1
|
Yasmin H, Ramesh RPG, Joseph AM, Kishore U. Fibroblast heterogeneity and its role in generating protective immunity in the secondary lymphoid organs. Front Immunol 2025; 16:1519789. [PMID: 40248708 PMCID: PMC12003126 DOI: 10.3389/fimmu.2025.1519789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/04/2025] [Indexed: 04/19/2025] Open
Abstract
Fibroblasts are cells of mesenchymal origin with a range of phenotypic diversity and heterogeneity. One of the major functions of fibroblasts is the formation and turnover of the extracellular matrix and establishing a tissue structure by forming a matrisome from embryonic development to the adult stage. It plays an indispensable role in extracellular matrix remodeling during injury, repair, and infection, providing a scaffold for cell-to-cell interaction. Despite their important pathophysiological roles, molecular markers for tissue-resident fibroblasts are only now being identified. Fibroblasts acquire molecular signatures based on anatomical locations, thus impacting their phenotypic heterogeneity despite their overlapping morphology. Fibroblasts are now recognized as key immune sentinel cells, capable of regulating the inflammatory milieu through their distinct functional subsets that are designed to respond differently with unique immune signatures. Fibroblasts can detect pathogenic and danger signals through their diverse pattern recognition receptors (PRRs) and release soluble mediators that can modulate the immune infiltrates at the site of tissue injury and repair. This review discusses the diversity and heterogeneity of fibroblasts in secondary lymphoid organs such as lymph nodes, spleen, and Peyer's patches, and their contributions to a range of pathological and physiological processes. The role of trans-differentiated effector fibroblast phenotypes that modulate the expression and function of various innate immune components (PRRs, cytokines, chemokines, and complement) in maintaining homeostasis has also been discussed.
Collapse
Affiliation(s)
- Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Remya P. G. Ramesh
- Department of Veterinary Medicine (CAVM), UAE University, Al Ain, United Arab Emirates
| | - Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), UAE University, Al Ain, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), UAE University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Blasco Pedreros M, Salas N, Dos Santos Melo T, Miranda-Magalhães A, Almeida-Lima T, Pereira-Neves A, de Miguel N. Role of a novel uropod-like cell membrane protrusion in the pathogenesis of the parasite Trichomonas vaginalis. J Cell Sci 2024; 137:jcs262210. [PMID: 39129707 DOI: 10.1242/jcs.262210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Trichomonas vaginalis causes trichomoniasis, the most common non-viral sexually transmitted disease worldwide. As an extracellular parasite, adhesion to host cells is essential for the development of infection. During attachment, the parasite changes its tear ovoid shape to a flat ameboid form, expanding the contact surface and migrating through tissues. Here, we have identified a novel structure formed at the posterior pole of adherent parasite strains, resembling the previously described uropod, which appears to play a pivotal role as an anchor during the attachment process. Moreover, our research demonstrates that the overexpression of the tetraspanin T. vaginalis TSP5 protein (TvTSP5), which is localized on the cell surface of the parasite, notably enhances the formation of this posterior anchor structure in adherent strains. Finally, we demonstrate that parasites that overexpress TvTSP5 possess an increased ability to adhere to host cells, enhanced aggregation and reduced migration on agar plates. Overall, these findings unveil novel proteins and structures involved in the intricate mechanisms of T. vaginalis interactions with host cells.
