1
|
Pawluczyk IZA, Bhachu JS, Brown JR, Lacey M, Mbadugha C, Straatman K, Wimbury D, Selvaskandan H, Barratt J. B cell-derived exosomal miR-483-5p and its potential role in promoting kidney function loss in IgA nephropathy. Kidney Int 2025:S0085-2538(25)00324-2. [PMID: 40268167 DOI: 10.1016/j.kint.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION While mesangial IgA deposition is the pathognomonic feature of IgA nephropathy (IgAN), the extent of mesangial IgA accumulation does not correlate with the future risk of kidney failure. This has led to the search for other serum factors that may influence clinical outcome. The emergence of microRNAs (miRs) as negative regulators of gene expression and the increasingly recognized role of extracellular miRs in intercellular communication has prompted study of the influence of miRs on inflammatory and scarring pathways in the kidneys. METHODS Here, next generation sequencing and subsequent qPCR validation identified a significant increase in the serum levels of miR-483-5p, largely packaged within exosomes. RESULTS Levels of miR-483-5p in serum exosomes were greatest in those IgAN patients with higher levels of proteinuria who subsequently developed kidney failure. Exosomal miR-483-5p content significantly correlated with numerous soluble isoforms of the tumor necrosis factor (TNF) receptor super family suggesting lymphocytes as a source of the miR-enriched exosomes. In PBMC miR-483-5p expression was almost exclusively seen in CD19+ lymphocytes. Activation of a human IgA secreting B-cell line with soluble TNFR1 induced miR-483-5p synthesis and enrichment within exosomes. Exposure to miR-483-5p-enriched B cell exosomes resulted in a proinflammatory phenotypic change in cultured human collecting duct epithelial cells, likely mediated through suppression of the transcription factor SOCS3. miR-483-5p-enriched exosomes were also present in the urine of patients with IgAN. CONCLUSIONS Interaction of B lymphocyte-derived miR-enriched exosomes with tubular epithelial cells may provide an explanation for the progressive tubulointerstitial scarring and loss of kidney function seen in IgAN.
Collapse
Affiliation(s)
- Izabella Z A Pawluczyk
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK.
| | - Jasraj S Bhachu
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jeremy R Brown
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Michael Lacey
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Chidimma Mbadugha
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Kees Straatman
- Advanced Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - David Wimbury
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Haresh Selvaskandan
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
2
|
Yu HJ, Moon MH. Direct lipid analysis of exosomes in serum by online miniaturized asymmetrical flow field-flow fractionation and electrospray ionization-mass spectrometry: Application to extrahepatic cholangiocarcinoma. J Chromatogr A 2025; 1746:465778. [PMID: 39970688 DOI: 10.1016/j.chroma.2025.465778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Exosomes are submicron-sized extracellular vesicles involved in immune regulation, tumor metastasis, and cellular communication. Their lipid composition, distinct from parental cells, plays a crucial role in diseases like cancer. However, lipidomic analysis of exosomes, particularly in complex samples like blood, requires advanced techniques. This study optimizes miniaturized flow field-flow fractionation (mFlFFF) coupled with electrospray ionization mass spectrometry (ESI-MS) for direct lipidomic analysis of exosomes in serum. The mFlFFF technique resolves exosomes for size-based lipid analysis without prior extraction. Lipidomic profiling of serum exosomes from patients with extrahepatic cholangiocarcinoma (eCCA) identified over 1000 lipid species, with 64 showing significant changes compared to healthy controls. Target lipids were analyzed by mFlFFF-ESI-MS, revealing 35 species that distinguish eCCA patients from controls, suggesting their potential as biomarkers. Elevated levels of lysophosphatidylcholine, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol (PI) were observed in the eCCA group, indicating lipid alterations linked to cancer progression and inflammation. Notably, PI 38:4, involved in the release of arachidonic acid, highlights its role in inflammatory processes associated with cancer. This study demonstrates the potential of mFlFFF-ESI-MS for lipidomic analysis of exosomes and offers a non-invasive approach for cancer diagnosis, with future implications for therapeutic targeting of lipid pathways in cholangiocarcinoma.
Collapse
Affiliation(s)
- Hye Ju Yu
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
3
|
Alptekin A, Khan MB, Parvin M, Chowdhury H, Kashif S, Selina FA, Bushra A, Kelleher J, Ghosh S, Williams D, Blumling E, Ara R, Bosomtwi A, Frank JA, Dhandapani KM, Arbab AS. Effects of low-intensity pulsed focal ultrasound-mediated delivery of endothelial progenitor-derived exosomes in tMCAo stroke. Front Neurol 2025; 16:1543133. [PMID: 40271117 PMCID: PMC12014438 DOI: 10.3389/fneur.2025.1543133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Exosomes from different sources have been used for therapeutic purposes to target stroke and other disorders. However, exosomes from endothelial progenitor cells (EPCs) have not been tested in any stroke model, and in vivo bio-distribution study is lacking. Targeted delivery of IV-administered exosomes has been a significant challenge. Delivery of exosomes to the brain is a daunting task, and a blood-brain barrier (BBB)-penetrable peptide is being considered. However, the next step in practical treatment will be delivering naïve (unmodified) exosomes to the stroke site without destroying host tissues or disrupting BBB, or the membranes of the delivery vehicles. Low-intensity-pulsed focused ultrasound (LIPFUS) is approved for clinical use in the musculoskeletal, transcranial brain, and physiotherapy clinics. The objectives of the proposed studies were to determine whether LIPFUS-mediated increased delivery of EPC-derived exosomes enhances stroke recovery and functional improvement in mice with transient middle cerebral artery occlusion (tMCAo) stroke. Methods To enhance exosome delivery to the stroke area, we utilized LIPFUS. We evaluated stroke volume using MRI at different time points and conducted behavioral studies parallel to MRI to determine recovery. Ultimately, we studied brain tissue using immunohistochemistry to assess the extent of stroke and tissue regeneration. Results and Discussion In vivo, imaging showed a higher accumulation of EPC exosomes following LIPFUS without any damage to the underlying brain tissues, increased leakage of albumin, or accumulation of CD45+ cells. Groups of mice (14-16 months old) were treated with Vehicle (PBS), LIPFUS only, EPC-exosomes only, and LIPFUS+EPC-exosomes. LIPFUS + EPC exosomes groups showed a significantly decreased stroke volume on day 7, decreased FluoroJade+ cells, and significantly higher numbers of neovascularization in and around the stroke areas compared to that of other groups.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mohammad B. Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mahrima Parvin
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Hasanul Chowdhury
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sawaiz Kashif
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Fowzia A. Selina
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Anika Bushra
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Justin Kelleher
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Santu Ghosh
- Department of Biostatistics, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Dylan Williams
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Emily Blumling
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Roxan Ara
- Small Animal Imaging Core, GCC, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Asamoah Bosomtwi
- Small Animal Imaging Core, GCC, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Joseph A. Frank
- Laboratory of Diagnostic Radiology Research, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Krishnan M. Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ali S. Arbab
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Saadeldin IM, Pavani KC, Gnagnarelli J, Ehab S, Assiri AM, Van Soom A. Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead. Stem Cell Rev Rep 2025; 21:698-708. [PMID: 39841368 DOI: 10.1007/s12015-025-10844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity. Studies reveal that EVs can traverse the zona pellucida, transferring molecular signals that enhance blastocyst formation and support embryo-maternal crosstalk. EVs have emerged as non-invasive biomarkers for embryo quality, with their cargo providing insights into genetic integrity and developmental competence. Advances in isolation and characterization techniques have identified specific microRNA (miRNAs) and transcription factors within EVs, offering potential for use in preimplantation genetic screening (PGS) and sex determination. Moreover, EV-mediated interactions with the maternal environment are critical for successful implantation, as they modulate gene expression and immune responses in endometrial and oviductal cells. Despite these advancements, challenges persist, including the standardization of EV isolation methods and the low yield of EVs DNA from spent culture media. Future research should aim to refine analytical techniques, explore EV-miRNA profiling, and investigate the mechanisms underlying EV-mediated signaling. By addressing these gaps, EVs could revolutionize embryo selection and reproductive technologies, offering new strategies to improve outcomes in assisted reproduction and animal breeding.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia.
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia.
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, Gent, 9000, Belgium
| | - Juri Gnagnarelli
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium
| | - Seif Ehab
- Zoology Graduate Program, Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Abdullah M Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium
| |
Collapse
|
5
|
Dlamini NH, Bridi A, da Silveira JC, Feugang JM. Unlocking Gamete Quality Through Extracellular Vesicles: Emerging Perspectives. BIOLOGY 2025; 14:198. [PMID: 40001966 PMCID: PMC11851576 DOI: 10.3390/biology14020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Extracellular vesicles (EVs) are gaining recognition for their essential role in enhancing gamete quality and improving outcomes in assisted reproductive technologies. These nanosized particles, released by cells, carry proteins, lipids, and RNAs, facilitating critical cell communication and offering the potential to enhance gamete maturation and improve fertilization rates. Most research on males has concentrated on seminal plasma, a complex fluid produced by the testes and accessory glands vital in modulating sperm fertility potential. The components of seminal plasma significantly affect sperm functionality, embryo survival, and placental development, making this a prominent area of interest in reproductive biology. The EVs within seminal plasma contribute to maintaining sperm membrane stability, enhancing motility, and promoting capacitation, which may influence the female reproductive tract following mating. In females, EVs have been identified in both the follicular and uterine environments, where effective embryo-maternal communication is crucial. The oviduct epithelium supports gamete transport and early embryonic development, with EVs found in oviductal fluid playing a key role in reproductive processes. These EVs support the embryo's growth in the nutrient-rich uterine environment. These important studies underscore the significant role of EVs in transporting essential molecular compounds to gametes and embryos, leading to an enhanced understanding and potential manipulation of reproductive processes. This review aims to summarize the current research on the benefits of EVs in gamete manipulation and embryo development, highlighting their promising implications for reproductive health.
