1
|
Kunitomi C, Romero M, Daldello EM, Schindler K, Conti M. Multiple intersecting pathways are involved in CPEB1 phosphorylation and regulation of translation during mouse oocyte meiosis. Development 2024; 151:dev202712. [PMID: 38785133 PMCID: PMC11190569 DOI: 10.1242/dev.202712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in regulating mRNA translation in oocytes. However, the specifics of how and which protein kinase cascades modulate CPEB1 activity are still controversial. Using genetic and pharmacological tools, and detailed time courses, we have re-evaluated the relationship between CPEB1 phosphorylation and translation activation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on CPEB1 phosphorylation during prometaphase of meiosis I. Only inactivation of the CDK1/MAPK pathway disrupts translation, whereas inactivation of either pathway alone leads to CPEB1 stabilization. However, CPEB1 stabilization induced by inactivation of the AURKA/PLK1 pathway does not affect translation, indicating that destabilization and/or degradation is not linked to translational activation. The accumulation of endogenous CCNB1 protein closely recapitulates the translation data that use an exogenous template. These findings support the overarching hypothesis that the activation of translation during prometaphase in mouse oocytes relies on a CDK1/MAPK-dependent CPEB1 phosphorylation, and that translational activation precedes CPEB1 destabilization.
Collapse
Affiliation(s)
- Chisato Kunitomi
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Mayra Romero
- Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Karen Schindler
- Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Santoni M, Meneau F, Sekhsoukh N, Castella S, Le T, Miot M, Daldello EM. Unraveling the interplay between PKA inhibition and Cdk1 activation during oocyte meiotic maturation. Cell Rep 2024; 43:113782. [PMID: 38358892 DOI: 10.1016/j.celrep.2024.113782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Oocytes are arrested in prophase I. In vertebrates, meiotic resumption is triggered by hormonal stimulation that results in cAMP-dependent protein kinase (PKA) downregulation leading to Cdk1 activation. Yet the pathways connecting PKA to Cdk1 remain unclear. Here, we identify molecular events triggered by PKA downregulation occurring upstream of Cdk1 activation. We describe a two-step regulation controlling cyclin B1 and Mos accumulation, which depends on both translation and stabilization. Cyclin B1 accumulation is triggered by PKA inhibition upstream of Cdk1 activation, while its translation requires Cdk1 activity. Conversely, Mos translation initiates in response to the hormone, but the protein accumulates only downstream of Cdk1. Furthermore, two successive translation waves take place, the first controlled by PKA inhibition and the second by Cdk1 activation. Notably, Arpp19, an essential PKA effector, does not regulate the early PKA-dependent events. This study elucidates how PKA downregulation orchestrates multiple pathways that converge toward Cdk1 activation and induce the oocyte G2/M transition.
Collapse
Affiliation(s)
- Martina Santoni
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Ferdinand Meneau
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Nabil Sekhsoukh
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Sandrine Castella
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Tran Le
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Marika Miot
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Enrico Maria Daldello
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France.
| |
Collapse
|
3
|
The Translation of Cyclin B1 and B2 is Differentially Regulated during Mouse Oocyte Reentry into the Meiotic Cell Cycle. Sci Rep 2017; 7:14077. [PMID: 29074977 PMCID: PMC5658433 DOI: 10.1038/s41598-017-13688-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/29/2017] [Indexed: 01/15/2023] Open
Abstract
Control of protein turnover is critical for meiotic progression. Using RiboTag immunoprecipitation, RNA binding protein immunoprecipitation, and luciferase reporter assay, we investigated how rates of mRNA translation, protein synthesis and degradation contribute to the steady state level of Cyclin B1 and B2 in mouse oocytes. Ribosome loading onto Ccnb1 and Mos mRNAs increases during cell cycle reentry, well after germinal vesicle breakdown (GVBD). This is followed by the translation of reporters containing 3′ untranslated region of Mos or Ccnb1 and the accumulation of Mos and Cyclin B1 proteins. Conversely, ribosome loading onto Ccnb2 mRNA and Cyclin B2 protein level undergo minimal changes during meiotic reentry. Degradation rates of Cyclin B1 or B2 protein at the GV stage are comparable. The translational activation of Mos and Ccnb1, but not Ccnb2, mRNAs is dependent on the RNA binding protein CPEB1. Inhibition of Cdk1 activity, but not Aurora A kinase activity, prevents the translation of Mos or Ccnb1 reporters, suggesting that MPF is required for their translation in mouse oocytes. Conversely, Ccnb2 translation is insensitive to Cdk1 inhibition. Thus, the poised state that allows rapid meiotic reentry in mouse GV oocytes may be determined by the differential translational control of two Cyclins.
Collapse
|
4
|
Abstract
Localized mRNA translation is a widespread mechanism for targeting protein synthesis, important for cell fate, motility and pathogenesis. In Drosophila, the spatiotemporal control of gurken/TGF-α mRNA translation is required for establishing the embryonic body axes. A number of recent studies have highlighted key aspects of the mechanism of gurken mRNA translational control at the dorsoanterior corner of the mid-stage oocyte. Orb/CPEB and Wispy/GLD-2 are required for polyadenylation of gurken mRNA, but unlocalized gurken mRNA in the oocyte is not fully polyadenylated. 1 At the dorsoanterior corner, Orb and gurken mRNA have been shown to be enriched at the edge of Processing bodies, where translation occurs. 2 Over-expression of Orb in the adjacent nurse cells, where gurken mRNA is transcribed, is sufficient to cause mis-expression of Gurken protein. 3 In orb mutant egg chambers, reducing the activity of CK2, a Serine/Threonine protein kinase, enhances the ventralized phenotype, consistent with perturbation of gurken translation. 4 Here we show that sites phosphorylated by CK2 overlap with active Orb and with Gurken protein expression. Together with our new findings we consolidate the literature into a working model for gurken mRNA translational control and review the role of kinases, cell cycle factors and polyadenylation machinery highlighting a multitude of conserved factors and mechanisms in the Drosophila egg chamber.
Collapse
Affiliation(s)
| | - Timothy T Weil
- a Department of Zoology , University of Cambridge , Cambridge , UK
| |
Collapse
|
5
|
Eyers PA. 'Up with the LRRK': a phosphorylated Rab10 assay for evaluation of LRRK2 activity and inhibitor engagement. Biochem J 2016; 473:2757-62. [PMID: 27621483 PMCID: PMC5095898 DOI: 10.1042/bcj20160671c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Abstract
Protein kinases catalyse the addition of phosphate groups to Ser/Thr and Tyr residues in cognate substrates and are mutated or hyperactive in a variety of diseases, making them important targets for rationally designed drugs. A good example is the Parkinson's disease-associated kinase, leucine-rich repeat kinase 2 (LRRK2), which is mutated (and probably hyperactive) in a small, but significant, subset of patients. An exciting new approach for personalised therapy is the development of central nervous system (CNS)-active small-molecule kinase inhibitors, which could be employed to 'normalise' LRRK2 signalling in affected cell types. However, the development of such drugs requires validated assays for the analysis of target engagement and the assembly of a set of tools for interrogating LRRK2, and its substrates, both in vitro and in vivo A new study published in the Biochemical Journal by Ito et al. establishes that a 'Phos-tag'™-binding assay can be exploited to measure phosphorylation of a recently identified LRRK2 substrate (Ras-related protein in brain 10 (Rab10)), and to compare and contrast relative catalytic output from disease-associated LRRK2 mutants. Powerful in vivo chemical genetic approaches are also disclosed, in which the catalytic activity of LRRK2 is unequivocally linked to the extent of Rab10 phosphorylation and the effects of chemically distinct LRRK2 inhibitors are matched with on-target inhibition mechanisms mediated through LRRK2 and its substrate Rab10. These important findings should simplify the generic analysis of Rab10 phosphorylation in model biological systems and are likely to be applicable to other substrates of LRRK2 (or indeed other kinases) for which phospho-specific antibodies are either absent or unsatisfactory.
Collapse
Affiliation(s)
- Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
6
|
Perdereau D, Cailliau K, Browaeys-Poly E, Lescuyer A, Carré N, Benhamed F, Goenaga D, Burnol AF. Insulin-induced cell division is controlled by the adaptor Grb14 in a Chfr-dependent manner. Cell Signal 2015; 27:798-806. [PMID: 25578860 DOI: 10.1016/j.cellsig.2015.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/03/2015] [Indexed: 01/02/2023]
Abstract
Beyond its key role in the control of energy metabolism, insulin is also an important regulator of cell division and neoplasia. However, the molecular events involved in insulin-driven cell proliferation are not fully elucidated. Here, we show that the ubiquitin ligase Chfr, a checkpoint protein involved in G2/M transition, is a new effector involved in the control of insulin-induced cell proliferation. Chfr is identified as a partner of the molecular adapter Grb14, an inhibitor of insulin signalling. Using mammalian cell lines and the Xenopus oocyte as a model of G2/M transition, we demonstrate that Chfr potentiates the inhibitory effect of Grb14 on insulin-induced cell division. Insulin stimulates Chfr binding to the T220 residue of Grb14. Both Chfr binding site and Grb14 C-ter BPS-SH2 domain, mediating IR binding and inhibition, are required to prevent insulin-induced cell division. Targeted mutagenesis revealed that Chfr ligase activity and phosphorylation of its T39 residue, a target of Akt, are required to potentiate Grb14 inhibitory activity. In the presence of insulin, the binding of Chfr to Grb14 activates its ligase activity, leading to Aurora A and Polo-like kinase degradation and blocking cell division. Collectively, our results show that Chfr and Grb14 collaborate in a negative feedback loop controlling insulin-stimulated cell division.