Collapse
Affiliation(s)
- Manuela Blasco Pedreros
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires CP 7130, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús CP 1650, Argentina
| | - Nehuen Salas
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires CP 7130, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús CP 1650, Argentina
| | - Tuanne Dos Santos Melo
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Abigail Miranda-Magalhães
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Thainá Almeida-Lima
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Antonio Pereira-Neves
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires CP 7130, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús CP 1650, Argentina
| |
Collapse
|
3
|
Kang Y, Amoafo EB, Entsie P, Beatty GL, Liverani E. A role for platelets in metabolic reprogramming of tumor-associated macrophages. Front Physiol 2023; 14:1250982. [PMID: 37693009 PMCID: PMC10484008 DOI: 10.3389/fphys.2023.1250982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Cancer incidence and mortality are growing worldwide. With a lack of optimal treatments across many cancer types, there is an unmet need for the development of novel treatment strategies for cancer. One approach is to leverage the immune system for its ability to survey for cancer cells. However, cancer cells evolve to evade immune surveillance by establishing a tumor microenvironment (TME) that is marked by remarkable immune suppression. Macrophages are a predominant immune cell within the TME and have a major role in regulating tumor growth. In the TME, macrophages undergo metabolic reprogramming and differentiate into tumor-associated macrophages (TAM), which typically assume an immunosuppressive phenotype supportive of tumor growth. However, the plasticity of macrophage biology offers the possibility that macrophages may be promising therapeutic targets. Among the many determinants in the TME that may shape TAM biology, platelets can also contribute to cancer growth and to maintaining immune suppression. Platelets communicate with immune cells including macrophages through the secretion of immune mediators and cell-cell interaction. In other diseases, altering platelet secretion and cell-cell communication has been shown to reprogram macrophages and ameliorate inflammation. Thus, intervening on platelet-macrophage biology may be a novel therapeutic strategy for cancer. This review discusses our current understanding of the interaction between platelets and macrophages in the TME and details possible strategies for reprogramming macrophages into an anti-tumor phenotype for suppressing tumor growth.
Collapse
Affiliation(s)
- Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Gregory L. Beatty
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
4
|
Jing Q, Yuan C, Zhou C, Jin W, Wang A, Wu Y, Shang W, Zhang G, Ke X, Du J, Li Y, Shao F. Comprehensive analysis identifies CLEC1B as a potential prognostic biomarker in hepatocellular carcinoma. Cancer Cell Int 2023; 23:113. [PMID: 37308868 PMCID: PMC10262401 DOI: 10.1186/s12935-023-02939-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND C-type lectin domain family 1 member B (CLEC1B, encoding the CLEC-2 protein), a member of the C-type lectin superfamily, is a type II transmembrane receptor involved in platelet activation, angiogenesis, and immune and inflammatory responses. However, data regarding its function and clinical prognostic value in hepatocellular carcinoma (HCC) remain scarce. METHODS The expression of CLEC1B was explored using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. RT-qPCR, western blot, and immunohistochemistry assays were employed to validate the downregulation of CLEC1B. Univariate Cox regression and survival analyses were used to evaluate the prognostic value of CLEC1B. Gene Set Enrichment Analysis (GSEA) was conducted to investigate the potential association between cancer hallmarks and CLEC1B expression. The TISIDB database was applied to search for the correlation between immune cell infiltration levels and CLEC1B expression. The association between CLEC1B and immunomodulators was conducted by Spearman correlation analysis based on the Sangerbox platform. Annexin V-FITC/PI apoptosis kit was used for the detection of cell apoptosis. RESULTS The expression of CLEC1B was low in various tumors and exhibited a promising clinical prognostic value for HCC patients. The expression level of CLEC1B was tightly associated with the infiltration of various immune cells in the HCC tumor microenvironment (TME) and positively correlated with a bulk of immunomodulators. In addition, CLEC1B and its related genes or interacting proteins are implicated in multiple immune-related processes and signaling pathways. Moreover, overexpression of CLEC1B significantly influenced the treatment effects of sorafenib on HCC cells. CONCLUSIONS Our results reveal that CLEC1B could serve as a potential prognostic biomarker and may be a novel immunoregulator for HCC. However, its function in immune regulation should be further explored.
