet signaled robustly, suggesting a region within amino acids 310-321 as critical to internalization. Although overexpression of WT arrestins significantly increased WT CysLT1R internalization, expression of dominant-negative arrestins had minimal effects, and WT CysLT1R internalized in murine embryonic fibroblasts lacking both arrestin-2 and arrestin-3, suggesting that arrestins are not the primary physiologic regulators of CysLT1Rs. Instead, pharmacologic inhibition of protein kinase C (PKC) was shown to profoundly inhibit CysLT1R internalization while greatly increasing both phosphoinositide (PI) production and calcium mobilization stimulated by LTD4 yet had almost no effect on H1 histamine receptor internalization or signaling. Moreover, mutation of putative PKC phosphorylation sites within the CysLT1R C-tail (CysLT1RS(313-316)A) reduced receptor internalization, increased PI production and calcium mobilization by LTD4, and significantly attenuated the effects of PKC inhibition. These findings characterized the CysLT1R as the first G protein-coupled receptor identified to date in which PKC is the principal regulator of both rapid agonist-dependent internalization and rapid agonist-dependent desensitization.
Collapse
Affiliation(s)
- Snehal Naik
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Kimmel Cancer Institute, Jefferson Medical College, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liang W, Curran PK, Hoang Q, Moreland RT, Fishman PH. Differences in endosomal targeting of human (beta)1- and (beta)2-adrenergic receptors following clathrin-mediated endocytosis. J Cell Sci 2004; 117:723-34. [PMID: 14734649 DOI: 10.1242/jcs.00878] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beta(2)-adrenergic receptor (beta(2)AR) undergoes agonist-mediated endocytosis via clathrin-coated pits by a process dependent on both arrestins and dynamin. Internalization of some G protein-coupled receptors, however, is independent of arrestins and/or dynamin and through other membrane microdomains such as caveolae or lipid rafts. The human beta(1)AR is less susceptible to agonist-mediated internalization than the beta(2)-subtype, and its endocytic route, which is unknown, may be different. We have found that (i) co-expression of arrestin-2 or -3 enhanced the internalization of both subtypes whereas co-expression of dominant-negative mutants of arrestin-2 or dynamin impaired their internalization, as did inhibitors of clathrin-mediated endocytosis. (ii) Agonist stimulation increased the phosphorylation of beta(2)AR but not beta(1)AR. (iii) In response to agonist, each subtype redistributed from the cell surface to a distinct population of cytoplasmic vesicles; those containing beta(1)AR were smaller and closer to the plasma membrane whereas those containing beta(2)AR were larger and more perinuclear. (iv) When subcellular fractions from agonist-treated cells were separated by sucrose density gradient centrifugation, all of the internalized beta(2)AR appeared in the lighter endosomal-containing fractions whereas some of the internalized beta(1)AR remained in the denser plasma membrane-containing fractions. (v) Both subtypes recycled with similar kinetics back to the cell surface upon removal of agonist; however, recycling of beta(2)AR but not beta(1)AR was inhibited by monensin. Based on these results, we propose that the internalization of beta(1)AR is both arrestin- and dynamin-dependent and follows the same clathrin-mediated endocytic pathway as beta(2)AR. But during or after endocytosis, beta(1)AR and beta(2)AR are sorted into different endosomal compartments.