Collapse
Affiliation(s)
- Dominique Perdereau
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité; 24, Rue du Faubourg Saint Jacques, Paris 75014, France
| | - Katia Cailliau
- Laboratoire de Régulation des Signaux de Division, Université de Lille 1, UE 4479, IFR 147, Villeneuve d'Ascq 59655, France
| | - Edith Browaeys-Poly
- Laboratoire de Régulation des Signaux de Division, Université de Lille 1, UE 4479, IFR 147, Villeneuve d'Ascq 59655, France
| | - Arlette Lescuyer
- Laboratoire de Régulation des Signaux de Division, Université de Lille 1, UE 4479, IFR 147, Villeneuve d'Ascq 59655, France
| | - Nadège Carré
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité; 24, Rue du Faubourg Saint Jacques, Paris 75014, France
| | - Fadila Benhamed
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité; 24, Rue du Faubourg Saint Jacques, Paris 75014, France
| | - Diana Goenaga
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité; 24, Rue du Faubourg Saint Jacques, Paris 75014, France
| | - Anne-Françoise Burnol
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité; 24, Rue du Faubourg Saint Jacques, Paris 75014, France.
| |
Collapse
|
7
|
Charlesworth A, Meijer HA, de Moor CH. Specificity factors in cytoplasmic polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 4:437-61. [PMID: 23776146 PMCID: PMC3736149 DOI: 10.1002/wrna.1171] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
Abstract
Poly(A) tail elongation after export of an messenger RNA (mRNA) to the cytoplasm is called cytoplasmic polyadenylation. It was first discovered in oocytes and embryos, where it has roles in meiosis and development. In recent years, however, has been implicated in many other processes, including synaptic plasticity and mitosis. This review aims to introduce cytoplasmic polyadenylation with an emphasis on the factors and elements mediating this process for different mRNAs and in different animal species. We will discuss the RNA sequence elements mediating cytoplasmic polyadenylation in the 3' untranslated regions of mRNAs, including the CPE, MBE, TCS, eCPE, and C-CPE. In addition to describing the role of general polyadenylation factors, we discuss the specific RNA binding protein families associated with cytoplasmic polyadenylation elements, including CPEB (CPEB1, CPEB2, CPEB3, and CPEB4), Pumilio (PUM2), Musashi (MSI1, MSI2), zygote arrest (ZAR2), ELAV like proteins (ELAVL1, HuR), poly(C) binding proteins (PCBP2, αCP2, hnRNP-E2), and Bicaudal C (BICC1). Some emerging themes in cytoplasmic polyadenylation will be highlighted. To facilitate understanding for those working in different organisms and fields, particularly those who are analyzing high throughput data, HUGO gene nomenclature for the human orthologs is used throughout. Where human orthologs have not been clearly identified, reference is made to protein families identified in man.
Collapse
Affiliation(s)
- Amanda Charlesworth
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | | | | |
Collapse
|
8
|
Arumugam K, Macnicol MC, Macnicol AM. Autoregulation of Musashi1 mRNA translation during Xenopus oocyte maturation. Mol Reprod Dev 2012; 79:553-63. [PMID: 22730340 DOI: 10.1002/mrd.22060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/04/2012] [Indexed: 11/06/2022]
Abstract
The mRNA translational control protein, Musashi, plays a critical role in cell fate determination through sequence-specific interactions with select target mRNAs. In proliferating stem cells, Musashi exerts repression of target mRNAs to promote cell cycle progression. During stem cell differentiation, Musashi target mRNAs are de-repressed and translated. Recently, we have reported an obligatory requirement for Musashi to direct translational activation of target mRNAs during Xenopus oocyte meiotic cell cycle progression. Despite the importance of Musashi in cell cycle regulation, only a few target mRNAs have been fully characterized. In this study, we report the identification and characterization of a new Musashi target mRNA in Xenopus oocytes. We demonstrate that progesterone-stimulated translational activation of the Xenopus Musashi1 mRNA is regulated through a functional Musashi binding element (MBE) in the Musashi1 mRNA 3' untranslated region (3' UTR). Mutational disruption of the MBE prevented translational activation of Musashi1 mRNA and its interaction with Musashi protein. Further, elimination of Musashi function through microinjection of inhibitory antisense oligonucleotides prevented progesterone-induced polyadenylation and translation of the endogenous Musashi1 mRNA. Thus, Xenopus Musashi proteins regulate translation of the Musashi1 mRNA during oocyte maturation. Our results indicate that the hierarchy of sequential and dependent mRNA translational control programs involved in directing progression through meiosis are reinforced by an intricate series of nested, positive feedback loops, including Musashi mRNA translational autoregulation. These autoregulatory positive feedback loops serve to amplify a weak initiating signal into a robust commitment for the oocyte to progress through the cell cycle and become competent for fertilization.
Collapse
Affiliation(s)
- Karthik Arumugam
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301W Markham, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
9
|
MACNICOL MELANIEC, MACNICOL ANGUSM. Developmental timing of mRNA translation--integration of distinct regulatory elements. Mol Reprod Dev 2010; 77:662-9. [PMID: 20652998 PMCID: PMC2910371 DOI: 10.1002/mrd.21191] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Targeted mRNA translation is emerging as a critical mechanism to control gene expression during developmental processes. Exciting new findings have revealed a critical role for regulatory elements within the mRNA untranslated regions to direct the timing of mRNA translation. Regulatory elements can be targeted by sequence-specific binding proteins to direct either repression or activation of mRNA translation in response to developmental signals. As new regulatory elements continue to be identified it has become clear that targeted mRNAs can contain multiple regulatory elements, directing apparently contradictory translational patterns. How is this complex regulatory input integrated? In this review, we focus on a new challenge area-how sequence-specific RNA binding proteins respond to developmental signals and functionally integrate to regulate the extent and timing of target mRNA translation. We discuss current understanding with a particular emphasis on the control of cell cycle progression that is mediated through a complex interplay of distinct mRNA regulatory elements during Xenopus oocyte maturation.
Collapse
Affiliation(s)
- MELANIE C. MACNICOL
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - ANGUS M. MACNICOL
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
10
|
Arumugam K, Wang Y, Hardy LL, MacNicol MC, MacNicol AM. Enforcing temporal control of maternal mRNA translation during oocyte cell-cycle progression. EMBO J 2009; 29:387-97. [PMID: 19959990 DOI: 10.1038/emboj.2009.337] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 10/21/2009] [Indexed: 02/07/2023] Open
Abstract
Meiotic cell-cycle progression in progesterone-stimulated Xenopus oocytes requires that the translation of pre-existing maternal mRNAs occur in a strict temporal order. Timing of translation is regulated through elements within the mRNA 3' untranslated region (3' UTR), which respond to cell cycle-dependant signalling. One element that has been previously implicated in the temporal control of mRNA translation is the cytoplasmic polyadenylation element (CPE). In this study, we show that the CPE does not direct early mRNA translation. Rather, early translation is directed through specific early factors, including the Musashi-binding element (MBE) and the MBE-binding protein, Musashi. Our findings indicate that although the cyclin B5 3' UTR contains both CPEs and an MBE, the MBE is the critical regulator of early translation. The cyclin B2 3' UTR contains CPEs, but lacks an MBE and is translationally activated late in maturation. Finally, utilizing antisense oligonucleotides to attenuate endogenous Musashi synthesis, we show that Musashi is critical for the initiation of early class mRNA translation and for the subsequent activation of CPE-dependant mRNA translation.
Collapse
Affiliation(s)
- Karthik Arumugam
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | |
Collapse
|
11
|
Pascreau G, Eckerdt F, Lewellyn AL, Prigent C, Maller JL. Phosphorylation of p53 is regulated by TPX2-Aurora A in xenopus oocytes. J Biol Chem 2009; 284:5497-505. [PMID: 19121998 PMCID: PMC2645813 DOI: 10.1074/jbc.m805959200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
p53 is an important tumor suppressor regulating the cell cycle at multiple
stages in higher vertebrates. The p53 gene is frequently deleted or mutated in
human cancers, resulting in loss of p53 activity. This leads to centrosome
amplification, aneuploidy, and tumorigenesis, three phenotypes also observed
after overexpression of the oncogenic kinase Aurora A. Accordingly, recent
studies have focused on the relationship between these two proteins. p53 and
Aurora A have been reported to interact in mammalian cells, but the function
of this interaction remains unclear. We recently reported that
Xenopus p53 can inhibit Aurora A activity in vitro but only
in the absence of TPX2. Here we investigate the interplay between
Xenopus Aurora A, TPX2, and p53 and show that newly synthesized TPX2
is required for nearly all Aurora A activation and for full p53 synthesis and
phosphorylation in vivo during oocyte maturation. In vitro,
phosphorylation mediated by Aurora A targets serines 129 and 190 within the
DNA binding domain of p53. Glutathione S-transferase pull-down
studies indicate that the interaction occurs via the p53 transactivation
domain and the Aurora A catalytic domain around the T-loop. Our studies
suggest that targeting of TPX2 might be an effective strategy for specifically
inhibiting the phosphorylation of Aurora A substrates, including p53.
