1
|
Key J, Almaguer-Mederos LE, Kandi AR, Sen NE, Gispert S, Köpf G, Meierhofer D, Auburger G. ATXN2L primarily interacts with NUFIP2, the absence of ATXN2L results in NUFIP2 depletion, and the ATXN2-polyQ expansion triggers NUFIP2 accumulation. Neurobiol Dis 2025; 209:106903. [PMID: 40220918 DOI: 10.1016/j.nbd.2025.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
The cytoplasmic Ataxin-2 (ATXN2) protein associates with TDP-43 in stress granules (SG) where RNA quality control occurs. Mutations in this pathway underlie Spinocerebellar Ataxia type 2 (SCA2) and Amyotrophic Lateral Sclerosis. In contrast, Ataxin-2-like (ATXN2L) is predominantly perinuclear, more abundant, and essential for embryonic life. Its sequestration into ATXN2 aggregates may contribute to disease. In this study, we utilized two approaches to clarify the roles of ATXN2L. First, we identified interactors through co-immunoprecipitation in both wild-type and ATXN2L-null murine embryonic fibroblasts. Second, we assessed the proteome profile effects using mass spectrometry in these cells. Additionally, we examined the accumulation of ATXN2L interactors in the SCA2 mouse model, Atxn2-CAG100-KnockIn (KIN). We observed that RNA-binding proteins, including PABPN1, NUFIP2, MCRIP2, RBMS1, LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ, CSDE1, HNRNPK, and HNRNPDL, exhibit a stronger association with ATXN2L compared to established interactors like ATXN2, PABPC1, LSM12, and G3BP2. Additionally, ATXN2L interacted with components of the actin complex, such as SYNE2, LMOD1, ACTA2, FYB, and GOLGA3. We noted that oxidative stress increased HNRNPK but decreased SYNE2 association, which likely reflects the relocalization of SG. Proteome profiling revealed that NUFIP2 and SYNE2 are depleted in ATXN2L-null fibroblasts. Furthermore, NUFIP2 homodimers and SYNE1 accumulate during the ATXN2 aggregation process in KIN 14-month-old spinal cord tissues. The functions of ATXN2L and its interactors are therefore critical in RNA granule trafficking and surveillance, particularly for the maintenance of differentiated neurons.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Gabriele Köpf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany; Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Fachbereich Medizin, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Torun A, Tuğral H, Banerjee S. Crosstalk Between Phase-Separated Membraneless Condensates and Membrane-Bound Organelles in Cellular Function and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095243 DOI: 10.1007/5584_2025_852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Compartmentalization in eukaryotic cells allows the spatiotemporal regulation of biochemical processes, in addition to allowing specific sets of proteins to interact in a regulated as well as stochastic manner. Although membrane-bound organelles are thought to be the key players of cellular compartmentalization, membraneless biomolecular condensates such as stress granules, P bodies, and many others have recently emerged as key players that are also thought to bring order to a highly chaotic environment. Here, we have evaluated the latest studies on biomolecular condensates, specifically focusing on how they interact with membrane-bound organelles and modulate each other's functions. We also highlight the importance of this interaction in neurodegenerative and cardiovascular diseases as well as in cancer.
Collapse
Affiliation(s)
- Aydan Torun
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye
| | - Hoşnaz Tuğral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye.
| |
Collapse
|
3
|
Nandi S, Ghosh S, Garg S, Ghosh S. Unveiling the Human Brain on a Chip: An Odyssey to Reconstitute Neuronal Ensembles and Explore Plausible Applications in Neuroscience. ACS Chem Neurosci 2024; 15:3828-3847. [PMID: 39436813 DOI: 10.1021/acschemneuro.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The brain is an incredibly complex structure that consists of millions of neural networks. In developmental and cellular neuroscience, probing the highly complex dynamics of the brain remains a challenge. Furthermore, deciphering how several cues can influence neuronal growth and its interactions with different brain cell types (such as astrocytes and microglia) is also a formidable task. Traditional in vitro macroscopic cell culture techniques offer simple and straightforward methods. However, they often fall short of providing insights into the complex phenomena of neuronal network formation and the relevant microenvironments. To circumvent the drawbacks of conventional cell culture methods, recent advancements in the development of microfluidic device-based microplatforms have emerged as promising alternatives. Microfluidic devices enable precise spatiotemporal control over compartmentalized cell cultures. This feature facilitates researchers in reconstituting the intricacies of the neuronal cytoarchitecture within a regulated environment. Therefore, in this review, we focus primarily on modeling neuronal development in a microfluidic device and the various strategies that researchers have adopted to mimic neurogenesis on a chip. Additionally, we have presented an overview of the application of brain-on-chip models for the recapitulation of the blood-brain barrier and neurodegenerative diseases, followed by subsequent high-throughput drug screening. These lab-on-a-chip technologies have tremendous potential to mimic the brain on a chip, providing valuable insights into fundamental brain processes. The brain-on-chip models will also serve as innovative platforms for developing novel neurotherapeutics to address several neurological disorders.
Collapse
Affiliation(s)
- Subhadra Nandi
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| |
Collapse
|
4
|
Tomaszewska-Zaremba D, Tomczyk M, Wojtulewicz K, Bochenek J, Pałatyńska K, Herman AP. Effect of central administration of indomethacin on anandamide-induced GnRH/LH secretion in the hypothalamus of anoestrous ewes. J Vet Res 2024; 68:451-459. [PMID: 39318510 PMCID: PMC11418386 DOI: 10.2478/jvetres-2024-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/15/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction It is suggested that cannabinoids (CBs) may disturb reproduction through action on hypothalamic gonadotropin-releasing hormone (GnRH) neurons directly or indirectly through intermediates such as prostaglandins. The study aimed to determine the influence of intracerebroventricular (i.c.v.) injection of the endogenous cannabinoid anandamide (N-arachidonoylethanolamine - AEA), alone or with the prostaglandin synthesis inhibitor indomethacin (IND), on GnRH/luteinising hormone (LH) secretion. The purpose of the research was to clarify the role of endocannabinoids and their interaction with prostaglandins in the regulation of reproduction at the level of the hypothalamus and pituitary in anoestrous sheep. Material and Methods The study was performed on 24 anoestrous ewes divided into four experimental groups: a control group receiving i.c.v. injection of Ringer-Locke solution, an AEA group that received i.c.v. injection of 30 μM of AEA, an IND group receiving i.c.v. injection of 5 μM of IND and an AEA + IND group that received i.c.v. injections of 30 μM of AEA and 5 μM of IND. Results Anandamide stimulated GnRH protein and gene expression in the median eminence and protein expression in the preoptic area without influencing GnRH messenger RNA (mRNA) in this structure. Indomethacin reversed the changes in GnRH secretion after AEA administration. It was also found that AEA stimulated LH mRNA in the pituitary without influencing LH release. Conclusion Our results support the role of endogenous cannabinoids in the regulation of reproductive processes at the central nervous system level. They may act directly on the hypothalamic GnRH neurons or indirectly through intermediates such as prostaglandins.
Collapse
Affiliation(s)
- Dorota Tomaszewska-Zaremba
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110Jabłonna, Poland
| | - Monika Tomczyk
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110Jabłonna, Poland
| | - Karolina Wojtulewicz
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110Jabłonna, Poland
| | - Joanna Bochenek
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110Jabłonna, Poland
| | - Kinga Pałatyńska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110Jabłonna, Poland
| | - Andrzej Przemysław Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110Jabłonna, Poland
| |
Collapse
|
5
|
Geng Q, Keya JJ, Hotta T, Verhey KJ. The kinesin-3 KIF1C undergoes liquid-liquid phase separation for accumulation of specific transcripts at the cell periphery. EMBO J 2024; 43:3192-3213. [PMID: 38898313 PMCID: PMC11294625 DOI: 10.1038/s44318-024-00147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
In cells, mRNAs are transported to and positioned at subcellular areas to locally regulate protein production. Recent studies have identified the kinesin-3 family member motor protein KIF1C as an RNA transporter. However, it is not clear how KIF1C interacts with RNA molecules. Here, we show that the KIF1C C-terminal tail domain contains an intrinsically disordered region (IDR) that drives liquid-liquid phase separation (LLPS). KIF1C forms dynamic puncta in cells that display physical properties of liquid condensates and incorporate RNA molecules in a sequence-selective manner. Endogenous KIF1C forms condensates in cellular protrusions, where mRNAs are enriched in an IDR-dependent manner. Purified KIF1C tail constructs undergo LLPS in vitro at near-endogenous nM concentrations and in the absence of crowding agents and can directly recruit RNA molecules. Overall, our work uncovers an intrinsic correlation between the LLPS activity of KIF1C and its role in mRNA positioning. In addition, the LLPS activity of KIF1C's tail represents a new mode of motor-cargo interaction that extends our current understanding of cytoskeletal motor proteins.
Collapse
Affiliation(s)
- Qi Geng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jakia Jannat Keya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Ferreira DT, Shen BQ, Mwirigi JM, Shiers S, Sankaranarayanan I, Kotamarti M, Inturi NN, Mazhar K, Ubogu EE, Thomas G, Lalli T, Wukich D, Price TJ. Deciphering the molecular landscape of human peripheral nerves: implications for diabetic peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599167. [PMID: 38915676 PMCID: PMC11195245 DOI: 10.1101/2024.06.15.599167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes mellitus that is caused by metabolic toxicity to peripheral axons. We aimed to gain deep mechanistic insight into the disease process using bulk and spatial RNA sequencing on tibial and sural nerves recovered from lower leg amputations in a mostly diabetic population. First, our approach comparing mixed sensory and motor tibial and purely sensory sural nerves shows key pathway differences in affected nerves, with distinct immunological features observed in sural nerves. Second, spatial transcriptomics analysis of sural nerves reveals substantial shifts in endothelial and immune cell types associated with severe axonal loss. We also find clear evidence of neuronal gene transcript changes, like PRPH, in nerves with axonal loss suggesting perturbed RNA transport into distal sensory axons. This motivated further investigation into neuronal mRNA localization in peripheral nerve axons generating clear evidence of robust localization of mRNAs such as SCN9A and TRPV1 in human sensory axons. Our work gives new insight into the altered cellular and transcriptomic profiles in human nerves in DPN and highlights the importance of sensory axon mRNA transport as an unappreciated potential contributor to peripheral nerve degeneration.
