1
|
Farrugia BL, Melrose J. The Glycosaminoglycan Side Chains and Modular Core Proteins of Heparan Sulphate Proteoglycans and the Varied Ways They Provide Tissue Protection by Regulating Physiological Processes and Cellular Behaviour. Int J Mol Sci 2023; 24:14101. [PMID: 37762403 PMCID: PMC10531531 DOI: 10.3390/ijms241814101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review examines the roles of HS-proteoglycans (HS-PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS-PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS-PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo-Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin-neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS-PGs also promote or inhibit tumor development. Thus, HS-PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS-PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes-Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS-PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan.
Collapse
Affiliation(s)
- Brooke L. Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School (Northern), University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
2
|
What Are the Potential Roles of Nuclear Perlecan and Other Heparan Sulphate Proteoglycans in the Normal and Malignant Phenotype. Int J Mol Sci 2021; 22:ijms22094415. [PMID: 33922532 PMCID: PMC8122901 DOI: 10.3390/ijms22094415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.
Collapse
|
3
|
Abstract
Histone variants regulate chromatin accessibility and gene transcription. Given their distinct properties and functions, histone varint substitutions allow for profound alteration of nucleosomal architecture and local chromatin landscape. Skeletal myogenesis driven by the key transcription factor MyoD is characterized by precise temporal regulation of myogenic genes. Timed substitution of variants within the nucleosomes provides a powerful means to ensure sequential expression of myogenic genes. Indeed, growing evidence has shown H3.3, H2A.Z, macroH2A, and H1b to be critical for skeletal myogenesis. However, the relative importance of various histone variants and their associated chaperones in myogenesis is not fully appreciated. In this review, we summarize the role that histone variants play in altering chromatin landscape to ensure proper muscle differentiation. The temporal regulation and cross talk between histones variants and their chaperones in conjunction with other forms of epigenetic regulation could be critical to understanding myogenesis and their involvement in myopathies.
Collapse
Affiliation(s)
- Nandini Karthik
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
4
|
Pérez V, Bermedo-Garcia F, Zelada D, Court FA, Pérez MÁ, Fuenzalida M, Ábrigo J, Cabello-Verrugio C, Moya-Alvarado G, Tapia JC, Valenzuela V, Hetz C, Bronfman FC, Henríquez JP. The p75 NTR neurotrophin receptor is required to organize the mature neuromuscular synapse by regulating synaptic vesicle availability. Acta Neuropathol Commun 2019; 7:147. [PMID: 31514753 PMCID: PMC6739937 DOI: 10.1186/s40478-019-0802-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023] Open
Abstract
The coordinated movement of organisms relies on efficient nerve-muscle communication at the neuromuscular junction. After peripheral nerve injury or neurodegeneration, motor neurons and Schwann cells increase the expression of the p75NTR pan-neurotrophin receptor. Even though p75NTR targeting has emerged as a promising therapeutic strategy to delay peripheral neuronal damage progression, the effects of long-term p75NTR inhibition at the mature neuromuscular junction have not been elucidated. We performed quantitative neuroanathomical analyses of the neuromuscular junction in p75NTR null mice by laser confocal and electron microscopy, which were complemented with electromyography, locomotor tests, and pharmacological intervention studies. Mature neuromuscular synapses of p75NTR null mice show impaired postsynaptic organization and ultrastructural complexity, which correlate with altered synaptic function at the levels of nerve activity-induced muscle responses, muscle fiber structure, force production, and locomotor performance. Our results on primary myotubes and denervated muscles indicate that muscle-derived p75NTR does not play a major role on postsynaptic organization. In turn, motor axon terminals of p75NTR null mice display a strong reduction in the number of synaptic vesicles and active zones. According to the observed pre and postsynaptic defects, pharmacological acetylcholinesterase inhibition rescued nerve-dependent muscle response and force production in p75NTR null mice. Our findings revealing that p75NTR is required to organize mature neuromuscular junctions contribute to a comprehensive view of the possible effects caused by therapeutic attempts to target p75NTR.
Collapse
Affiliation(s)
- Viviana Pérez
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Francisca Bermedo-Garcia
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Diego Zelada
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Miguel Ángel Pérez
- Laboratory of Neural Plasticity, Center for Neurobiology and Integrative Physiology, Faculty of Sciences, Institute of Physiology, Universidad de Valparaíso, Valparaíso, Chile
- Present Address: Health Sciences School, Universidad de Viña del Mar, Viña del Mar, Chile
| | - Marco Fuenzalida
- Laboratory of Neural Plasticity, Center for Neurobiology and Integrative Physiology, Faculty of Sciences, Institute of Physiology, Universidad de Valparaíso, Valparaíso, Chile
| | - Johanna Ábrigo
- Laboratory of Muscle Pathologies, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathologies, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Guillermo Moya-Alvarado
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Carlos Tapia
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Vicente Valenzuela
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Francisca C Bronfman
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Center for Aging and Regeneration (CARE), Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile.
| | - Juan Pablo Henríquez
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
5
|
Kleene R, Loers G, Jakovcevski I, Mishra B, Schachner M. Histone H1 improves regeneration after mouse spinal cord injury and changes shape and gene expression of cultured astrocytes. Restor Neurol Neurosci 2019; 37:291-313. [PMID: 31227672 DOI: 10.3233/rnn-190903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We have shown that histone H1 is a binding partner for polysialic acid (PSA) and that it improves functional recovery, axon regrowth/sprouting, and target reinnervation after mouse femoral nerve injury. OBJECTIVE Here, we analyzed whether histone H1 affects functional recovery, axon regrowth/sprouting, and target reinnervation after spinal cord injury of adult mice. Furthermore, we tested in vitro histone H1's effect on astrocytic gene expression, cell shape and migration as well as on cell survival of cultured motoneurons. METHODS We applied histone H1 to compressed spinal cord and determined functional recovery and number of fibrillary acidic protein (GFAP)- and neuron-glial antigen 2 (NG2)- positive glial cells, which contribute to glial scarring. Histone H1's effect on migration of astrocytes, astrocytic gene expression and motoneuronal survival was determined using scratch-wounded astroglial monolayer cultures, astrocyte cultures for microarray analysis, and motoneuron cell culture under oxidative stress conditions, respectively. RESULTS Histone H1 application improves locomotor functions and enhances monoaminergic and cholinergic reinnervation of the spinal cord. Expression levels of GFAP and NG2 around the lesion site were decreased in histone H1-treated mice relative to vehicle-treated mice six weeks after injury. Histone H1 reduced astrocytic migration, changed the shape of GFAP- and NG2-positive glial cells and altered gene expression. Gene ontology enrichment analysis indicated that in particular genes coding for proteins involved in proliferation, differentiation, migration and apoptosis are dysregulated. The up- and down-regulation of distinct genes was confirmed by qPCR and Western blot analysis. Moreover, histone H1 reduced hydrogen peroxide-induced cell death of cultured motoneurons. CONCLUSIONS The combined observations indicate that histone H1 locally applied to the lesion site, improves regeneration after spinal cord injury. Some of these beneficial functions of histone H1 in vivo and in vitro can be attributed to its interaction with PSA-carrying neural cell adhesion molecule.
Collapse
Affiliation(s)
- Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Igor Jakovcevski
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Bibhudatta Mishra
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
6
|
Ochieng J, Nangami G, Sakwe A, Rana T, Ingram S, Goodwin JS, Moye C, Lammers P, Adunyah SE. Extracellular histones are the ligands for the uptake of exosomes and hydroxyapatite-nanoparticles by tumor cells via syndecan-4. FEBS Lett 2018; 592:3274-3285. [PMID: 30179249 PMCID: PMC6188801 DOI: 10.1002/1873-3468.13236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022]
Abstract
The mechanisms by which exosomes (nano-vesicular messengers of cells) are taken up by recipient cells are poorly understood. We hypothesized that histones associated with these nanoparticles are the ligands which facilitate their interaction with cell surface syndecan-4 (SDC4) to mediate their uptake. We show that the incubation with fetuin-A (exosome-associated proteins) and histones mediates the uptake of exosomes that are normally not endocytosed. Similarly, hydroxyapatite-nanoparticles incubated with fetuin-A and histones (FNH) are internalized by tumor cells, while nanoparticles incubated with fetuin-A alone (FN) are not. The uptake of exosomes and FNH, both of which move to the perinuclear region of the cell, is attenuated in SDC4-knockdown cells. Data show that FNH can compete with exosomes for uptake and that both use SDC4 as uptake receptors.