Collapse
Affiliation(s)
- Notsile H. Dlamini
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA;
| | - Alessandra Bridi
- University of the West of Santa Catarina, Xanxerê 89820-000, SC, Brazil;
| | | | - Jean M. Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA;
| |
Collapse
|
6
|
Lica JJ, Jakóbkiewicz-Banecka J, Hellmann A. In Vitro models of leukemia development: the role of very small leukemic stem-like cells in the cellular transformation cascade. Front Cell Dev Biol 2025; 12:1463807. [PMID: 39830209 PMCID: PMC11740207 DOI: 10.3389/fcell.2024.1463807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025] Open
Abstract
Recent experimental findings indicate that cancer stem cells originate from transformed very small embryonic-like stem cells. This finding represents an essential advancement in uncovering the processes that drive the onset and progression of cancer. In continuously growing cell lines, for the first time, our team's follow-up research on leukemia, lung cancer, and healthy embryonic kidney cells revealed stages that resembles very small precursor stem cells. This review explores the origin of leukemic stem-like cells from very small leukemic stem-like cells establish from transformed very small embryonic-like stem cells. We explore theoretical model of acute myeloid leukemia initiation and progresses through various stages, as well basing the HL60 cell line, present its hierarchical stage development in vitro, highlighting the role of these very small precursor primitive stages. We also discuss the potential implications of further research into these unique cellular stages for advancing leukemia and cancer treatment and prevention.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Department Health Science; Powiśle University, Gdańsk, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
7
|
Soni S, Kori SK, Nema P, Iyer AK, Soni V, Kashaw SK. Cell-penetrating Peptides as Keys to Endosomal Escape and Intracellular Trafficking in Nanomedicine Delivery. Curr Med Chem 2025; 32:1288-1312. [PMID: 38362688 DOI: 10.2174/0109298673278936240107121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024]
Abstract
This review article discusses the challenges of delivering cargoes to the cytoplasm, for example, proteins, peptides, and nucleic acids, and the mechanisms involved in endosomal escape. Endocytosis, endosomal maturation, and exocytosis pose significant barriers to effective cytoplasmic delivery. The article explores various endosomal escape mechanisms, such as the proton sponge effect, osmotic lysis, membrane fusion, pore formation, membrane destabilization/ disruption, and vesicle budding and collapse. Additionally, it discusses the role of lysosomes, glycocalyx, and molecular crowding in the cytoplasmic delivery process. Despite the recent advances in nonviral delivery systems, there is still a need to improve cytoplasmic delivery. Strategies such as fusogenic peptides, endosomolytic polymers, and cell-penetrating peptides have shown promise in improving endosomal escape and cytoplasmic delivery. More research is needed to refine these strategies and make them safer and more effective. In conclusion, the article highlights the challenges associated with cytoplasmic delivery and the importance of understanding the mechanisms involved in endosomal escape. A better understanding of these processes could result in the creation of greater effectiveness and safe delivery systems for various cargoes, including proteins, peptides, and nucleic acids.
Collapse
Affiliation(s)
- Sakshi Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam K Kori
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Priyanshu Nema
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Arun K Iyer
- Use-inspired Biomaterials and Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
8
|
Tripathi S, Sharma Y, Kumar D. Biological Cargo: Exosomes and their Role in Cancer Progression and Metastasis. Curr Top Med Chem 2025; 25:263-285. [PMID: 38984577 DOI: 10.2174/0115680266304636240626055711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/11/2024]
Abstract
Cancer cells are among the many types of cells that release exosomes, which are nanovesicles. Because of their many potential applications, exosomes have recently garnered much attention from cancer researchers. The bioactive substances that exosomes release as cargo have been the subject of several investigations. The substances in question may operate as biomarkers for diagnosis or affect apoptosis, the immune system, the development and spread of cancer, and other processes. Others have begun to look at exosomes in experimental therapeutic trials because they believe they may be useful in the treatment of cancer. This review started with a short description of exosome biogenesis and key features. Next, the potential of tumor-derived exosomes and oncosomes to influence the immune system throughout the development of cancer, as well as alter tumor microenvironments (TMEs) and pre-metastatic niche creation, was investigated. Finally, there was talk of exosomes' possible use in cancer treatment. Furthermore, there is emerging consensus about the potential application of exosomes to be biological reprogrammers of cancer cells, either as carriers of naturally occurring chemicals, including anticancer medications, or as carriers of anticancer vaccines for immunotherapy as well as boron neutron capture therapy (BNCT). We briefly review the key ideas and logic behind this intriguing therapy recommendation.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| |
Collapse
|
9
|
Cuello AC, Do Carmo S. The dependence of basal forebrain cholinergic neurons on NGF: The case in Alzheimer pathology. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:95-122. [PMID: 40340070 DOI: 10.1016/b978-0-443-19088-9.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
This chapter discusses the dependency of basal forebrain cholinergic neurons (BFCNs) on endogenous nerve growth factor (NGF) for the structural and physiologic maintenance of the neuronal cell somata, axonal projections, and terminal synapses. It covers the discovery of NGF and the occurrence of a CNS neurotrophin family and their cognate receptors and their signaling mechanisms. It concludes with a description of the NGF metabolic pathway and its dysregulation in Alzheimer disease (AD) and Down syndrome pathology, explaining the progressive atrophy of BFCNs, which starts at preclinical stages and is reflected in body fluid biomarkers.
Collapse
Affiliation(s)
- A Claudio Cuello
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Pharmacology, Oxford University, Oxford, United Kingdom.
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Ono K. Signal Peptides and Their Fragments in Post-Translation: Novel Insights of Signal Peptides. Int J Mol Sci 2024; 25:13534. [PMID: 39769297 PMCID: PMC11678238 DOI: 10.3390/ijms252413534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Signal peptides (SPs), peptide sequences located at the N-terminus of newly synthesized proteins, are primarily known for their role in targeting proteins to the endoplasmic reticulum (ER). It has traditionally been assumed that cleaved SPs are rapidly degraded and digested near the ER. However, recent evidence has demonstrated that cleaved SP fragments can be detected in extracellular fluids such as blood flow, where they exhibit bioactivity. In addition, SP fragments are delivered to extracellular fluids via extracellular vesicles such as exosomes and microvesicles, which are important mediators of intercellular communication. These findings suggest that SPs and their fragments may have physiological roles beyond their classical function. This review aims to provide a comprehensive overview of these novel roles and offer new insights into the potential functions of SPs and their fragments in post-translational regulation and intercellular communication.
Collapse
Affiliation(s)
- Kenji Ono
- Department of Neurotoxicology, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya 467-8601, Japan; ; Tel.: +81-52-853-8992; Fax: +81-52-853-8996
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan
| |
Collapse
|
11
|
Liu Z, Pang B, Wang Y, Zheng J, Li Y, Jiang J. Advances of New Extracellular Vesicle Isolation and Detection Technologies in Cancer Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405872. [PMID: 39676429 DOI: 10.1002/smll.202405872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Cancer is a global health issue threatening people's lives. Currently, cancer detection methods still have a lot of room for improvement in both efficiency and accuracy. The development and application of new technologies are urgently required for early cancer diagnosis and prognosis. Extracellular vesicles (EVs) are a type of phospholipid bilayer vesicle secreted by cells and play an important role in cancer development and metastasis. These small vesicles participate in cancer information transmission, antigen presentation, angiogenesis, immune response, tumor invasion, and mediate signaling pathways in the tumor microenvironment. Liquid biopsy of EV cargo contents is a fast-developing research area, holding promise for early cancer diagnosis and monitoring cancer progression in real-time. However, current EV detection technologies for clinical translation are still facing many challenges. Recent advancements in developing techniques for EV isolation and detection have made significant progress and are paving the way toward clinical application. Here, the advantages and limitations of traditional EV detection and isolation technologies in cancer diagnosis and prognosis are reviewed. The review also focuses on emerging EV detection and isolation technologies in cancer, discusses the challenges faced by current methods, and explores the perspective of new EV detection techniques for future cancer diagnosis.
Collapse
Affiliation(s)
- Zhihan Liu
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Bairen Pang
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, 315010, China
| | - Yuhui Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese, Chinese Academy of Sciences, Ningbo, 315000, China
| | - Jianping Zheng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese, Chinese Academy of Sciences, Ningbo, 315000, China
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Junhui Jiang
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
12
|
Schachter I. Lipid demixing reduces energy barriers for high-curvature vesicle budding. Biophys J 2024:S0006-3495(24)04073-6. [PMID: 39673133 DOI: 10.1016/j.bpj.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024] Open
Abstract
Under standard physiological conditions, budding relies on asymmetries, including differences in leaflet composition, area, and osmotic conditions, and involves large curvature changes in nanoscale lipid vesicles. So far, the combined impact of asymmetry and high curvatures on budding has remained unknown. Here, using the continuum elastic theory, the budding pathway is detailed under realistic conditions. The model enables a quantitative description of the budding process and the budded state of both ideally and nonideally mixed lipid nanoscale vesicles. It shows that budding is less favored in smaller vesicles but that lipid demixing can significantly reduce its energy barrier, and yet high compositional deviations of more than 7% between the bud and vesicle only occur with phase separation on the bud.
Collapse
Affiliation(s)
- Itay Schachter
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Chemistry, The Fritz Haber Research Center, The Harvey M. Kruger Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
13
|
Najdaghi S, Davani DN, Fouladseresht H, Ebrahimi N, Sullman MJM, Moradi M, Eskandari N. The Role of Extracellular Vesicles and Microparticles in Central Nervous System Disorders: Mechanisms, Biomarkers, and Therapeutic Potential. Cell Mol Neurobiol 2024; 44:82. [PMID: 39625540 PMCID: PMC11614997 DOI: 10.1007/s10571-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Microscopic, membranous vesicles known as extracellular vesicles (EVs) have been proposed to play a role in the mechanisms underlying central nervous system (CNS) diseases. EVs are secreted by a variety of cells, including myeloid, endothelial, microglial, oligodendroglial, and mesenchymal stem cells (MSCs). Body fluids such as plasma, urine, and cerebrospinal fluid (CSF) contain microparticles (MPs). The detection of MPs in CSF may indicate genetic or environmental susceptibility to conditions such as schizophrenia, schizoaffective disorder, and bipolar disorder. MPs of different origins can exhibit changes in specific biomarkers at various stages of the disease, aiding in the diagnosis and monitoring of neurological conditions. However, understanding the role and clinical applications of MPs is complicated by challenges such as their isolation and dual roles within the CNS. In this review, we discuss the history, characteristics, and roles of MPs in CNS diseases. We also provide practical insights for future research and highlight the challenges that obscure the therapeutic potential of MPs.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Ebrahimi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Social Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Marjan Moradi
- Departement of Genetics, School of Science, Shahrekord University, Shahrakord, Iran
| | - Nahid Eskandari
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Fukutomi K, Fujimoto E, Shimokawatoko M, Takano E, Sunayama H, Takeuchi T, Tawa K. Single-Extracellular-Vesicle Detection with a Plasmonic Chip and Enhanced Fluorescence Microscopy. ACS OMEGA 2024; 9:44396-44406. [PMID: 39524643 PMCID: PMC11541535 DOI: 10.1021/acsomega.4c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Endocytosis-derived extracellular vesicles (EVs), which can be as small as 100 nm, are useful for disease prediction. However, very small EVs are below the optical diffraction limit and are difficult to visualize with conventional fluorescence microscopy. In this study, single EVs captured on a plasmonic chip, where fluorescently labeled antibodies were bound over the EV surface, were detected as bright spots using plasmon-field enhanced fluorescence without any pretreatment of isolating labeled EVs, followed by analyzing the full width at half-maximum and the fluorescence peak value for each enhanced fluorescence bright spot. Bright spots smaller than the threshold determined by the observation of the fluorescent nanospheres were attributed to single EVs. The number of single EVs was quantitatively evaluated against the concentration of EV solution injected in the 1.4 pM-95 fM range. Furthermore, single EVs were detected by labeling two different membrane proteins. A molecularly imprinted polymer was applied to a capture interface on a plasmonic chip, and it is found that nonspecific adsorption of aggregates was suppressed. To accurately distinguish single EVs from aggregates of labeled antibodies, the fluorescence microscopy with transmitted light was superior to the epifluorescence method. Finally, single EVs were successfully detected with multiple targets at multiple wavelengths by using different fluorescently labeled antibodies.