Collapse
Affiliation(s)
- Gaetan Pascreau
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
12
|
Sequential waves of polyadenylation and deadenylation define a translation circuit that drives meiotic progression. Biochem Soc Trans 2008; 36:665-70. [DOI: 10.1042/bst0360665] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The maternal mRNAs that drive meiotic progression in oocytes contain short poly(A) tails and it is only when these tails are elongated that translation takes place. Cytoplasmic polyadenylation requires two elements in the 3′-UTR (3′-untranslated region), the hexanucleotide AAUAAA and the CPE (cytoplasmic polyadenylation element), which also participates in the transport and localization, in a quiescent state, of its targets. However, not all CPE-containing mRNAs are activated at the same time during the cell cycle, and polyadenylation is temporally and spatially regulated during meiosis. We have recently deciphered a combinatorial code that can be used to qualitatively and quantitatively predict the translational behaviour of CPE-containing mRNAs. This code defines positive and negative feedback loops that generate waves of polyadenylation and deadenylation, creating a circuit of mRNA-specific translational regulation that drives meiotic progression.
Collapse
|
13
|
Nishimura Y, Endo T, Kano K, Naito K. Porcine Aurora A accelerates Cyclin B and Mos synthesis and promotes meiotic resumption of porcine oocytes. Anim Reprod Sci 2008; 113:114-24. [PMID: 18614302 DOI: 10.1016/j.anireprosci.2008.05.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 03/21/2008] [Accepted: 05/26/2008] [Indexed: 11/19/2022]
Abstract
Full-grown oocytes arrested at germinal vesicle stage contain many dormant maternal mRNAs, and Aurora A has been reported to play a key role for the translation of these maternal mRNAs in Xenopus oocytes. Although the presence of Aurora A has been reported in mammals, the functions of Aurora A on the protein synthesis and the meiotic resumption have never been elucidated in mammalian oocytes. In the present study, the effects of porcine Aurora A on meiotic resumption of porcine oocytes were examined. At first, we cloned porcine Aurora A from total RNA of immature porcine oocytes by RT-PCR and obtained full-length cDNA that was 77%, 86% and 54% homologous with mouse, human and Xenopus Aurora A, respectively. The Aurora A mRNA and large amounts of protein were present throughout maturation period in porcine oocytes. The overexpression of porcine Aurora A by the mRNA injection into immature porcine oocytes had no effects on Cyclin B synthesis and meiotic resumption. Therefore we constructed a mutated Aurora A (AA-Aurora A), which was replaced the expecting inhibitory phosphorylation sites, serines 283 and 284, to non-phosphorylatable alanines. The oocytes expressed AA-Aurora A were accelerated their Cyclin B synthesis and Rsk phosphorylation, an indicator of Mos synthesis, then their meiotic resumption was promoted significantly. These results suggest for the first time in mammalian oocytes that mammalian Aurora A stimulates the protein synthesis and promotes the meiotic resumption. In addition, we identified the inhibitory phosphorylation sites of porcine Aurora A, and indicate the presence of phosphorylation-dependent regulation mechanisms in mammalian Aurora A.
Collapse
Affiliation(s)
- Yukio Nishimura
- Department of Animal Resource Sciences, Graduate School of Agricultural Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
14
|
Alieva IB, Uzbekov RE. The centrosome is a polyfunctional multiprotein cell complex. BIOCHEMISTRY (MOSCOW) 2008; 73:626-43. [DOI: 10.1134/s0006297908060023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Sun L, Hodeify R, Haun S, Charlesworth A, MacNicol AM, Ponnappan S, Ponnappan U, Prigent C, Machaca K. Ca2+ homeostasis regulates Xenopus oocyte maturation. Biol Reprod 2008; 78:726-35. [PMID: 18094360 PMCID: PMC2587222 DOI: 10.1095/biolreprod.107.063693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In contrast to the well-defined role of Ca2+ signals during mitosis, the contribution of Ca2+ signaling to meiosis progression is controversial, despite several decades of investigating the role of Ca2+ and its effectors in vertebrate oocyte maturation. We have previously shown that during Xenopus oocyte maturation, Ca2+ signals are dispensable for entry into meiosis and for germinal vesicle breakdown. However, normal Ca2+ homeostasis is essential for completion of meiosis I and extrusion of the first polar body. In this study, we test the contribution of several downstream effectors in mediating the Ca2+ effects during oocyte maturation. We show that calmodulin and calcium-calmodulin-dependent protein kinase II (CAMK2) are not critical downstream Ca2+ effectors during meiotic maturation. In contrast, accumulation of Aurora kinase A (AURKA) protein is disrupted in cells deprived of Ca2+ signals. Since AURKA is required for bipolar spindle formation, failure to accumulate AURKA may contribute to the defective spindle phenotype following Ca2+ deprivation. These findings argue that Ca2+ homeostasis is important in establishing the oocyte's competence to undergo maturation in preparation for fertilization and embryonic development.
Collapse
Affiliation(s)
- Lu Sun
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Rawad Hodeify
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Shirley Haun
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Amanda Charlesworth
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Angus M. MacNicol
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Subramaniam Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Usha Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Department of Immunology & Microbiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Claude Prigent
- CNRS UMR6061, Genetique et Developpement, Universite de Rennes 1, 35043 Rennes, France
| | - Khaled Machaca
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
16
|
Pascreau G, Delcros JG, Morin N, Prigent C, Arlot-Bonnemains Y. Aurora-A kinase Ser349 phosphorylation is required during Xenopus laevis oocyte maturation. Dev Biol 2008; 317:523-30. [PMID: 18395707 DOI: 10.1016/j.ydbio.2008.02.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 02/03/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
Xenopus laevis Aurora-A is phosphorylated in vivo onto three amino acids: Ser53, Thr295 and Ser349. The activation of the kinase depends on its autophosphorylation on Thr295 within the T-loop. The phosphorylation of Ser53 by still unknown kinase(s) prevents its degradation. The present work focused on the regulation of Aurora-A function via Ser349 phosphorylation. Mutagenesis of Ser349 to alanine (S349A) had few impact in vitro on the capability of the kinase to autophosphorylate as well as on its activity. These data in addition to in gel kinase assays and site-specific proteolytic digestion experiments prove that Ser349 is clearly neither a primary autophosphorylation site, nor an autophosphorylation site depending on the priming phosphorylation of Thr295. Using specific antibodies, we also show that the phosphorylation of Aurora-A Ser349 is a physiological event during Xenopus oocyte maturation triggered by progesterone. A peak of phosphorylation paralleled the decrease of Aurora activity observed between meiosis I and II. In response to progesterone, X. laevis stage VI oocytes microinjected with the Aurora-A S349A mutant proceeded normally to germinal vesicle breakdown (GVBD), but degenerated rapidly soon after. Since phosphorylation of Ser349 is responsible for a decrease in kinase activity, our results suggest that a down-regulation of Aurora-A activity involving Ser349 phosphorylation is required in the process of maturation.
Collapse
Affiliation(s)
- Gaetan Pascreau
- CNRS UMR6061 Génétique et Développement, Groupe Cycle Cellulaire, IFR-140 GFAS, Faculté de Médecine, Université Rennes 1, 2 Av du Pr Léon Bernard, 35043 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
17
|
Translational control by cytoplasmic polyadenylation in Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:217-29. [PMID: 18316045 PMCID: PMC2323027 DOI: 10.1016/j.bbagrm.2008.02.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 01/30/2008] [Accepted: 02/04/2008] [Indexed: 12/21/2022]
Abstract
Elongation of the poly(A) tails of specific mRNAs in the cytoplasm is a crucial regulatory step in oogenesis and early development of many animal species. The best studied example is the regulation of translation by cytoplasmic polyadenylation elements (CPEs) in the 3′ untranslated region of mRNAs involved in Xenopus oocyte maturation. In this review we discuss the mechanism of translational control by the CPE binding protein (CPEB) in Xenopus oocytes as follows:The cytoplasmic polyadenylation machinery such as CPEB, the subunits of cleavage and polyadenylation specificity factor (CPSF), symplekin, Gld-2 and poly(A) polymerase (PAP). The signal transduction that leads to the activation of CPE-mediated polyadenylation during oocyte maturation, including the potential roles of kinases such as MAPK, Aurora A, CamKII, cdk1/Ringo and cdk1/cyclin B. The role of deadenylation and translational repression, including the potential involvement of PARN, CCR4/NOT, maskin, pumilio, Xp54 (Ddx6, Rck), other P-body components and isoforms of the cap binding initiation factor eIF4E.
Finally we discuss some of the remaining questions regarding the mechanisms of translational regulation by cytoplasmic polyadenylation and give our view on where our knowledge is likely to be expanded in the near future.