Collapse
Affiliation(s)
- Josiah Ochieng
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208,Corresponding author: Josiah Ochieng, Ph.D. ; phone: 615-327-6119; Fax: 615-327-6442
| | - Gladys Nangami
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208,Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208
| | - Amos Sakwe
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208,Graduate School, Meharry Medical College, Nashville, TN 37208
| | - Tanu Rana
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| | - Shalonda Ingram
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| | - J. Shawn Goodwin
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| | - Cierra Moye
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| | - Philip Lammers
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208
| | - Samuel E. Adunyah
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| |
Collapse
|
7
|
Bauden M, Kristl T, Sasor A, Andersson B, Marko-Varga G, Andersson R, Ansari D. Histone profiling reveals the H1.3 histone variant as a prognostic biomarker for pancreatic ductal adenocarcinoma. BMC Cancer 2017; 17:810. [PMID: 29197353 PMCID: PMC5712195 DOI: 10.1186/s12885-017-3834-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Epigenetic alterations have been recognized as important contributors to the pathogenesis of PDAC. However, the role of histone variants in pancreatic tumor progression is still not completely understood. The aim of this study was to explore the expression and prognostic significance of histone protein variants in PDAC patients. METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed for qualitative analysis of histone variants and histone related post-translational modifications (PTMs) in PDAC and normal pancreatic tissues. Survival analysis was conducted using the Kaplan-Meier method and Cox proportional hazards regression. RESULTS Histone variant H1.3 was found to be differentially expressed (p = 0.005) and was selected as a PDAC specific histone variant candidate. The prognostic role of H1.3 was evaluated in an external cohort of patients with resected PDAC using immunohistochemistry. Intratumor expression of H1.3 was found to be an important risk factor for overall survival in PDAC, with an adjusted HR value of 2.6 (95% CI 1.1-6.1), p = 0.029. CONCLUSION We suggest that the intratumor histone H1.3 expression as reported herein, may serve as a new epigenetic biomarker for PDAC.
Collapse
Affiliation(s)
- Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Theresa Kristl
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University, Biomedical Center, Lund, Sweden
| | - Agata Sasor
- Department of Pathology, Skåne University Hospital, Lund, Sweden
| | - Bodil Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, SE-221 85 Lund, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University, Biomedical Center, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, SE-221 85 Lund, Sweden
| |
Collapse
|
8
|
Turkina MV, Ghafouri N, Gerdle B, Ghafouri B. Evaluation of dynamic changes in interstitial fluid proteome following microdialysis probe insertion trauma in trapezius muscle of healthy women. Sci Rep 2017; 7:43512. [PMID: 28266628 PMCID: PMC5339898 DOI: 10.1038/srep43512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/27/2017] [Indexed: 02/05/2023] Open
Abstract
Microdialysis (MD) has been shown to be a promising technique for sampling of biomarkers. Implantation of MD probe causes an acute tissue trauma and provokes innate response cascades. In order to normalize tissue a two hours equilibration period for analysis of small molecules has been reported previously. However, how the proteome profile changes due to this acute trauma has yet to be fully understood. To characterize the early proteome events induced by this trauma we compared proteome in muscle dialysate collected during the equilibration period with two hours later in "post-trauma". Samples were collected from healthy females using a 100 kDa MW cut off membrane and analyzed by high sensitive liquid chromatography tandem mass spectrometry. Proteins involved in stress response, immune system processes, inflammatory responses and nociception from extracellular and intracellular fluid spaces were identified. Sixteen proteins were found to be differentially abundant in samples collected during first two hours in comparison to "post-trauma". Our data suggests that microdialysis in combination with mass spectrometry may provide potentially new insights into the interstitial proteome of trapezius muscle, yet should be further adjusted for biomarker discovery and diagnostics. Moreover, MD proteome alterations in response to catheter injury may reflect individual innate reactivity.
Collapse
Affiliation(s)
- Maria V Turkina
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linkoping University, Sweden
| | - Nazdar Ghafouri
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Douglass S, Goyal A, Iozzo RV. The role of perlecan and endorepellin in the control of tumor angiogenesis and endothelial cell autophagy. Connect Tissue Res 2015; 56:381-91. [PMID: 26181327 PMCID: PMC4769797 DOI: 10.3109/03008207.2015.1045297] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During tumor growth and angiogenesis there is a dynamic remodeling of tissue architecture often accompanied by the release of extracellular matrix constituents full of biological activity. One of the key constituents of the tumor microenvironment is the large heparan sulfate proteoglycan perlecan. This proteoglycan, strategically located at cell surfaces and within basement membranes, is a well-defined pro-angiogenic molecule when intact. However, when partially processed by proteases released during cancer remodeling and invasion, the C-terminal fragment of perlecan, known as endorepellin, has opposite effects than its parent molecule. Endorepellin is a potent inhibitor of angiogenesis by exerting a dual receptor antagonism by simultaneously engaging VEGFR2 and α2β1 integrin. Signaling through the α2β1 integrin leads to actin disassembly and block of endothelial cell migration, necessary for capillary morphogenesis. Signaling through the VEGFR2 induces dephosphorylation of the receptor via activation of SHP-1 and suppression of downstream proangiogenic effectors, especially attenuating VEGFA expression. A novel and emerging role of endorepellin is its ability to evoke autophagy by activating Peg3 and various canonical autophagic markers. This effect is specific for endothelial cells as these are the primary cells expressing both VEGFR2 and α2β1 integrin. Thus, an endogenous fragment of a ubiquitous proteoglycan can regulate both angiogenesis and autophagy through a dual receptor antagonism. The biological properties of this natural endogenous protein place endorepellin as a potential therapeutic agent against cancer or diseases where angiogenesis is prominent.
Collapse
Affiliation(s)
- Stephen Douglass
- a Department of Pathology , Anatomy and Cell Biology and the Cancer Cell Biology and Signalling Program, Kimmel Cancer Centre, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Atul Goyal
- a Department of Pathology , Anatomy and Cell Biology and the Cancer Cell Biology and Signalling Program, Kimmel Cancer Centre, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Renato V Iozzo
- a Department of Pathology , Anatomy and Cell Biology and the Cancer Cell Biology and Signalling Program, Kimmel Cancer Centre, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
10
|
Nangami G, Koumangoye R, Shawn Goodwin J, Sakwe AM, Marshall D, Higginbotham J, Ochieng J. Fetuin-A associates with histones intracellularly and shuttles them to exosomes to promote focal adhesion assembly resulting in rapid adhesion and spreading in breast carcinoma cells. Exp Cell Res 2014; 328:388-400. [PMID: 25194507 DOI: 10.1016/j.yexcr.2014.08.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/08/2014] [Accepted: 08/23/2014] [Indexed: 01/11/2023]
Abstract
The present analyses were undertaken to define the mechanisms by which fetuin-A modulates cellular adhesion. FLAG-tagged fetuin-A was expressed in breast carcinoma and HEK-293T cells. We demonstrated by confocal microscopy that fetuin-A co-localizes with histone H2A in the cell nucleus, forms stable complexes with histones such as H2A and H3 in solution, and shuttles histones to exosomes. The rate of cellular adhesion and spreading to either fibronectin or laminin coated wells was accelerated significantly in the presence of either endogenous fetuin-A or serum derived protein. More importantly, the formation of focal adhesion complexes on surfaces coated by laminin or fibronectin was accelerated in the presence of fetuin-A or histone coated exosomes. Cellular adhesion mediated by histone coated exosomes was abrogated by heparin and heparinase III. Heparinase III cleaves heparan sulfate from cell surface heparan sulfate proteoglycans. Lastly, the uptake of histone coated exosomes and subsequent cellular adhesion, was abrogated by heparin. Taken together, the data suggest a mechanism where fetuin-A, either endogenously synthesized or supplied extracellularly can extract histones from the nucleus or elsewhere in the cytosol/membrane and load them on cellular exosomes which then mediate adhesion by interacting with cell surface heparan sulfate proteoglycans via bound histones.