Collapse
Affiliation(s)
- Wei Liang
- Membrane Biochemistry Section, Laboratory of Molecular and Cellular Neurobiology, National Institute of Neurological Disorders and Stroke, The National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
26
|
Liang W, Austin S, Hoang Q, Fishman PH. Resistance of the human beta 1-adrenergic receptor to agonist-mediated down-regulation. Role of the C terminus in determining beta-subtype degradation. J Biol Chem 2003; 278:39773-81. [PMID: 12888573 DOI: 10.1074/jbc.m304482200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolonged agonist stimulation results in down-regulation of most G protein-coupled receptors. When we exposed baby hamster kidney cells stably expressing the human beta1-adrenergic receptor (beta 1AR) to agonist over a 24-h period, we instead observed an increase of approximately 30% in both beta 1AR binding activity and immune-detected receptors. In contrast, beta 2AR expressed in these cells exhibited a decrease of > or =50%. We determined that the basal turnover rates of the two subtypes were similar (t(1/2) approximately 7 h) and that agonist stimulation increased beta 2AR but not beta 1AR turnover. Blocking receptor trafficking to lysosomes with bafilomycin A1 had no effect on basal turnover of either subtype but blocked agonist-stimulated beta 2AR turnover. As beta 1AR mRNA levels increased in agonist-stimulated cells, beta 1AR up-regulation appeared to result from increased synthesis with no change in degradation. To explore the basis for the subtype differences, we expressed chimeras in which the C termini had been exchanged. Each chimera responded to persistent agonist stimulation based on the source of its C-tail; beta 1AR with a beta 2AR C-tail underwent down-regulation, and beta 2AR with a beta 1AR C-tail underwent up-regulation. The C-tails had a corresponding effect on agonist-stimulated receptor phosphorylation and internalization with the order being beta 2AR > beta 1AR with beta 2AR C-tail > beta 2AR with a beta 1AR C-tail > beta 1AR. As internalization may be a prerequisite for down-regulation, we addressed this possibility by co-expressing each subtype with arrestin-2. Although beta 1AR internalization was increased to that of beta 2AR, down-regulation still did not occur. Instead, beta 1AR accumulated inside the cells. We conclude that in unstimulated cells, both subtypes appear to be turned over by the same mechanism. Upon agonist stimulation, both subtypes are internalized, and beta 2AR but not beta 1AR undergoes lysosomal degradation, the fate of each subtype being regulated by determinants in its C-tail.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Cricetinae
- DNA, Complementary/genetics
- Down-Regulation/drug effects
- Humans
- Kinetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Adrenergic, beta-1/chemistry
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Wei Liang
- Membrane Biochemistry Section, Laboratory of Molecular and Cellular Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
27
|
Abstract
The purine nucleoside adenosine acts via four distinct adenosine receptor subtypes: the adenosine A(1), A(2A), A(2B), and A(3) receptor. They are all G protein-coupled receptors (GPCR) coupling to classical second messenger pathways such as modulation of cAMP production or the phospholipase C (PLC) pathway. In addition, they couple to mitogen-activated protein kinases (MAPK), which could give them a role in cell growth, survival, death and differentiation. Although each of the adenosine receptors can activate one or more of the MAPKs, the mechanisms appear to differ substantially, both between receptor subtypes in the same cell type and between the same receptor in different cell types.
Collapse
Affiliation(s)
- Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| | | |
Collapse
|
28
|
Marchese A, Chen C, Kim YM, Benovic JL. The ins and outs of G protein-coupled receptor trafficking. Trends Biochem Sci 2003; 28:369-76. [PMID: 12878004 DOI: 10.1016/s0968-0004(03)00134-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Adriano Marchese
- Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Multiple mechanisms regulate the signaling of the five members of the family of the guanine nucleotide binding protein (G protein)-coupled muscarinic acetylcholine (ACh) receptors (mAChRs). Following activation by classical or allosteric agonists, mAChRs can be phosphorylated by a variety of receptor kinases and second messenger-regulated kinases. The phosphorylated mAChR subtypes can interact with beta-arrestin and presumably other adaptor proteins as well. As a result, the various mAChR signaling pathways may be differentially altered, leading to short-term or long-term desensitization of a particular signaling pathway, receptor-mediated activation of the mitogen-activated protein kinase pathway downstream of mAChR phosphorylation, as well as long-term potentiation of mAChR-mediated phospholipase C stimulation. Agonist activation of mAChRs may also induce receptor internalization and down-regulation, which proceed in a highly regulated manner, depending on receptor subtype and cell type. In this review, our current understanding of the complex regulatory processes that underlie signaling of mAChR is summarized.
Collapse
Affiliation(s)
- Chris J van Koppen
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, D-45122, Essen, Germany.