Collapse
Affiliation(s)
- Kazuma Fukutomi
- Graduate
School of Science and Technology, Kwansei
Gakuin University, 1
GakuenUegahara, Sanda, Hyogo 669-1330, Japan
| | - Eri Fujimoto
- Graduate
School of Science and Technology, Kwansei
Gakuin University, 1
GakuenUegahara, Sanda, Hyogo 669-1330, Japan
| | - Masaya Shimokawatoko
- Graduate
School of Science and Technology, Kwansei
Gakuin University, 1
GakuenUegahara, Sanda, Hyogo 669-1330, Japan
| | - Eri Takano
- Graduate
School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Hirobumi Sunayama
- Graduate
School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Toshifumi Takeuchi
- Innovation
Commercialization Division, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Keiko Tawa
- Graduate
School of Science and Technology, Kwansei
Gakuin University, 1
GakuenUegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
15
|
Xia EJ, Zou S, Zhao X, Liu W, Zhang Y, Zhao IS. Extracellular vesicles as therapeutic tools in regenerative dentistry. Stem Cell Res Ther 2024; 15:365. [PMID: 39402576 PMCID: PMC11476107 DOI: 10.1186/s13287-024-03936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Dental and maxillofacial diseases are always accompanied by complicated hard and soft tissue defects, involving bone, teeth, blood vessels and nerves, which are difficult to repair and severely affect the life quality of patients. Recently, extracellular vesicles (EVs) secreted by all types of cells and extracted from body fluids have gained more attention as potential solutions for tissue regeneration due to their special physiological characteristics and intrinsic signaling molecules. Compared to stem cells, EVs present lower immunogenicity and tumorigenicity, cause fewer ethical problems, and have higher stability. Thus, EV therapy may have a broad clinical application in regenerative dentistry. Herein, we reviewed the currently available literature regarding the functional roles of EVs in oral and maxillofacial tissue regeneration, including in maxilla and mandible bone, periodontal tissues, temporomandibular joint cartilage, dental hard tissues, peripheral nerves and soft tissues. We also summarized the underlying mechanisms of actions of EVs and their delivery strategies for dental tissue regeneration. This review would provide helpful guidelines and valuable insights into the emerging potential of EVs in future research and clinical applications in regenerative dentistry.
Collapse
Affiliation(s)
- Evelyn Jingwen Xia
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China
| | - Shasha Zou
- Longgang Center for Chronic Disease Control, Shenzhen, 518172, China
| | - Xiu Zhao
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, 518015, China
| | - Wei Liu
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, 518015, China
| | - Yang Zhang
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China.
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518015, China.
| | - Irene Shuping Zhao
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China.
| |
Collapse
|
16
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
17
|
Sojoudi K, Azizi H, Skutella T. A review of the potential of induced pluripotent stem cell-derived exosome as a novel treatment for male infertility. Biotechnol Genet Eng Rev 2024; 40:1353-1378. [PMID: 36951621 DOI: 10.1080/02648725.2023.2193772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Exosomes are a subset of Extracellular vesicles (EVs) released by most cells in the body and can play a significant role in the intercellular connection. Researchers today claim that exosomes secreted by induced pluripotent stem cells (iPSCs) alone can play the same role as direct cell transplantation and, unlike iPSCs, do not lead to tumorigenesis. As a result, iPSC-derived exosomes (iPSC-Exos) have many applications in cell-free treatments and therapeutic effects on various diseases. Male infertility due to a defect or deficiency of spermatogonia to maintain spermatogenesis is one of the diseases that iPSC-Exos seems to be a new way to cure. However, the studies on the effect of iPSC-Exos on male infertility are very limited. In this review, we intend to provide a broader perspective on understanding the mechanisms of iPSC-Exos on spermatogenesis by collecting and reviewing some of the research conducted in this field.
Collapse
Affiliation(s)
- Kiana Sojoudi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Aparicio P, Navarrete‐Villanueva D, Gómez‐Cabello A, López‐Royo T, Santamaría E, Fernández‐Irigoyen J, Ausín K, Arruebo M, Sebastian V, Vicente‐Rodríguez G, Osta R, Manzano R. Proteomic profiling of human plasma extracellular vesicles identifies PF4 and C1R as novel biomarker in sarcopenia. J Cachexia Sarcopenia Muscle 2024; 15:1883-1897. [PMID: 39009419 PMCID: PMC11446689 DOI: 10.1002/jcsm.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Sarcopenia, the gradual and generalized loss of muscle mass and function with ageing, is one of the major health problems in older adults, given its high prevalence and substantial socioeconomic implications. Despite the extensive efforts to reach consensus on definition and diagnostic tests and cut-offs for sarcopenia, there is an urgent and unmet need for non-invasive, specific and sensitive biomarkers for the disease. Extracellular vesicles (EVs) are present in different biofluids including plasma, whose cargo reflects cellular physiology. This work analysed EV proteome in sarcopenia and robust patients in the search for differentially contained proteins that can be used to diagnose the disease. METHODS Plasma small EVs (sEVs) from a total of 29 robust controls (aged 73.4 ± 5.6 years; 11 men and 18 women) and 49 sarcopenic patients (aged 82.3 ± 5.4 years; 15 men and 34 women) aged 65 years and older were isolated and their cargo was analysed by proteomics. Proteins whose concentration in sEVs was different between sarcopenic and robust patients were further validated using ELISA. The concentration of these candidates was correlated to the EWGSOP2 sarcopenia tests for low muscle strength and low physical performance, and receiver operating characteristic (ROC) curve analyses were carried out to evaluate their diagnostic power, sensitivity and specificity. RESULTS Proteomic analysis identified 157 sEVs proteins in both sarcopenic and robust samples. Among them, 48 proteins had never been reported in the ExoCarta nor Vesiclepedia databases. Statistical analysis revealed eight proteins whose concentration was significantly different between groups: PF4 (log2 FC = 4.806), OIT3 (log2 FC = -1.161), MMRN1 (log2 FC = -1.982), MASP1 (log2 FC = -0.627), C1R (log2 FC = 1.830), SVEP1 (log2 FC = 1.295), VCAN (FC = 0.937) and SPTB (log2 FC = 1.243). Among them, platelet factor 4 (PF4) showed the lowest concentration while Complement C1r subcomponent (C1R) increased the most in sarcopenic patients, being these results confirmed by ELISA (P = 1.07E-09 and P = 0.001287, respectively). The concentrations of candidate proteins significantly correlated with EWGSOP2 tests currently used. ROC curve analysis showed an area under the curve of 0.8921 and 0.7476 for PF4 and C1R, respectively. Choosing the optimal for PF4, 80% sensitivity and 85.71% specificity was reached while the optimal cut-off value of C1R would allow sarcopenia diagnosis with 75% sensitivity and 66.67% specificity. CONCLUSIONS Our results support the determination of EV PF4 and C1R as plasma diagnostic biomarkers in sarcopenia and open the door to investigate the role of the content of these vesicles in the pathogeny of the disease.