Collapse
Affiliation(s)
- Diana Tavares Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Breanna Q Shen
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Miriam Kotamarti
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Nikhil N Inturi
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Eroboghene E Ubogu
- Department of Neurology, Division of Neuromuscular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Geneva Thomas
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Trapper Lalli
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dane Wukich
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
7
|
Earwood R, Ninomiya H, Wang H, Shimada IS, Stroud M, Perez D, Uuganbayar U, Yamada C, Akiyama-Miyoshi T, Stefanovic B, Kato Y. The binding of LARP6 and DNAAF6 in biomolecular condensates influences ciliogenesis of multiciliated cells. J Biol Chem 2024; 300:107373. [PMID: 38762183 PMCID: PMC11208920 DOI: 10.1016/j.jbc.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Motile cilia on the cell surface produce fluid flows in the body and abnormalities in motile cilia cause primary ciliary dyskinesia. Dynein axonemal assembly factor 6 (DNAAF6), a causative gene of primary ciliary dyskinesia, was isolated as an interacting protein with La ribonucleoprotein 6 (LARP6) that regulates ciliogenesis in multiciliated cells (MCCs). In MCCs of Xenopus embryos, LARP6 and DNAAF6 were colocalized in biomolecular condensates termed dynein axonemal particles and synergized to control ciliogenesis. Moreover, tubulin alpha 1c-like mRNA encoding α-tubulin protein, that is a major component of ciliary axoneme, was identified as a target mRNA regulated by binding LARP6. While DNAAF6 was necessary for high α-tubulin protein expression near the apical side of Xenopus MCCs during ciliogenesis, its mutant, which abolishes binding with LARP6, was unable to restore the expression of α-tubulin protein near the apical side of MCCs in Xenopus DNAAF6 morphant. These results indicated that the binding of LARP6 and DNAAF6 in dynein axonemal particles regulates highly expressed α-tubulin protein near the apical side of Xenopus MCCs during ciliogenesis.
Collapse
Affiliation(s)
- Ryan Earwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Hiromasa Ninomiya
- Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Hao Wang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Issei S Shimada
- Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Mia Stroud
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Diana Perez
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Udval Uuganbayar
- Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Chisato Yamada
- Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Toru Akiyama-Miyoshi
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Branko Stefanovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.
| | - Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA; Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan.
| |
Collapse
|
8
|
Schmitd LB, Hafner H, Ward A, Asghari Adib E, Biscola NP, Kohen R, Patel M, Williamson RE, Desai E, Bennett J, Saxman G, Athaiya M, Wilborn D, Shumpert J, Zhao XF, Kawaguchi R, Geschwind DH, Hoke A, Shrager P, Collins CA, Havton LA, Kalinski AL, Giger RJ. Sarm1 is not necessary for activation of neuron-intrinsic growth programs yet required for the Schwann cell repair response and peripheral nerve regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583374. [PMID: 38496662 PMCID: PMC10942360 DOI: 10.1101/2024.03.04.583374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Upon peripheral nervous system (PNS) injury, severed axons undergo rapid SARM1-dependent Wallerian degeneration (WD). In mammals, the role of SARM1 in PNS regeneration, however, is unknown. Here we demonstrate that Sarm1 is not required for axotomy induced activation of neuron-intrinsic growth programs and axonal growth into a nerve crush site. However, in the distal nerve, Sarm1 is necessary for the timely induction of the Schwann cell (SC) repair response, nerve inflammation, myelin clearance, and regeneration of sensory and motor axons. In Sarm1-/- mice, regenerated fibers exhibit reduced axon caliber, defective nerve conduction, and recovery of motor function is delayed. The growth hostile environment of Sarm1-/- distal nerve tissue was demonstrated by grafting of Sarm1-/- nerve into WT recipients. SC lineage tracing in injured WT and Sarm1-/- mice revealed morphological differences. In the Sarm1-/- distal nerve, the appearance of p75NTR+, c-Jun+ SCs is significantly delayed. Ex vivo, p75NTR and c-Jun upregulation in Sarm1-/- nerves can be rescued by pharmacological inhibition of ErbB kinase. Together, our studies show that Sarm1 is not necessary for the activation of neuron intrinsic growth programs but in the distal nerve is required for the orchestration of cellular programs that underlie rapid axon extension.
Collapse
Affiliation(s)
- Ligia B. Schmitd
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Ayobami Ward
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
| | - Elham Asghari Adib
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Natalia P. Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Manav Patel
- Department of Biology, Ball State University, Muncie IN, USA
| | | | - Emily Desai
- Department of Biology, Ball State University, Muncie IN, USA
| | | | - Grace Saxman
- Department of Biology, Ball State University, Muncie IN, USA
| | - Mitre Athaiya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - David Wilborn
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Jaisha Shumpert
- Department of Biology, Ball State University, Muncie IN, USA
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel H. Geschwind
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ahmet Hoke
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
| | - Peter Shrager
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine A. Collins
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Leif A. Havton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J Peters VA Medical Center, Bronx, NY, USA
| | - Ashley L. Kalinski
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Biology, Ball State University, Muncie IN, USA
| | - Roman J. Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor MI, USA
| |
Collapse
|
9
|
Mah CK, Ahmed N, Lopez NA, Lam DC, Pong A, Monell A, Kern C, Han Y, Prasad G, Cesnik AJ, Lundberg E, Zhu Q, Carter H, Yeo GW. Bento: a toolkit for subcellular analysis of spatial transcriptomics data. Genome Biol 2024; 25:82. [PMID: 38566187 PMCID: PMC11289963 DOI: 10.1186/s13059-024-03217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
The spatial organization of molecules in a cell is essential for their functions. While current methods focus on discerning tissue architecture, cell-cell interactions, and spatial expression patterns, they are limited to the multicellular scale. We present Bento, a Python toolkit that takes advantage of single-molecule information to enable spatial analysis at the subcellular scale. Bento ingests molecular coordinates and segmentation boundaries to perform three analyses: defining subcellular domains, annotating localization patterns, and quantifying gene-gene colocalization. We demonstrate MERFISH, seqFISH + , Molecular Cartography, and Xenium datasets. Bento is part of the open-source Scverse ecosystem, enabling integration with other single-cell analysis tools.
Collapse
Affiliation(s)
- Clarence K Mah
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center, La Jolla, CA, USA
| | - Noorsher Ahmed
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center, La Jolla, CA, USA
| | - Nicole A Lopez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dylan C Lam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Avery Pong
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alexander Monell
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Colin Kern
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Yuanyuan Han
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Gino Prasad
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Anthony J Cesnik
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Emma Lundberg
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Quan Zhu
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute Innovation Center, La Jolla, CA, USA.
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
El Heni H, Kemenesi-Gedei PB, Pálvölgyi L, Kozma-Szeredi ID, Kis G. Peripheral Branch Injury Induces Oxytocin Receptor Expression at the Central Axon Terminals of Primary Sensory Neurons. Int J Mol Sci 2023; 25:7. [PMID: 38203176 PMCID: PMC10779307 DOI: 10.3390/ijms25010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Considerable evidence suggests that oxytocin, as a regulatory nonapeptide, participates in modulatory mechanisms of nociception. Nonetheless, the role of this hypothalamic hormone and its receptor in the sensory pathway has yet to be fully explored. The present study performed immunohistochemistry, enzyme-linked immunosorbent assay, and RT-qPCR analysis to assess changes in the expression of the neuronal oxytocin receptor in female rats following tight ligation of the sciatic nerve after 1, 3, and 7 days of survival. Oxytocin receptor immunoreactivity was present in both dorsal root ganglia and lumbar spinal cord segments, but not accumulated at the site of the ligation of the peripheral nerve branch. We found a time-dependent change in the expression of oxytocin receptor mRNA in L5 dorsal root ganglion neurons, as well as an increase in the level of the receptor protein in the lumbar segment of the spinal cord. A peak in the expression was observed on day 3, which downturned slightly by day 7 after the nerve ligation. These results show that OTR expression is up-regulated in response to peripheral nerve lesions. We assume that the importance of OTR is to modify spinal presynaptic inputs of the sensory neurons upon injury-induced activation, thus to be targets of the descending oxytocinergic neurons from supraspinal levels. The findings of this study support the concept that oxytocin plays a role in somatosensory transmission.
Collapse
Affiliation(s)
- Heni El Heni
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Péter Bátor Kemenesi-Gedei
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Laura Pálvölgyi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Ivett Dorina Kozma-Szeredi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Gyöngyi Kis
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
11
|
Carew JA, Cristofaro V, Goyal RK, Sullivan MP. Differential Myosin 5a splice variants in innervation of pelvic organs. Front Physiol 2023; 14:1304537. [PMID: 38148903 PMCID: PMC10749955 DOI: 10.3389/fphys.2023.1304537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: Myosin proteins interact with filamentous actin and translate the chemical energy generated by ATP hydrolysis into a wide variety of mechanical functions in all cell types. The classic function of conventional myosins is mediation of muscle contraction, but myosins also participate in processes as diverse as exocytosis/endocytosis, membrane remodeling, and cytokinesis. Myosin 5a (Myo5a) is an unconventional motor protein well-suited to the processive transport of diverse molecular cargo within cells and interactions with multiprotein membrane complexes that facilitate exocytosis. Myo5a includes a region consisting of six small alternative exons which can undergo differential splicing. Neurons and skin melanocytes express characteristic splice variants of Myo5a, which are specialized for transport processes unique to those cell types. But less is known about the expression of Myo5a splice variants in other tissues, their cargos and interactive partners, and their regulation. Methods: In visceral organs, neurotransmission-induced contraction or relaxation of smooth muscle is mediated by Myo5a. Axons within urogenital organs and distal colon of rodents arise from cell bodies located in the major pelvic ganglion (MPG). However, in contrast to urogenital organs, the distal colon also contains soma of the enteric nervous system. Therefore, the rodent pelvic organs provide an opportunity to compare the expression of Myo5a splice variants, not only in different tissues innervated by the pelvic nerves, but also in different subcellular compartments of those nerves. This study examines the expression and distribution of Myo5a splice variants in the MPG, compared to the bladder, corpus cavernosum of the penis (CCP) and distal colon using immunohistochemistry and mRNA analyses. Results/discussion: We report detection of characteristic Myo5a variants in these tissues, with bladder and CCP displaying a similar variant pattern but one which differed from that of distal colon. In all three organs, Myo5a variants were distinct compared to the MPG, implying segregation of one variant within nerve soma and its exclusion from axons. The expression of distinct Myo5a variant arrays is likely to be adaptive, and to underlie specific functions fulfilled by Myo5a in those particular locations.
Collapse
Affiliation(s)
- Josephine A. Carew
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Vivian Cristofaro
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Raj K. Goyal
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Maryrose P. Sullivan
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
12
|
Castillo PE, Jung H, Klann E, Riccio A. Presynaptic Protein Synthesis in Brain Function and Disease. J Neurosci 2023; 43:7483-7488. [PMID: 37940588 PMCID: PMC10634577 DOI: 10.1523/jneurosci.1454-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 11/10/2023] Open
Abstract
Local protein synthesis in mature brain axons regulates the structure and function of presynaptic boutons by adjusting the presynaptic proteome to local demands. This crucial mechanism underlies experience-dependent modifications of brain circuits, and its dysregulation may contribute to brain disorders, such as autism and intellectual disability. Here, we discuss recent advancements in the axonal transcriptome, axonal RNA localization and translation, and the role of presynaptic local translation in synaptic plasticity and memory.