| | | |
Collapse
|
30
|
Huttenrauch F, Nitzki A, Lin FT, Höning S, Oppermann M. Beta-arrestin binding to CC chemokine receptor 5 requires multiple C-terminal receptor phosphorylation sites and involves a conserved Asp-Arg-Tyr sequence motif. J Biol Chem 2002; 277:30769-77. [PMID: 12065593 DOI: 10.1074/jbc.m204033200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agonist binding to the CC chemokine receptor 5 (CCR5) induces the phosphorylation of four distinct serine residues that are located in the CCR5 C terminus. We established a series of clonal RBL-2H3 cell lines expressing CCR5 with alanine mutations of Ser(336), Ser(337), Ser(342), and Ser(349) in various combinations and explored the significance of phosphorylation sites for the ability of the receptor to interact with beta-arrestins and to undergo desensitization and internalization upon ligand binding. Receptor mutants that lack any two phosphorylation sites retained their ability to recruit endogenous beta-arrestins to the cell membrane and were normally sequestered, whereas alanine mutation of any three C-terminal serine residues abolished both beta-arrestin binding and rapid agonist-induced internalization. In contrast, RANTES (regulated on activation normal T cell expressed and secreted) stimulation of a S336A/S349A mutant triggered a sustained calcium response and enhanced granular enzyme release. This mutational analysis implies that CCR5 internalization largely depends on a beta-arrestin-mediated mechanism that requires the presence of any two phosphorylation sites, whereas receptor desensitization is independently regulated by the phosphorylation of distinct serine residues. Surface plasmon resonance analysis further demonstrated that purified beta-arrestin 1 binds to phosphorylated and nonphosphorylated C-tail peptides with similar affinities, suggesting that beta-arrestins use additional receptor sites to discriminate between nonactivated and activated receptors. Surface plasmon resonance analysis revealed beta-arrestin 1 binding to the second intracellular loop of CCR5, which required an intact Asp-Arg-Tyr triplet. These results suggest that a conserved sequence motif within the second intracellular loop of CCR5 that is known to be involved in G protein activation plays a significant role in beta-arrestin binding to CCR5.
Collapse
Affiliation(s)
- Friederike Huttenrauch
- Department of Immunology, University of Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|
31
|
Bhattacharya M, Anborgh PH, Babwah AV, Dale LB, Dobransky T, Benovic JL, Feldman RD, Verdi JM, Rylett RJ, Ferguson SSG. Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization. Nat Cell Biol 2002; 4:547-55. [PMID: 12105416 DOI: 10.1038/ncb821] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
beta-Arrestins are important in chemoattractant receptor-induced granule release, a process that may involve Ral-dependent regulation of the actin cytoskeleton. We have identified the Ral GDP dissociation stimulator (Ral-GDS) as a beta-arrestin-binding protein by yeast two-hybrid screening and co-immunoprecipitation from human polymorphonuclear neutrophilic leukocytes (PMNs). Under basal conditions, Ral-GDS is localized to the cytosol and remains inactive in a complex formed with beta-arrestins. In response to formyl-Met-Leu-Phe (fMLP) receptor stimulation, beta-arrestin Ral-GDS protein complexes dissociate and Ral-GDS translocates with beta-arrestin from the cytosol to the plasma membrane, resulting in the Ras-independent activation of the Ral effector pathway required for cytoskeletal rearrangement. The subsequent re-association of beta-arrestin Ral-GDS complexes is associated with the inactivation of Ral signalling. Thus, beta-arrestins regulate multiple steps in the Ral-dependent processes that result in chemoattractant-induced cytoskeletal reorganization.
Collapse
Affiliation(s)
- Moshmi Bhattacharya
- Cell Biology Research Group, The John P. Robarts Research Institute, The University of Western Ontario, 100 Perth Drive, London, Ontario, N6A 5K8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hunzicker-Dunn M, Gurevich VV, Casanova JE, Mukherjee S. ARF6: a newly appreciated player in G protein-coupled receptor desensitization. FEBS Lett 2002; 521:3-8. [PMID: 12067715 DOI: 10.1016/s0014-5793(02)02822-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The luteinizing hormone/choriogonadotropin hormone receptor (LH/CG R) signals to regulate ovulation, corpus luteum formation, and fetal survival during pregnancy. Agonist binding to the LH/CG R is poorly reversible, emphasizing the importance of a cellular mechanism to temper signaling by a potentially persistently active receptor. Like other G protein-coupled receptors (GPCRs), signaling by this receptor is modulated by its binding of an arrestin. We have identified ADP ribosylation factor 6 (ARF6) as a protein whose activation state is regulated by the LH/CG R and which functions to regulate the availability of plasma membrane-docked arrestin 2 to this receptor. We hypothesize that ARF6 might also serve GPCRs other than the LH/CG R to regulate the availability of arrestin 2 for receptor desensitization.