Collapse
Affiliation(s)
- Gladys Nangami
- Departments of Biochemistry and Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA
| | - Rainelli Koumangoye
- Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J Shawn Goodwin
- Departments of Biochemistry and Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA
| | - Amos M Sakwe
- Departments of Biochemistry and Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA
| | - Dana Marshall
- Departments of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - James Higginbotham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Josiah Ochieng
- Departments of Biochemistry and Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA.
| |
Collapse
|
11
|
Chen R, Kang R, Fan XG, Tang D. Release and activity of histone in diseases. Cell Death Dis 2014; 5:e1370. [PMID: 25118930 PMCID: PMC4454312 DOI: 10.1038/cddis.2014.337] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 12/30/2022]
Abstract
Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecular pattern molecules when they are released into the extracellular space. Administration of exogenous histones to animals leads to systemic inflammatory and toxic responses through activating Toll-like receptors and inflammasome pathways. Anti-histone treatment (e.g., neutralizing antibodies, activated protein C, recombinant thrombomodulin, and heparin) protect mice against lethal endotoxemia, sepsis, ischemia/reperfusion injury, trauma, pancreatitis, peritonitis, stroke, coagulation, and thrombosis. In addition, elevated serum histone and nucleosome levels have been implicated in multiple pathophysiological processes and progression of diseases including autoimmune diseases, inflammatory diseases, and cancer. Therefore, extracellular histones could serve as biomarkers and novel therapeutic targets in human diseases.
Collapse
Affiliation(s)
- R Chen
- 1] Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China [2] Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - X-G Fan
- Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - D Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2013; 34:64-79. [PMID: 24001398 DOI: 10.1016/j.matbio.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022]
Abstract
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States.
| | - Curtis R Warren
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel A Harrington
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel D Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| |
Collapse
|
13
|
Shin SH, Joo HW, Kim MK, Kim JC, Sung YK. Extracellular histones inhibit hair shaft elongation in cultured human hair follicles and promote regression of hair follicles in mice. Exp Dermatol 2013; 21:956-8. [PMID: 23171459 DOI: 10.1111/exd.12033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2012] [Indexed: 12/24/2022]
Abstract
Release of histone H4 in rat vibrissa dermal papilla (DP) cells exposed to sub-toxic dose of colchicines has been recently reported. In addition, exposure to histone H4 has been reported to result in inhibited proliferation and reduced alkaline phosphatase (ALP) activity of cultured vibrissa DP cells. These findings prompted us to investigate the role of extracellular histones in hair growth using cultured human hair follicles and hair cycling using back skin of mice. We report here that exposure of cultured hair follicles to histone H4 and H2A resulted in significant inhibition of elongation of hair shafts, decreased expression of IGF-1 and decreased expression and activity of ALP. Injection of histones into hypodermis of mice during anagen resulted in premature onset of catagen. Findings of the current study provide strong evidence suggesting the inhibitory role of extracellular histones in hair growth.
Collapse
|
14
|
Role of skeletal muscle proteoglycans during myogenesis. Matrix Biol 2013; 32:289-97. [PMID: 23583522 DOI: 10.1016/j.matbio.2013.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/30/2013] [Accepted: 03/30/2013] [Indexed: 02/06/2023]
Abstract
Skeletal muscle formation during development and the adult mammal consists of a highly organised and regulated the sequence of cellular processes intending to form or repair muscle tissue. This sequence includes, cell proliferation, migration, and differentiation. Proteoglycans (PGs), macromolecules formed by a core protein and glycosaminoglycan chains (GAGs) present a great diversity of functions explained by their capacity to interact with different ligands and receptors forming part of their signalling complex and/or protecting them from proteolytic cleavage. Particularly attractive is the function of the different types of PGs present at the neuromuscular junction (NMJ). This review is focussed on the advances reached to understand the role of PGs during myogenesis and skeletal muscular dystrophies.
Collapse
|
15
|
Konozy EHE, Rogniaux H, Causse M, Faurobert M. Proteomic analysis of tomato (Solanum lycopersicum) secretome. JOURNAL OF PLANT RESEARCH 2013; 126:251-266. [PMID: 22892874 DOI: 10.1007/s10265-012-0516-4 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/02/2012] [Indexed: 05/27/2023]
Abstract
In fleshy fruits, fruit texture features are mainly related to chemical and mechanical properties of the cell wall. The description of tomato fruit cell wall proteome is a first step in the process of linking tomato genetic variability to fruit texture phenotypes. In this study, the proteome of 3 ripe tomato fruit lines with contrasted texture traits were studied. Weakly bound and soluble proteins were extracted from cell wall of the three cultivars using both destructive and non-destructive methods, respectively. Wall proteins were separated on 1D-PAGE, bands were excised and identified by LC-MS/MS. The software SignalP which searches for the leader peptide was used to discriminate between protein with or without signal peptide. In combine, seventy-five different cell wall proteins were recorded for both weakly bound and soluble cell wall fractions. The major identified functions included several proteins acting on polysaccharides, proteins involved in "lipid metabolism", proteins having interacting domain, "oxido-reductases" and "proteases" whose putative roles in ripe fruit cell wall is discussed. Several proteins with no obvious signal peptide, however, with accumulating supportive evidences to be bona fide wall proteins, were also identified. Some variations in protein repertories were observed among the lines, demonstrating the possibility to characterize cell wall protein genetic variability by such in muro proteome analyses.
Collapse
Affiliation(s)
- Emadeldin H E Konozy
- Unité de Génétique et Amélioration des Fruits et Légumes, INRA, BP 94, 84143 Montfavet, France.
| | | | | | | |
Collapse
|
16
|
Konozy EHE, Rogniaux H, Causse M, Faurobert M. Proteomic analysis of tomato (Solanum lycopersicum) secretome. JOURNAL OF PLANT RESEARCH 2013; 126:251-66. [PMID: 22892874 DOI: 10.1007/s10265-012-0516-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/02/2012] [Indexed: 05/19/2023]
Abstract
In fleshy fruits, fruit texture features are mainly related to chemical and mechanical properties of the cell wall. The description of tomato fruit cell wall proteome is a first step in the process of linking tomato genetic variability to fruit texture phenotypes. In this study, the proteome of 3 ripe tomato fruit lines with contrasted texture traits were studied. Weakly bound and soluble proteins were extracted from cell wall of the three cultivars using both destructive and non-destructive methods, respectively. Wall proteins were separated on 1D-PAGE, bands were excised and identified by LC-MS/MS. The software SignalP which searches for the leader peptide was used to discriminate between protein with or without signal peptide. In combine, seventy-five different cell wall proteins were recorded for both weakly bound and soluble cell wall fractions. The major identified functions included several proteins acting on polysaccharides, proteins involved in "lipid metabolism", proteins having interacting domain, "oxido-reductases" and "proteases" whose putative roles in ripe fruit cell wall is discussed. Several proteins with no obvious signal peptide, however, with accumulating supportive evidences to be bona fide wall proteins, were also identified. Some variations in protein repertories were observed among the lines, demonstrating the possibility to characterize cell wall protein genetic variability by such in muro proteome analyses.