Collapse
|
18
|
Uzbekova S, Arlot-Bonnemains Y, Dupont J, Dalbiès-Tran R, Papillier P, Pennetier S, Thélie A, Perreau C, Mermillod P, Prigent C, Uzbekov R. Spatio-Temporal Expression Patterns of Aurora Kinases A, B, and C and Cytoplasmic Polyadenylation-Element-Binding Protein in Bovine Oocytes During Meiotic Maturation1. Biol Reprod 2008; 78:218-33. [PMID: 17687118 DOI: 10.1095/biolreprod.107.061036] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Maturation of immature bovine oocytes requires cytoplasmic polyadenylation and synthesis of a number of proteins involved in meiotic progression and metaphase-II arrest. Aurora serine-threonine kinases--localized in centrosomes, chromosomes, and midbody--regulate chromosome segregation and cytokinesis in somatic cells. In frog and mouse oocytes, Aurora A regulates polyadenylation-dependent translation of several mRNAs such as MOS and CCNB1, presumably by phosphorylating CPEB, and Aurora B phosphorylates histone H3 during meiosis. We analyzed the expression of three Aurora kinase genes--AURKA, AURKB, and AURKC--in bovine oocytes during meiosis by reverse transcription followed by quantitative real-time PCR and immunodetection. Aurora A was the most abundant form in oocytes, both at mRNA and protein levels. AURKA protein progressively accumulated in the oocyte cytoplasm during antral follicle growth and in vitro maturation. AURKB associated with metaphase chromosomes. AURKB, AURKC, and Thr-phosphorylated AURKA were detected at a contractile ring/midbody during the first polar body extrusion. CPEB, localized in oocyte cytoplasm, was hyperphosphorylated during prophase/metaphase-I transition. Most CPEB degraded in metaphase-II oocytes and remnants remained localized in a contractile ring. Roscovitine, U0126, and metformin inhibited meiotic divisions; they all induced a decrease of CCNB1 and phospho-MAPK3/1 levels and prevented CPEB degradation. However, only metformin depleted AURKA. The Aurora kinase inhibitor VX680 at 100 nmol/L did not inhibit meiosis but led to multinuclear oocytes due to the failure of the polar body extrusion. Thus, in bovine oocyte meiosis, massive destruction of CPEB accompanies metaphase-I/II transition, and Aurora kinases participate in regulating segregation of the chromosomes, maintenance of metaphase-II, and formation of the first polar body.
Collapse
Affiliation(s)
- Svetlana Uzbekova
- INRA, UMR85 Physiologie de Reproduction et des Comportements, CNRS, UMR6175, Université de Tours, Haras Nationaux, 37380 Nouzilly, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tosco M, Faelli A, Gastaldi G, Paulmichl M, Orsenigo MN. Endogenous lactate transport in Xenopus laevis oocyte: dependence on cytoskeleton and regulation by protein kinases. J Comp Physiol B 2008; 178:457-63. [PMID: 18180930 DOI: 10.1007/s00360-007-0238-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 12/04/2007] [Accepted: 12/06/2007] [Indexed: 11/28/2022]
Abstract
Carbon flux in Xenopus laevis oocyte is glycogenic and an endogenous monocarboxylate transporter is responsible for intracellular lactate uptake. The aim of the present study was to determine if direct activation of protein kinases C and A modulates the activity of lactate transporter, as well as to investigate the possible role of cytoskeleton in these regulatory phenomena. The modulation was studied in isolated Xenopus oocytes of stage V-VI by measuring (14)C-lactate uptake, both in the absence and in the presence of cytoskeletal-perturbing toxins. We found that the basal lactate transporter activity depends on the integrity of the cytoskeleton since it is partially inhibited by cytoskeleton disorganisation. Both PKA and PKC activation caused a significant decrease in transport activity and this decrease could be blocked by specific protein kinase inhibitors. The evidenced effects were not additive. Transport inhibition was annulled by agents that destabilize actin filaments or microtubules. We conclude that both protein kinases A and C, whose effects are mediated by cytoskeleton, negatively regulate the endogenous lactate transporter of Xenopus oocyte, suggesting that these kinases may have a role in the control of cytosolic pyruvate/lactate pool in the oocyte.
Collapse
Affiliation(s)
- Marisa Tosco
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Milano, Italy.
| | | | | | | | | |
Collapse
|
20
|
Keady BT, Kuo P, Martínez SE, Yuan L, Hake LE. MAPK interacts with XGef and is required for CPEB activation during meiosis in Xenopus oocytes. J Cell Sci 2007; 120:1093-103. [PMID: 17344432 DOI: 10.1242/jcs.03416] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiotic progression in Xenopus oocytes, and all other oocytes investigated, is dependent on polyadenylation-induced translation of stockpiled maternal mRNAs. Early during meiotic resumption, phosphorylation of CPE-binding protein (CPEB) is required for polyadenylation-induced translation of mRNAs encoding cell cycle regulators. Xenopus Gef (XGef), a Rho-family guanine-exchange factor, influences the activating phosphorylation of CPEB. An exchange-deficient version of XGef does not, therefore implicating Rho-family GTPase function in early meiosis. We show here that Clostridium difficile Toxin B, a Rho-family GTPase inhibitor, does not impair early CPEB phosphorylation or progression to germinal vesicle breakdown, indicating that XGef does not influence these events through activation of a Toxin-B-sensitive GTPase. Using the inhibitors U0126 for mitogen-activated protein kinase (MAPK), and ZM447439 for Aurora kinase A and Aurora kinase B, we found that MAPK is required for phosphorylation of CPEB, whereas Aurora kinases are not. Furthermore, we do not detect active Aurora kinase A in early meiosis. By contrast, we observe an early, transient activation of MAPK, independent of Mos protein expression. MAPK directly phosphorylates CPEB on four residues (T22, T164, S184, S248), but not on S174, a key residue for activating CPEB function. Notably, XGef immunoprecipitates contain MAPK, and this complex can phosphorylate CPEB. MAPK may prime CPEB for phosphorylation on S174 by an as-yet-unidentified kinase or may activate this kinase.
Collapse
Affiliation(s)
- Brian T Keady
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | |
Collapse
|
21
|
Gadea BB, Ruderman JV. Aurora B is required for mitotic chromatin-induced phosphorylation of Op18/Stathmin. Proc Natl Acad Sci U S A 2006; 103:4493-8. [PMID: 16537398 PMCID: PMC1401233 DOI: 10.1073/pnas.0600702103] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncoprotein 18/Stathmin (Op18) is a microtubule-destabilizing protein that is inhibited by phosphorylation in response to many types of signals. During mitosis, phosphorylation of Op18 by cdc2 is necessary but not sufficient for Op18 inhibition. The presence of mitotic chromosomes is additionally required and involves phosphorylation of Ser-16 in Xenopus Op18 (and/or Ser-63 in human). Given that Ser-16 is an excellent Aurora A (Aur-A) kinase consensus phosphorylation site and the Aurora kinase inhibitor ZM447439 (ZM) blocks phosphorylation in the activation loop of Aur-A, we asked whether either Aur-A or Aurora B (Aur-B) might regulate Op18. We find that ZM blocks the ability of mitotic chromatin to induce Op18 hyperphosphorylation in Xenopus egg extracts. Depletion of Aur-B, but not Aur-A, blocks hyperphosphorylation of Op18, and chromatin assembled in the absence of Aur-B fails to induce hyperphosphorylation. These results suggest that Aur-B, which concentrates at centromeres of metaphase chromosomes, contributes to localized regulation of Op18 during the process of spindle assembly.
Collapse
Affiliation(s)
- Bedrick B. Gadea
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Joan V. Ruderman
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
22
|
Maton G, Lorca T, Girault JA, Ozon R, Jessus C. Differential regulation of Cdc2 and Aurora-A in Xenopus oocytes: a crucial role of phosphatase 2A. J Cell Sci 2005; 118:2485-94. [PMID: 15923661 DOI: 10.1242/jcs.02370] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The success of cell division relies on the activation of its master regulator Cdc2-cyclin B, and many other kinases controlling cellular organization, such as Aurora-A. Most of these kinase activities are regulated by phosphorylation. Despite numerous studies showing that okadaic acid-sensitive phosphatases regulate both Cdc2 and Aurora-A activation, their identity has not yet been established in Xenopus oocytes and the importance of their regulation has not been evaluated. Using an oocyte cell-free system, we demonstrate that PP2A depletion is sufficient to lead to Cdc2 activation, whereas Aurora-A activation depends on Cdc2 activity. The activity level of PP1 does not affect Cdc2 kinase activation promoted by PP2A removal. PP1 inhibition is also not sufficient to lead to Aurora-A activation in the absence of active Cdc2. We therefore conclude that in Xenopus oocytes, PP2A is the key phosphatase that negatively regulates Cdc2 activation. Once this negative regulator is removed, endogenous kinases are able to turn on the activator Cdc2 system without any additional stimulation. In contrast, Aurora-A activation is indirectly controlled by Cdc2 activity independently of either PP2A or PP1. This strongly suggests that in Xenopus oocytes, Aurora-A activation is mainly controlled by the specific stimulation of kinases under the control of Cdc2 and not by downregulation of phosphatase.
Collapse
Affiliation(s)
- Gilliane Maton
- Laboratoire de Biologie du Développement, UMR-CNRS 7622, Université Pierre et Marie Curie, boîte 24, 4 place Jussieu, 75252 Paris, CEDEX 5, France
| | | | | | | | | |
Collapse
|
23
|
Abstract
RNA-binding proteins play a major part in the control of gene expression during early development. At this stage, the majority of regulation occurs at the levels of translation and RNA localization. These processes are, in general, mediated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated regions of their target RNAs. Although initial work concentrated on the analysis of these sequences and their trans-acting factors, we are now beginning to gain an understanding of the mechanisms by which some of these proteins function. In this review, we will describe a number of different families of RNA-binding proteins, grouping them together on the basis of common regulatory strategies, and emphasizing the recurrent themes that occur, both across different species and as a response to different biological problems.