Collapse
Affiliation(s)
- Paula Aparicio
- LAGENBIO Laboratory, Faculty of VeterinaryUniversity of ZaragozaZaragozaSpain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
- AgroFood Institute of Aragon (IA2)ZaragozaSpain
- Aragon Health Research Institute (IIS Aragon)ZaragozaSpain
| | - David Navarrete‐Villanueva
- Aragon Health Research Institute (IIS Aragon)ZaragozaSpain
- EXER‐GENUD (Growth, Exercise, Nutrition and Development) Research GroupUniversity of ZaragozaZaragozaSpain
- Faculty of Health ScienceUniversity of ZaragozaZaragozaSpain
| | - Alba Gómez‐Cabello
- Aragon Health Research Institute (IIS Aragon)ZaragozaSpain
- EXER‐GENUD (Growth, Exercise, Nutrition and Development) Research GroupUniversity of ZaragozaZaragozaSpain
- Defense University CenterZaragozaSpain
| | - Tresa López‐Royo
- LAGENBIO Laboratory, Faculty of VeterinaryUniversity of ZaragozaZaragozaSpain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
- AgroFood Institute of Aragon (IA2)ZaragozaSpain
- Aragon Health Research Institute (IIS Aragon)ZaragozaSpain
| | - Enrique Santamaría
- Proteomics Platform, Clinical Neuroproteomics Unit, NavarrabiomedHospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA)PamplonaSpain
| | - Joaquín Fernández‐Irigoyen
- Proteomics Platform, Clinical Neuroproteomics Unit, NavarrabiomedHospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA)PamplonaSpain
| | - Karina Ausín
- Proteomics Platform, Clinical Neuroproteomics Unit, NavarrabiomedHospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA)PamplonaSpain
| | - Manuel Arruebo
- Aragon Health Research Institute (IIS Aragon)ZaragozaSpain
- Instituto de Nanociencia y Materiales de Aragón (INMA)CSIC‐Universidad de ZaragozaZaragozaSpain
- Department of Chemical and Environmental EngineeringUniversity of Zaragoza, Campus Río Ebro‐Edificio I+DZaragozaSpain
| | - Victor Sebastian
- Aragon Health Research Institute (IIS Aragon)ZaragozaSpain
- Instituto de Nanociencia y Materiales de Aragón (INMA)CSIC‐Universidad de ZaragozaZaragozaSpain
- Department of Chemical and Environmental EngineeringUniversity of Zaragoza, Campus Río Ebro‐Edificio I+DZaragozaSpain
- Networking Research Center on Bioengineering, Biomaterials and NanomedicineCIBER‐BBNMadridSpain
| | - Germán Vicente‐Rodríguez
- Aragon Health Research Institute (IIS Aragon)ZaragozaSpain
- EXER‐GENUD (Growth, Exercise, Nutrition and Development) Research GroupUniversity of ZaragozaZaragozaSpain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn)MadridSpain
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and NursingUniversity of ZaragozaZaragozaSpain
| | - Rosario Osta
- LAGENBIO Laboratory, Faculty of VeterinaryUniversity of ZaragozaZaragozaSpain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
- AgroFood Institute of Aragon (IA2)ZaragozaSpain
- Aragon Health Research Institute (IIS Aragon)ZaragozaSpain
| | - Raquel Manzano
- LAGENBIO Laboratory, Faculty of VeterinaryUniversity of ZaragozaZaragozaSpain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
- AgroFood Institute of Aragon (IA2)ZaragozaSpain
- Aragon Health Research Institute (IIS Aragon)ZaragozaSpain
| |
Collapse
|
19
|
Chen WT, Luo Y, Chen XM, Xiao JH. Role of exosome-derived miRNAs in diabetic wound angiogenesis. Mol Cell Biochem 2024; 479:2565-2580. [PMID: 37891446 DOI: 10.1007/s11010-023-04874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
Chronic wounds with high disability are among the most common and serious complications of diabetes. Angiogenesis dysfunction impair wound healing in patients with diabetes. Compared with traditional therapies that can only provide symptomatic treatment, stem cells-owing to their powerful paracrine properties, can alleviate the pathogenesis of chronic diabetic wounds and even cure them. Exosome-derived microRNAs (miRNAs), important components of stem cell paracrine signaling, have been reported for therapeutic use in various disease models, including diabetic wounds. Exosome-derived miRNAs have been widely reported to be involved in regulating vascular function and have promising applications in the repair and regeneration of skin wounds. Therefore, this article aims to review the current status of the pathophysiology of exosome-derived miRNAs in the diabetes-induced impairment of wound healing, along with current knowledge of the underlying mechanisms, emphasizing the regulatory mechanism of angiogenesis, we hope to document the emerging theoretical basis for improving wound repair by restoring angiogenesis in diabetes.
Collapse
Affiliation(s)
- Wen-Ting Chen
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Guizhou Provincial Universities Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Xue-Mei Chen
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- Guizhou Provincial Universities Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
| |
Collapse
|
20
|
Kotsiou OS, Katsanaki K, Tsiggene A, Papathanasiou S, Rouka E, Antonopoulos D, Gerogianni I, Balatsos NAA, Gourgoulianis KI, Tsilioni I. Detection and Characterization of Extracellular Vesicles in Sputum Samples of COPD Patients. J Pers Med 2024; 14:820. [PMID: 39202011 PMCID: PMC11355697 DOI: 10.3390/jpm14080820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Only one study has reported the presence of extracellular vesicles (EVs) in COPD patients' sputum. Thus, we aimed to isolate and characterize EVs from COPD and healthy individuals' sputum. METHODS A total of 20 spontaneous sputum samples from COPD patients (m/f: 19/1) and induced sputum samples from healthy controls (m/f: 8/2) were used for EV isolation. The sputum supernatants were resuspended in PBS, precleared by centrifugation at 800× g for 10 min at 4 °C, and passed through a 0.22 μm filter (Millipore, Burlington, MA, USA). EVs were isolated by a standard membrane affinity spin column method (exoEasy maxi kit, Qiagen, Hilden, Germany). The EVs were then characterized by assessing their morphology and size using Transmission Electron Microscopy (TEM) and determining the CD9 and CD81 EV-markers with Western blot analysis. RESULTS The EVs had a spherical shape and their mean diameter in the COPD patients was significantly greater than in the controls. Enrichment of the EV markers, CD9 and CD81, were detected in both the healthy and COPD individuals. Total EV-associated protein was significantly increased in the COPD patients compared to the controls. ROC analysis showed that total EV-associated protein in the sputum could be used to differentiate between the controls and COPD patients, with a sensitivity of 80% and a specificity of 70% at a cut-off point of 55.59 μg/mL (AUC = 0.8150). CONCLUSIONS EVs were detectable in both the COPD and healthy individuals' sputum. The ratio of EVs in the 150-200 nm range was twice as high in the COPD patients than in the controls. The COPD patients' sputum contained increased total EV-associated protein as compared to controls, highlighting their value as a new source of specific exoproteins.
Collapse
Affiliation(s)
- Ourania S. Kotsiou
- Laboratory of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 415 00 Larissa, Greece
| | - Katerina Katsanaki
- Department of Biochemistry, University of Thessaly, 415 00 Larissa, Greece; (K.K.); (A.T.); (D.A.); (N.A.A.B.)
| | - Aikaterini Tsiggene
- Department of Biochemistry, University of Thessaly, 415 00 Larissa, Greece; (K.K.); (A.T.); (D.A.); (N.A.A.B.)
| | - Sophia Papathanasiou
- Department of Respiratory Medicine, University of Thessaly, 415 00 Larissa, Greece; (S.P.); (I.G.); (K.I.G.)
| | - Erasmia Rouka
- Faculty of Nursing, University of Thessaly, 415 00 Larissa, Greece;
| | - Dionysios Antonopoulos
- Department of Biochemistry, University of Thessaly, 415 00 Larissa, Greece; (K.K.); (A.T.); (D.A.); (N.A.A.B.)
| | - Irene Gerogianni
- Department of Respiratory Medicine, University of Thessaly, 415 00 Larissa, Greece; (S.P.); (I.G.); (K.I.G.)
| | - Nikolaos A. A. Balatsos
- Department of Biochemistry, University of Thessaly, 415 00 Larissa, Greece; (K.K.); (A.T.); (D.A.); (N.A.A.B.)
| | | | - Irene Tsilioni
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
21
|
Xiong JL, Wang YX, Luo JY, Wang SM, Sun JJ, Xi QY, Chen T, Zhang YL. Pituitary-derived small extracellular vesicles promote liver repair by its cargo miR-143-3p. Sci Rep 2024; 14:16635. [PMID: 39025906 PMCID: PMC11258314 DOI: 10.1038/s41598-024-67434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The small Extracellular vesicles (sEV) has been recognized to be significant for intercellular communication due to their ability to transfer important cellular cargoes like miRNAs through circulation. The pituitary gland has not been clearly known about the role of its secreted sEV under normal physiological conditions. And Liver disease is a global public health burden. The present study is the first to investigate the effect of pituitary sEV on the liver. Sequencing and qRT-PCR revealed miR-143-3p is one of the richest in the pituitary sEV. MiR-143 Knockout (KO) mice resulted in a remarkable decrease in insulin-like growth factor 1 (IGF-1) levels and a significant increase in insulin-like growth factor binding protein 5 (IGFBP5) levels along with a reduction in liver primary cell growth. More importantly, compared with miR-143-KO-sEV, WT-sEV possesses a more robust capacity to improve miR-143 KO mice liver repair through the Wnt/β-catenin pathway after an acute injury caused by carbon tetrachloride (CCl4). Our results indicate that pituitary-derived sEV promotes hepatocyte proliferation and liver repair by its cargo miR-143-3p and provides new insight into the regulation mechanism of the pituitary-liver axis, and open a new window for endocrine regulation by using sEV.
Collapse
Affiliation(s)
- Jia-Li Xiong
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- College of Medicine, Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Yu-Xuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jun-Yi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Shu-Meng Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jia-Jie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qian-Yun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yong-Liang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
22
|
Ma C, Xu Z, Hao K, Fan L, Du W, Gao Z, Wang C, Zhang Z, Li N, Li Q, Gao Q, Yu C. Rapid isolation method for extracellular vesicles based on Fe 3O 4@ZrO 2. Front Bioeng Biotechnol 2024; 12:1399689. [PMID: 39045537 PMCID: PMC11263208 DOI: 10.3389/fbioe.2024.1399689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Extracellular vesicles (EVs) are pivotal in intercellular communication, disease mechanisms. Despite numerous methods for EVs isolation, challenges persist in yield, purity, reproducibility, cost, time, and automation. We introduce a EVs isolation technique using Fe3O4@ZrO2 beads, leveraging ZrO2-phosphate interaction. The results indicated that EVs were efficiently separated from large volumes of samples in 30 minutes without preconcentration. Our method demonstrated capture efficiency (74%-78%) compared to ultracentrifugation, purity (97%), and reproducibility (0.3%-0.5%), with excellent linearity (R2 > 0.99). EVs from urine samples showed altered expression of miRNAs. The logistic regression model achieved an AUC of 0.961, sensitivity of 0.92, and specificity of 0.94. With potential for automation, this magnetic bead-based method holds promise for clinical applications, offering an efficient and reliable tool for EVs research and clinical studies.
Collapse
Affiliation(s)
- Cuidie Ma
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhihui Xu
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Kun Hao
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Lingling Fan
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Wenqian Du
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Zhan Gao
- Department of Urology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chong Wang
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zheng Zhang
- Department of Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ningxia Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Gao
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
23
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
24
|
Ansari FJ, Tafti HA, Amanzadeh A, Rabbani S, Shokrgozar MA, Heidari R, Behroozi J, Eyni H, Uversky VN, Ghanbari H. Comparison of the efficiency of ultrafiltration, precipitation, and ultracentrifugation methods for exosome isolation. Biochem Biophys Rep 2024; 38:101668. [PMID: 38405663 PMCID: PMC10885727 DOI: 10.1016/j.bbrep.2024.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
Extracellular vesicles (EVs) are enclosed by a lipid-bilayer membrane and secreted by all types of cells. They are classified into three groups: apoptotic bodies, microvesicles, and exosomes. Exosomes play a number of important roles in the intercellular communication and crosstalk between tissues in the body. In this study, we use three common methods based on different principles for exosome isolation, namely ultrafiltration, precipitation, and ultracentrifugation. We use field emission scanning electron microscopy (FESEM) and dynamic light scattering (DLS) analyses for characterization of exosomes. The functionality and effect of isolated exosomes on the viability of hypoxic cells was investigated by alamarBlue and Flow-cytometry. The results of the FESEM study show that the ultrafiltration method isolates vesicles with higher variability of shapes and sizes when compared to the precipitation and ultracentrifugation methods. DLS results show that mean size of exosomes isolated by ultrafiltration, precipitation, and ultracentrifugation methods are 122, 89, and 60 nm respectively. AlamarBlue analysis show that isolated exosomes increase the viability of damaged cells by 11%, 15%, and 22%, respectively. Flow-cytometry analysis of damaged cells also show that these vesicles increase the content of live cells by 9%, 15%, and 20%, respectively. This study shows that exosomes isolated by the ultracentrifugation method are characterized by smaller size and narrow size distribution. Furthermore, more homogenous particles isolated by this method show increased efficiency of the protection of hypoxic cells in comparison with the exosomes isolated by the two other methods.