Collapse
Affiliation(s)
- Emadeldin H E Konozy
- Unité de Génétique et Amélioration des Fruits et Légumes, INRA, BP 94, 84143 Montfavet, France.
| | | | | | | |
Collapse
|
17
|
Abstract
The prospect of developing transport systems using histones for site-specific delivery of therapeutic agents that have poor penetration characteristics through cellular membranes and tissue barriers has been investigated. Histones immobilized on microspheres can also be used to modify surfaces intended for cell cultivation, facilitating adhesion, proliferation and network formation by interactions of cells through contacts with several microspheres. They can be applied to three-dimensional pore matrices that are designed for producing tissue-like structures in vitro.
Collapse
|
18
|
Alves RDAM, Demmers JAA, Bezstarosti K, van der Eerden BCJ, Verhaar JAN, Eijken M, van Leeuwen JPTM. Unraveling the human bone microenvironment beyond the classical extracellular matrix proteins: a human bone protein library. J Proteome Res 2011; 10:4725-33. [PMID: 21892838 DOI: 10.1021/pr200522n] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A characteristic feature of bone, differentiating it from other connective tissues, is the mineralized extracellular matrix (ECM). Mineral accounts for the majority of the bone tissue volume, being the remainder organic material mostly derived from collagen. This, and the fact that only a limited number of noncollagenous ECM proteins are described, provides a limited view of the bone tissue composition and bone metabolism, the more so considering the increasing understanding of ECM significance for cellular form and function. For this reason, we set out to analyze and extensively characterize the human bone proteome using large-scale mass spectrometry-based methods. Bone samples of four individuals were analyzed identifying 3038 unique proteins. A total of 1213 of these were present in at least 3 out of 4 bone samples. For quantification purposes, we were limited to noncollagenous proteins (NCPs) and we could quantify 1051 NCPs. Most classical bone matrix proteins mentioned in literature were detected but were not among the highly abundant ones. Gene ontology analyses identified high-abundance groups of proteins with a functional link to mineralization and mineral metabolism such as transporters, pyrophosphatase activity, and Ca(2+)-dependent phospholipid binding proteins. ECM proteins were as well overrepresented together with nucleosome and antioxidant activity proteins, which have not been extensively characterized as being important for bone. In conclusion, our data clearly demonstrates that human bone tissue is a reservoir of a wide variety of proteins. In addition to the classical osteoblast-derived ECM, we have identified many proteins from different sources and of unknown function in bone. Thus, this study represents an informative library of bone proteins forming a source for novel bone formation modulators as well as biomarkers for bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Rodrigo D A M Alves
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Hsia CW, Shui HA, Wang CY, Yu HM, Ho MY, Cheng KT, Tseng MJ. Proteomics demonstration that histone H4 is a colchicine-induced retro-modulator of growth and alkaline phosphatase activity in hair follicle dermal papilla culture. J Proteomics 2011; 74:805-16. [DOI: 10.1016/j.jprot.2011.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/11/2011] [Accepted: 02/19/2011] [Indexed: 12/22/2022]
|
20
|
Siegel AL, Kuhlmann PK, Cornelison DDW. Muscle satellite cell proliferation and association: new insights from myofiber time-lapse imaging. Skelet Muscle 2011; 1:7. [PMID: 21798086 PMCID: PMC3157006 DOI: 10.1186/2044-5040-1-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 02/02/2011] [Indexed: 12/04/2022] Open
Abstract
Background As the resident stem cells of skeletal muscle, satellite cells are activated by extracellular cues associated with local damage. Once activated, satellite cells will re-enter the cell cycle to proliferate and supply a population of myoblasts, which will repair or replace damaged myofibers by differentiating and fusing either with an existing myofiber or with each other. There is also evidence that the orientation of cell division with respect to the myofiber may indicate or convey asymmetry in the two daughter cells. Our recent studies with time-lapse imaging of myofiber-associated satellite cells in vitro have yielded new data on the timing and orientation of satellite cell divisions, and revealed persistent differences in the behavior of daughter cells from planar versus vertical divisions. Results We analyzed 244 individual fiber-associated satellite cells in time-lapse video from 24 to 48 hours after myofiber harvest. We found that initial cell division in fiber culture is not synchronous, although presumably all cells were activated by the initial trauma of harvest; that cell cycling time is significantly shorter than previously thought (as short as 4.8 hours, averaging 10 hours between the first and second divisions and eight hours between the second and third); and that timing of subsequent divisions is not strongly correlated with timing of the initial division. Approximately 65% of first and 80% of second cell divisions occur parallel to the axis of the myofiber, whereas the remainder occur outside the plane of the fiber surface (vertical division). We previously demonstrated that daughter cells frequently remain associated with each other after division or reassociate after a brief separation, and that unrelated cells may also associate for significant periods of time. We show in this paper that daughter cells resulting from a vertical division remain associated with one another several times longer than do daughters from a horizontal division. However, the total average time of association between sister cells is not significantly different from the total average time of association between unrelated cells. Conclusions These longitudinal characterizations of satellite cell behavior shortly after activation provide new insights into cell proliferation and association as a function of relatedness, and indicate significant and consistent heterogeneity within the population based on these metrics.
Collapse
Affiliation(s)
- Ashley L Siegel
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | | | | |
Collapse
|
21
|
Das R, Plow EF. Phosphatidylserine as an anchor for plasminogen and its plasminogen receptor, histone H2B, to the macrophage surface. J Thromb Haemost 2011; 9:339-49. [PMID: 21040449 PMCID: PMC3881192 DOI: 10.1111/j.1538-7836.2010.04132.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Plasminogen (Plg) binding to cell surface Plg receptors (Plg-Rs) on the surface of macrophages facilitates Plg activation and migration of these cells. Histone H2B (H2B) acts as a Plg-R and its cell surface expression is up-regulated when monocytes are differentiated to macrophages via a pathway dependent on L-type Ca(2+) channels and intracellular Ca(2+). OBJECTIVES We sought to investigate the mechanism by which H2B, a protein without a transmembrane domain, is retained on the macrophage surface. METHODS THP-1 monocytoid cells were induced to differentiate with interferon gamma + Vitamin D3 or to undergo apoptosis by treatment with camptothecin. Flow cytometry and cell surface biotinylation followed by Western blotting were used to measure the interrelationship between Plg binding, cell surface expression of H2B and outer membrane exposure of phosphatidylserine (PS). RESULTS H2B interacted directly with PS via an electrostatic interaction. Anti-PS or PS binding proteins, annexin V and protein S, diminished H2B interaction with PS on the surface of differentiated or apoptotic cells and these same reagents inhibited Plg binding to these cells. L-type Ca(2+) channels played a significant role in PS exposure, H2B surface expression and Plg binding induced either by differentiation or apoptosis. CONCLUSIONS These data suggest that H2B tethers to the surface of cells by interacting with PS on differentiated or apoptotic monocytoid cells. L-type Ca(2+) channels regulate PS exposure on the surface of these cells. The exposed PS interacts directly with H2B and hence provides sites for Plg to bind to.