Collapse
|
24
|
Vigneron C, Perreau C, Dupont J, Uzbekova S, Prigent C, Mermillod P. Several signaling pathways are involved in the control of cattle oocyte maturation. Mol Reprod Dev 2005; 69:466-74. [PMID: 15457547 DOI: 10.1002/mrd.20173] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The main limit of in vitro production of domestic mammal embryos comes from the low capacity of in vitro matured oocytes to develop after fertilization. As soon as they are separated from follicular environment, oocytes spontaneously resume meiosis without completion of their terminal differentiation. Roscovitine (ROS), an inhibitor of M-phase promoting factor (MPF) kinase activity reversibly blocks the meiotic resumption in vitro. However, in cattle maturing oocytes several cellular events such as protein synthesis and phosphorylation, chromatin condensation and nuclear envelope folding escape ROS inhibition suggesting the alternative pathways in oocyte maturation. We compared the level of synthesis and phosphorylation of several protein kinases during bovine cumulus oocyte complex (COC) maturation in vitro in the presence or not of epidermal growth factor (EGF) and ROS. We showed that during the EGF-stimulated maturation, ROS neither affected the decrease of EGF receptor (EGFR) nor did inhibit totally its phosphorylation in cumulus cells and also did not totally eliminate tyrosine phosphorylation in oocytes. However, ROS did inhibit the Phosphoinositide 3-kinase (PI3) activity when oocytes mature without EGF. Accumulation of Akt/PKB (protein kinase B), JNK1/2 (jun N-terminal kinases) and Aurora-A in oocytes during maturation was not affected by ROS. However, the phosphorylation of Akt but not JNKs was diminished in ROS-treated oocytes. Thus, PI3 kinase/Akt, JNK1/2 and Aurora-A are likely to be involved in the regulation of bovine oocyte maturation and some of these pathways seem to be independent to MPF activity and meiotic resumption. This complex regulation may explain the partial meiotic arrest of ROS-treated oocytes and the accelerated maturation observed after such treatment.
Collapse
Affiliation(s)
- Céline Vigneron
- INRA Station de Physiologie de la Reproduction et des Comportements, UMR 6175 INRA/CNRS/Université de Tours Nouzilly, France
| | | | | | | | | | | |
Collapse
|
25
|
Pascreau G, Delcros JG, Cremet JY, Prigent C, Arlot-Bonnemains Y. Phosphorylation of Maskin by Aurora-A Participates in the Control of Sequential Protein Synthesis during Xenopus laevis Oocyte Maturation. J Biol Chem 2005; 280:13415-23. [PMID: 15687499 DOI: 10.1074/jbc.m410584200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At the end of oogenesis, Xenopus laevis stage VI oocytes are arrested at the G2/M transition (prophase) waiting for progesterone to release the block and begin maturation. Progesterone triggers a cascade of phosphorylation events such as a decrease of pK(a) and an increase of maturating-promoting factor activity. Progression through meiosis was controlled by the sequential synthesis of several proteins. For instance, the MAPK kinase kinase c-Mos is the very first protein to be produced, whereas cyclin B1 appears only after meiosis I. After the meiotic cycles, the oocyte arrests at metaphase of meiosis II with an elevated c-Mos kinase activity (cytostatic factor). By using a two-hybrid screen, we have identified maskin, a protein involved in the control of mRNA sequential translation, as a binding partner of Aurora-A, a protein kinase necessary for oocyte maturation. Here we showed that, in vitro, Aurora-A directly binds to maskin and that both proteins can be co-immunoprecipitated from oocyte extracts, suggesting that they do associate in vivo. We also demonstrated that Aurora-A phosphorylates maskin on a Ser residue conserved in transforming acidic coiled coil proteins from Drosophila to human. When the phosphorylation of this Ser was inhibited in vivo by microinjection of synthetic peptides that mimic the maskin-phosphorylated sequence, we observed a premature maturation. Under these conditions, proteins such as cyclin B1 and Cdc6, which are normally detected only in meiosis II, were massively produced in meiosis I before the occurrence of the nuclear envelope breakdown. This result strongly suggests that phosphorylation of maskin by Aurora-A prevents meiosis II proteins from being produced during meiosis I.
Collapse
Affiliation(s)
- Gaetan Pascreau
- Groupe Cycle Cellulaire, UMR6061 Génétique et Développement, CNRS, Université de Rennes 1, IFR97 Génomique Fonctionnelle, Faculté de Médecine, 2 Av du Pr Léon Bernard, 35043 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
26
|
Martínez SE, Yuan L, Lacza C, Ransom H, Mahon GM, Whitehead IP, Hake LE. XGef mediates early CPEB phosphorylation during Xenopus oocyte meiotic maturation. Mol Biol Cell 2005; 16:1152-64. [PMID: 15635100 PMCID: PMC551481 DOI: 10.1091/mbc.e04-07-0585] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Polyadenylation-induced translation is an important regulatory mechanism during metazoan development. During Xenopus oocyte meiotic progression, polyadenylation-induced translation is regulated by CPEB, which is activated by phosphorylation. XGef, a guanine exchange factor, is a CPEB-interacting protein involved in the early steps of progesterone-stimulated oocyte maturation. We find that XGef influences early oocyte maturation by directly influencing CPEB function. XGef and CPEB interact during oogenesis and oocyte maturation and are present in a c-mos messenger ribonucleoprotein (mRNP). Both proteins also interact directly in vitro. XGef overexpression increases the level of CPEB phosphorylated early during oocyte maturation, and this directly correlates with increased Mos protein accumulation and acceleration of meiotic resumption. To exert this effect, XGef must retain guanine exchange activity and the interaction with CPEB. Overexpression of a guanine exchange deficient version of XGef, which interacts with CPEB, does not enhance early CPEB phosphorylation. Overexpression of a version of XGef that has significantly reduced interaction with CPEB, but retains guanine exchange activity, decreases early CPEB phosphorylation and delays oocyte maturation. Injection of XGef antibodies into oocytes blocks progesterone-induced oocyte maturation and early CPEB phosphorylation. These findings indicate that XGef is involved in early CPEB activation and implicate GTPase signaling in this process.
Collapse
|
27
|
Vigneron C, Perreau C, Dalbiès-Tran R, Joly C, Humblot P, Uzbekova S, Mermillod P. Protein synthesis and mRNA storage in cattle oocytes maintained under meiotic block by roscovitine inhibition of MPF activity. Mol Reprod Dev 2004; 69:457-65. [PMID: 15457512 DOI: 10.1002/mrd.20172] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Roscovitine, a specific inhibitor of MPF kinase activity, has been shown to block efficiently and reversibly the meiotic resumption of oocytes from different species, including cattle. In view to verify that oocytes maintain germinal vesicle like molecular activities under roscovitine treatment, we compared in the present study the M-phase Promoting Factor (MPF) and Mitogen Activated Protein (MAP) kinase activities; protein synthesis and phosphorylation patterns in oocytes and cumulus cells; and CDK1 and Cyclin B messengers storage under control culture and under roscovitine inhibition. We observed that roscovitine induced a full and reversible inhibition of MPF kinase activity and of the activating phosphorylation of both ERK1/2 MAPK. During in vivo maturation, there was a highly significant increase in the relative mRNA level of both cyclin B1 and CDK1 whereas during in vitro culture, the relative amount of CDK1 messenger was reduced. These messengers may be used as markers for the optimization of in vitro maturation treatment. Roscovitine reversibly prevented this drop in relative quantities of CDK1 messenger. Oocytes cultured in the presence of roscovitine maintained a GV like profile of protein synthesis except that two proteins of 48 and 64 kDa specific of matured oocytes also appeared under roscovitine treatment. However, roscovitine did not prevent most of the modifications of protein phosphorylation pattern observed during maturation. In conclusion, results of this study revealed that the use of roscovitine did not prevent all the events related to maturation of bovine oocytes.
Collapse
Affiliation(s)
- Céline Vigneron
- INRA Station de Physiologie de la Reproduction et des Comportements, UMR 6175 INRA/CNRS/Université de Tours, Nouzilly, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Sarkissian M, Mendez R, Richter JD. Progesterone and insulin stimulation of CPEB-dependent polyadenylation is regulated by Aurora A and glycogen synthase kinase-3. Genes Dev 2004; 18:48-61. [PMID: 14724178 PMCID: PMC314275 DOI: 10.1101/gad.1136004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Progesterone stimulation of Xenopus oocyte maturation requires the cytoplasmic polyadenylation-induced translation of mos and cyclin B mRNAs. One cis element that drives polyadenylation is the CPE, which is bound by the protein CPEB. Polyadenylation is stimulated by Aurora A (Eg2)-catalyzed CPEB serine 174 phosphorylation, which occurs soon after oocytes are exposed to progesterone. Here, we show that insulin also stimulates Aurora A-catalyzed CPEB S174 phosphorylation, cytoplasmic polyadenylation, translation, and oocyte maturation. However, these insulin-induced events are uniquely controlled by PI3 kinase and PKC-zeta, which act upstream of Aurora A. The intersection of the progesterone and insulin signaling pathways occurs at glycogen synthase kinase 3 (GSK-3), which regulates the activity of Aurora A. GSK-3 and Aurora A interact in vivo, and overexpressed GSK-3 inhibits Aurora A-catalyzed CPEB phosphorylation. In vitro, GSK-3 phosphorylates Aurora A on S290/291, the result of which is an autophosphorylation of serine 349. GSK-3 phosphorylated Aurora A, or Aurora A proteins with S290/291D or S349D mutations, have reduced or no capacity to phosphorylate CPEB. Conversely, Aurora A proteins with S290/291A or S349A mutations are constitutively active. These results suggest that the progesterone and insulin stimulate maturation by inhibiting GSK-3, which allows Aurora A activation and CPEB-mediated translation.