Collapse
Affiliation(s)
- Farshid Jaberi Ansari
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Disease Research Institute, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Disease Research Institute, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, 1411718541, Iran
| | - Javad Behroozi
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Hossein Eyni
- Stem Cell and Regenerative Medicine Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Disease Research Institute, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Biomaterials, University of Tehran & Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
26
|
Zhang Y, Wang B, Bai J, Wei L, Chen X, Song J, Liu Y, Suo H, Wang C. Food intervention strategy for oral microbiome: A review. Trends Food Sci Technol 2024; 148:104514. [DOI: 10.1016/j.tifs.2024.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Wu Y, Fu H, Hao J, Yang Z, Qiao X, Li Y, Zhao R, Lin T, Wang Y, Wang M. Tumor-derived exosomal PD-L1: a new perspective in PD-1/PD-L1 therapy for lung cancer. Front Immunol 2024; 15:1342728. [PMID: 38562933 PMCID: PMC10982384 DOI: 10.3389/fimmu.2024.1342728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes play a crucial role in facilitating intercellular communication within organisms. Emerging evidence indicates that a distinct variant of programmed cell death ligand-1 (PD-L1), found on the surface of exosomes, may be responsible for orchestrating systemic immunosuppression that counteracts the efficacy of anti-programmed death-1 (PD-1) checkpoint therapy. Specifically, the presence of PD-L1 on exosomes enables them to selectively target PD-1 on the surface of CD8+ T cells, leading to T cell apoptosis and impeding T cell activation or proliferation. This mechanism allows tumor cells to evade immune pressure during the effector stage. Furthermore, the quantification of exosomal PD-L1 has the potential to serve as an indicator of the dynamic interplay between tumors and immune cells, thereby suggesting the promising utility of exosomes as biomarkers for both cancer diagnosis and PD-1/PD-L1 inhibitor therapy. The emergence of exosomal PD-L1 inhibitors as a viable approach for anti-tumor treatment has garnered significant attention. Depleting exosomal PD-L1 may serve as an effective adjunct therapy to mitigate systemic immunosuppression. This review aims to elucidate recent insights into the role of exosomal PD-L1 in the field of immune oncology, emphasizing its potential as a diagnostic, prognostic, and therapeutic tool in lung cancer.
Collapse
Affiliation(s)
- Yunjiao Wu
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Huichao Fu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin, China
| | - Jingwei Hao
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Zhaoyang Yang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Xinyi Qiao
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Yingjie Li
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Rui Zhao
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Tie Lin
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin, China
| | - Yicun Wang
- Department of Medical Research Center, Second Hospital of Jilin University, Jilin, Changchun, China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| |
Collapse
|
28
|
Qi R, Wang Y, Yan F, Zhong J. Exosomes derived from ITGB1 modified Telocytes alleviates LPS-induced inflammation and oxidative stress through YAP1/ROS axis. Heliyon 2024; 10:e27086. [PMID: 38486751 PMCID: PMC10938118 DOI: 10.1016/j.heliyon.2024.e27086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Aims Previous studies have demonstrated a significant upregulation of Integrin Beta 1 (ITGB1) in Telocytes. This study aims to explore the roles and underlying mechanisms of ITGB1 in inflammation and oxidative stress following Lipo-polysaccharide (LPS) administration in Telocytes. Methods We observed an increase in reactive oxygen species (ROS) production, accompanied by a reduction in ITGB1 levels post-LPS treatment. Results Notably, inhibiting ROS synthesis markedly reduced LPS-induced ITGB1 expression. Additionally, ectopic ITGB1 expression mitigated LPS-induced inflammation and oxidative stress, evident through decreased levels of pro-inflammatory markers such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin (IL)-1β, IL-6, and Monocyte Chemoattractant Protein (MCP)-1. Depletion of endothelial Yes-Associated Protein 1 (YAP1) notably diminished the levels of inflammatory markers and ROS production. Furthermore, exosomes secreted by ITGB1-modified Telocytes promoted Human Umbilical Vein Endothelial Cells (HUVECs) proliferation and inhibited apoptosis. In vivo experiments revealed that exosomes from ITGB1-modified Telocytes modulated functional and structural changes, as well as inflammatory responses in Acute Lung Injury (ALI). Conclusion These findings highlight the critical role of the YAP1/ROS axis in LPS-induced Telocyte injuries, underlining the therapeutic potential of targeting ITGB1 for mitigating inflammation and oxidative stress in these cells.
Collapse
Affiliation(s)
- Ruixue Qi
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuchao Wang
- Medical Imaging Department, The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Furong Yan
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jinlong Zhong
- Department of Thoracic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Müller GA, Müller TD. Transfer of membrane(s) matter(s)-non-genetic inheritance of (metabolic) phenotypes? Front Mol Biosci 2024; 11:1347397. [PMID: 38516184 PMCID: PMC10955475 DOI: 10.3389/fmolb.2024.1347397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are anchored at the outer phospholipid layer of eukaryotic plasma membranes exclusively by a glycolipid. GPI-APs are not only released into extracellular compartments by lipolytic cleavage. In addition, certain GPI-APs with the glycosylphosphatidylinositol anchor including their fatty acids remaining coupled to the carboxy-terminus of their protein components are also detectable in body fluids, in response to certain stimuli, such as oxidative stress, radicals or high-fat diet. As a consequence, the fatty acid moieties of GPI-APs must be shielded from access of the aqueous environment by incorporation into membranes of extracellular vesicles or into micelle-like complexes together with (lyso)phospholipids and cholesterol. The GPI-APs released from somatic cells and tissues are transferred via those complexes or EVs to somatic as well as pluripotent stem cells with metabolic consequences, such as upregulation of glycogen and lipid synthesis. From these and additional findings, the following hypotheses are developed: i) Transfer of GPI-APs via EVs or micelle-like complexes leads to the induction of new phenotypes in the daughter cells or zygotes, which are presumably not restricted to metabolism. ii) The membrane topographies transferred by the concerted action of GPI-APs and interacting components are replicated by self-organization and self-templation and remain accessible to structural changes by environmental factors. iii) Transfer from mother cells and gametes to their daughter cells and zygotes, respectively, is not restricted to DNA and genes, but also encompasses non-genetic matter, such as GPI-APs and specific membrane constituents. iv) The intergenerational transfer of membrane matter between mammalian organisms is understood as an epigenetic mechanism for phenotypic plasticity, which does not rely on modifications of DNA and histones, but is regarded as molecular mechanism for the inheritance of acquired traits, such as complex metabolic diseases. v) The missing interest in research of non-genetic matter of inheritance, which may be interpreted in the sense of Darwin's "Gemmules" or Galton's "Stirps", should be addressed in future investigations of the philosophy of science and sociology of media.
Collapse
Affiliation(s)
- Günter A. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Department of Media Studies, Media, Culture and Society, Faculty of Arts and Humanities, University Paderborn, Paderborn, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
| |
Collapse
|
30
|
Berriel Pinho VH, Daher JPL, Kanaan S, Medeiros T. Extracellular vesicles in Alzheimer's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-8. [PMID: 38467392 PMCID: PMC10927369 DOI: 10.1055/s-0044-1779296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/01/2023] [Indexed: 03/13/2024]
Abstract
Extracellular vesicles (EVs) are small vesicles released by cells that facilitate cell signaling. They are categorized based on their biogenesis and size. In the context of the central nervous system (CNS), EVs have been extensively studied for their role in both normal physiological functions and diseases like Alzheimer's disease (AD). AD is a neurodegenerative disorder characterized by cognitive decline and neuronal death. EVs have emerged as potential biomarkers for AD due to their involvement in disease progression. Specifically, EVs derived from neurons, astrocytes, and neuron precursor cells exhibit changes in quantity and composition in AD. Neuron-derived EVs have been found to contain key proteins associated with AD pathology, such as amyloid beta (Aß) and tau. Increased levels of Aß in neuron-derived EVs isolated from the plasma have been observed in individuals with AD and mild cognitive impairment, suggesting their potential as early biomarkers. However, the analysis of tau in neuron-derived EVs is still inconclusive. In addition to Aß and tau, neuron-derived EVs also carry other proteins linked to AD, including synaptic proteins. These findings indicate that EVs could serve as biomarkers for AD, particularly for early diagnosis and disease monitoring. However, further research is required to validate their use and explore potential therapeutic applications. To summarize, EVs are small vesicles involved in cell signaling within the CNS. They hold promise as biomarkers for AD, potentially enabling early diagnosis and monitoring of disease progression. Ongoing research aims to refine their use as biomarkers and uncover additional therapeutic applications.
Collapse
Affiliation(s)
| | - João Paulo Lima Daher
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, NIterói RJ, Brazil.
| | - Salim Kanaan
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, NIterói RJ, Brazil.
| | - Thalia Medeiros
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, NIterói RJ, Brazil.
| |
Collapse
|
31
|
Yuan X, Sun J, Kadowaki T. Aspartyl protease in the secretome of honey bee trypanosomatid parasite contributes to infection of bees. Parasit Vectors 2024; 17:60. [PMID: 38341595 PMCID: PMC10859015 DOI: 10.1186/s13071-024-06126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The exoproteome, which consists of both secreted proteins and those originating from cell surfaces and lysed cells, is a critical component of trypanosomatid parasites, facilitating interactions with host cells and gut microbiota. However, its specific roles in the insect hosts of these parasites remain poorly understood. METHODS We conducted a comprehensive characterization of the exoproteome in Lotmaria passim, a trypanosomatid parasite infecting honey bees, under culture conditions. We further investigated the functions of two conventionally secreted proteins, aspartyl protease (LpAsp) and chitinase (LpCht), as representative models to elucidate the role of the secretome in L. passim infection of honey bees. RESULTS Approximately 48% of L. passim exoproteome proteins were found to share homologs with those found in seven Leishmania spp., suggesting the existence of a core exoproteome with conserved functions in the Leishmaniinae lineage. Bioinformatics analyses suggested that the L. passim exoproteome may play a pivotal role in interactions with both the host and its microbiota. Notably, the deletion of genes encoding two secretome proteins revealed the important role of LpAsp, but not LpCht, in L. passim development under culture conditions and its efficiency in infecting the honey bee gut. CONCLUSIONS Our results highlight the exoproteome as a valuable resource for unraveling the mechanisms employed by trypanosomatid parasites to infect insect hosts by interacting with the gut environment.