Collapse
Affiliation(s)
- R Das
- Department of Molecular Cardiology, Cleveland Clinic, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Cleveland, OH 44195, USA
| | | |
Collapse
|
22
|
Molecular interaction between europium decatungstate and histone H1 and its application as a novel biological labeling agent. J Biol Inorg Chem 2010; 15:1079-85. [DOI: 10.1007/s00775-010-0667-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 04/13/2010] [Indexed: 11/26/2022]
|
23
|
Goryukhina OA, Martyushin SV, Blinova MI, Poljanskaya GG, Cherepanova OA, Pinaev GP. Cell cultivation on microspheres coupled with histones. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s1990519x10010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Santos R, da Costa G, Franco C, Gomes-Alves P, Flammang P, Coelho AV. First insights into the biochemistry of tube foot adhesive from the sea urchin Paracentrotus lividus (Echinoidea, Echinodermata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:686-698. [PMID: 19221839 DOI: 10.1007/s10126-009-9182-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 01/18/2009] [Indexed: 05/27/2023]
Abstract
Sea urchins are common inhabitants of wave-swept shores. To withstand the action of waves, they rely on highly specialized independent adhesive organs, the adoral tube feet. The latter are extremely well-designed for temporary adhesion being composed by two functional subunits: (1) an apical disc that produces an adhesive secretion to fasten the sea urchin to the substratum, as well as a deadhesive secretion to allow the animal to move and (2) a stem that bears the tensions placed on the animal by hydrodynamism. Despite their technological potential for the development of new biomimetic underwater adhesives, very little is known about the biochemical composition of sea urchin adhesives. A characterization of sea urchin adhesives is presented using footprints. The latter contain inorganic residues (45.5%), proteins (6.4%), neutral sugars (1.2%), and lipids (2.5%). Moreover, the amino acid composition of the soluble protein fraction revealed a bias toward six amino acids: glycine, alanine, valine, serine, threonine, and asparagine/aspartic acid, which comprise 56.8% of the total residues. In addition, it also presents higher levels of proline (6.8%) and half-cystine (2.6%) than average eukaryotic proteins. Footprint insolubility was partially overcome using strong denaturing and reducing buffers, enabling the visualization of 13 proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The conjugation of mass spectrometry with homology-database search allowed the identification of six proteins: alpha and beta tubulin, actin, and histones H2B, H3, H2A, and H4, whose location and function in the adhesive are discussed but require further investigation. For the remaining unidentified proteins, five de novo-generated peptide sequences were found that were not present in the available protein databases, suggesting that they might be novel or modified proteins.
Collapse
Affiliation(s)
- R Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | | | | | | | | | |
Collapse
|
25
|
Das R, Burke T, Van Wagoner DR, Plow EF. L-type calcium channel blockers exert an antiinflammatory effect by suppressing expression of plasminogen receptors on macrophages. Circ Res 2009; 105:167-75. [PMID: 19520970 PMCID: PMC2745969 DOI: 10.1161/circresaha.109.200311] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
L-type Ca(2+) channel (LTCC) blockers, represented by amlodipine and verapamil, are widely used antihypertensive drugs that also have antiinflammatory activities. Plasminogen (Plg) is an important mediator of macrophage recruitment, and this role depends on its interaction with Plg receptors (Plg-Rs). Plg-Rs include histone 2B, alpha-enolase, annexin 2, and p11, all proteins which lack signal sequences for cell surface export. When human or murine monocytoid cells were induced to differentiate into macrophages, their Plg binding and Plg-R expression increased by 4-fold. These changes were suppressed by pretreatment with verapamil and amlodipine. Expression of the Ca(v)1.2 LTCC pore subunit was induced in differentiated macrophages, and siRNA against this subunit suppressed the upregulation of Plg binding and Plg-Rs. In vivo, amlodipine and verapamil suppressed peritoneal macrophage recruitment in response to thioglycollate by >60% at doses that did not affect blood pressure. In drug-treated animals, macrophages migrated into but not through the peritoneal membrane tissue and showed reduced surface expression of Plg-Rs. These findings demonstrate that Plg-R expression on macrophages is dependent on Ca(v)1.2 LTCC subunit expression. Suppression of Plg-Rs may contribute to the antiinflammatory effects of the widely used LTCC blockers.
Collapse
Affiliation(s)
- Riku Das
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave/NB50, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
26
|
Orthaus S, Klement K, Happel N, Hoischen C, Diekmann S. Linker histone H1 is present in centromeric chromatin of living human cells next to inner kinetochore proteins. Nucleic Acids Res 2009; 37:3391-406. [PMID: 19336418 PMCID: PMC2691837 DOI: 10.1093/nar/gkp199] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 01/04/2023] Open
Abstract
The vertebrate kinetochore complex assembles at the centromere on alpha-satellite DNA. In humans, alpha-satellite DNA has a repeat length of 171 bp slightly longer than the DNA in the chromatosome containing the linker histone H1. The centromere-binding protein CENP-B binds specifically to alpha-satellite DNA with properties of a centromeric-linker histone. Here, we analysed if linker histone H1 is present at or excluded from centromeric chromatin by CENP-B. By immunostaining we detected the presence, but no enrichment or depletion of five different H1 subtypes at centromeric chromatin. The binding dynamics of H1 at centromeric sites were similar to that at other locations in the genome. These dynamics did not change in CENP-B depleted cells, suggesting that CENP-B and H1 co-exist in centromeric chromatin with no or little functional overlap. By bimolecular fluorescence complementation (BiFC) and Förster resonance energy transfer (FRET), we revealed that the linker histone H1 subtypes H1 degrees and H1.2 bind to centromeric chromatin in interphase nuclei in direct neighbourhood to inner kinetochore proteins.
Collapse
Affiliation(s)
- S. Orthaus
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - K. Klement
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - N. Happel
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - C. Hoischen
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - S. Diekmann
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| |
Collapse
|
27
|
Evans DL, Connor MA, Moss LD, Lackay S, Leary JH, Krunkosky T, Jaso-Friedmann L. Cellular expression and antimicrobial function of a phylogenetically conserved novel histone 1x-like protein on mouse cells: a potential new class of pattern recognition receptor. J Leukoc Biol 2009; 86:133-41. [DOI: 10.1189/jlb.1108682] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
28
|
Jørgensen LH, Petersson SJ, Sellathurai J, Andersen DC, Thayssen S, Sant DJ, Jensen CH, Schrøder HD. Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J Histochem Cytochem 2008; 57:29-39. [PMID: 18796407 DOI: 10.1369/jhc.2008.951954] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15-16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment.
Collapse
|
29
|
Colombres M, Henríquez JP, Reig GF, Scheu J, Calderón R, Alvarez A, Brandan E, Inestrosa NC. Heparin activates Wnt signaling for neuronal morphogenesis. J Cell Physiol 2008; 216:805-15. [PMID: 18449906 DOI: 10.1002/jcp.21465] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Wnt factors are secreted ligands that affect different aspects of the nervous system behavior like neurodevelopment, synaptogenesis and neurodegeneration. In different model systems, Wnt signaling has been demonstrated to be regulated by heparan sulfate proteoglycans (HSPGs). Whether HSPGs modulate Wnt signaling in the context of neuronal behavior is currently unknown. Here we demonstrate that activation of Wnt signaling with the endogenous ligand Wnt-7a results in an increased of neurite outgrowth in the neuroblastoma N2a cell line. Interestingly, heparin induces glycogen synthase kinase-3beta (GSK-3beta) inhibition, beta-catenin stabilization and morphological differentiation in both N2a cells and in rat primary hippocampal neuronal cultures. We also show that heparin modulates Wnt-3a-induced stabilization of beta-catenin. Several extracellular matrix and membrane-attached HSPGs were found to be expressed in both in vitro neuronal models. Changes in the expression of specific HSPGs were observed upon differentiation of N2a cells. Taken together, our findings suggest that HSPGs may modulate canonical Wnt signaling for neuronal morphogenesis.
Collapse
Affiliation(s)
- Marcela Colombres
- Centro de Regulación Celular y Patología Joaquín V. Luco, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jedrusik MA, Schulze E. Linker histone HIS-24 (H1.1) cytoplasmic retention promotes germ line development and influences histone H3 methylation in Caenorhabditis elegans. Mol Cell Biol 2007; 27:2229-39. [PMID: 17210650 PMCID: PMC1820517 DOI: 10.1128/mcb.01713-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA interference with one of the eight Caenorhabditis elegans linker histone genes triggers desilencing of a repetitive transgene and developmental defects in the hermaphrodite germ line. These characteristics are similar to the phenotype of the C. elegans Polycomb group genes mes-2, mes-3, mes-4, and mes-6 (M. A. Jedrusik and E. Schulze, Development 128:1069-1080, 2001; I. Korf, Y. Fan, and S. Strome, Development 125:2469-2478, 1998). These Polycomb group proteins contribute to germ line-specific chromatin modifications. Using a his-24 deletion mutant and an isoform-specific antibody, we characterized the role of his-24 in C. elegans germ line development. We describe an unexpected cytoplasmic retention of HIS-24 in peculiar granular structures. This phenomenon is confined to the developing germ lines of both sexes. It is strictly dependent on the activities of the chromatin-modifying genes mes-2, mes-3, mes-4, and mes-6, as well as on the C. elegans sirtuin gene sir-2.1. A temperature shift experiment with a mes-3(ts) mutant revealed that mes gene activity is required in a time window ranging from L3 to the early L4 stage before the onset of meiosis. We find that the his-24(ok1024) mutant germ line is characterized by an increased level of the activating H3K4 methylation mark concomitant with a decrease of the repressive H3K9 methylation. In the germ line of his-24(ok1024) mes-3(bn35) double mutant animals, the repressive H3K27 methylation is more reduced than in the respective mes single mutant. These observations distinguish his-24 as an unusual element in the developmental regulation of germ line chromatin structure in C. elegans.