Collapse
Affiliation(s)
- Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eric Klann
- Center for Neural Science, New York University, New York, New York 10003
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - Antonella Riccio
- UCL Laboratory for Molecular Cell Biology University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
13
|
Geng Q, Keya JJ, Hotta T, Verhey KJ. KIF1C, an RNA transporting kinesin-3, undergoes liquid-liquid phase separation through its C-terminal disordered domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563538. [PMID: 37961614 PMCID: PMC10634753 DOI: 10.1101/2023.10.23.563538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The spatial distribution of mRNA is critical for local control of protein production. Recent studies have identified the kinesin-3 family member KIF1C as an RNA transporter. However, it is not clear how KIF1C interacts with RNA molecules. Here, we show that KIF1C's C-terminal tail domain is an intrinsically disordered region (IDR) containing a prion-like domain (PLD) that is unique compared to the C-terminal tails of other kinesin family members. In cells, KIF1C constructs undergo reversible formation of dynamic puncta that display physical properties of liquid condensates and incorporate RNA molecules in a sequence-selective manner. The IDR is necessary and sufficient for driving liquid-liquid phase separation (LLPS) but the condensate properties can be modulated by adjacent coiled-coil segments. The purified KIF1C IDR domain undergoes LLPS in vitro at near-endogenous nM concentrations in a salt-dependent manner. Deletion of the IDR abolished the ability of KIF1C to undergo LLPS and disrupted the distribution of mRNA cargoes to the cell periphery. Our work thus uncovers an intrinsic correlation between the LLPS activity of KIF1C and its role as an RNA transporter. In addition, as the first kinesin motor reported to undergo LLPS, our work reveals a previously uncharacterized mode of motor-cargo interaction that extends our understanding of the behavior of cytoskeletal motor proteins.
Collapse
Affiliation(s)
- Qi Geng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jakia Jannat Keya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
14
|
D'Sa K, Guelfi S, Vandrovcova J, Reynolds RH, Zhang D, Hardy J, Botía JA, Weale ME, Taliun SAG, Small KS, Ryten M. Analysis of subcellular RNA fractions demonstrates significant genetic regulation of gene expression in human brain post-transcriptionally. Sci Rep 2023; 13:13874. [PMID: 37620324 PMCID: PMC10449874 DOI: 10.1038/s41598-023-40324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Gaining insight into the genetic regulation of gene expression in human brain is key to the interpretation of genome-wide association studies for major neurological and neuropsychiatric diseases. Expression quantitative trait loci (eQTL) analyses have largely been used to achieve this, providing valuable insights into the genetic regulation of steady-state RNA in human brain, but not distinguishing between molecular processes regulating transcription and stability. RNA quantification within cellular fractions can disentangle these processes in cell types and tissues which are challenging to model in vitro. We investigated the underlying molecular processes driving the genetic regulation of gene expression specific to a cellular fraction using allele-specific expression (ASE). Applying ASE analysis to genomic and transcriptomic data from paired nuclear and cytoplasmic fractions of anterior prefrontal cortex, cerebellar cortex and putamen tissues from 4 post-mortem neuropathologically-confirmed control human brains, we demonstrate that a significant proportion of genetic regulation of gene expression occurs post-transcriptionally in the cytoplasm, with genes undergoing this form of regulation more likely to be synaptic. These findings have implications for understanding the structure of gene expression regulation in human brain, and importantly the interpretation of rapidly growing single-nucleus brain RNA-sequencing and eQTL datasets, where cytoplasm-specific regulatory events could be missed.
Collapse
Affiliation(s)
- Karishma D'Sa
- Department of Neurodegenerative Disease, University College London, London, WC1N 3BG, UK
- Department of Medical & Molecular Genetics, School of Medical Sciences, King's College London, Guy's Hospital, London, SE1 1UL, UK
- Department of Clinical and Movement Neurosciences, University College London, London, WC1N 3BG, UK
| | - Sebastian Guelfi
- Department of Neurodegenerative Disease, University College London, London, WC1N 3BG, UK
- Verge Genomics, Tower Pl, South San Francisco, CA, 94080, USA
| | - Jana Vandrovcova
- Dept of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Regina H Reynolds
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, WC1N 1EH, UK
| | - David Zhang
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, WC1N 1EH, UK
| | - John Hardy
- Department of Neurodegenerative Disease, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London, WC1N 3BG, UK
| | - Juan A Botía
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, WC1N 1EH, UK
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, 30100, Murcia, Spain
| | - Michael E Weale
- Department of Medical & Molecular Genetics, School of Medical Sciences, King's College London, Guy's Hospital, London, SE1 1UL, UK
- Genomics Plc, Oxford, OX1 1JD, UK
| | - Sarah A Gagliano Taliun
- Department of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Montréal Heart Institute, Montréal, QC, H1T 1C8, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, WC1N 1EH, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, WC1N 3JH, UK.
| |
Collapse
|
15
|
Gu X, Jia C, Wang J. Advances in Understanding the Molecular Mechanisms of Neuronal Polarity. Mol Neurobiol 2023; 60:2851-2870. [PMID: 36738353 DOI: 10.1007/s12035-023-03242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
The establishment and maintenance of neuronal polarity are important for neural development and function. Abnormal neuronal polarity establishment commonly leads to a variety of neurodevelopmental disorders. Over the past three decades, with the continuous development and improvement of biological research methods and techniques, we have made tremendous progress in the understanding of the molecular mechanisms of neuronal polarity establishment. The activity of positive and negative feedback signals and actin waves are both essential in this process. They drive the directional transport and aggregation of key molecules of neuronal polarity, promote the spatiotemporal regulation of ordered and coordinated interactions of actin filaments and microtubules, stimulate the specialization and growth of axons, and inhibit the formation of multiple axons. In this review, we focus on recent advances in these areas, in particular the important findings about neuronal polarity in two classical models, in vitro primary hippocampal/cortical neurons and in vivo cortical pyramidal neurons, and discuss our current understanding of neuronal polarity..
Collapse
Affiliation(s)
- Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Bárez-López S, Mecawi AS, Bryan N, Pauža AG, Duque VJ, Gillard BT, Murphy D, Greenwood MP. Translational and post-translational dynamics in a model peptidergic system. Mol Cell Proteomics 2023; 22:100544. [PMID: 37030596 DOI: 10.1016/j.mcpro.2023.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023] Open
Abstract
The cell bodies of hypothalamic magnocellular neurones are densely packed in the hypothalamic supraoptic nucleus whereas their axons project to the anatomically discrete posterior pituitary gland. We have taken advantage of this unique anatomical structure to establish proteome and phosphoproteome dynamics in neuronal cell bodies and axonal terminals in response to physiological stimulation. We have found that proteome and phosphoproteome responses to neuronal stimulation are very different between somatic and axonal neuronal compartments, indicating the need of each cell domain to differentially adapt. In particular, changes in the phosphoproteome in the cell body are involved in the reorganisation of the cytoskeleton and in axonal terminals the regulation of synaptic and secretory processes. We have identified that prohormone precursors including vasopressin and oxytocin are phosphorylated in axonal terminals and are hyperphosphorylated following stimulation. By multi-omic integration of transcriptome and proteomic data we identify changes to proteins present in afferent inputs to this nucleus.
Collapse
Affiliation(s)
- Soledad Bárez-López
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - André S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Natasha Bryan
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Audrys G Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Victor J Duque
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Benjamin T Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| |
Collapse
|
17
|
Claus C, Slavin M, Ansseau E, Lancelot C, Bah K, Lassche S, Fiévet M, Greco A, Tomaiuolo S, Tassin A, Dudome V, Kusters B, Declèves AE, Laoudj-Chenivesse D, van Engelen BGM, Nonclercq D, Belayew A, Kalisman N, Coppée F. The double homeodomain protein DUX4c is associated with regenerating muscle fibers and RNA-binding proteins. Skelet Muscle 2023; 13:5. [PMID: 36882853 PMCID: PMC9990282 DOI: 10.1186/s13395-022-00310-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/30/2022] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND We have previously demonstrated that double homeobox 4 centromeric (DUX4C) encoded for a functional DUX4c protein upregulated in dystrophic skeletal muscles. Based on gain- and loss-of-function studies we have proposed DUX4c involvement in muscle regeneration. Here, we provide further evidence for such a role in skeletal muscles from patients affected with facioscapulohumeral muscular dystrophy (FSHD). METHODS DUX4c was studied at RNA and protein levels in FSHD muscle cell cultures and biopsies. Its protein partners were co-purified and identified by mass spectrometry. Endogenous DUX4c was detected in FSHD muscle sections with either its partners or regeneration markers using co-immunofluorescence or in situ proximity ligation assay. RESULTS We identified new alternatively spliced DUX4C transcripts and confirmed DUX4c immunodetection in rare FSHD muscle cells in primary culture. DUX4c was detected in nuclei, cytoplasm or at cell-cell contacts between myocytes and interacted sporadically with specific RNA-binding proteins involved, a.o., in muscle differentiation, repair, and mass maintenance. In FSHD muscle sections, DUX4c was found in fibers with unusual shape or central/delocalized nuclei (a regeneration feature) staining for developmental myosin heavy chain, MYOD or presenting intense desmin labeling. Some couples of myocytes/fibers locally exhibited peripheral DUX4c-positive areas that were very close to each other, but in distinct cells. MYOD or intense desmin staining at these locations suggested an imminent muscle cell fusion. We further demonstrated DUX4c interaction with its major protein partner, C1qBP, inside myocytes/myofibers that presented features of regeneration. On adjacent muscle sections, we could unexpectedly detect DUX4 (the FSHD causal protein) and its interaction with C1qBP in fusing myocytes/fibers. CONCLUSIONS DUX4c upregulation in FSHD muscles suggests it contributes not only to the pathology but also, based on its protein partners and specific markers, to attempts at muscle regeneration. The presence of both DUX4 and DUX4c in regenerating FSHD muscle cells suggests DUX4 could compete with normal DUX4c functions, thus explaining why skeletal muscle is particularly sensitive to DUX4 toxicity. Caution should be exerted with therapeutic agents aiming for DUX4 suppression because they might also repress the highly similar DUX4c and interfere with its physiological role.