Collapse
Affiliation(s)
- Xuye Yuan
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, 215123, Jiangsu, China
| | - Jianying Sun
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, 215123, Jiangsu, China
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, 215123, Jiangsu, China.
| |
Collapse
|
32
|
Lozano-Iturbe V, Blanco-Agudín N, Vázquez-Espinosa E, Fernández-Vega I, Merayo-Lloves J, Vazquez F, Girón RM, Quirós LM. The Binding of Pseudomonas aeruginosa to Cystic Fibrosis Bronchial Epithelial Model Cells Alters the Composition of the Exosomes They Produce Compared to Healthy Control Cells. Int J Mol Sci 2024; 25:895. [PMID: 38255969 PMCID: PMC10815301 DOI: 10.3390/ijms25020895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that causes dehydration of the surface of the airways, increasing lung infections, most frequently caused by Pseudomonas aeruginosa. Exosomes are nanovesicles released by cells that play an essential role in intercellular communication, although their role during bacterial infections is not well understood. In this article, we analyze the alterations in exosomes produced by healthy bronchial epithelial and cystic fibrosis cell lines caused by the interaction with P. aeruginosa. The proteomic study detected alterations in 30% of the species analyzed. In healthy cells, they mainly involve proteins related to the extracellular matrix, cytoskeleton, and various catabolic enzymes. In CF, proteins related to the cytoskeleton and matrix, in addition to the proteasome. These differences could be related to the inflammatory response. A study of miRNAs detected alterations in 18% of the species analyzed. The prediction of their potential biological targets identified 7149 genes, regulated by up to 7 different miRNAs. The identification of their functions showed that they preferentially affected molecules involved in binding and catalytic activities, although with differences between cell types. In conclusion, this study shows differences in exosomes between CF and healthy cells that could be involved in the response to infection.
Collapse
Affiliation(s)
- Víctor Lozano-Iturbe
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (V.L.-I.); (N.B.-A.); (F.V.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Noelia Blanco-Agudín
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (V.L.-I.); (N.B.-A.); (F.V.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Emma Vázquez-Espinosa
- Pneumology Service, Institute for Health Research (IP), Hospital Universitario de La Princesa, 28006 Madrid, Spain;
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Fernando Vazquez
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (V.L.-I.); (N.B.-A.); (F.V.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Microbiology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Rosa M. Girón
- Pneumology Service, Institute for Health Research (IP), Hospital Universitario de La Princesa, 28006 Madrid, Spain;
| | - Luis M. Quirós
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (V.L.-I.); (N.B.-A.); (F.V.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
33
|
Santiago VF, Rosa-Fernandes L, Macedo-da-Silva J, Angeli CB, Mule SN, Marinho CRF, Torrecilhas AC, Marie SNK, Palmisano G. Isolation of Extracellular Vesicles Using Titanium Dioxide Microspheres. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:1-22. [PMID: 38409413 DOI: 10.1007/978-3-031-50624-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Extracellular vesicles (EVs) are bilayer membrane particles released from several cell types to the extracellular environment. EVs have a crucial role in cell-cell communication, involving different biological processes in health and diseases. Due to the potential of biomarkers for several diseases as diagnostic and therapeutic tools, it is relevant to understand the biology of the EVs and their content. One of the current challenges involving EVs is regarding the purification method, which is a critical step for EV's functional and characterization studies. Ultracentrifugation is the most used method for EV isolation, where the nanoparticles are separated in sequential centrifugation to isolate the EVs based on their size. However, for viscous biofluids such as plasma, there is a co-isolation of the most abundant proteins, which can impair the EV's protein identification due to the low abundance of these proteins and signal suppression by the most abundant plasma proteins. Emerging techniques have gained attention in recent years. Titanium dioxide (TiO2) is one of the most promising techniques due to its property for selective isolation based on the interaction with phospholipids in the EV membrane. Using a small amount of TiO2 beads and a low volume of plasma, it is possible to isolate EVs with reduced plasma protein co-isolation. This study describes a comprehensive workflow for the isolation and characterization of plasma extracellular vesicles (EVs) using mass spectrometry-based proteomics techniques. The aim of this chapter is describe the EV isolation using TiO2 beads enrichment and high-throughput mass spectrometry techniques to efficiently identify the protein composition of EVs in a fast and straightforward manner.
Collapse
Affiliation(s)
- Veronica Feijoli Santiago
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Janaina Macedo-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudia B Angeli
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas; Departamento de Ciências Farmacêuticas; Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários. Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Suely N K Marie
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Fac-uldade de Medicina FMUSP, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia.
| |
Collapse
|
34
|
Guo ZY, Tang Y, Cheng YC. Exosomes as Targeted Delivery Drug System: Advances in Exosome Loading, Surface Functionalization and Potential for Clinical Application. Curr Drug Deliv 2024; 21:473-487. [PMID: 35702803 DOI: 10.2174/1567201819666220613150814] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Exosomes are subtypes of vesicles secreted by almost all cells and can play an important role in intercellular communication. They contain various proteins, lipids, nucleic acids and other natural substances from their metrocytes. Exosomes are expected to be a new generation of drug delivery systems due to their low immunogenicity, high potential to transfer bioactive substances and biocompatibility. However, exosomes themselves are not highly targeted, it is necessary to develop new surface modification techniques and targeted drug delivery strategies, which are the focus of drug delivery research. In this review, we introduced the biogenesis of exosomes and their role in intercellular communication. We listed various advanced exosome drug-loading techniques. Emphatically, we summarized different exosome surface modification techniques and targeted drug delivery strategies. In addition, we discussed the application of exosomes in vaccines and briefly introduced milk exosomes. Finally, we clarified the clinical application prospects and shortcomings of exosomes.
Collapse
Affiliation(s)
- Zun Y Guo
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| | - Yue Tang
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| | - Yi C Cheng
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| |
Collapse
|
35
|
Yadav A, Nandy A, Sharma A, Ghatak S. Exosome Mediated Cell-Cell Crosstalk in Tissue Injury and Repair. Results Probl Cell Differ 2024; 73:249-297. [PMID: 39242383 DOI: 10.1007/978-3-031-62036-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The landscape of exosome research has undergone a significant paradigm shift, with a departure from early conceptions of exosomes as vehicles for cellular waste disposal towards their recognition as integral components of cellular communication with therapeutic potential. This chapter presents an exhaustive elucidation of exosome biology, detailing the processes of exosome biogenesis, release, and uptake, and their pivotal roles in signal transduction, tissue repair, regeneration, and intercellular communication. Additionally, the chapter highlights recent innovations and anticipates future directions in exosome research, emphasizing their applicability in clinical settings. Exosomes have the unique ability to navigate through tissue spaces to enter the circulatory system, positioning them as key players in tissue repair. Their contributory role in various processes of tissue repair, although in the nascent stages of investigation, stands out as a promising area of research. These vesicles function as a complex signaling network for intracellular and organ-level communication, critical in both pathological and physiological contexts. The chapter further explores the tissue-specific functionality of exosomes and underscores the advancements in methodologies for their isolation and purification, which have been instrumental in expanding the scope of exosome research. The differential cargo profiles of exosomes, dependent on their cellular origin, position them as prospective diagnostic biomarkers for tissue damage and regenerative processes. Looking ahead, the trajectory of exosome research is anticipated to bring transformative changes to biomedical fields. This includes advancing diagnostic and prognostic techniques that utilize exosomes as non-invasive biomarkers for a plethora of diseases, such as cancer, neurodegenerative, and cardiovascular conditions. Additionally, engineering exosomes through alterations of their native content or surface properties presents a novel frontier, including the synthesis of artificial or hybrid variants with enhanced functional properties. Concurrently, the ethical and regulatory frameworks surrounding exosome research, particularly in clinical translation, will require thorough deliberation. In conclusion, the diverse aspects of exosome research are coalescing to redefine the frontiers of diagnostic and therapeutic methodologies, cementing its importance as a discipline of considerable consequence in the biomedical sciences.
Collapse
Affiliation(s)
- Anita Yadav
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aparajita Nandy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anu Sharma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
36
|
Teymouri S, Pourhajibagher M, Bahador A. Exosomes: Friends or Foes in Microbial Infections? Infect Disord Drug Targets 2024; 24:e170124225730. [PMID: 38317472 DOI: 10.2174/0118715265264388231128045954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 02/07/2024]
Abstract
The use of new approaches is necessary to address the global issue of infections caused by drug-resistant pathogens. Antimicrobial photodynamic therapy (aPDT) is a promising approach that reduces the emergence of drug resistance, and no resistance has been reported thus far. APDT involves using a photosensitizer (PS), a light source, and oxygen. The mechanism of aPDT is that a specific wavelength of light is directed at the PS in the presence of oxygen, which activates the PS and generates reactive oxygen species (ROS), consequently causing damage to microbial cells. However, due to the PS's poor stability, low solubility in water, and limited bioavailability, it is necessary to employ drug delivery platforms to enhance the effectiveness of PS in photodynamic therapy (PDT). Exosomes are considered a desirable carrier for PS due to their specific characteristics, such as low immunogenicity, innate stability, and high ability to penetrate cells, making them a promising platform for drug delivery. Additionally, exosomes also possess antimicrobial properties, although in some cases, they may enhance microbial pathogenicity. As there are limited studies on the use of exosomes for drug delivery in microbial infections, this review aims to present significant points that can provide accurate insights.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran
| |
Collapse
|
37
|
Jang YN, Lee JO, Lee JM, Park AY, Kim YJ, Kim SY, Seok J, Yoo KH, Kim BJ. Exosomes derived from human dermal fibroblasts (HDFn-Ex) alleviate DNCB-induced atopic dermatitis (AD) via PPARα. Exp Dermatol 2024; 33:e14970. [PMID: 37975541 DOI: 10.1111/exd.14970] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/30/2023] [Accepted: 09/04/2023] [Indexed: 11/19/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease. Skin barrier dysfunction is the initial step in the development of AD. Recently, exosomes have been considered as potential cell-free medicine for skin defects such as aging, psoriasis and wounds. The aim of this study was to investigate the effects of human dermal fibroblast-neonatal-derived exosome (HDFn-Ex) on AD. HDFn-Ex increased the expression of peroxisome proliferator activated receptor α (PPARα) and alleviated the 1-chloro-2,4-dinitrobenzene (DNCB)-mediated downregulation of filaggrin, involucrin, loricrin, hyaluronic acid synthase 1 (HAS1) and HAS2 in human keratinocyte HaCaT cells. However, these effects were inhibited by the PPARα antagonist GW6471. In the artificial skin model, HDFn-Ex significantly inhibited DNCB-induced epidermal hyperplasia and the decrease in filaggrin and HAS1 levels via a PPARα. In the DNCB-induced AD-like mouse model, HDFn-Ex administration reduced epidermis thickening and mast cell infiltration into the dermis compared to DNCB treatment. Moreover, the decreases in PPARα, filaggrin and HAS1 expression, as well as the increases in IgE and IL4 levels induced by DNCB treatment were reversed by HDFn-Ex. These effects were blocked by pre-treatment with GW6471. Furthermore, HDFn-Ex exhibited an anti-inflammatory effect by inhibiting the DNCB-induced increases in IκBα phosphorylation and TNF-α expression. Collectively, HDFn-Ex exhibited a protective effect on AD. Notably, these effects were regulated by PPARα. Based on our results, we suggest that HDFn-Ex is a potential candidate for treating AD by recovering skin barrier dysfunction and exhibiting anti-inflammatory activity.