Collapse
Affiliation(s)
- Madathia Sarkissian
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
29
|
Charlesworth A, Cox LL, MacNicol AM. Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes. J Biol Chem 2004; 279:17650-9. [PMID: 14752101 PMCID: PMC1817753 DOI: 10.1074/jbc.m313837200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Meiotic cell cycle progression during vertebrate oocyte maturation requires the correct temporal translation of maternal mRNAs encoding key regulatory proteins. The mechanism by which specific mRNAs are temporally activated is unknown, although both cytoplasmic polyadenylation elements (CPE) within the 3'-untranslated region (3'-UTR) of mRNAs and the CPE-binding protein (CPEB) have been implicated. We report that in progesterone-stimulated Xenopus oocytes, the early cytoplasmic polyadenylation and translational activation of multiple maternal mRNAs occur in a CPE- and CPEB-independent manner. We demonstrate that polyadenylation response elements, originally identified in the 3'-UTR of the mRNA encoding the Mos proto-oncogene, direct CPE- and CPEB-independent polyadenylation of an early class of Xenopus maternal mRNAs. Our findings refute the hypothesis that CPE sequences alone account for the range of temporal inductions of maternal mRNAs observed during Xenopus oocyte maturation. Rather, our data indicate that the sequential action of distinct 3'-UTR-directed translational control mechanisms coordinates the complex temporal patterns and extent of protein synthesis during vertebrate meiotic cell cycle progression.
Collapse
Affiliation(s)
- Amanda Charlesworth
- From the Department of Neurobiology and Developmental Sciences , University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Linda L. Cox
- From the Department of Neurobiology and Developmental Sciences , University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Angus M. MacNicol
- Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- § To whom correspondence should be addressed: ACRC, Slot 814, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205. Tel.: 501-296-1549; Fax: 501-686-6517; E-mail:
| |
Collapse
|
30
|
Yao LJ, Zhong ZS, Zhang LS, Chen DY, Schatten H, Sun QY. Aurora-A is a critical regulator of microtubule assembly and nuclear activity in mouse oocytes, fertilized eggs, and early embryos. Biol Reprod 2003; 70:1392-9. [PMID: 14695913 DOI: 10.1095/biolreprod.103.025155] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Aurora-A is a serine/threonine protein kinase that plays a role in cell-cycle regulation. The activity of this kinase has been shown to be required for regulating multiple stages of mitotic progression in somatic cells. In this study, the changes in aurora-;A expression were revealed in mouse oocytes using Western blotting. The subcellular localization of aurora-A during oocyte meiotic maturation, fertilization, and early cleavages as well as after antibody microinjection or microtubule assembly perturbance was studied with confocal microscopy. The quantity of aurora-A protein was high in the germinal vesicle (GV) and metaphase II (MII) oocytes and remained stable during other meiotic maturation stages. Aurora-A concentrated in the GV before meiosis resumption, in the pronuclei of fertilized eggs, and in the nuclei of early embryo blastomeres. Aurora-A was localized to the spindle poles of the meiotic spindle from the metaphase I (MI) stage to metaphase II stage. During early embryo development, aurora-A was found in association with the mitotic spindle poles. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. Aurora-A antibody microinjection decreased the rate of germinal vesicle breakdown (GVBD) and distorted MI spindle organization. Our results indicate that aurora-A is a critical regulator of cell-cycle progression and microtubule organization during mouse oocyte meiotic maturation, fertilization, and early embryo cleavage.
Collapse
Affiliation(s)
- Li-Juan Yao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 10080, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Mar Carmena
- Wellcome Trust Centre for Cell Biology, Institute for Cell and Molecular Biology, Kings Buildings, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK.
| | | |
Collapse
|
32
|
Maton G, Thibier C, Castro A, Lorca T, Prigent C, Jessus C. Cdc2-cyclin B triggers H3 kinase activation of Aurora-A in Xenopus oocytes. J Biol Chem 2003; 278:21439-49. [PMID: 12670933 DOI: 10.1074/jbc.m300811200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xenopus oocytes are arrested in meiotic prophase I and resume meiotic divisions in response to progesterone. Progesterone triggers activation of M-phase promoting factor (MPF) or Cdc2-cyclin B complex and neosynthesis of Mos kinase, responsible for MAPK activation. Both Cdc2 and MAPK activities are required for the success of meiotic maturation. However, the signaling pathway induced by progesterone and leading to MPF activation is poorly understood, and most of the targets of both Cdc2 and MAPK in the oocyte remain to be determined. Aurora-A is a Ser/Thr kinase involved in separation of centrosomes and in spindle assembly during mitosis. It has been proposed that in Xenopus oocytes Aurora-A could be an early component of the progesterone-transduction pathway, acting through the regulation of Mos synthesis upstream Cdc2 activation. We addressed here the question of Aurora-A regulation during meiotic maturation by using new in vitro and in vivo experimental approaches. We demonstrate that Cdc2 kinase activity is necessary and sufficient to trigger both Aurora-A phosphorylation and kinase activation in Xenopus oocyte. In contrast, these events are independent of the Mos/MAPK pathway. Aurora-A is phosphorylated in vivo at least on three residues that regulate differentially its kinase activity. Therefore, Aurora-A is under the control of Cdc2 in the Xenopus oocyte and could be involved in meiotic spindle establishment.
Collapse
Affiliation(s)
- Gilliane Maton
- Laboratoire de Biologie du Développement, Unite Mixte de Recherche-CNRS 7622, Université Pierre et Marie Curie, Boîte 24, 4 Place Jussieu, Paris 75252 cedex 05, France
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Segregation of chromosomes during mitosis requires interplay between several classes of protein on the spindle, including protein kinases, protein phosphatases, and microtubule binding motor proteins [1-4]. Aurora A is an oncogenic cell cycle-regulated protein kinase that is subject to phosphorylation-dependent activation [5-11]. Aurora A localization to the mitotic spindle depends on the motor binding protein TPX2 (Targeting Protein for Xenopus kinesin-like protein 2), but the protein(s) involved in Aurora A activation are unknown [11-13]. Here, we purify an activator of Aurora A from Xenopus eggs and identify it as TPX2. Remarkably, Aurora A that has been fully deactivated by Protein Phosphatase 2A (PP2A) becomes phosphorylated and reactivated by recombinant TPX2 in an ATP-dependent manner. Increased phosphorylation and activation of Aurora A requires its own kinase activity, suggesting that TPX2 stimulates autophosphorylation and autoactivation of the enzyme. Consistently, wild-type Aurora A, but not a kinase inactive mutant, becomes autophosphorylated on the regulatory T loop residue (Thr 295) after TPX2 treatment. Active Aurora A from bacteria is further activated at least 7-fold by recombinant TPX2, and TPX2 also impairs the ability of protein phosphatases to inactivate Aurora A in vitro. This concerted mechanism of stimulation of activation and inhibition of deactivation implies that TPX2 is the likely regulator of Aurora A activity at the mitotic spindle and may explain why loss of TPX2 in model systems perturbs spindle assembly [14-16]. Our finding that a known binding protein, and not a conventional protein kinase, is the relevant activator for Aurora A suggests a biochemical model in which the dynamic localization of TPX2 on mitotic structures directly modulates the activity of Aurora A for spindle assembly.
Collapse
Affiliation(s)
- Patrick A Eyers
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
34
|
Ma C, Cummings C, Liu XJ. Biphasic activation of Aurora-A kinase during the meiosis I- meiosis II transition in Xenopus oocytes. Mol Cell Biol 2003; 23:1703-16. [PMID: 12588989 PMCID: PMC151708 DOI: 10.1128/mcb.23.5.1703-1716.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus Aurora-A (also known as Eg2) is a member of the Aurora family of mitotic serine/threonine kinases. In Xenopus oocytes, Aurora-A phosphorylates and activates a cytoplasmic mRNA polyadenylation factor (CPEB) and therefore plays a pivotal role in MOS translation. However, hyperphosphorylation and activation of Aurora-A appear to be dependent on maturation-promoting factor (MPF) activation. To resolve this apparent paradox, we generated a constitutively activated Aurora-A by engineering a myristylation signal at its N terminus. Injection of Myr-Aurora-A mRNA induced germinal vesicle breakdown (GVBD) with the concomitant activation of MOS, mitogen-activated protein kinase, and MPF. Myr-Aurora-A-injected oocytes, however, appeared to arrest in meiosis I with high MPF activity and highly condensed, metaphase-like chromosomes but no organized microtubule spindles. No degradation of CPEB or cyclin B2 was observed following GVBD in Myr-Aurora-A-injected oocytes. In the presence of progesterone, the endogenous Aurora-A became hyperphosphorylated and activated at the time of MPF activation. Following GVBD, Aurora-A was gradually dephosphorylated and inactivated before it was hyperphosphorylated and activated again. This biphasic pattern of Aurora-A activation mirrored that of MPF activation and hence may explain meiosis I arrest by the constitutively activated Myr-Aurora-A.