Collapse
Affiliation(s)
- Monika A Jedrusik
- Max Planck Institute for Biophysical Chemistry, Laboratory of Chromatin Biochemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
| | | |
Collapse
|
31
|
Dandapani SV, Sugimoto H, Matthews BD, Kolb RJ, Sinha S, Gerszten RE, Zhou J, Ingber DE, Kalluri R, Pollak MR. Alpha-actinin-4 is required for normal podocyte adhesion. J Biol Chem 2007; 282:467-77. [PMID: 17082197 DOI: 10.1074/jbc.m605024200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the alpha-actinin-4 gene ACTN4 cause an autosomal dominant human kidney disease. Mice deficient in alpha-actinin-4 develop a recessive phenotype characterized by kidney failure, proteinuria, glomerulosclerosis, and retraction of glomerular podocyte foot processes. However, the mechanism by which alpha-actinin-4 deficiency leads to glomerular disease has not been defined. Here, we examined the effect of alpha-actinin-4 deficiency on the adhesive properties of podocytes in vivo and in a cell culture system. In alpha-actinin-4-deficient mice, we observed a decrease in the number of podocytes per glomerulus compared with wild-type mice as well as the presence of podocyte markers in the urine. Podocyte cell lines generated from alpha-actinin-4-deficient mice were less adherent than wild-type cells to glomerular basement membrane (GBM) components collagen IV and laminin 10 and 11. We also observed markedly reduced adhesion of alpha-actinin-4-deficient podocytes under increasing shear stresses. This adhesion deficit was restored by transfecting cells with alpha-actinin-4-GFP. We tested the strength of the integrin receptor-mediated linkages to the cytoskeleton by applying force to microbeads bound to integrin using magnetic pulling cytometry. Beads bound to alpha-actinin-4-deficient podocytes showed greater displacement in response to an applied force than those bound to wild-type cells. Consistent with integrin-dependent alpha-actinin-4-mediated adhesion, phosphorylation of beta1-integrins on alpha-actinin-4-deficient podocytes is reduced. We rescued the phosphorylation deficit by transfecting alpha-actinin-4 into alpha-actinin-4-deficient podocytes. These results suggest that alpha-actinin-4 interacts with integrins and strengthens the podocyte-GBM interaction thereby stabilizing glomerular architecture and preventing disease.
Collapse
Affiliation(s)
- Savita V Dandapani
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Han J, Zhang L, Shao X, Shi J, Chi C. The potent inhibitory activity of histone H1.2 C-terminal fragments on furin. FEBS J 2006; 273:4459-69. [PMID: 16956366 DOI: 10.1111/j.1742-4658.2006.05451.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many physiologically important proproteins, pathogenic bacterial exotoxins and viral envelope glycoproteins are activated by the proprotein convertase furin, which makes furin inhibitor a hot target for basic research and drug design. Although synthetic and bioengineered inhibitors of furin have been well characterized, its endogenous inhibitor has not been directly purified from mammalian tissues to date. In this study, three inhibitors were purified from the porcine liver by using a combination of chromatographic techniques, and identified to be the C-terminal truncated fragments with different sizes of histone H1.2. The gene of porcine histone H1.2 was cloned and sequenced, further confirming the determined sequences. These three C-terminal fragments inhibited furin with Ki values around 2 x 10(-7) m while the full-length histone H1.2 inhibited it with a lesser activity, suggesting that the inhibitory activity relies on the C-terminal lysine-rich domain. Though the inhibition was temporary, these inhibitors were specific, and the reactive site of one C-terminal fragment was identified. A 36 amino acid peptide around the reactive site was synthesized, which could still inhibit furin with a Ki of 5.2 x 10(-7) m.
Collapse
Affiliation(s)
- Jinbo Han
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
33
|
Soares de Lima C, Zulianello L, Marques MADM, Kim H, Portugal MI, Antunes SL, Menozzi FD, Ottenhoff THM, Brennan PJ, Pessolani MCV. Mapping the laminin-binding and adhesive domain of the cell surface-associated Hlp/LBP protein from Mycobacterium leprae. Microbes Infect 2006; 7:1097-109. [PMID: 15919224 DOI: 10.1016/j.micinf.2005.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/28/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
Binding of Mycobacterium leprae to and invasion of Schwann cells (SC) represent a crucial step that initiates nerve damage in leprosy. We and others have described that M. leprae colonization of the peripheral nerve system may be mediated in part by a surface-exposed histone-like protein (Hlp), characterized as a laminin-binding protein (LBP). Hlp/LBP has also been shown to play a role in the binding of mycobacteria to alveolar epithelial cells and macrophages. In the present study we report that M. leprae expresses Hlp/LBP protein during the course of human infection. Additionally, we analyzed the interaction of Hlp/LBP with the extracellular matrix and host cell surface. We show that Hlp/LBP, besides laminin, also binds heparin and heparan sulfate. Testing truncated recombinant Hlp molecules corresponding to the N-terminal (rHlp-N) and the C-terminal (rHlp-C) domains of the protein, we established that interaction of Hlp/LBP with laminin-2 and heparin is mainly mediated by the C-terminal domain of the protein. Moreover, the same domain was found to be involved in Hlp/LBP-mediating bacterial binding to human SC. Finally, evidence is shown suggesting that M. leprae produces a post-translationally modified Hlp/LBP containing methyllysine residues. Methylation of the lysine residues, however, seems not to affect the adhesive properties of Hlp/LBP. Taken together, our observations reinforce the involvement of Hlp/LBP as an adhesin in mycobacterial infections and define its highly positive C-terminal region as the major adhesive domain of this protein.
Collapse
|
34
|
Timmons JA, Larsson O, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, Ridden J, Rachman J, Peyrard-Janvid M, Wahlestedt C, Sundberg CJ. Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophy. FASEB J 2005; 19:750-60. [PMID: 15857889 DOI: 10.1096/fj.04-1980com] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Global gene expression profiling is used to generate novel insight into a variety of disease states. Such studies yield a bewildering number of data points, making it a challenge to validate which genes specifically contribute to a disease phenotype. Aerobic exercise training represents a plausible model for identification of molecular mechanisms that cause metabolic-related changes in human skeletal muscle. We carried out the first transcriptome-wide characterization of human skeletal muscle responses to 6 wk of supervised aerobic exercise training in 8 sedentary volunteers. Biopsy samples before and after training allowed us to identify approximately 470 differentially regulated genes using the Affymetrix U95 platform (80 individual hybridization steps). Gene ontology analysis indicated that extracellular matrix and calcium binding gene families were most up-regulated after training. An electronic reanalysis of a Duchenne muscular dystrophy (DMD) transcript expression dataset allowed us to identify approximately 90 genes modulated in a nearly identical fashion to that observed in the endurance exercise dataset. Trophoblast noncoding RNA, an interfering RNA species, was the singular exception-being up-regulated by exercise and down-regulated in DMD. The common overlap between gene expression datasets may be explained by enhanced alpha7beta1 integrin signaling, and specific genes in this signaling pathway were up-regulated in both datasets. In contrast to these common features, OXPHOS gene expression is subdued in DMD yet elevated by exercise, indicating that more than one major mechanism must exist in human skeletal muscle to sense activity and therefore regulate gene expression. Exercise training modulated diabetes-related genes, suggesting our dataset may contain additional and novel gene expression changes relevant for the anti-diabetic properties of exercise. In conclusion, gene expression profiling after endurance exercise training identified a range of processes responsible for the physiological remodeling of human skeletal muscle tissue, many of which were similarly regulated in DMD. Furthermore, our analysis demonstrates that numerous genes previously suggested as being important for the DMD disease phenotype may principally reflect compensatory integrin signaling.