Collapse
Affiliation(s)
- Clothilde Claus
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Moriya Slavin
- Department of Biological Chemistry, the Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eugénie Ansseau
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Céline Lancelot
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Karimatou Bah
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Saskia Lassche
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Manon Fiévet
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Sara Tomaiuolo
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium.,Laboratory of Respiratory Physiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Virginie Dudome
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Benno Kusters
- Department of Pathology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | | | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Denis Nonclercq
- Laboratory of Histology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Alexandra Belayew
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Nir Kalisman
- Department of Biological Chemistry, the Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Frédérique Coppée
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium.
| |
Collapse
|
18
|
Sahoo PK, Twiss JL. Profiling Locally Translated mRNAs in Regenerating Axons. Methods Mol Biol 2023; 2636:145-161. [PMID: 36881299 DOI: 10.1007/978-1-0716-3012-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Spatial and temporal regulation of protein expression plays important roles in many cellular functions, particularly for highly polarized cell types. While the subcellular proteome can be altered by relocalizing proteins from other domains of the cell, transporting mRNAs to subcellular domains provides a means to locally synthesize new proteins in response to different stimuli. Localized protein synthesis is a critical mechanism in neurons that extend dendrites and axons long distances from their cell bodies. Here, we discuss methodologies that have been developed to study localized protein synthesis using axonal protein synthesis as an example. We provide an in-depth method using dual fluorescence recovery after photobleaching to visualize sites of protein synthesis using reporter cDNAs that encode two different localizing mRNAs along with diffusion-limited fluorescent reporter proteins. We show how this method can be used to determine how extracellular stimuli and different physiological states can alter the specificity of local mRNA translation in real time.
Collapse
Affiliation(s)
- Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
19
|
Cohen LD, Ziv T, Ziv NE. Synapse integrity and function: Dependence on protein synthesis and identification of potential failure points. Front Mol Neurosci 2022; 15:1038614. [PMID: 36583084 PMCID: PMC9792512 DOI: 10.3389/fnmol.2022.1038614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic integrity and function depend on myriad proteins - labile molecules with finite lifetimes that need to be continually replaced with freshly synthesized copies. Here we describe experiments designed to expose synaptic (and neuronal) properties and functions that are particularly sensitive to disruptions in protein supply, identify proteins lost early upon such disruptions, and uncover potential, yet currently underappreciated failure points. We report here that acute suppressions of protein synthesis are followed within hours by reductions in spontaneous network activity levels, impaired oxidative phosphorylation and mitochondrial function, and, importantly, destabilization and loss of both excitatory and inhibitory postsynaptic specializations. Conversely, gross impairments in presynaptic vesicle recycling occur over longer time scales (days), as does overt cell death. Proteomic analysis identified groups of potentially essential 'early-lost' proteins including regulators of synapse stability, proteins related to bioenergetics, fatty acid and lipid metabolism, and, unexpectedly, numerous proteins involved in Alzheimer's disease pathology and amyloid beta processing. Collectively, these findings point to neuronal excitability, energy supply and synaptic stability as early-occurring failure points under conditions of compromised supply of newly synthesized protein copies.
Collapse
Affiliation(s)
- Laurie D. Cohen
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion, Haifa, Israel
| | - Noam E. Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel,*Correspondence: Noam E. Ziv,
| |
Collapse
|
20
|
Hasan MM, Hasan MM, Rahman ASMS, Athanassiou CG, Tussey DA, Hahn DA. Induced dormancy in Indian meal moth Plodia interpunctella (Hübner) and its impact on the quality improvement for mass rearing in parasitoid Habrobracon hebetor (Say). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:766-776. [PMID: 36193680 DOI: 10.1017/s0007485322000153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A steady supply of hosts at the susceptible stage for parasitism is a major component of mass rearing parasitoids for biological control programs. Here we describe the effects of storing 5th instar Plodia interpunctella larvae in dormancy on subsequent host development in the context of host colony maintenance and effects of the duration of host dormancy on the development of Habrobracon hebetor parasitoids reared from dormant hosts. We induced dormancy with a combination of short daylength (12L:12D) and lower temperature (15°C), conditions known to induce diapause in this species, and held 5th instar larvae of P. interpunctella for a series of dormancy durations ranging from 15 to 105 days. Extended storage of dormant 5th instar larvae had no significant impacts on survival, development, or reproductive potential of P. interpunctella, reinforcing that dormant hosts have a substantial shelf life. This ability to store hosts in dormancy for more than 3 months at a time without strong negative consequences reinforces the promise of using dormancy to maintain host colonies. The proportion of hosts parasitized by H. hebetor did not vary significantly between non-dormant host larvae and dormant host larvae stored for periods as long as 105 days. Concordant with a prior study, H. hebetor adult progeny production from dormant host larvae was higher than the number of progeny produced on non-dormant host larvae. There were no differences in size, sex ratio, or reproductive output of parasitoids reared on dormant hosts compared to non-dormant hosts stored for up to 105 days. Larval development times of H. hebetor were however longer when reared on dormant hosts compared to non-dormant hosts. Our results agree with other studies showing using dormant hosts can improve parasitoid mass rearing, and we show benefits for parasitoid rearing even after 3 months of host dormancy.
Collapse
Affiliation(s)
- Md Mahbub Hasan
- Department of Zoology, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md Mehedi Hasan
- Department of Crop Science and Technology, Rajshahi University, Rajshahi 6205, Bangladesh
| | | | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str. 38446, N. Ionia Magnesia, Greece
| | - Dylan A Tussey
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611, USA
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
21
|
Van Hook MJ. Influences of Glaucoma on the Structure and Function of Synapses in the Visual System. Antioxid Redox Signal 2022; 37:842-861. [PMID: 35044228 PMCID: PMC9587776 DOI: 10.1089/ars.2021.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022]
Abstract
Significance: Glaucoma is an age-related neurodegenerative disorder of the visual system associated with sensitivity to intraocular pressure (IOP). It is the leading irreversible cause of vision loss worldwide, and vision loss results from damage and dysfunction of the retinal output neurons known as retinal ganglion cells (RGCs). Recent Advances: Elevated IOP and optic nerve injury triggers pruning of RGC dendrites, altered morphology of excitatory inputs from presynaptic bipolar cells, and disrupted RGC synaptic function. Less is known about RGC outputs, although evidence to date indicates that glaucoma is associated with altered mitochondrial and synaptic structure and function in RGC-projection targets in the brain. These early functional changes likely contribute to vision loss and might be a window into early diagnosis and treatment. Critical Issues: Glaucoma affects different RGC populations to varying extents and along distinct time courses. The influence of glaucoma on RGC synaptic function as well as the mechanisms underlying these effects remain to be determined. Since RGCs are an especially energetically demanding population of neurons, altered intracellular axon transport of mitochondria and mitochondrial function might contribute to RGC synaptic dysfunction in the retina and brain as well as RGC vulnerability in glaucoma. Future Directions: The mechanisms underlying differential RGC vulnerability remain to be determined. Moreover, the timing and mechanisms of RGCs synaptic dysfunction and degeneration will provide valuable insight into the disease process in glaucoma. Future work will be able to capitalize on these findings to better design diagnostic and therapeutic approaches to detect disease and prevent vision loss. Antioxid. Redox Signal. 37, 842-861.
Collapse
Affiliation(s)
- Matthew J. Van Hook
- Department of Ophthalmology & Visual Science and Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Cellular & Integrative Physiology, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
22
|
Solovyev AG, Atabekova AK, Lezzhov AA, Solovieva AD, Chergintsev DA, Morozov SY. Distinct Mechanisms of Endomembrane Reorganization Determine Dissimilar Transport Pathways in Plant RNA Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:2403. [PMID: 36145804 PMCID: PMC9504206 DOI: 10.3390/plants11182403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Plant viruses exploit the endomembrane system of infected cells for their replication and cell-to-cell transport. The replication of viral RNA genomes occurs in the cytoplasm in association with reorganized endomembrane compartments induced by virus-encoded proteins and is coupled with the virus intercellular transport via plasmodesmata that connect neighboring cells in plant tissues. The transport of virus genomes to and through plasmodesmata requires virus-encoded movement proteins (MPs). Distantly related plant viruses encode different MP sets, or virus transport systems, which vary in the number of MPs and their properties, suggesting their functional differences. Here, we discuss two distinct virus transport pathways based on either the modification of the endoplasmic reticulum tubules or the formation of motile vesicles detached from the endoplasmic reticulum and targeted to endosomes. The viruses with the movement proteins encoded by the triple gene block exemplify the first, and the potyviral system is the example of the second type. These transport systems use unrelated mechanisms of endomembrane reorganization. We emphasize that the mode of virus interaction with cell endomembranes determines the mechanism of plant virus cell-to-cell transport.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Anastasia K. Atabekova
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A. Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
23
|
Costa RO, Martins LF, Tahiri E, Duarte CB. Brain-derived neurotrophic factor-induced regulation of RNA metabolism in neuronal development and synaptic plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1713. [PMID: 35075821 DOI: 10.1002/wrna.1713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) plays multiple roles in the nervous system, including in neuronal development, in long-term synaptic potentiation in different brain regions, and in neuronal survival. Alterations in these regulatory mechanisms account for several diseases of the nervous system. The synaptic effects of BDNF mediated by activation of tropomyosin receptor kinase B (TrkB) receptors are partly mediated by stimulation of local protein synthesis which is now considered a ubiquitous feature in both presynaptic and postsynaptic compartments of the neuron. The capacity to locally synthesize proteins is of great relevance at several neuronal developmental stages, including during neurite development, synapse formation, and stabilization. The available evidence shows that the effects of BDNF-TrkB signaling on local protein synthesis regulate the structure and function of the developing and mature synapses. While a large number of studies have illustrated a wide range of effects of BDNF on the postsynaptic proteome, a growing number of studies also point to presynaptic effects of the neurotrophin in the local regulation of the protein composition at the presynaptic level. Here, we will review the latest evidence on the role of BDNF in local protein synthesis, comparing the effects on the presynaptic and postsynaptic compartments. Additionally, we overview the relevance of BDNF-associated local protein synthesis in neuronal development and synaptic plasticity, at the presynaptic and postsynaptic compartments, and their relevance in terms of disease. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís F Martins
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuel Tahiri
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
24
|
Chernov AV, Shubayev VI. Sexually dimorphic transcriptional programs of early-phase response in regenerating peripheral nerves. Front Mol Neurosci 2022; 15:958568. [PMID: 35983069 PMCID: PMC9378824 DOI: 10.3389/fnmol.2022.958568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The convergence of transcriptional and epigenetic changes in the peripheral nervous system (PNS) reshapes the spatiotemporal gene expression landscape in response to nerve transection. The control of these molecular programs exhibits sexually dimorphic characteristics that remain not sufficiently characterized. In the present study, we recorded genome-wide and sex-dependent early-phase transcriptional changes in regenerating (proximal) sciatic nerve 24 h after axotomy. Male nerves exhibited more extensive transcriptional changes with male-dominant upregulation of cytoskeletal binding and structural protein genes. Regulation of mRNAs encoding ion and ionotropic neurotransmitter channels displayed prominent sexual dimorphism consistent with sex-specific mRNA axonal transport in an early-phase regenerative response. Protein kinases and axonal transport genes showed sexually dimorphic regulation. Genes encoding components of synaptic vesicles were at high baseline expression in females and showed post-injury induction selectively in males. Predictive bioinformatic analyses established patterns of sexually dimorphic regulation of neurotrophic and immune genes, including activation of glial cell line-derived neurotrophic factor Gfra1 receptor and immune checkpoint cyclin D1 (Ccnd1) potentially linked to X-chromosome encoded tissue inhibitor of matrix metallo proteinases 1 (Timp1). Regulatory networks involving Olig1, Pou3f3/Oct6, Myrf, and Myt1l transcription factors were linked to sex-dependent reprogramming in regenerating nerves. Differential expression patterns of non-coding RNAs motivate a model of sexually dimorphic nerve regenerative responses to injury determined by epigenetic factors. Combined with our findings in the corresponding dorsal root ganglia (DRG), unique early-phase sex-specific molecular triggers could enrich the mechanistic understanding of peripheral neuropathies.