Collapse
Affiliation(s)
- Chunqi Ma
- Ottawa Health Research Institute, Ottawa Hospital Civic Campus, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
35
|
Gonzalez C. Aurora-A in Cell Fate Control. Sci Signal 2002. [DOI: 10.1126/scisignal.1622002pe48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
36
|
Gonzalez C. Aurora-A in cell fate control. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pe48. [PMID: 12475998 DOI: 10.1126/stke.2002.162.pe48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Key cells divide asymmetrically during the development of multicellular organisms to give rise to offspring with different fates. In the Drosophila external sensory organ, asymmetrical division depends on polarization of the precursor cells during interphase and the consequent unequal distribution during mitosis of the protein Numb, which determines cell fate. Gonzalez discusses recent research implicating the mitotic kinase Aurora-A in the asymmetric localization of Numb in sensory organ pI precursor cells, a new function that appears to be independent of Aurora-A's known roles in regulating centrosomal maturation and the organization of mitotic spindle microtubules.
Collapse
Affiliation(s)
- Cayetano Gonzalez
- Cell Biology and Biophysics Programme, EMBL, Meyerhofstrasse 1, 69012 Heidelberg, Germany.
| |
Collapse
|
37
|
Littlepage LE, Wu H, Andresson T, Deanehan JK, Amundadottir LT, Ruderman JV. Identification of phosphorylated residues that affect the activity of the mitotic kinase Aurora-A. Proc Natl Acad Sci U S A 2002; 99:15440-5. [PMID: 12422018 PMCID: PMC137735 DOI: 10.1073/pnas.202606599] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2002] [Indexed: 11/18/2022] Open
Abstract
The activity of the kinase Aurora-A (Aur-A) peaks during mitosis and depends on phosphorylation by one or more unknown kinases. Mitotic phosphorylation sites were mapped by mass spec sequencing of recombinant Aur-A protein that had been activated by incubation in extracts of metaphase-arrested Xenopus eggs. Three sites were identified: serine 53 (Ser-53), threonine 295 (Thr-295), and serine 349 (Ser-349), which are equivalent to Ser-51, Thr-288, and Ser-342, respectively, in human Aur-A. To ask how phosphorylation of these residues might affect kinase activity, each was mutated to either alanine or aspartic acid, and the recombinant proteins were then tested for their ability to be activated by M phase extract. Mutation of Thr-295, which resides in the activation loop of the kinase, to either alanine or aspartic acid abolished activity. The S349A mutant had slightly reduced activity, indicating that phosphorylation is not required for activity. The S349D mutation completely blocked activation, suggesting that Ser-349 is important for either the structure or regulation of Aur-A. Finally, like human Aur-A, overexpression of Xenopus Aur-A transformed NIH 3T3 cells and led to tumors in nude mice. These results provide further evidence that Xenopus Aur-A is a functional ortholog of human Aur-A and, along with the recently described crystal structure of human Aur-A, should help in future studies of the mechanisms that regulate Aur-A activity during mitotic progression.
Collapse
|
38
|
Marumoto T, Hirota T, Morisaki T, Kunitoku N, Zhang D, Ichikawa Y, Sasayama T, Kuninaka S, Mimori T, Tamaki N, Kimura M, Okano Y, Saya H. Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 2002; 7:1173-82. [PMID: 12390251 DOI: 10.1046/j.1365-2443.2002.00592.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Various mitotic events are controlled by Cdc2-cyclin B and other mitotic kinases. Aurora/Ipl1-related mitotic kinases were proved to play key roles in mitotic progression in diverse lower organisms. Aurora-A is a mammalian counterpart of aurora/Ipl1-related kinases and is thought to be a potential oncogene. However, the regulation of aurora-A activation and the commitment of aurora-A in the progression of G2-M phase are largely unknown in mammalian cells. RESULTS We demonstrated that aurora-A is activated depending on the activation of Cdc2-cyclin B in mammalian cells. Since Cdc2-cyclin B does not directly phosphorylate aurora-A, indirect pathways such as the inhibition of PP1 by Cdc2-cyclin B may act for the activation of aurora-A kinase. Microinjection of anti-aurora-A antibodies into HeLa cells at late G2 phase caused a significant delay in mitotic entry. Furthermore, aurora-A activation at G2-M transition was inhibited by DNA damage, and the over-expression of aurora-A induced the abrogation of the DNA damage-induced G2 checkpoint. CONCLUSIONS Aurora-A is activated downstream of Cdc2-cyclin B and plays crucial roles in proper mitotic entry and G2 checkpoint control. Dysregulation of aurora-A induces abnormal G2-M transition in mammalian cells and may lead to chromosome instability, which results in the development and progression of malignant tumours.
Collapse
Affiliation(s)
- Tomotoshi Marumoto
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Mammalian aurora-A belongs to a multigenic family of mitotic serine/threonine kinases comprising two other members: aurora-B and aurora-C. In this review we will focus on aurora-A that starts to localize to centrosomes only in S phase as soon as centrioles have been duplicated, the protein is then degraded in early G1. Works in various organisms have revealed that the kinase is involved in centrosome separation, duplication and maturation as well as in bipolar spindle assembly and stability. Aurora kinases are found in all organisms in which their function has been conserved throughout evolution, namely the control of chromosome segregation. In human, aurora-A has focused a lot of attention, since its overexpression has been found to be correlated with the grade of various solid tumours. Ectopic kinase overexpression in any culture cell line leads to polyploidy and centrosome amplification. However, overexpression of aurora-A in particular cell lines such as NIH3T3 is sufficient to induce growth on soft agar. Those transformed cells form tumours when implanted in immunodeficient mice, indicating that the kinase is an oncogene.
Collapse
Affiliation(s)
- Stéphanie Dutertre
- Groupe Cycle Cellulaire, UMR 6061 Génétique et développement, CNRS-Université de Rennes I, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, 2 avenue du Pr Leon Bernard, CS 34317, 35043 Rennes cedex, France
| | | | | |
Collapse
|
40
|
Littlepage LE, Ruderman JV. Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev 2002; 16:2274-85. [PMID: 12208850 PMCID: PMC186670 DOI: 10.1101/gad.1007302] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mitotic kinase Aurora A (Aur-A) is required for formation of a bipolar mitotic spindle and accurate chromosome segregation. In somatic cells, Aur-A protein and kinase activity levels peak during mitosis, and Aur-A is degraded during mitotic exit. Here, we investigated how Aur-A protein and kinase activity levels are regulated, taking advantage of the rapid synchronous cell division cycles of Xenopus eggs and cell-free systems derived from them. Aur-A kinase activity oscillates in the early embryonic cell cycles, just as in somatic cells, but Aur-A protein levels are constant, indicating that regulated activation and inactivation, instead of periodic proteolysis, is the dominant mode of Aur-A regulation in these cell cycles. Cdh1, the APC/C activator that targets many mitotic proteins for ubiquitin-dependent proteolysis during late mitosis and G1 in somatic cells, is missing in Xenopus eggs and early embryos. We find that addition of Cdh1 to egg extracts undergoing M phase exit is sufficient to induce rapid degradation of Aur-A. Aur-A contains both of the two known APC/C recognition signals, (1) a C-terminal D box similar to those required for ubiquitin-dependent destruction of cyclin B and several other mitotic proteins, and (2) an N-terminal KEN box similar to that found on cdc20, which is ubiquitinated in response to APC/C(Cdh1). The D box is required for Cdh1-induced destruction of Aur-A but the KEN box is not. Destruction also requires a short region in the N terminus, which contains a newly identified recognition signal, the A box. The A box is conserved in vertebrate Aur-As and contains serine 53, which is phosphorylated during M phase. Mutation of serine 53 to aspartic acid, which can mimic the effect of phosphorylation, completely blocks Cdh1-dependent destruction of Aur-A. These results suggest that dephosphorylation of serine 53 during mitotic exit could control the timing of Aur-A destruction, allowing recognition of both the A box and D box by Cdh1-activated APC/C.
Collapse
Affiliation(s)
- Laurie E Littlepage
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
41
|
Castro A, Arlot-Bonnemains Y, Vigneron S, Labbé JC, Prigent C, Lorca T. APC/Fizzy-Related targets Aurora-A kinase for proteolysis. EMBO Rep 2002; 3:457-62. [PMID: 11964384 PMCID: PMC1084108 DOI: 10.1093/embo-reports/kvf095] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aurora-A kinase is a mitotic spindle-pole-associated protein that has been implicated in duplication and separation of centrosomes and in spindle assembly. The proper timing and amplitude of Aurora-A expression seems to be important, as elevated levels of this protein have been associated with centrosome abnormalities and aneuploidy in mammalian cells. We show that Aurora-A increases at the G2-M transistion and disappears completely at G1 in XL2 cells. Using Xenopus oocyte extracts, we demonstrate that degradation of Aurora-A is mediated by the anaphase-promoting complex (APC) and is regulated by Fizzy-Related but not by Fizzy. Degradation of Aurora-A depends on a D-Box, but not on its KEN-Box motif, as mutation of its C-terminal D-Box sequence induces stabilization of the protein. Accordingly, addition into the extracts of a cyclin B-type D-Box-motif-containing peptide completely suppresses its degradation. Furthermore, APC/Fizzy-Related ubiquitylates the wild type but not a D-Box mutant form of Aurora-A in vitro. Consistent with these data, ectopic expression of Fizzy-Related in Xenopus oocytes induces complete degradation of endogenous Aurora-A. Aurora-A is thus the first protein, at least in our assay system, that undergoes a D-Box-dependent degradation mediated by APC/Fizzy-Related but not by APC/Fizzy.