Collapse
Affiliation(s)
- James A Timmons
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The members of the H1 histone family can be classified into three groups, which are the main class subtypes expressed in somatic cells, the developmental- and tissue-specific subtypes, and the replacement subtype H1(o). Until now, the subtype H1x was not classified, since it has not yet been thoroughly examined. The results of this study show that H1x shares similarities but also exhibits slight differences in its biochemical behaviour in comparison to the main class H1 histones. In HeLa cells it is located in the nucleus and partially associated with nucleosomes. Nevertheless, it is, like H1(o), mainly located in chromatin regions that are not affected by micrococcal nuclease digestion. Further common features of H1x and the replacement histone H1(o) are that the genes of both subtypes are solitarily located and give rise to polyadenylated mRNA. However, comparison of the inducibility of their expression revealed that their genes are regulated differentially.
Collapse
Affiliation(s)
- Nicole Happel
- Institute for Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
36
|
Westerkamp CM, Gordon SE. Angiotensin-converting enzyme inhibition attenuates myonuclear addition in overloaded slow-twitch skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1223-31. [PMID: 15961527 DOI: 10.1152/ajpregu.00730.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because optimal overload-induced skeletal muscle hypertrophy requires ANG II, we aimed to determine the effects of blocking ANG II production [via angiotensin-converting enzyme (ACE) inhibition] on potential mediators of hypertrophy in overloaded skeletal muscle, namely, myonuclear addition and fibroblast content. In a 2 × 2 design, adult (200–225 g) female Sprague-Dawley rats were placed into one of four groups ( n = 8/group): 7-day skeletal muscle overload, sham operation, 7-day skeletal muscle overload with ACE inhibition, or sham operation with ACE inhibition. Functional overloads of the plantaris and soleus muscles were produced via bilateral surgical ablation of the synergistic gastrocnemius muscle, and ACE inhibition was accomplished by the addition of the ACE inhibitor enalapril maleate to the animals' daily drinking water (0.3 mg/ml). Myonuclear addition and extrasarcolemmal nuclear proliferation, as measured by in vivo 5-bromo-2′-deoxyuridine labeling, were significantly ( P ≤ 0.05) increased by overload in both the slow-twitch soleus and fast-twitch plantaris muscles. Furthermore, ACE inhibition attenuated these overload-induced increases in the soleus muscle but not in the plantaris muscle. However, the effect of ACE inhibition on soleus extrasarcolemmal nuclei was not likely due to differences in fibroblast content because overload elicited significant increases in vimentin-positive areas in soleus and plantaris muscles, and these areas were unaffected by ACE inhibition in either muscle. There was no effect of ACE inhibition on any measure in sham-operated muscles. Collectively, these data indicate that ANG II may mediate the satellite cell response to overload in slow-twitch soleus but not in fast-twitch plantaris muscles and that this effect may occur independently of changes in fibroblast content.
Collapse
Affiliation(s)
- Christopher M Westerkamp
- Human Performance Laboratory, 363 Ward Sports Medicine Bldg., East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
37
|
Minniti AN, Labarca M, Hurtado C, Brandan E. Caenorhabditis elegans syndecan (SDN-1) is required for normal egg laying and associates with the nervous system and the vulva. J Cell Sci 2005; 117:5179-90. [PMID: 15456854 DOI: 10.1242/jcs.01394] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Caenorhabditis elegans, the identification of many enzymes involved in the synthesis and modification of glycosaminoglycans (GAGs), essential components of proteoglycans, has attained special attention in recent years. Mutations in all the genes that encode for GAG biosynthetic enzymes show defects in the development of the vulva, specifically in the invagination of the vulval epithelium. Mutants for certain heparan sulfate modifying enzymes present axonal and cellular guidance defects in specific neuronal classes. Although most of the enzymes involved in the biosynthesis and modification of heparan sulfate have been characterized in C. elegans, little is known regarding the core proteins to which these GAGs covalently bind in proteoglycans. A single syndecan homologue (sdn-1) has been identified in the C. elegans genome through sequence analysis. In the present study, we show that C. elegans synthesizes sulfated proteoglycans, seen as three distinct species in western blot analysis. In the sdn-1 (ok449) deletion mutant allele we observed the lack of one species, which corresponds to a 50 kDa product after heparitinase treatment. The expression of sdn-1 mRNA and sequencing revealed that sdn-1 (ok449) deletion mutants lack two glycosylation sites. Hence, the missing protein in the western blot analysis probably corresponds to SDN-1. In addition, we show that SDN-1 localizes to the C. elegans nerve ring, nerve cords and to the vulva. SDN-1 is found specifically phosphorylated in nerve ring neurons and in the vulva, in both wild-type worms and sdn-1 (ok449) deletion mutants. These mutants show a defective egg-laying phenotype. Our results show for the first time, the identification, localization and some functional aspects of syndecan in the nematode C. elegans.
Collapse
Affiliation(s)
- Alicia N Minniti
- Centro de Regulación Celular y Patología, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, MIFAB, P. Universidad Católica de Chile, Casilla 114-D, Santiago
| | | | | | | |
Collapse
|
38
|
Zhu G, Chen H, Choi BK, Del Piero F, Schifferli DM. Histone H1 proteins act as receptors for the 987P fimbriae of enterotoxigenic Escherichia coli. J Biol Chem 2005; 280:23057-65. [PMID: 15840569 DOI: 10.1074/jbc.m503676200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tip adhesin FasG of the 987P fimbriae of enterotoxigenic Escherichia coli mediates two distinct adhesive interactions with brush border molecules of the intestinal epithelial cells of neonatal piglets. First, FasG attaches strongly to sulfatide with hydroxylated fatty acyl chains. This interaction involves lysine 117 and other lysine residues of FasG. Second, FasG recognizes specific intestinal brush border proteins that migrate on a sodium-dodecyl sulfate-polyacrylamide gel like a distinct set of 32-35-kDa proteins, as shown by ligand blotting assays. The protein sequence of high performance liquid chromatography-purified tryptic fragments of the major protein band matched sequences of human and murine histone H1 proteins. Porcine histone H1 proteins isolated from piglet intestinal epithelial cells demonstrated the same SDS-PAGE migration pattern and 987P binding properties as the 987P-specific protein receptors from porcine intestinal brush borders. Binding was dose-dependent and shown to be specific in adhesion inhibition and gel migration shift assays. Moreover, mapping of the histone H1 binding domain suggested that it is located in their lysine-rich C-terminal domains. Histone H1 molecules were visualized on the microvilli of intestinal epithelial cells by immunohistochemistry and electron microscopy. Taken together these results indicated that the intestinal protein receptors for 987P are histone H1 proteins. It is suggested that histones are released into the intestinal lumen by the high turnover of the intestinal epithelium. Their strong cationic properties can explain their association with the negatively charged brush border surfaces. There, the histone H1 molecules stabilize the sulfatide-fimbriae interaction by simultaneously binding to the membrane and to 987P.