Collapse
Affiliation(s)
- Andrei V. Chernov
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
- *Correspondence: Andrei V. Chernov,
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
25
|
Cohen B, Altman T, Golani-Armon A, Savulescu AF, Ibraheem A, Mhlanga MM, Perlson E, Arava YS. The nuclear encoded Cox7c mRNA co-transport with mitochondria along axons via coding-region dependent mechanism. J Cell Sci 2022; 135:276008. [PMID: 35833493 PMCID: PMC9481926 DOI: 10.1242/jcs.259436] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Nuclear-encoded mitochondrial protein mRNAs have been found to be localized and locally translated within neuronal processes. However, the mechanism of transport for those mRNAs to distal locations is not fully understood. Here, we describe axonal co-transport of Cox7c with mitochondria. Fractionation analysis and single-molecule fluorescence in situ hybridization (smFISH) assay revealed that endogenous mRNA encoding Cox7c was preferentially associated with mitochondria in a mouse neuronal cell line and within mouse primary motor neuron axons, whereas other mRNAs that do not encode mitochondrial protein were much less associated. Live-cell imaging of MS2-tagged Cox7c mRNA further confirmed the preferential colocalization and co-transport of Cox7c mRNA with mitochondria in motor neuron axons. Intriguingly, the coding region, rather than the 3′ untranslated region (UTR), was the key domain for the co-transport. Our results reveal that Cox7c mRNA can be transported with mitochondria along significant distances and that its coding region is a major recognition feature. This is consistent with the idea that mitochondria can play a vital role in spatial regulation of the axonal transcriptome at distant neuronal sites. Summary: Biochemical and live imaging analyses show that in mouse axons, Cox7c mRNA is associated and transported with mitochondria. Mutational analysis identifies mRNA domains essential for co-transport.
Collapse
Affiliation(s)
- Bar Cohen
- Faculty of Biology, Technion - Israel Institute of Technology, Israel
| | - Topaz Altman
- Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Adi Golani-Armon
- Faculty of Biology, Technion - Israel Institute of Technology, Israel.,Faculty of Nanosciences and Nanoengineering, Technion - Israel Institute of Technology, Israel
| | - Anca F Savulescu
- Division of Chemical, Systems & Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Amjd Ibraheem
- Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Musa M Mhlanga
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.,Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, FNWI, Radboud University, 6525 GA Nijmegen, the Netherlands.,Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Eran Perlson
- Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Yoav S Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Israel
| |
Collapse
|
26
|
Zaniewska M, Mosienko V, Bader M, Alenina N. Tph2 Gene Expression Defines Ethanol Drinking Behavior in Mice. Cells 2022; 11:cells11050874. [PMID: 35269497 PMCID: PMC8909500 DOI: 10.3390/cells11050874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/22/2023] Open
Abstract
Indirect evidence supports a link between disrupted serotonin (5-hydroxytryptamine; 5-HT) signaling in the brain and addictive behaviors. However, the effects of hyposerotonergia on ethanol drinking behavior are contradictory. In this study, mice deficient in tryptophan hydroxylase 2 (Tph2−/−), the rate-limiting enzyme of 5-HT synthesis in the brain, were used to assess the role of central 5-HT in alcohol drinking behavior. Life-long 5-HT depletion in these mice led to an increased ethanol consumption in comparison to wild-type animals in a two-bottle choice test. Water consumption was increased in naïve 5-HT-depleted mice. However, exposure of Tph2−/− animals to ethanol resulted in the normalization of water intake to the level of wild-type mice. Tph2 deficiency in mice did not interfere with ethanol-evoked antidepressant response in the forced swim test. Gene expression analysis in wild-type animals revealed no change in Tph2 expression in the brain of mice consuming ethanol compared to control mice drinking water. However, within the alcohol-drinking group, inter-individual differences in chronic ethanol intake correlated with Tph2 transcript levels. Taken together, central 5-HT is an important modulator of drinking behavior in mice but is not required for the antidepressant effects of ethanol.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Correspondence: (M.Z.); (N.A.); Tel.: +48-1-2662-3289 (M.Z.); +49-30-9406-3576 (N.A.)
| | - Valentina Mosienko
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Potsdamer Str. 58, 10785 Berlin, Germany
- Correspondence: (M.Z.); (N.A.); Tel.: +48-1-2662-3289 (M.Z.); +49-30-9406-3576 (N.A.)
| |
Collapse
|
27
|
Winter CC, He Z, Jacobi A. Axon Regeneration: A Subcellular Extension in Multiple Dimensions. Cold Spring Harb Perspect Biol 2022; 14:a040923. [PMID: 34518340 PMCID: PMC8886981 DOI: 10.1101/cshperspect.a040923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Axons are a unique cellular structure that allows for the communication between neurons. Axon damage compromises neuronal communications and often leads to functional deficits. Thus, developing strategies that promote effective axon regeneration for functional restoration is highly desirable. One fruitful approach is to dissect the regenerative mechanisms used by some types of neurons in both mammalian and nonmammalian systems that exhibit spontaneous regenerative capacity. Additionally, numerous efforts have been devoted to deciphering the barriers that prevent successful axon regeneration in the most regeneration-refractory system-the adult mammalian central nervous system. As a result, several regeneration-promoting strategies have been developed, but significant limitations remain. This review is aimed to summarize historic progression and current understanding of this exciting yet incomplete endeavor.
Collapse
Affiliation(s)
- Carla C Winter
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Neurology and Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
- PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Neurology and Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Neurology and Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
28
|
Romhányi D, Szabó K, Kemény L, Sebestyén E, Groma G. Transcriptional Analysis-Based Alterations Affecting Neuritogenesis of the Peripheral Nervous System in Psoriasis. Life (Basel) 2022; 12:111. [PMID: 35054504 PMCID: PMC8778302 DOI: 10.3390/life12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
An increasing amount of evidence indicates the critical role of the cutaneous nervous system in the initiation and maintenance of psoriatic skin lesions by neurogenic inflammation. However, molecular mechanisms affecting cutaneous neurons are largely uncharacterized. Therefore, we reanalyzed a psoriatic RNA sequencing dataset from published transcriptome experiments of nearly 300 individuals. Using the Ingenuity Pathway Analysis software, we associated several hundreds of differentially expressed transcripts (DETs) to nervous system development and functions. Since neuronal projections were previously reported to be affected in psoriasis, we performed an in-depth analysis of neurite formation-related process. Our in silico analysis suggests that SEMA-PLXN and ROBO-DCC-UNC5 regulating axonal growth and repulsion are differentially affected in non-lesional and lesional skin samples. We identified opposing expressional alterations in secreted ligands for axonal guidance signaling (RTN4/NOGOA, NTNs, SEMAs, SLITs) and non-conventional axon guidance regulating ligands, including WNT5A and their receptors, modulating axon formation. These differences in neuritogenesis may explain the abnormal cutaneous nerve filament formation described in psoriatic skin. The processes also influence T-cell activation and infiltration, thus highlighting an additional angle of the crosstalk between the cutaneous nervous system and the immune responses in psoriasis pathogenesis, in addition to the known neurogenic pro-inflammatory mediators.
Collapse
Affiliation(s)
- Dóra Romhányi
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
| | - Kornélia Szabó
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), University of Szeged, H-6720 Szeged, Hungary
- Eötvös Loránd Research Network, MTA-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), University of Szeged, H-6720 Szeged, Hungary
- Eötvös Loránd Research Network, MTA-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Endre Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| | - Gergely Groma
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Eötvös Loránd Research Network, MTA-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| |
Collapse
|
29
|
Salamon I, Rasin MR. Evolution of the Neocortex Through RNA-Binding Proteins and Post-transcriptional Regulation. Front Neurosci 2022; 15:803107. [PMID: 35082597 PMCID: PMC8784817 DOI: 10.3389/fnins.2021.803107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
The human neocortex is undoubtedly considered a supreme accomplishment in mammalian evolution. It features a prenatally established six-layered structure which remains plastic to the myriad of changes throughout an organism’s lifetime. A fundamental feature of neocortical evolution and development is the abundance and diversity of the progenitor cell population and their neuronal and glial progeny. These evolutionary upgrades are partially enabled due to the progenitors’ higher proliferative capacity, compartmentalization of proliferative regions, and specification of neuronal temporal identities. The driving force of these processes may be explained by temporal molecular patterning, by which progenitors have intrinsic capacity to change their competence as neocortical neurogenesis proceeds. Thus, neurogenesis can be conceptualized along two timescales of progenitors’ capacity to (1) self-renew or differentiate into basal progenitors (BPs) or neurons or (2) specify their fate into distinct neuronal and glial subtypes which participate in the formation of six-layers. Neocortical development then proceeds through sequential phases of proliferation, differentiation, neuronal migration, and maturation. Temporal molecular patterning, therefore, relies on the precise regulation of spatiotemporal gene expression. An extensive transcriptional regulatory network is accompanied by post-transcriptional regulation that is frequently mediated by the regulatory interplay between RNA-binding proteins (RBPs). RBPs exhibit important roles in every step of mRNA life cycle in any system, from splicing, polyadenylation, editing, transport, stability, localization, to translation (protein synthesis). Here, we underscore the importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors. A particular emphasis will be placed on RBPs with mostly conserved but also divergent evolutionary functions in neural progenitors across different species. RBPs, when considered in the context of the fascinating process of neocortical development, deserve to be main protagonists in the story of the evolution and development of the neocortex.