Collapse
Affiliation(s)
- Mary Hunzicker-Dunn
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
33
|
Mukherjee S, Gurevich VV, Preninger A, Hamm HE, Bader MF, Fazleabas AT, Birnbaumer L, Hunzicker-Dunn M. Aspartic acid 564 in the third cytoplasmic loop of the luteinizing hormone/choriogonadotropin receptor is crucial for phosphorylation-independent interaction with arrestin2. J Biol Chem 2002; 277:17916-17927. [PMID: 11867621 DOI: 10.1074/jbc.m110479200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arrestin2 binding to the active but unphosphorylated luteinizing hormone/choriogonadotropin receptor (LH/CG R) in ovarian follicles is triggered by activation of ADP-ribosylation factor 6 (ARF6) and leads to uncoupling of this receptor from cAMP signaling. We sought to determine how arrestin2 binds to LH/CG R, if binding is of high affinity, and if the receptor also binds arrestin3. Desensitization of intact LH/CG R was equally sensitive to ectopic constructs of arrestin2 that bind other G protein-coupled receptors (GPCRs) either in a phosphorylation-independent or -dependent manner. Intact LH/CG R was not desensitized by ectopic arrestin3 constructs. Surface plasmon resonance studies showed that arrestin2 bound a synthetic third intracellular (3i) LH/CG R loop peptide with picomolar affinity; arrestin3 bound with millimolar affinity. To determine whether Asp-564 in the 3i loop mimicked the phosphorylated residue of other GPCRs, human embryonic kidney (HEK) cells were transfected with wild-type (WT) and D564G LH/CG R. An agonist-stimulated ARF6-dependent arrestin2 undocking pathway to drive desensitization of WT receptor was recapitulated in HEK cell membranes, and ectopic arrestin2 promoted desensitization of WT LH/CG R. However, D564G LH/CG R in HEK cells was not desensitized, and synthetic 3i D564G peptide did not bind arrestin2. Synthetic 3i loop peptides containing D564E, D564V, or D564N also did not bind arrestin2. We conclude that the ARF6-mediated mechanism to release a pool of membrane-delimited arrestin to bind GPCRs may be a widespread mechanism to deliver arrestin to GPCRs for receptor desensitization. Unlike other GPCRs that additionally require receptor phosphorylation, LH/CG R activation is sufficient to expose a conformation in which Asp-564 in the 3i loop confers high affinity binding selectively to arrestin2.
Collapse
Affiliation(s)
- Sutapa Mukherjee
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Nonvisual arrestins (arr) modulate G protein-coupled receptor (GPCR) desensitization and internalization and bind to both clathrin (CL) and AP-2 components of the endocytic coated pit (CP). This raises the possibility that endocytosis of some GPCRs may be a consequence of arr-induced de novo CP formation. To directly test this hypothesis, we examined the behavior of green fluorescent protein (GFP)-arr3 in live cells expressing beta2-adrenergic receptors and fluorescent CL. After agonist stimulation, the diffuse GFP-arr3 signal rapidly became punctate and colocalized virtually completely with preexisting CP spots, demonstrating that activated complexes accumulate in previously formed CPs rather than nucleating new CP formation. After arr3 recruitment, CP appeared larger: electron microscopy analysis revealed an increase in both CP number and in the occurrence of clustered CPs. Mutant arr3 proteins with impaired binding to CL or AP-2 displayed reduced recruitment to CPs, but were still capable of inducing CP clustering. In contrast, though constitutively present in CPs, the COOH-terminal moiety of arr3, which contains CP binding sites but lacks receptor binding, did not induce CP clustering. Together, these results indicate that recruitment of functional arr3-GPCR complexes to CP is necessary to induce clustering. Latrunculin B or 16 degrees C blocked CP rearrangements without affecting arr3 recruitment to CP. These results and earlier studies suggest that discrete CP zones exist on cell surfaces, each capable of supporting adjacent CPs, and that the cortical actin membrane skeleton is intimately involved with both the maintenance of existing CPs and the generation of new structures.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Arrestins/genetics
- Arrestins/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- COS Cells
- Cell Line
- Chlorocebus aethiops
- Coated Pits, Cell-Membrane/metabolism
- Coated Pits, Cell-Membrane/ultrastructure
- Endocytosis/physiology
- GTP-Binding Proteins/metabolism
- Humans
- Image Processing, Computer-Assisted
- Isoproterenol/pharmacology
- Receptor, Muscarinic M1
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Muscarinic/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Thiazoles/pharmacology
- Thiazolidines
Collapse
Affiliation(s)
- Francesca Santini
- Kimmel Cancer Institute and the Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
35
|
Scott MGH, Benmerah A, Muntaner O, Marullo S. Recruitment of activated G protein-coupled receptors to pre-existing clathrin-coated pits in living cells. J Biol Chem 2002; 277:3552-9. [PMID: 11602587 DOI: 10.1074/jbc.m106586200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The process of clathrin-mediated endocytosis tightly regulates signaling of the superfamily of seven-transmembrane G protein-coupled receptors (GPCRs). A fundamental question in the cell biology of membrane receptor endocytosis is whether activated receptors can initiate the formation of clathrin-coated pits (CPs) or whether they are simply mobilized to pre-existing CPs. Here, using various approaches, including a dynamic assay to monitor the distribution of CPs and GPCR-beta-arrestin complexes in live HeLa cells, we demonstrate for the first time that activated GPCRs do not initiate the de novo formation of CPs but instead are targeted to pre-existing CPs.