Collapse
Grants
- 2021KY077, 2022KY503, 2022KY046, 2022KY074, 2022KY290 Medical and Health Science and Technology Project of Zhejiang Province
- 2021KY077, 2022KY503, 2022KY046, 2022KY074, 2022KY290 Medical and Health Science and Technology Project of Zhejiang Province
- 2021KY077, 2022KY503, 2022KY046, 2022KY074, 2022KY290 Medical and Health Science and Technology Project of Zhejiang Province
- 2020ZA098, 2021ZB245 Traditional Chinese Medicine Science and Technology Project of Zhejiang Province
- 2020ZA098, 2021ZB245 Traditional Chinese Medicine Science and Technology Project of Zhejiang Province
- LGF21H010008, LGF20H080005, LBY23H080004, LGF22H080008 Zhejiang Provincial Natural Science Foundation of China
- LGF21H010008, LGF20H080005, LBY23H080004, LGF22H080008 Zhejiang Provincial Natural Science Foundation of China
- LGF21H010008, LGF20H080005, LBY23H080004, LGF22H080008 Zhejiang Provincial Natural Science Foundation of China
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Chen Yuan
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Aiwei Wang
- Department of Hematology, The first people's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Yanfang Wu
- Department of Hematology, The first people's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Wenzhong Shang
- Department of Hematology, The first people's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Guibing Zhang
- Department of Hematology, The first people's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Xia Ke
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Fangchun Shao
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Clark JC, Martin EM, Morán LA, Di Y, Wang X, Zuidscherwoude M, Brown HC, Kavanagh DM, Hummert J, Eble JA, Nieswandt B, Stegner D, Pollitt AY, Herten DP, Tomlinson MG, García A, Watson SP. Divalent nanobodies to platelet CLEC-2 can serve as agonists or antagonists. Commun Biol 2023; 6:376. [PMID: 37029319 PMCID: PMC10082178 DOI: 10.1038/s42003-023-04766-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
CLEC-2 is a target for a new class of antiplatelet agent. Clustering of CLEC-2 leads to phosphorylation of a cytosolic YxxL and binding of the tandem SH2 domains in Syk, crosslinking two receptors. We have raised 48 nanobodies to CLEC-2 and crosslinked the most potent of these to generate divalent and tetravalent nanobody ligands. Fluorescence correlation spectroscopy (FCS) was used to show that the multivalent nanobodies cluster CLEC-2 in the membrane and that clustering is reduced by inhibition of Syk. Strikingly, the tetravalent nanobody stimulated aggregation of human platelets, whereas the divalent nanobody was an antagonist. In contrast, in human CLEC-2 knock-in mouse platelets, the divalent nanobody stimulated aggregation. Mouse platelets express a higher level of CLEC-2 than human platelets. In line with this, the divalent nanobody was an agonist in high-expressing transfected DT40 cells and an antagonist in low-expressing cells. FCS, stepwise photobleaching and non-detergent membrane extraction show that CLEC-2 is a mixture of monomers and dimers, with the degree of dimerisation increasing with expression thereby favouring crosslinking of CLEC-2 dimers. These results identify ligand valency, receptor expression/dimerisation and Syk as variables that govern activation of CLEC-2 and suggest that divalent ligands should be considered as partial agonists.
Collapse
Affiliation(s)
- Joanne C Clark
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK.
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Luis A Morán
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Ying Di
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Xueqing Wang
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Malou Zuidscherwoude
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| | - Helena C Brown
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Deirdre M Kavanagh
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 QU3, UK
| | - Johan Hummert
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| | - Johannes A Eble
- Institute for Physiological Chemistry & Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149, Münster, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Alice Y Pollitt
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, RG6 6AS, UK
| | - Dirk-Peter Herten
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| | - Michael G Tomlinson
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Angel García
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
6
|