Collapse
Affiliation(s)
- You Na Jang
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
| | - Jung Ok Lee
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
| | - Jung Min Lee
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
| | - A Yeon Park
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Yu Jin Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Su Young Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Joon Seok
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Kwang Ho Yoo
- Department of Dermatology, Chung-Ang University Gwang-Myeong Hospital, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Beom Joon Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Fu Y, Xiong S. Differential traits between microvesicles and exosomes in enterovirus infection. MedComm (Beijing) 2023; 4:e384. [PMID: 37752943 PMCID: PMC10518433 DOI: 10.1002/mco2.384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are released by most cell types into the extracellular space and represent the pathophysiological condition of their source cells. Recent studies demonstrate that EVs derived from infected cells and tumors contribute to disease pathogenesis. However, very few studies have rigorously characterized exosomes and microvesicles in infectious diseases. In this study, we focused on subpopulations of EVs during the human enterovirus infection and explored the distinct traits and functions of EVs. We construct an effective immunomagnetic method to isolate exosomes and MVs from enterovirus-infected cells excluding virion. The morphology and sizes of exosomes and MVs have no significant alteration after enterovirus infection. Meanwhile, our study observed that the enterovirus infection could induce exosome secretion but not MVs. In vivo study showed that there was differential biodistribution between exosomes and MVs. Using deep RNA sequencing, we found that the cargo information in MVs rather than in exosomes could accurately reflect pathological condition of original cells. Our study demonstrated that it should be considered to use MVs as clinical diagnostics during in enterovirus infection because their composition is reflective of pathological changes.
Collapse
Affiliation(s)
- Yuxuan Fu
- Jiangsu Key Laboratory of Infection and ImmunityInstitutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and ImmunityInstitutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| |
Collapse
|
39
|
Wu L, Xue M, Lai S, Chen J, Lin Y, Ding N, Zhong J, Chen S, Wang L. Hypoxia derived exosomes promote the proliferation and metastasis of colorectal cancer through the regulation of HIF-1α/miR-4299/ZBTB4. Life Sci 2023; 329:121872. [PMID: 37352917 DOI: 10.1016/j.lfs.2023.121872] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
AIMS The biological functions of colorectal cancer (CRC) cell derived exosomes responding to hypoxic microenvironment and its underlying mechanisms remain unclear. MAIN METHODS Extracted exosomes were confirmed. CRC cells were incubated with hypoxic and normoxic exosomes and its biological behavior were analyzed. miRNA microarray were conducted. Cells were incubated with miRNAs mimics, inhibitors, or small interfering RNAs; expression of reporter constructs was measured in luciferase assays. Cells were transfected with Lentivirus vectors containing eGFP-miR-4299 overexpression (or ZBTB4 siRNA expression plasmid) and they were injected into BALB/C nude mice subcutaneously or by tail vein and the growth of xenograft tumors or lung metastasis were measured. The clinical significance of ZBTB4 was measured in tumor tissues and adjacent non-tumor tissues. KEY FINDINGS Hypoxic exosomes could tranfer to the recipient normoxic cells and promote the cell proliferation and migration. We found several miRNAs were significantly up-regulated in hypoxic exosomes and the expression levels of miR-4299 increased in both hypoxic cells and hypoxic exosomes. We observed that miR-4299 was upregulated in a HIF-1α dependent way. In addition, ectopic expression of miR-4299 promoted the tumor growth and metastasis in vitro and in vivo. ZBTB4, an identified direct target of miR-4299, could abrogate the effect on tumor growth and distant metastasis. The expression of ZBTB4 were decreased in tumor tissues compared with non-tumor colon tissues from patients. SIGNIFICANCE We demonstrated that in response to hypoxia, CRC cells had an increased production of exosomes. The hypoxia derived exosomes promote the proliferation and metastasis of colorectal cancer by exporting miR-4299 and modulating its target gene ZBTB4.
Collapse
Affiliation(s)
- Lunpo Wu
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; Institution of Gastroenterology, Zhejiang University, Hangzhou 310000, China
| | - Meng Xue
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; Institution of Gastroenterology, Zhejiang University, Hangzhou 310000, China
| | - Sanchuan Lai
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; Institution of Gastroenterology, Zhejiang University, Hangzhou 310000, China
| | - Jingyu Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; Institution of Gastroenterology, Zhejiang University, Hangzhou 310000, China
| | - Yifeng Lin
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; Institution of Gastroenterology, Zhejiang University, Hangzhou 310000, China
| | - Ning Ding
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; Institution of Gastroenterology, Zhejiang University, Hangzhou 310000, China
| | - Jing Zhong
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; Institution of Gastroenterology, Zhejiang University, Hangzhou 310000, China
| | - Shujie Chen
- Institution of Gastroenterology, Zhejiang University, Hangzhou 310000, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China.
| | - Liangjing Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; Institution of Gastroenterology, Zhejiang University, Hangzhou 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
40
|
Paul N, Sultana Z, Fisher JJ, Maiti K, Smith R. Extracellular vesicles- crucial players in human pregnancy. Placenta 2023; 140:30-38. [PMID: 37531747 DOI: 10.1016/j.placenta.2023.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/04/2023]
Abstract
Extracellular vesicles (EVs) are lipid-bilayer enclosed membrane vesicles released by cells in physiological and pathological states. EVs are generated and released through a variety of pathways and mediate cellular communication by carrying and transferring signals to recipient cells. EVs are specifically loaded with proteins, nucleic acids (RNAs and DNA), enzymes and lipids, and carry a range of surface proteins and adhesion molecules. EVs contribute to intercellular signalling, development, metabolism, tissue homeostasis, antigen presentation, gene expression and immune regulation. EVs have been categorised into three different subgroups based on their size: exosomes (30-150 nm), microvesicles (100-1000 nm) and apoptotic bodies (1-5 μm). The status of the cells of origin of EVs influences their biology, heterogeneity and functions. EVs, especially exosomes, have been studied for their potential roles in feto-maternal communication and impacts on normal pregnancy and pregnancy disorders. This review presents an overview of EVs, emphasising exosomes and microvesicles in a general context, and then focusing on the roles of EVs in human pregnancy and their potential as diagnostics for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Nilanjana Paul
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| | - Zakia Sultana
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| | - Joshua J Fisher
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| | | | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| |
Collapse
|
41
|
Yan L, Li J, Zhang C. The role of MSCs and CAR-MSCs in cellular immunotherapy. Cell Commun Signal 2023; 21:187. [PMID: 37528472 PMCID: PMC10391838 DOI: 10.1186/s12964-023-01191-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/07/2023] [Indexed: 08/03/2023] Open
Abstract
Chimeric antigen receptors (CARs) are widely used by T cells (CAR-T cells), natural killer cells dendritic cells and macrophages, and they are of great importance in cellular immunotherapy. However, the use of CAR-related products faces several challenges, including the poor persistence of cells carrying CARs, cell dysfunction or exhaustion, relapse of disease, immune effector cell-associated neurotoxicity syndrome, cytokine release syndrome, low efficacy against solid tumors and immunosuppression by the tumor microenvironment. Another important cell therapy regimen involves mesenchymal stem cells (MSCs). Recent studies have shown that MSCs can improve the anticancer functions of CAR-related products. CAR-MSCs can overcome the flaws of cellular immunotherapy. Thus, MSCs can be used as a biological vehicle for CARs. In this review, we first discuss the characteristics and immunomodulatory functions of MSCs. Then, the role of MSCs as a source of exosomes, including the characteristics of MSC-derived exosomes and their immunomodulatory functions, is discussed. The role of MSCs in CAR-related products, CAR-related product-derived exosomes and the effect of MSCs on CAR-related products are reviewed. Finally, the use of MSCs as CAR vehicles is discussed. Video Abstract.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing Li
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
42
|
Su P, Wu Y, Xie F, Zheng Q, Chen L, Liu Z, Meng X, Zhou F, Zhang L. A Review of Extracellular Vesicles in COVID-19 Diagnosis, Treatment, and Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206095. [PMID: 37144543 PMCID: PMC10323633 DOI: 10.1002/advs.202206095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The 2019 novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing, and has necessitated scientific efforts in disease diagnosis, treatment, and prevention. Interestingly, extracellular vesicles (EVs) have been crucial in these developments. EVs are a collection of various nanovesicles which are delimited by a lipid bilayer. They are enriched in proteins, nucleic acids, lipids, and metabolites, and naturally released from different cells. Their natural material transport properties, inherent long-term recycling ability, excellent biocompatibility, editable targeting, and inheritance of parental cell properties make EVs one of the most promising next-generation drug delivery nanocarriers and active biologics. During the COVID-19 pandemic, many efforts have been made to exploit the payload of natural EVs for the treatment of COVID-19. Furthermore, strategies that use engineered EVs to manufacture vaccines and neutralization traps have produced excellent efficacy in animal experiments and clinical trials. Here, the recent literature on the application of EVs in COVID-19 diagnosis, treatment, damage repair, and prevention is reviewed. And the therapeutic value, application strategies, safety, and biotoxicity in the production and clinical applications of EV agents for COVID-19 treatment, as well as inspiration for using EVs to block and eliminate novel viruses are discussed.