Collapse
Affiliation(s)
- Mark G H Scott
- Department of Cell Biology, Institut Cochin de Génétique Moléculaire, Pavillon Gustave Roussy, 75679 Paris CEDEX 14, France
| | | | | | | |
Collapse
|
36
|
Gurevich EV, Benovic JL, Gurevich VV. Arrestin2 and arrestin3 are differentially expressed in the rat brain during postnatal development. Neuroscience 2002; 109:421-436. [PMID: 11823056 DOI: 10.1016/s0306-4522(01)00511-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Arrestins are adaptor proteins involved in homologous desensitization and trafficking of G protein-coupled receptors. Arrestins bind to activated phosphorylated receptors thus precluding further signal transduction. Two subtypes of non-visual arrestins, arrestin2 and arrestin3, have been cloned. Recently, specificity of various receptors to arrestins and differences in kinetics of receptor desensitization mediated by arrestins have been demonstrated. Both arrestins are expressed in the rat brain. However, quantitative assessment of their expression and detailed distribution are lacking. Here, we used quantitative ribonuclease protection assay and western blot to measure arrestin2 and arrestin3 mRNA and protein in the rat brain during postnatal development. In situ hybridization histochemistry was employed to study the detailed distribution of arrestin mRNAs in the adult and developing brain. Both arrestins were expressed from birth in all regions studied. Arrestin2 mRNA levels increased with development until the 14th postnatal day and then decreased, whereas arrestin2 protein levels continued to rise. Arrestin3 mRNA was maximal in neonates and then decreased, while arrestin3 protein changed little. In newborns and adults, the concentration of arrestin2 mRNA was two- to three-fold higher than that of arrestin3. In neonates, the excess of the arrestin2 protein over arrestin3 was commensurate with the excess of the arrestin2 mRNA (three-fold) but in the adult, the ratio was much higher (10-20-fold). Each arrestin demonstrated a unique distribution, although in many areas there was overlap suggesting co-localization. Both arrestins were highly expressed in the cortex and hippocampus. Arrestin2 was abundant in the thalamus, particularly in the anterior, intralaminar, and midline nuclei, while arrestin3 was abundant in the medial habenular. Arrestin3 was relatively abundant in most hypothalamic nuclei and extended amygdala. In the developing brain, arrestin3 was highly expressed in the subventricular zone, whereas arrestin2 was more abundant in differentiated areas. Our data demonstrate that arrestin2 is the major arrestin subtype in the rat brain, although arrestin3 is expressed in specific cell populations including postnatal proliferative zones. Because each arrestin appears to mediate receptor desensitization in a specific way, different kinetics of trafficking of the same receptor should be expected in different cells due to varying arrestin2/arrestin3 ratios. Thus, the response of receptors to specific drugs stimulating or blocking these receptors may depend on complement of arrestins in their target cells.
Collapse
Affiliation(s)
- E V Gurevich
- Sun Health Research Institute, Sun City, AZ 85351, USA.