Collapse
|
30
|
Li L, Yu J, Ji SJ. Axonal mRNA localization and translation: local events with broad roles. Cell Mol Life Sci 2021; 78:7379-7395. [PMID: 34698881 PMCID: PMC11072051 DOI: 10.1007/s00018-021-03995-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Messenger RNA (mRNA) can be transported and targeted to different subcellular compartments and locally translated. Local translation is an evolutionally conserved mechanism that in mammals, provides an important tool to exquisitely regulate the subcellular proteome in different cell types, including neurons. Local translation in axons is involved in processes such as neuronal development, function, plasticity, and diseases. Here, we summarize the current progress on axonal mRNA transport and translation. We focus on the regulatory mechanisms governing how mRNAs are transported to axons and how they are locally translated in axons. We discuss the roles of axonally synthesized proteins, which either function locally in axons, or are retrogradely trafficked back to soma to achieve neuron-wide gene regulation. We also examine local translation in neurological diseases. Finally, we give a critical perspective on the remaining questions that could be answered to uncover the fundamental rules governing local translation, and discuss how this could lead to new therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Lichao Li
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Jun Yu
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Sheng-Jian Ji
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
31
|
Fan R, Lai KO. Understanding how kinesin motor proteins regulate postsynaptic function in neuron. FEBS J 2021; 289:2128-2144. [PMID: 34796656 DOI: 10.1111/febs.16285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/07/2023]
Abstract
The Kinesin superfamily proteins (KIFs) are major molecular motors that transport diverse set of cargoes along microtubules to both the axon and dendrite of a neuron. Much of our knowledge about kinesin function is obtained from studies on axonal transport. Emerging evidence reveals how specific kinesin motor proteins carry cargoes to dendrites, including proteins, mRNAs and organelles that are crucial for synapse development and plasticity. In this review, we will summarize the major kinesin motors and their associated cargoes that have been characterized to regulate postsynaptic function in neuron. We will also discuss how specific kinesins are selectively involved in the development of excitatory and inhibitory postsynaptic compartments, their regulation by post-translational modifications (PTM), as well as their roles beyond conventional transport carrier.
Collapse
Affiliation(s)
- Ruolin Fan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kwok-On Lai
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Dell’Orco M, Elyaderani A, Vannan A, Sekar S, Powell G, Liang WS, Neisewander JL, Perrone-Bizzozero NI. HuD Regulates mRNA-circRNA-miRNA Networks in the Mouse Striatum Linked to Neuronal Development and Drug Addiction. BIOLOGY 2021; 10:biology10090939. [PMID: 34571817 PMCID: PMC8468275 DOI: 10.3390/biology10090939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary Gene expression controls all aspects of life, including that of humans. Genes are expressed by copying the information stored in the DNA into RNA molecules, and this process is regulated in part by multiple RNA-binding proteins (RBPs). One such protein, HuD, plays a critical role in the development of neurons and has been implicated in childhood brain tumors, neurodegenerative disorders (Parkinson’s, Alzheimer’s, and ALS), and drug abuse. In addition, HuD participates in neuronal remodeling mechanisms in the mature brain and promotes regeneration of peripheral nerves. HuD primarily binds to transcribed messenger RNAs, which are then stabilized for translation into proteins. However, recent studies demonstrate that HuD also regulates the expression of non-coding RNAs, such as circular RNAs (circRNAs) and microRNAs (miRNAs). In this study, we examined the role of HuD in the control of non-coding RNA expression in the mouse striatum, a brain region associated both with normal behaviors and pathological conditions such as drug abuse. Our results show that HuD regulates mRNA-circRNA-miRNA networks involved in the expression of genes associated with brain development and remodeling of neuronal connections. These findings suggest the possibility of new mechanisms controlling brain development, neurodegenerative diseases, and substance use disorders. Abstract The RNA-binding protein HuD (a.k.a., ELAVL4) is involved in neuronal development and synaptic plasticity mechanisms, including addiction-related processes such as cocaine conditioned-place preference (CPP) and food reward. The most studied function of this protein is mRNA stabilization; however, we have recently shown that HuD also regulates the levels of circular RNAs (circRNAs) in neurons. To examine the role of HuD in the control of coding and non-coding RNA networks associated with substance use, we identified sets of differentially expressed mRNAs, circRNAs and miRNAs in the striatum of HuD knockout (KO) mice. Our findings indicate that significantly downregulated mRNAs are enriched in biological pathways related to cell morphology and behavior. Furthermore, deletion of HuD altered the levels of 15 miRNAs associated with drug seeking. Using these sets of data, we predicted that a large number of upregulated miRNAs form competing endogenous RNA (ceRNA) networks with circRNAs and mRNAs associated with the neuronal development and synaptic plasticity proteins LSAMP and MARK3. Additionally, several downregulated miRNAs form ceRNA networks with mRNAs and circRNAs from MEF2D, PIK3R3, PTRPM and other neuronal proteins. Together, our results indicate that HuD regulates ceRNA networks controlling the levels of mRNAs associated with neuronal differentiation and synaptic physiology.
Collapse
Affiliation(s)
- Michela Dell’Orco
- Department of Neurosciences, University of New Mexico Health Science Center, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Amir Elyaderani
- Neurogenomics Division, Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA; (A.E.); (S.S.); (W.S.L.)
| | - Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.V.); (G.P.); (J.L.N.)
| | - Shobana Sekar
- Neurogenomics Division, Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA; (A.E.); (S.S.); (W.S.L.)
| | - Gregory Powell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.V.); (G.P.); (J.L.N.)
| | - Winnie S. Liang
- Neurogenomics Division, Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA; (A.E.); (S.S.); (W.S.L.)
| | - Janet L. Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.V.); (G.P.); (J.L.N.)
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico Health Science Center, University of New Mexico, Albuquerque, NM 87131, USA;
- Correspondence:
| |
Collapse
|
33
|
Gromova A, La Spada AR. Harmony Lost: Cell-Cell Communication at the Neuromuscular Junction in Motor Neuron Disease. Trends Neurosci 2021; 43:709-724. [PMID: 32846148 DOI: 10.1016/j.tins.2020.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
The neuromuscular junction (NMJ) is a specialized synapse that is the point of connection between motor neurons and skeletal muscle. Although developmental studies have established the importance of cell-cell communication at the NMJ for the integrity and full functionality of this synapse, the contribution of this structure as a primary driver in motor neuron disease pathogenesis remains uncertain. Here, we consider the biology of the NMJ and review emerging lines of investigation that are highlighting the importance of cell-cell interaction at the NMJ in spinal muscular atrophy (SMA), X-linked spinal and bulbar muscular atrophy (SBMA), and amyotrophic lateral sclerosis (ALS). Ongoing research may reveal NMJ targets and pathways whose therapeutic modulation will help slow the progression of motor neuron disease, offering a novel treatment paradigm for ALS, SBMA, SMA, and related disorders.
Collapse
Affiliation(s)
- Anastasia Gromova
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA; Department of Pathology and Laboratory Medicine and Department of Neurology, University of California Irvine, Irvine, CA 92697, USA
| | - Albert R La Spada
- Department of Pathology and Laboratory Medicine and Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
34
|
Agrawal M, Welshhans K. Local Translation Across Neural Development: A Focus on Radial Glial Cells, Axons, and Synaptogenesis. Front Mol Neurosci 2021; 14:717170. [PMID: 34434089 PMCID: PMC8380849 DOI: 10.3389/fnmol.2021.717170] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
In the past two decades, significant progress has been made in our understanding of mRNA localization and translation at distal sites in axons and dendrites. The existing literature shows that local translation is regulated in a temporally and spatially restricted manner and is critical throughout embryonic and post-embryonic life. Here, recent key findings about mRNA localization and local translation across the various stages of neural development, including neurogenesis, axon development, and synaptogenesis, are reviewed. In the early stages of development, mRNAs are localized and locally translated in the endfeet of radial glial cells, but much is still unexplored about their functional significance. Recent in vitro and in vivo studies have provided new information about the specific mechanisms regulating local translation during axon development, including growth cone guidance and axon branching. Later in development, localization and translation of mRNAs help mediate the major structural and functional changes that occur in the axon during synaptogenesis. Clinically, changes in local translation across all stages of neural development have important implications for understanding the etiology of several neurological disorders. Herein, local translation and mechanisms regulating this process across developmental stages are compared and discussed in the context of function and dysfunction.
Collapse
Affiliation(s)
- Manasi Agrawal
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Kristy Welshhans
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
35
|
Huang N, Li S, Xie Y, Han Q, Xu XM, Sheng ZH. Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Curr Biol 2021; 31:3098-3114.e7. [PMID: 34087103 PMCID: PMC8319057 DOI: 10.1016/j.cub.2021.04.079] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Mitochondria supply adenosine triphosphate (ATP) essential for neuronal survival and regeneration. Brain injury and ischemia trigger acute mitochondrial damage and a local energy crisis, leading to degeneration. Boosting local ATP supply in injured axons is thus critical to meet increased energy demand during nerve repair and regeneration in adult brains, where mitochondria remain largely stationary. Here, we elucidate an intrinsic energetic repair signaling axis that boosts axonal energy supply by reprogramming mitochondrial trafficking and anchoring in response to acute injury-ischemic stress in mature neurons and adult brains. P21-activated kinase 5 (PAK5) is a brain mitochondrial kinase with declined expression in mature neurons. PAK5 synthesis and signaling is spatiotemporally activated within axons in response to ischemic stress and axonal injury. PAK5 signaling remobilizes and replaces damaged mitochondria via the phosphorylation switch that turns off the axonal mitochondrial anchor syntaphilin. Injury-ischemic insults trigger AKT growth signaling that activates PAK5 and boosts local energy supply, thus protecting axon survival and facilitating regeneration in in vitro and in vivo models. Our study reveals an axonal mitochondrial signaling axis that responds to injury and ischemia by remobilizing damaged mitochondria for replacement, thereby maintaining local energy supply to support central nervous system (CNS) survival and regeneration.
Collapse
Affiliation(s)
- Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Yuxiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
36
|
Abstract
Biomolecular condensates concentrate molecules to facilitate basic biochemical processes, including transcription and DNA replication. While liquid-like condensates have been ascribed various functions, solid-like condensates are generally thought of as amorphous sites of protein storage. Here, we show that solid-like amyloid bodies coordinate local nuclear protein synthesis (LNPS) during stress. On stimulus, translationally active ribosomes accumulate along fiber-like assemblies that characterize amyloid bodies. Mass spectrometry analysis identified regulatory ribosomal proteins and translation factors that relocalize from the cytoplasm to amyloid bodies to sustain LNPS. These amyloidogenic compartments are enriched in newly transcribed messenger RNA by Heat Shock Factor 1 (HSF1). Depletion of stress-induced ribosomal intergenic spacer noncoding RNA (rIGSRNA) that constructs amyloid bodies prevents recruitment of the nuclear protein synthesis machinery, abolishes LNPS, and impairs the nuclear HSF1 response. We propose that amyloid bodies support local nuclear translation during stress and that solid-like condensates can facilitate complex biochemical reactions as their liquid counterparts can.