Collapse
Affiliation(s)
- Peng Su
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yuchen Wu
- Department of Clinical MedicineThe First School of MedicineWenzhou Medical UniversityWenzhouZhejiang325035P. R. China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qinghui Zheng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Long Chen
- Center for Translational MedicineThe Affiliated Zhangjiagang Hospital of Soochow UniversityZhangjiagangJiangsu215600China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Xuli Meng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
43
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins II: Intercellular Transfer of Matter (Inheritance?) That Matters. Biomolecules 2023; 13:994. [PMID: 37371574 DOI: 10.3390/biom13060994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of the plasma membrane (PM) bilayer by covalent linkage to a typical glycolipid and expressed in all eukaryotic organisms so far studied. Lipolytic release from PMs into extracellular compartments and intercellular transfer are regarded as the main (patho)physiological roles exerted by GPI-APs. The intercellular transfer of GPI-APs relies on the complete GPI anchor and is mediated by extracellular vesicles such as microvesicles and exosomes and lipid-free homo- or heteromeric aggregates, and lipoprotein-like particles such as prostasomes and surfactant-like particles, or lipid-containing micelle-like complexes. In mammalian organisms, non-vesicular transfer is controlled by the distance between donor and acceptor cells/tissues; intrinsic conditions such as age, metabolic state, and stress; extrinsic factors such as GPI-binding proteins; hormones such as insulin; and drugs such as anti-diabetic sulfonylureas. It proceeds either "directly" upon close neighborhood or contact of donor and acceptor cells or "indirectly" as a consequence of the induced lipolytic release of GPI-APs from PMs. Those displace from the serum GPI-binding proteins GPI-APs, which have retained the complete anchor, and become assembled in aggregates or micelle-like complexes. Importantly, intercellular transfer of GPI-APs has been shown to induce specific phenotypes such as stimulation of lipid and glycogen synthesis, in cultured human adipocytes, blood cells, and induced pluripotent stem cells. As a consequence, intercellular transfer of GPI-APs should be regarded as non-genetic inheritance of (acquired) features between somatic cells which is based on the biogenesis and transmission of matter such as GPI-APs and "membrane landscapes", rather than the replication and transmission of information such as DNA. Its operation in mammalian organisms remains to be clarified.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
44
|
Chang X, Song YH, Xia T, He ZX, Zhao SB, Wang ZJ, Gu L, Li ZS, Xu C, Wang SL, Bai Y. Macrophage-derived exosomes promote intestinal mucosal barrier dysfunction in inflammatory bowel disease by regulating TMIGD1 via mircroRNA-223. Int Immunopharmacol 2023; 121:110447. [PMID: 37301121 DOI: 10.1016/j.intimp.2023.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND & AIM Exosomes are effective mediators of cell-to-cell interactions and transport several regulatory molecules, including microRNAs (miRNAs), involved in diverse fundamental biological processes. The role of macrophage-derived exosomes in the development of inflammatory bowel disease (IBD) has not been previously reported. This study investigated specific miRNAs in macrophage-derived exosomes in IBD and their molecular mechanism. METHODS A dextran sulfate sodium (DSS)-induced IBD mouse model was established. The culture supernatant of murine bone marrow-derived macrophages (BMDMs) cultured with or without lipopolysaccharide (LPS) was used for isolating exosomes, which were subjected to miRNA sequencing. Lentiviruses were used to alter miRNA expression and investigate the role of macrophage-derived exosomal miRNAs. Both mouse and human organoids were co-cultured with macrophages in a Transwell system to model cellular IBD in vitro. RESULTS LPS-induced macrophages released exosomes containing various miRNAs and exacerbated IBD. Based on miRNA sequencing of macrophage-derived exosomes, miR-223 was selected for further analysis. Exosomes with upregulated miR-223 expression contributed to the exacerbation of intestinal barrier dysfunction in vivo, which was further verified using both mouse and human colon organoids. Furthermore, time-dependent analysis of the mRNAs in DSS-induced colitis mouse tissue and miR-223 target gene prediction were performed to select the candidate gene, resulting in the identification of the barrier-related factor Tmigd1. CONCLUSION Macrophage-derived exosomal miR-223 has a novel role in the progression of DSS-induced colitis by inducing intestinal barrier dysfunction through the inhibition of TMIGD1.
Collapse
Affiliation(s)
- Xin Chang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China; Department of Gastroenterology, the General Hospital of Central Theater Command, Wuhan, China
| | - Yi-Hang Song
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tian Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zi-Xuan He
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng-Bing Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi-Jie Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lun Gu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
45
|
Galindo-Vega A, Maldonado-Lagunas V, Mitre-Aguilar IB, Melendez-Zajgla J. Tumor Microenvironment Role in Pancreatic Cancer Stem Cells. Cells 2023; 12:1560. [PMID: 37371030 DOI: 10.3390/cells12121560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a majority of patients presenting with unresectable or metastatic disease, resulting in a poor 5-year survival rate. This, in turn, is due to a highly complex tumor microenvironment and the presence of cancer stem cells, both of which induce therapy resistance and tumor relapse. Therefore, understanding and targeting the tumor microenvironment and cancer stem cells may be key strategies for designing effective PDAC therapies. In the present review, we summarized recent advances in the role of tumor microenvironment in pancreatic neoplastic progression.
Collapse
Affiliation(s)
- Aaron Galindo-Vega
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| | | | - Irma B Mitre-Aguilar
- Biochemistry Unit, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City 14080, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| |
Collapse
|
46
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
47
|
Wang L, Wang X, Chen Q, Wei Z, Xu X, Han D, Zhang Y, Chen Z, Liang Q. MicroRNAs of extracellular vesicles derived from mesenchymal stromal cells alleviate inflammation in dry eye disease by targeting the IRAK1/TAB2/NF-κB pathway. Ocul Surf 2023; 28:131-140. [PMID: 36990276 DOI: 10.1016/j.jtos.2023.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE To investigate the efficacy and mechanisms of human umbilical cord-derived MSC-derived extracellular vesicles (hucMSC-EVs) in a mouse model of desiccation-induced dry eye disease (DED). METHODS hucMSC-EVs were enriched by ultracentrifugation. The DED model was induced by desiccating environment combined with scopolamine administration. The DED mice were divided into the hucMSC-EVs group, fluorometholone (FML) group, PBS group, and blank control group. Tear secretion, corneal fluorescein staining, the cytokine profiles in tears and goblet cells, TUNEL-positive cell, and CD4+ cells were examined to assess therapeutic efficiency. The miRNAs in the hucMSC-EVs were sequenced, and the top 10 were used for miRNA enrichment analysis and annotation. The targeted DED-related signaling pathway was further verified by using RT‒qPCR and western blotting. RESULTS Treatment with hucMSC-EVs increased the tear volume and maintained corneal integrity in DED mice. The cytokine profile in the tears of the hucMSC-EVs group presented with a lower level of proinflammatory cytokines than PBS group. Moreover, hucMSC-EVs treatment increased goblet cell density and inhibited cell apoptosis and CD4+ cell infiltration. Functional analysis of the top 10 miRNAs in hucMSC-EVs showed a high correlation with immunity. Among them, miR-125 b, let-7b, and miR-6873 were conserved between humans and mice and were associated with the IRAK1/TAB2/NF-κB pathway that was activated in DED. Furthermore, IRAK1/TAB2/NF-κB pathway activation and the abnormal expression of IL-4, IL-8, IL-10, IL-13, IL-17, and TNF-α were reversed by hucMSC-EVs. CONCLUSIONS hucMSCs-EVs alleviate DED signs, suppress inflammation and restore homeostasis of the corneal surface by multitargeting the IRAK1/TAB2/NF-κB pathway via certain miRNAs.
Collapse
Affiliation(s)
- Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Xueyao Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, And Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
| | - Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Deqiang Han
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, And Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
| | - Yuheng Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, And Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China.
| |
Collapse
|
48
|
Liu A, Hefley B, Escandon P, Nicholas SE, Karamichos D. Salivary Exosomes in Health and Disease: Future Prospects in the Eye. Int J Mol Sci 2023; 24:ijms24076363. [PMID: 37047335 PMCID: PMC10094317 DOI: 10.3390/ijms24076363] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Exosomes are a group of vesicles that package and transport DNA, RNA, proteins, and lipids to recipient cells. They can be derived from blood, saliva, urine, and/or other biological tissues. Their impact on several diseases, such as neurodegenerative, autoimmune, and ocular diseases, have been reported, but not fully unraveled. The exosomes that are derived from saliva are less studied, but offer significant advantages over exosomes from other sources, due to their accessibility and ease of collection. Thus, their role in the pathophysiology of diseases is largely unknown. In the context of ocular diseases, salivary exosomes have been under-utilized, thus creating an enormous gap in the literature. The current review discusses the state of exosomes research on systemic and ocular diseases and highlights the role and potential of salivary exosomes as future ocular therapeutic vehicles.
Collapse
Affiliation(s)
- Angela Liu
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Brenna Hefley
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-817-735-2101
| |
Collapse
|
49
|
Jimenez SA, Piera-Velazquez S. Probable role of exosomes in the extension of fibrotic alterations from affected to normal cells in systemic sclerosis. Rheumatology (Oxford) 2023; 62:999-1008. [PMID: 35944210 PMCID: PMC9977136 DOI: 10.1093/rheumatology/keac451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
SSc is a systemic autoimmune disease of unknown etiology characterized by frequently progressive cutaneous and internal organ fibrosis causing severe disability, organ failure and high mortality. A remarkable feature of SSc is the extension of the fibrotic alterations to nonaffected tissues. The mechanisms involved in the extension of fibrosis have remained elusive. We propose that this process is mediated by exosome microvesicles released from SSc-affected cells that induce an activated profibrotic phenotype in normal or nonaffected cells. Exosomes are secreted microvesicles involved in an intercellular communication system. Exosomes can transfer their macromolecular content to distant target cells and induce paracrine effects in the recipient cells, changing their molecular pathways and gene expression. Confirmation of this hypothesis may identify the molecular mechanisms responsible for extension of the SSc fibrotic process from affected cells to nonaffected cells and may allow the development of novel therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
50
|
Wang L, Klionsky DJ, Shen HM. The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol 2023; 24:186-203. [PMID: 36097284 DOI: 10.1038/s41580-022-00529-z] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 02/08/2023]
Abstract
'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.
Collapse
Affiliation(s)
- Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|