| | | | | |
Collapse
|
37
|
Penn RB, Pascual RM, Kim YM, Mundell SJ, Krymskaya VP, Panettieri RA, Benovic JL. Arrestin specificity for G protein-coupled receptors in human airway smooth muscle. J Biol Chem 2001; 276:32648-56. [PMID: 11418617 DOI: 10.1074/jbc.m104143200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite a widely accepted role of arrestins as "uncouplers" of G protein-coupled receptor (GPCR) signaling, few studies have demonstrated the ability of arrestins to affect second messenger generation by endogenously expressed receptors in intact cells. In this study we demonstrate arrestin specificity for endogenous GPCRs in primary cultures of human airway smooth muscle (HASM). Expression of arrestin-green fluorescent protein (ARR2-GFP or ARR3-GFP) chimeras in HASM significantly attenuated isoproterenol (beta(2)-adrenergic receptor (beta(2)AR)-mediated)- and 5'-(N-ethylcarboxamido)adenosine (A2b adenosine receptor-mediated)-stimulated cAMP production, with fluorescent microscopy demonstrating agonist-promoted redistribution of cellular ARR2-GFP into a punctate formation. Conversely, prostaglandin E(2) (PGE(2))-mediated cAMP production was unaffected by arrestin-GFP, and PGE(2) had little effect on arrestin-GFP distribution. The pharmacological profile of various selective EP receptor ligands suggested a predominantly EP2 receptor population in HASM. Further analysis in COS-1 cells revealed that ARR2-GFP expression increased agonist-promoted internalization of wild type beta(2)AR and EP4 receptors, whereas EP2 receptors remained resistant to internalization. However, expression of an arrestin whose binding to GPCRs is largely independent of receptor phosphorylation (ARR2(R169E)-GFP) enabled substantial agonist-promoted EP2 receptor internalization, increased beta(2)AR internalization to a greater extent than did ARR2-GFP, yet promoted EP4 receptor internalization to the same degree as did ARR2-GFP. Signaling via endogenous EP4 receptors in CHO-K1 cells was attenuated by ARR2-GFP expression, whereas ARR2(R169E)-GFP expression in HASM inhibited EP2 receptor-mediated cAMP production. These findings demonstrate differential effects of arrestins in altering endogenous GPCR signaling in a physiologically relevant cell type and reveal a variable dependence on receptor phosphorylation in dictating arrestin-receptor interaction.
Collapse
MESH Headings
- Adenosine-5'-(N-ethylcarboxamide)/pharmacology
- Animals
- Arrestins/genetics
- Arrestins/physiology
- CHO Cells
- COS Cells
- Cell Line
- Cells, Cultured
- Chlorocebus aethiops
- Cricetinae
- Cyclic AMP/metabolism
- Dinoprostone/pharmacology
- GTP-Binding Proteins/metabolism
- Genes, Reporter
- Green Fluorescent Proteins
- Humans
- Isoproterenol/pharmacology
- Kinetics
- Luminescent Proteins/genetics
- Muscle, Smooth/cytology
- Muscle, Smooth/physiology
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Phosphorylation
- Protein Transport
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/physiology
- Receptors, Prostaglandin E/drug effects
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/physiology
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/physiology
- Trachea/cytology
- Trachea/physiology
- Transfection
Collapse
Affiliation(s)
- R B Penn
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Shui Z, Khan IA, Haga T, Benovic JL, Boyett MR. Control of the cardiac muscarinic K+ channel by beta-arrestin 2. J Biol Chem 2001; 276:11691-7. [PMID: 11152693 DOI: 10.1074/jbc.m011007200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of the cardiac muscarinic K(+) current (i(K,ACh)) by beta-arrestin 2 has been studied. In Chinese hamster ovary cells transfected with m2 muscarinic receptor, muscarinic K(+) channel, receptor kinase (GRK2), and beta-arrestin 2, desensitization of i(K,ACh) during a 3-min application of 10 micrometer ACh was significantly increased as compared with that in cells transfected with receptor, channel, and GRK2 only (fade in current increased from 45 to 78%). The effect of beta-arrestin 2 was lost if cells were not co-transfected with GRK2. Resensitization (recovery from desensitization) of i(K,ACh) in cells transfected with beta-arrestin 2 was significantly slowed (time constant increased from 34 to 232 s). Activation and deactivation of i(K,ACh) on application and wash-off of ACh in cells transfected with beta-arrestin 2 were significantly slowed from 0.9 to 3.1 s (time to half peak i(K,ACh)) and from 6.2 to 13.8 s (time to half-deactivation), respectively. In cells transfected with a constitutively active beta-arrestin 2 mutant, desensitization occurred in the absence of agonist (peak current significantly decreased from 0.4 +/- 0.05 to 0.1 +/- 0.01 nA). We conclude that beta-arrestin 2 has the potential to play a major role in desensitization and other aspects of the functioning of the muscarinic K(+) channel.
Collapse
Affiliation(s)
- Z Shui
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|