Collapse
|
37
|
Das S, Vera M, Gandin V, Singer RH, Tutucci E. Intracellular mRNA transport and localized translation. Nat Rev Mol Cell Biol 2021; 22:483-504. [PMID: 33837370 PMCID: PMC9346928 DOI: 10.1038/s41580-021-00356-8] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Fine-tuning cellular physiology in response to intracellular and environmental cues requires precise temporal and spatial control of gene expression. High-resolution imaging technologies to detect mRNAs and their translation state have revealed that all living organisms localize mRNAs in subcellular compartments and create translation hotspots, enabling cells to tune gene expression locally. Therefore, mRNA localization is a conserved and integral part of gene expression regulation from prokaryotic to eukaryotic cells. In this Review, we discuss the mechanisms of mRNA transport and local mRNA translation across the kingdoms of life and at organellar, subcellular and multicellular resolution. We also discuss the properties of messenger ribonucleoprotein and higher order RNA granules and how they may influence mRNA transport and local protein synthesis. Finally, we summarize the technological developments that allow us to study mRNA localization and local translation through the simultaneous detection of mRNAs and proteins in single cells, mRNA and nascent protein single-molecule imaging, and bulk RNA and protein detection methods.
Collapse
Affiliation(s)
- Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA.
- Janelia Research Campus of the HHMI, Ashburn, VA, USA.
| | - Evelina Tutucci
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Agrawal A, Koslover EF. Optimizing mitochondrial maintenance in extended neuronal projections. PLoS Comput Biol 2021; 17:e1009073. [PMID: 34106921 PMCID: PMC8216566 DOI: 10.1371/journal.pcbi.1009073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/21/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Neurons rely on localized mitochondria to fulfill spatially heterogeneous metabolic demands. Mitochondrial aging occurs on timescales shorter than the neuronal lifespan, necessitating transport of fresh material from the soma. Maintaining an optimal distribution of healthy mitochondria requires an interplay between a stationary pool localized to sites of high metabolic demand and a motile pool capable of delivering new material. Interchange between these pools can occur via transient fusion / fission events or by halting and restarting entire mitochondria. Our quantitative model of neuronal mitostasis identifies key parameters that govern steady-state mitochondrial health at discrete locations. Very infrequent exchange between stationary and motile pools optimizes this system. Exchange via transient fusion allows for robust maintenance, which can be further improved by selective recycling through mitophagy. These results provide a framework for quantifying how perturbations in organelle transport and interactions affect mitochondrial homeostasis in neurons, a key aspect underlying many neurodegenerative disorders.
Collapse
Affiliation(s)
- Anamika Agrawal
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| | - Elena F. Koslover
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
39
|
Yu J, Oentaryo MJ, Lee CW. Local protein synthesis of neuronal MT1-MMP for agrin-induced presynaptic development. Development 2021; 148:268316. [PMID: 34015092 DOI: 10.1242/dev.199000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/02/2021] [Indexed: 01/15/2023]
Abstract
Upon the stimulation of extracellular cues, a significant number of proteins are synthesized distally along the axon. Although local protein synthesis is crucial for various stages throughout neuronal development, its involvement in presynaptic differentiation at developing neuromuscular junctions remains unknown. By using axon severing and microfluidic chamber assays, we first showed that treatment of a protein synthesis inhibitor, cycloheximide, inhibits agrin-induced presynaptic differentiation in cultured Xenopus spinal neurons. Newly synthesized proteins are prominently detected, as revealed by the staining of click-reactive cell-permeable puromycin analog O-propargyl-puromycin, at agrin bead-neurite contacts involving the mTOR/4E-BP1 pathway. Next, live-cell time-lapse imaging demonstrated the local capturing and immobilization of ribonucleoprotein granules upon agrin bead stimulation. Given that our recent study reported the roles of membrane-type 1 matrix metalloproteinase (MT1-MMP) in agrin-induced presynaptic differentiation, here we further showed that MT1-MMP mRNA is spatially enriched and locally translated at sites induced by agrin beads. Taken together, this study reveals an essential role for axonal MT1-MMP translation, on top of the well-recognized long-range transport of MT1-MMP proteins synthesized from neuronal cell bodies, in mediating agrin-induced presynaptic differentiation.
Collapse
Affiliation(s)
- Jun Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Marilyn Janice Oentaryo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
40
|
Shen Z, Liu B, Wu B, Zhou H, Wang X, Cao J, Jiang M, Zhou Y, Guo F, Xue C, Wu ZS. FMRP regulates STAT3 mRNA localization to cellular protrusions and local translation to promote hepatocellular carcinoma metastasis. Commun Biol 2021; 4:540. [PMID: 33972660 PMCID: PMC8110961 DOI: 10.1038/s42003-021-02071-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Most hepatocellular carcinoma (HCC)-associated mortalities are related to the metastasis of cancer cells. The localization of mRNAs and their products to cell protrusions has been reported to play a crucial role in the metastasis. Our previous findings demonstrated that STAT3 mRNA accumulated in the protrusions of metastatic HCC cells. However, the underlying mechanism and functional significance of this localization of STAT3 mRNA has remained unexplored. Here we show that fragile X mental retardation protein (FMRP) modulates the localization and translation of STAT3 mRNA, accelerating HCC metastasis. The results of molecular analyses reveal that the 3′UTR of STAT3 mRNA is responsible for the localization of STAT3 mRNA to cell protrusions. FMRP is able to interact with the 3′UTR of STAT3 mRNA and facilitates its localization to protrusions. Importantly, FMRP could promote the IL-6-mediated translation of STAT3, and serine 114 of FMRP is identified as a potential phosphorylation site required for IL-6-mediated STAT3 translation. Furthermore, FMRP is highly expressed in HCC tissues and FMRP knockdown efficiently suppresses HCC metastasis in vitro and in vivo. Collectively, our findings provide further insights into the mechanism of HCC metastasis associated with the regulation of STAT3 mRNA localization and translation. Shen et al. propose a mechanism for the metastasis of hepatocellular carcinoma (HCC) cells through the localization and translation modulation of the STAT3 oncogene by fragile X mental retardation protein (FMRP). To this end, the authors also find that FMRP knockdown efficiently suppresses HCC metastasis in vitro and in vivo.
Collapse
Affiliation(s)
- Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China. .,Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China.
| | - Bowen Liu
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Biting Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyun Wang
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinling Cao
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Min Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingying Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Feixia Guo
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
41
|
Zhan J, Fegg FN, Kaddatz H, Rühling S, Frenz J, Denecke B, Amor S, Ponsaerts P, Hochstrasser T, Kipp M. Focal white matter lesions induce long-lasting axonal degeneration, neuroinflammation and behavioral deficits. Neurobiol Dis 2021; 155:105371. [PMID: 33932559 DOI: 10.1016/j.nbd.2021.105371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/25/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) with episodes of inflammatory demyelination and remyelination. While remyelination has been linked with functional recovery in MS patients, there is evidence of ongoing tissue damage despite complete myelin repair. In this study, we investigated the long-term consequences of an acute demyelinating white matter CNS lesion. For this purpose, acute demyelination was induced by 5-week-cuprizone intoxication in male C57BL/6 J mice, and the tissues were examined after a 7-month recovery period. While myelination and oligodendrocyte densities appeared normal, ongoing axonal degeneration and glia cell activation were found in the remyelinated corpus callosum. Neuropathologies were paralleled by subtle gait abnormalities evaluated using DigiGait™ high speed ventral plane videography. Gene array analyses revealed increased expression levels of various inflammation related genes, among protein kinase c delta (PRKCD). Immunofluorescence stains revealed predominant microglia/macrophages PRKCD expression in both, cuprizone tissues and post-mortem MS lesions. These results support the hypothesis that chronic microglia/macrophages driven tissue injury represents a key aspect of progressive neurodegeneration and functional decline in MS.
Collapse
Affiliation(s)
- Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Florian Nepomuk Fegg
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Sebastian Rühling
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Julia Frenz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Aachen, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, VUMC site, Amsterdam, the Netherlands; Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Peter Ponsaerts
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Tanja Hochstrasser
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Gelsheimer Strasse 20, 18147 Rostock, Germany.
| |
Collapse
|
42
|
Lee SJ, Zdradzinski MD, Sahoo PK, Kar AN, Patel P, Kawaguchi R, Aguilar BJ, Lantz KD, McCain CR, Coppola G, Lu Q, Twiss JL. Selective axonal translation of the mRNA isoform encoding prenylated Cdc42 supports axon growth. J Cell Sci 2021; 134:237797. [PMID: 33674450 DOI: 10.1242/jcs.251967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
The small Rho-family GTPase Cdc42 has long been known to have a role in cell motility and axon growth. The eukaryotic Ccd42 gene is alternatively spliced to generate mRNAs with two different 3' untranslated regions (UTRs) that encode proteins with distinct C-termini. The C-termini of these Cdc42 proteins include CaaX and CCaX motifs for post-translational prenylation and palmitoylation, respectively. Palmitoyl-Cdc42 protein was previously shown to contribute to dendrite maturation, while the prenyl-Cdc42 protein contributes to axon specification and its mRNA was detected in neurites. Here, we show that the mRNA encoding prenyl-Cdc42 isoform preferentially localizes into PNS axons and this localization selectively increases in vivo during peripheral nervous system (PNS) axon regeneration. Functional studies indicate that prenyl-Cdc42 increases axon length in a manner that requires axonal targeting of its mRNA, which, in turn, needs an intact C-terminal CaaX motif that can drive prenylation of the encoded protein. In contrast, palmitoyl-Cdc42 has no effect on axon growth but selectively increases dendrite length. Together, these data show that alternative splicing of the Cdc42 gene product generates an axon growth promoting, locally synthesized prenyl-Cdc42 protein. This article has an associated First Person interview with one of the co-first authors of the paper.