Collapse
MESH Headings
- Adhesins, Escherichia coli/chemistry
- Animals
- Antigens, Bacterial/chemistry
- Bacterial Adhesion
- Cations
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/metabolism
- Fatty Acids/metabolism
- Fimbriae Proteins/chemistry
- Fimbriae, Bacterial/metabolism
- Genotype
- Histones/chemistry
- Histones/genetics
- Histones/metabolism
- Immunohistochemistry
- Intestinal Mucosa/metabolism
- Intestines/microbiology
- Ligands
- Lysine/chemistry
- Microscopy, Electron
- Microscopy, Electron, Transmission
- Microvilli/metabolism
- Microvilli/microbiology
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Swine
- Trypsin/pharmacology
Collapse
Affiliation(s)
- Guoqiang Zhu
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, 19104, USA
| | | | | | | | | |
Collapse
|
39
|
Lesner A, Kartvelishvili A, Lesniak J, Nikolov D, Kartvelishvili M, Trillo-Pazos G, Zablotna E, Simm M. Monoubiquitinated histone H1B is required for antiviral protection in CD4(+)T cells resistant to HIV-1. Biochemistry 2005; 43:16203-11. [PMID: 15610014 DOI: 10.1021/bi0492758] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Linker histone H1B (H1B) coeluted with an antiviral activity during the purification of HIV-1 resistance factor (HRF) from supernatants of HRF(+) cells. Western blot analysis of the supernatant using alpha-H1 and alpha-ubiquitin antibodies detected the same band of roughly 46 kDa; this band was absent from the control supernatant. Depletion of histone from biologically active material did not affect its potential, suggesting that ubiquitinated H1B is not required for the HRF-mediated antiviral protection in HIV-1 susceptible target cells; however, specific silencing of histone H1B via RNAi in HRF(+) cells reduced the biological activity of cell culture supernatants by 96% and reversed the HIV-1 resistance phenotype of HRF(+) cells. Exposure to HRF induced ubiquitination and secretion of H1B from target HIV-1 susceptible cells, suggesting that ubiquitinated H1B is a cofactor of HRF, possibly regulating its expression and secretion from CD4(+)T cells induced to resist HIV-1 infection.
Collapse
Affiliation(s)
- Adam Lesner
- Molecular Virology Division, St. Luke's/Roosevelt Hospital Center, Columbia University, New York, New York 10019, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Aldunate R, Casar JC, Brandan E, Inestrosa NC. Structural and functional organization of synaptic acetylcholinesterase. ACTA ACUST UNITED AC 2004; 47:96-104. [PMID: 15572165 DOI: 10.1016/j.brainresrev.2004.07.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
The expression of the synaptic asymmetric form of the enzyme acetylcholinesterase (AChE) depends of two different genes: the gene that encodes for the catalytic subunit and the gene that encodes for the collagenic tail, ColQ. Asymmetric AChE is specifically localized to the basal lamina at the neuromuscular junction (NMJ). This highly organized distribution pattern suggests the existence of one or more specific binding sites in ColQ required for its anchorage to the synaptic basal lamina. Recent evidence support this notion: first, the presence of two heparin-binding domains in ColQ that interact with heparan sulfate proteoglycans (HSPGs) at the synaptic basal lamina; and second, a knockout mouse for perlecan, a HSPG concentrated in nerve-muscle contact, in which absence of asymmetric AChE at the NMJ is observed. The physiological importance of collagen-tailed AChE form in skeletal muscle has been illustrated by the identification of several mutations in the ColQ gene. These mutations determine end-plate acetylcholinesterase deficiency and induce one type of synaptic functional disorders observed in Congenital Myasthenic Syndromes (CMSs).
Collapse
Affiliation(s)
- Rebeca Aldunate
- Centro FONDAP de Regulación Celular y Patología Joaquín V. Luco, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 114-D Santiago, Chile
| | | | | | | |
Collapse
|
41
|
Wegrowski Y, Maquart FX. Involvement of stromal proteoglycans in tumour progression. Crit Rev Oncol Hematol 2004; 49:259-68. [PMID: 15036265 DOI: 10.1016/j.critrevonc.2003.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2003] [Indexed: 12/12/2022] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) belong to a class of extracellular macromolecules necessary for the growth of any multicellular structures, including tumours. Transformed cells induce stromal reaction either per se or by activation of the mesenchymal cells. Tumour stroma contains several chondroitin sulphate and heparan sulphate proteoglycans. These proteoglycans and their glycosaminoglycan chains modify cell behaviour by interacting with different molecules such as growth factors, cytokines, chemokines, proteinases and their inhibitors. This review describes the main proteoglycans of tumour stoma and discusses their implication in the regulation of the activity of extracellular proteins and peptides.
Collapse
Affiliation(s)
- Yanusz Wegrowski
- Laboratory of Biochemistry, CNRS FRE 2534, Faculty of Medicine, IFR-53, 51095 Reims Cedex, France.
| | | |
Collapse
|
42
|
Zhao H, Bose S, Tuominen EKJ, Kinnunen PKJ. Interactions of Histone H1 with Phospholipids and Comparison of Its Binding to Giant Liposomes and Human Leukemic T Cells†. Biochemistry 2004; 43:10192-202. [PMID: 15287747 DOI: 10.1021/bi049758b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to its net positive charge histone H1 readily associates with liposomes containing acidic phospholipids, such as phosphatidylserine (PS). Interestingly, circular dichroism reveals that while histone H1 in aqueous solutions appears as a random coil, its binding to liposomes containing PS is associated with a pronounced increase in alpha-helicity and beta-sheet content, estimated at 7% and 24%, respectively. This interaction further results in vesicle aggregation and lipid mixing. Fluorescence microscopy revealed rapid binding of Texas Red-labeled H1 (TR-H1) to giant liposomes composed of phosphatidylcholine and PS (SOPC/brain PS, 9/1 molar ratio), followed by lateral segregation and subsequent translocation of the membrane-bound H1 into the giant liposome. The above processes in giant liposomes did depend on the presence of the negatively charged PS. Comparison of the behavior of H1 in giant liposomes to that in cultured leukemic T cells demonstrated very similar patterns. More specifically, fluorescence microscopy revealed binding of TR-H1 to the plasma membrane as lateral segregated microdomains, followed by translocation into the cell. H1 also triggered membrane blebbing and fragmentation of the nuclei of these cells, thus suggesting induction of apoptosis. Our findings indicate that histone H1 and acidic phospholipids form supramolecular aggregates in the plasma membrane of T cells, subsequently resulting in major rearrangements of cellular membranes. Our results allow us to conclude that the minimal requirement for the interaction of histone H1 with the leukemia cell plasma membrane is reproduced by giant liposomes composed of unsaturated phosphatidylcholine and phosphatidylserine, the latter being mandatory for the observed changes in the secondary structure of H1 as well as the macroscopic consequences of the H1-PS interactions.
Collapse
Affiliation(s)
- Hongxia Zhao
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, Helsinki FIN-00014, Finland
| | | | | | | |
Collapse
|
43
|
Jedrusik MA, Vogt S, Claus P, Schulze E. A novel linker histone-like protein is associated with cytoplasmic filaments inCaenorhabditis elegans. J Cell Sci 2002; 115:2881-91. [PMID: 12082149 DOI: 10.1242/jcs.115.14.2881] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The histone H1 complement of Caenorhabditis elegans contains a single unusual protein, H1.X. Although H1.X possesses the globular domain and the canonical three-domain structure of linker histones, the amino acid composition of H1.X is distinctly different from conventional linker histones in both terminal domains. We have characterized H1.X in C. elegans by antibody labeling, green fluorescent protein fusion protein expression and RNA interference. Unlike normal linker histones, H1.X is a cytoplasmic as well as a nuclear protein and is not associated with chromosomes. H1.X is most prominently expressed in the marginal cells of the pharynx and is associated with a peculiar cytoplasmic cytoskeletal structure therein, the tonofilaments. Additionally H1.X::GFP is expressed in the cytoplasm of body and vulva muscle cells, neurons, excretory cells and in the nucleoli of embryonic blastomeres and adult gut cells. RNA interference with H1.X results in uncoordinated and egg laying defective animals, as well as in a longitudinally enlarged pharynx. These phenotypes indicate a cytoplasmic role of H1.X in muscle growth and muscle function.
Collapse
Affiliation(s)
- Monika A Jedrusik
- Georg-August University of Göttingen, Third Department of Zoology - Developmental Biology, Humboldtallee 34A, Germany
| | | | | | | |
Collapse
|