Collapse
Affiliation(s)
- Anna Castro
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UPR 1086, 1919 Route de Mende, F-34293 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
42
|
Peter M, Labbé JC, Dorée M, Mandart E. A new role for Mos in Xenopus oocyte maturation: targeting Myt1 independently of MAPK. Development 2002; 129:2129-39. [PMID: 11959823 DOI: 10.1242/dev.129.9.2129] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The resumption of meiosis in Xenopus arrested oocytes is triggered by progesterone, which leads to polyadenylation and translation of Mos mRNA, then activation of MAPK pathway. While Mos protein kinase has been reported to be essential for re-entry into meiosis in Xenopus, arrested oocytes can undergo germinal vesicle breakdown (GVBD) independently of MAPK activation, leading us to question what the Mos target might be if Mos is still required. We now demonstrate that Mos is indeed necessary, although is independent of the MAPK cascade, for conversion of inactive pre-MPF into active MPF. We have found that Myt1 is likely to be the Mos target in this process, as Mos interacts with Myt1 in oocyte extracts and Mos triggers Myt1 phosphorylation on some sites in vivo, even in the absence of MAPK activation. We propose that Mos is involved, not only in the MAPK cascade pathway, but also in a mechanism that directly activates MPF in Xenopus oocytes.
Collapse
Affiliation(s)
- Marion Peter
- CNRS-CRBM, 1919 route de Mende, 34293 Montpellier cedex 05, France
| | | | | | | |
Collapse
|
43
|
Josefsberg LBY, Dekel N. Translational and post-translational modifications in meiosis of the mammalian oocyte. Mol Cell Endocrinol 2002; 187:161-71. [PMID: 11988324 DOI: 10.1016/s0303-7207(01)00688-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fully-grown oocyte is transcriptionally inactive. Therefore, translational and post-translational modifications furnish the control mechanism of key components governing meiosis. Regulation by protein synthesis provides an irreversible unidirectional mechanism for an extended period that can be restricted by a complementary degradation of the same protein. Both processes utilize tight measures to ensure precise expression at the right time in the right place. Rapid modifications such as phosphorylation and dephosphorylation supply reversible means to regulate protein action. Information regarding these extremely exciting issues is being accumulated recently in an exponential rate. However, the vast majority of these data is generated from studies conducted on Xenopus oocytes. We fully agree with Andrew Murray's statement that "The modern trend of promoting research on a small number of 'model' organisms will eventually deprive us of the opportunity to study interesting biology" [Cell 92 (1992) 157]. Thus, despite of the enormous technical difficulties resulting from the limited availability of biological material we extended our interest to mammalian model systems. Our review will attend to certain examples of such modifications in the regulatory pathway of meiosis in mammalian oocytes.
Collapse
|
44
|
Blot J, Chartrain I, Roghi C, Philippe M, Tassan JP. Cell cycle regulation of pEg3, a new Xenopus protein kinase of the KIN1/PAR-1/MARK family. Dev Biol 2002; 241:327-38. [PMID: 11784115 DOI: 10.1006/dbio.2001.0525] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report the characterization of pEg3, a Xenopus protein kinase related to members of the KIN1/PAR-1/MARK family. The founding members of this newly emerging kinase family were shown to be involved in the establishment of cell polarity and both microtubule dynamic and cytoskeleton organization. Sequence analyses suggest that pEg3 and related protein kinases in human, mouse, and Caenorhabditis elegans might constitute a distinct group in this family. pEg3 is encoded by a maternal mRNA, polyadenylated in unfertilized eggs and specifically deadenylated in embryos. In addition to an increase in expression, we have shown that pEg3 is phosphorylated during oocyte maturation. Phosphorylation of pEg3 is cell cycle dependent during Xenopus early embryogenesis and in synchronized cultured XL2 cells. In embryos, the kinase activity of pEg3 is correlated to its phosphorylation state and is maximum during mitosis. Using Xenopus egg extracts we demonstrated that phosphorylation occurs at least in the noncatalytic domain of the kinase, suggesting that this domain might be important for pEg3 function.
Collapse
Affiliation(s)
- Joëlle Blot
- UMR 6061, Centre National de la Recherche Scientifique, IFR 97, Université de Rennes 1, 2 avenue du Professeur Léon Bernard, CS34317, F-35043 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
45
|
Abstract
The regulated translation of messenger RNA is essential for cell-cycle progression, establishment of the body plan during early development, and modulation of key activities in the central nervous system. Cytoplasmic polyadenylation, which is one mechanism of controlling translation, is driven by CPEB--a highly conserved, sequence-specific RNA-binding protein that binds to the cytoplasmic polyadenylation element, and modulates translational repression and mRNA localization. What are the features and functions of this multifaceted protein?
Collapse
Affiliation(s)
- R Mendez
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
46
|
Giet R, Prigent C. The non-catalytic domain of the Xenopus laevis auroraA kinase localises the protein to the centrosome. J Cell Sci 2001; 114:2095-104. [PMID: 11493645 DOI: 10.1242/jcs.114.11.2095] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aurora kinases are involved in mitotic events that control chromosome segregation. All members of this kinase subfamily possess two distinct domains, a highly conserved catalytic domain and an N-terminal non-catalytic extension that varies in size and sequence. To investigate the role of this variable non-catalytic region we overexpressed and purified Xenopus laevis auroraA (pEg2) histidine-tagged N-terminal peptide from bacterial cells. The peptide has no effect on the in vitro auroraA kinase activity, but it inhibits both bipolar spindle assembly and stability in Xenopus egg extracts. Unlike the full-length protein, the N-terminal domain shows only low affinity for paclitaxel-stabilised microtubules in vitro, but localises to the centrosomes in a microtubule-dependent manner. When expressed in Xenopus XL2 cells, it is able to target the green fluorescent protein to centrosomes. Surprisingly, this is also true of the pEg2 catalytic domain, although to a lesser extent. The centrosome localisation of the N-terminal peptide was disrupted by nocodazole whereas localisation of the catalytic domain was not, suggesting that in order to efficiently localise to the centrosome, pEg2 kinase required the non-catalytic N-terminal domain and the presence of microtubules.
Collapse
Affiliation(s)
- R Giet
- Groupe Cycle Cellulaire, UMR 6061 Génétique et Développement, CNRS--Université de Rennes I, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, 2 avenue du Pr Léon Bernard, CS 34317, 35043 Rennes cedex, France
| | | |
Collapse
|
47
|
Frank-Vaillant M, Haccard O, Ozon R, Jessus C. Interplay between Cdc2 kinase and the c-Mos/MAPK pathway between metaphase I and metaphase II in Xenopus oocytes. Dev Biol 2001; 231:279-88. [PMID: 11180968 DOI: 10.1006/dbio.2000.0142] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xenopus oocytes arrested in prophase I resume meiotic division in response to progesterone and arrest at metaphase II. Entry into meiosis I depends on the activation of Cdc2 kinase [M-phase promoting factor (MPF)]. To better understand the role of Cdc2, MPF activity was specifically inhibited by injection of the CDK inhibitor, Cip1. When Cip1 is injected at germinal vesicle breakdown (GVBD) time, Cdc25 and Plx1 are both dephosphorylated and Cdc2 is rephosphorylated on tyrosine. The autoamplification loop characterizing MPF is therefore not only required for MPF generation before GVBD, but also for its stability during the GVBD period. The ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), responsible for cyclin degradation, is also under the control of Cdc2; therefore, Cdc2 activity itself induces its own inactivation through cyclin degradation, allowing the exit from the first meiotic division. In contrast, cyclin accumulation, responsible for Cdc2 activity increase allowing entry into metaphase II, is independent of Cdc2. The c-Mos/mitogen-activated protein kinase (MAPK) pathway remains active when Cdc2 activity is inhibited at GVBD time. This pathway could be responsible for the sustained cyclin neosynthesis. In contrast, during the metaphase II block, the c-Mos/MAPK pathway depends on Cdc2. Therefore, the metaphase II block depends on a dynamic interplay between MPF and CSF, the c-Mos/MAPK pathway stabilizing cyclin B, whereas in turn, MPF prevents c-Mos degradation.
Collapse
Affiliation(s)
- M Frank-Vaillant
- Laboratoire de Physiologie de la Reproduction, INRA/ESA-CNRS 7080, Université Pierre et Marie Curie, boîte 13, Paris Cedex 05, 75252, France
| | | | | | | |
Collapse
|
48
|
Abstract
Mitosis and cytokinesis are undoubtedly the most spectacular parts of the cell cycle. Errors in the choreography of these processes can lead to aneuploidy or genetic instability, fostering cell death or disease. Here, I give an overview of the many mitotic kinases that regulate cell division and the fidelity of chromosome transmission.
Collapse
Affiliation(s)
- E A Nigg
- Max-Planck-Institute for Biochemistry, Department of Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
| |
Collapse
|
49
|
Abstract
The mitotic and meiotic cell cycle share many regulators, but there are also important differences between the two processes. The meiotic maturation of Xenopus oocytes has proved useful for understanding the regulation of Cdc2-cyclin-B, a key activator of G2/M progression. New insights have been made recently into the signalling mechanisms that induce G2-arrested oocytes to resume and complete the meiotic cell cycle.
Collapse
Affiliation(s)
- A R Nebreda
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| | | |
Collapse
|