Collapse
Affiliation(s)
- Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Matthew D Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Riki Kawaguchi
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Byron J Aguilar
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kelsey D Lantz
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Caylee R McCain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Giovanni Coppola
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA.,Department of Neurology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| |
Collapse
|
43
|
Di Paolo A, Farias J, Garat J, Macklin A, Ignatchenko V, Kislinger T, Sotelo Silveira J. Rat Sciatic Nerve Axoplasm Proteome Is Enriched with Ribosomal Proteins during Regeneration Processes. J Proteome Res 2021; 20:2506-2520. [PMID: 33793244 DOI: 10.1021/acs.jproteome.0c00980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Axons are complex subcellular compartments that are extremely long in relation to cell bodies, especially in peripheral nerves. Many processes are required and regulated during axon injury, including anterograde and retrograde transport, glia-to-axon macromolecular transfer, and local axonal protein synthesis. Many in vitro omics approaches have been used to gain insight into these processes, but few have been applied in vivo. Here we adapted the osmotic ex vivo axoplasm isolation method and analyzed the adult rat sciatic-nerve-extruded axoplasm by label-free quantitative proteomics before and after injury. 2087 proteins groups were detected in the axoplasm, revealing translation machinery and microtubule-associated proteins as the most overrepresented biological processes. Ribosomal proteins (73) were detected in the uninjured axoplasm and increased their levels after injury but not within whole sciatic nerves. Meta-analysis showed that detected ribosomal proteins were present in in vitro axonal proteomes. Because local protein synthesis is important for protein localization, we were interested in detecting the most abundant newly synthesized axonal proteins in vivo. With an MS/MS-BONCAT approach, we detected 42 newly synthesized protein groups. Overall, our work indicates that proteomics profiling is useful for local axonal interrogation and suggests that ribosomal proteins may play an important role, especially during injury.
Collapse
Affiliation(s)
- Andres Di Paolo
- Departamento de Proteínas y Ácidos Nucleicos, IIBCE, 11600 Montevideo, Uruguay.,Departamento de Genómica, IIBCE, 11600 Montevideo, Uruguay
| | | | - Joaquin Garat
- Departamento de Genómica, IIBCE, 11600 Montevideo, Uruguay
| | - Andrew Macklin
- Princess Margaret Cancer Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - José Sotelo Silveira
- Departamento de Genómica, IIBCE, 11600 Montevideo, Uruguay.,Departamento de Biología Celular y Molecular, Facultad de Ciencias, 11400 Montevideo, Uruguay
| |
Collapse
|
44
|
Erdogan B, Whited JL. Engineered myosins drive filopodial transport. Nat Cell Biol 2021; 23:113-115. [PMID: 33526903 DOI: 10.1038/s41556-021-00632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Burcu Erdogan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
45
|
Abouward R, Schiavo G. Walking the line: mechanisms underlying directional mRNA transport and localisation in neurons and beyond. Cell Mol Life Sci 2021; 78:2665-2681. [PMID: 33341920 PMCID: PMC8004493 DOI: 10.1007/s00018-020-03724-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/02/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022]
Abstract
Messenger RNA (mRNA) localisation enables a high degree of spatiotemporal control on protein synthesis, which contributes to establishing the asymmetric protein distribution required to set up and maintain cellular polarity. As such, a tight control of mRNA localisation is essential for many biological processes during development and in adulthood, such as body axes determination in Drosophila melanogaster and synaptic plasticity in neurons. The mechanisms controlling how mRNAs are localised, including diffusion and entrapment, local degradation and directed active transport, are largely conserved across evolution and have been under investigation for decades in different biological models. In this review, we will discuss the standing of the field regarding directional mRNA transport in light of the recent discovery that RNA can hitchhike on cytoplasmic organelles, such as endolysosomes, and the impact of these transport modalities on our understanding of neuronal function during development, adulthood and in neurodegeneration.
Collapse
Affiliation(s)
- Reem Abouward
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
46
|
Pathak A, Clark S, Bronfman FC, Deppmann CD, Carter BD. Long-distance regressive signaling in neural development and disease. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e382. [PMID: 32391977 PMCID: PMC7655682 DOI: 10.1002/wdev.382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Nervous system development proceeds via well-orchestrated processes involving a balance between progressive and regressive events including stabilization or elimination of axons, synapses, and even entire neurons. These progressive and regressive events are driven by functionally antagonistic signaling pathways with the dominant pathway eventually determining whether a neural element is retained or removed. Many of these developmental sculpting events are triggered by final target innervation necessitating a long-distance mode of communication. While long-distance progressive signaling has been well characterized, particularly for neurotrophic factors, there remains relatively little known about how regressive events are triggered from a distance. Here we discuss the emergent phenomenon of long-distance regressive signaling pathways. In particular, we will cover (a) progressive and regressive cues known to be employed after target innervation, (b) the mechanisms of long-distance signaling from an endosomal platform, (c) recent evidence that long-distance regressive cues emanate from platforms like death receptors or repulsive axon guidance receptors, and (d) evidence that these pathways are exploited in pathological scenarios. This article is categorized under: Nervous System Development > Vertebrates: General Principles Signaling Pathways > Global Signaling Mechanisms Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Amrita Pathak
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shayla Clark
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia
| | - Francisca C. Bronfman
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| | - Christopher D. Deppmann
- Departments of Biology, Cell Biology, Biomedical Engineering, and Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Bruce D. Carter
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
47
|
Mofatteh M. Neurodegeneration and axonal mRNA transportation. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2021; 10:1-12. [PMID: 33815964 PMCID: PMC8012751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The prevalence of neurodegenerative diseases is accelerating in rapidly aging global population. Novel and effective diagnostic and therapeutic methods are required to tackle the global issue of neurodegeneration in the future. A better understanding of the potential molecular mechanism causing neurodegeneration can shed light on dysfunctional processes in diseased neurons, which can pave the way to design and synthesize novel targets for early diagnosis during the asymptomatic phase of the disease. Abnormal protein aggregation is a hallmark of neurodegenerative diseases which can hamper transportation of cargoes into axons. Recent evidence suggests that disruption of local protein synthesis has been observed in neurodegenerative diseases. Because of their highly asymmetric structure, highly polarized neurons require trafficking of cargoes from the cell body to different subcellular regions to meet the extensive demands of cellular physiology. Localization of mRNAs and subsequent local translation to corresponding proteins in axons is a mechanism which allows neurons to rapidly respond to external stimuli as well as establishing neuronal networks by synthesizing proteins on demand. Axonal protein synthesis is required for axon guidance, synapse formation and plasticity, axon maintenance and regeneration in response to injury. Different types of excitatory and inhibitory neurons in the central and peripheral nervous systems have been shown to localize mRNA. Rising evidence suggests that the repertoire of localizing mRNA in axons can change during aging, indicating a connection between axonal mRNA trafficking and aging diseases such as neurodegeneration. Here, I briefly review the latest findings on the importance of mRNA localization and local translation in neurons and the consequences of their disruption in neurodegenerative diseases. In addition, I discuss recent evidence that dysregulation of mRNA localization and local protein translation can contribute to the formation of neurodegenerative diseases such as Alzheimer's disease, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. In addition, I discuss recent findings on mRNAs localizing to mitochondria in neurodegeneration.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- Lincoln College, University of OxfordOxford, UK
- Sir William Dunn School of Pathology, Medical Sciences Division, University of OxfordOxford, UK
| |
Collapse
|
48
|
Dalla Costa I, Buchanan CN, Zdradzinski MD, Sahoo PK, Smith TP, Thames E, Kar AN, Twiss JL. The functional organization of axonal mRNA transport and translation. Nat Rev Neurosci 2021; 22:77-91. [PMID: 33288912 PMCID: PMC8161363 DOI: 10.1038/s41583-020-00407-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Axons extend for tremendously long distances from the neuronal soma and make use of localized mRNA translation to rapidly respond to different extracellular stimuli and physiological states. The locally synthesized proteins support many different functions in both developing and mature axons, raising questions about the mechanisms by which local translation is organized to ensure the appropriate responses to specific stimuli. Publications over the past few years have uncovered new mechanisms for regulating the axonal transport and localized translation of mRNAs, with several of these pathways converging on the regulation of cohorts of functionally related mRNAs - known as RNA regulons - that drive axon growth, axon guidance, injury responses, axon survival and even axonal mitochondrial function. Recent advances point to these different regulatory pathways as organizing platforms that allow the axon's proteome to be modulated to meet its physiological needs.
Collapse
Affiliation(s)
- Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
49
|
de Jongh R, Spijkers XM, Pasteuning-Vuhman S, Vulto P, Pasterkamp RJ. Neuromuscular junction-on-a-chip: ALS disease modeling and read-out development in microfluidic devices. J Neurochem 2021; 157:393-412. [PMID: 33382092 DOI: 10.1111/jnc.15289] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and progressive neurodegenerative disease affecting upper and lower motor neurons with no cure available. Clinical and animal studies reveal that the neuromuscular junction (NMJ), a synaptic connection between motor neurons and skeletal muscle fibers, is highly vulnerable in ALS and suggest that NMJ defects may occur at the early stages of the disease. However, mechanistic insight into how NMJ dysfunction relates to the onset and progression of ALS is incomplete, which hampers therapy development. This is, in part, caused by a lack of robust in vitro models. The ability to combine microfluidic and induced pluripotent stem cell (iPSC) technologies has opened up new avenues for studying molecular and cellular ALS phenotypes in vitro. Microfluidic devices offer several advantages over traditional culture approaches when modeling the NMJ, such as the spatial separation of different cell types and increased control over the cellular microenvironment. Moreover, they are compatible with 3D cell culture, which enhances NMJ functionality and maturity. Here, we review how microfluidic technology is currently being employed to develop more reliable in vitro NMJ models. To validate and phenotype such models, various morphological and functional read-outs have been developed. We describe and discuss the relevance of these read-outs and specifically illustrate how these read-outs have enhanced our understanding of NMJ pathology in ALS. Finally, we share our view on potential future directions and challenges.
Collapse
Affiliation(s)
- Rianne de Jongh
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Xandor M Spijkers
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,Mimetas B.V., Organ-on-a-chip Company, Leiden, The Netherlands
| | - Svetlana Pasteuning-Vuhman
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Paul Vulto
- Mimetas B.V., Organ-on-a-chip Company, Leiden, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
50
|
Lee B, Cho Y. Experimental Model Systems for Understanding Human Axonal Injury Responses. Int J Mol Sci 2021; 22:E474. [PMID: 33418850 PMCID: PMC7824864 DOI: 10.3390/ijms22020474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
Neurons are structurally unique and have dendrites and axons that are vulnerable to injury. Some neurons in the peripheral nervous system (PNS) can regenerate their axons after injuries. However, most neurons in the central nervous system (CNS) fail to do so, resulting in irreversible neurological disorders. To understand the mechanisms of axon regeneration, various experimental models have been utilized in vivo and in vitro. Here, we collate the key experimental models that revealed the important mechanisms regulating axon regeneration and degeneration in different systems. We also discuss the advantages of experimenting with the rodent model, considering the application of these findings in understanding human diseases and for developing therapeutic methods.
Collapse
Affiliation(s)
| | - Yongcheol Cho
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|