Cannon AS, Holloman BL, Wilson K, Miranda K, Dopkins N, Nagarkatti P, Nagarkatti M. AhR Activation Leads to Attenuation of Murine Autoimmune Hepatitis: Single-Cell RNA-Seq Analysis Reveals Unique Immune Cell Phenotypes and Gene Expression Changes in the Liver. Front Immunol 2022; 13:899609. [PMID: 35720411 PMCID: PMC9204231 DOI: 10.3389/fimmu.2022.899609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ubiquitously expressed ligand-activated transcription factor. While initially identified as an environmental sensor, this receptor has been shown more recently to regulate a variety of immune functions. AhR ligands vary in structure and source from environmental chemicals such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and indoles found in cruciferous vegetables to endogenous ligands derived from tryptophan metabolism. In the current study, we used TCDD, a high affinity AhR ligand to study the impact of AhR activation in the murine model of autoimmune hepatitis (AIH). Primarily, we used single-cell RNA-sequencing (scRNA-seq) technology to study the nature of changes occurring in the immune cells in the liver at the cellular and molecular level. We found that AhR activation attenuated concanavalin A (ConA)-induced AIH by limiting chemotaxis of pro-inflammatory immune cell subsets, promoting anti-inflammatory cytokine production, and suppressing pro-inflammatory cytokine production. scRNA-seq analysis showed some unusual events upon ConA injection such as increased presence of mature B cells, natural killer (NK) T cells, CD4+ or CD8+ T cells, Kupffer cells, memory CD8+ T cells, and activated T cells while TCDD treatment led to the reversal of most of these events. Additionally, the immune cells showed significant alterations in the gene expression profiles. Specifically, we observed downregulation of inflammation-associated genes including Ptma, Hspe1, and CD52 in TCDD-treated AIH mice as well as alterations in the expression of migratory markers such as CXCR2. Together, the current study characterizes the nature of inflammatory changes occurring in the liver during AIH, and sheds light on how AhR activation during AIH attenuates liver inflammation by inducing phenotypic and genotypic changes in immune cells found in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
7
|
Bai X, Huang M, Chen X, Cai Q, Jiang Z, Chen L, Huang H. Microarray profiling and functional analysis reveal the regulatory role of differentially expressed plasma circular RNAs in Hashimoto’s thyroiditis. Immunol Res 2022; 70:331-340. [DOI: 10.1007/s12026-021-09241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022]
|
8
|
Martin EM, Zuidscherwoude M, Morán LA, Di Y, García A, Watson SP. The structure of CLEC-2: mechanisms of dimerization and higher-order clustering. Platelets 2021; 32:733-743. [PMID: 33819136 DOI: 10.1080/09537104.2021.1906407] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
The platelet C-type lectin-like receptor CLEC-2 drives inflammation-driven venous thrombosis in mouse models of thrombo-inflammatory disease with a minimal effect on hemostasis identifying it as a target for a new class of antiplatelet agent. Here, we discuss how the protein structure and dynamic arrangement of CLEC-2 on the platelet membrane helps the receptor, which has a single YxxL motif (known as a hemITAM), to trigger intracellular signaling. CLEC-2 exists as a monomer and homo-dimer within resting platelets and forms higher-order oligomers following ligand activation, a process that is mediated by the multivalent nature of its ligands and the binding of the tandem SH2 domains of Syk to the phosphorylated hemITAM and concomitantly to PIP2 or PIP3 to localize it to the membrane. We propose that a low level of active Syk is present at the membrane in resting platelets due to phosphorylation by Src family kinases and that clustering of receptors disturbs the equilibrium between kinases and phosphatases, triggering phosphorylation of the CLEC-2 hemITAM and recruitment of Syk. Knowledge of the structure of CLEC-2 and the mechanism of platelet activation has important implications for development of therapeutics.
Collapse
Affiliation(s)
- Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
| | - Malou Zuidscherwoude
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
| | - Luis A Morán
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade De Santiago De Compostela, Spain
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
| | - Angel García
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade De Santiago De Compostela, Spain
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands
| |
Collapse
|
9
|
de Winde CM, Makris S, Millward LJ, Cantoral-Rebordinos JA, Benjamin AC, Martínez VG, Acton SE. Fibroblastic reticular cell response to dendritic cells requires coordinated activity of podoplanin, CD44 and CD9. J Cell Sci 2021; 134:jcs258610. [PMID: 34184727 PMCID: PMC8325952 DOI: 10.1242/jcs.258610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
In adaptive immunity, CLEC-2+ dendritic cells (DCs) contact fibroblastic reticular cells (FRCs) inhibiting podoplanin-dependent actomyosin contractility, permitting FRC spreading and lymph node expansion. The molecular mechanisms controlling lymph node remodelling are incompletely understood. We asked how podoplanin is regulated on FRCs in the early phase of lymph node expansion, and which other proteins are required for the FRC response to DCs. We find that podoplanin and its partner proteins CD44 and CD9 are differentially expressed by specific lymph node stromal populations in vivo, and their expression in FRCs is coregulated by CLEC-2 (encoded by CLEC1B). Both CD44 and CD9 suppress podoplanin-dependent contractility. We find that beyond contractility, podoplanin is required for FRC polarity and alignment. Independently of podoplanin, CD44 and CD9 affect FRC-FRC interactions. Furthermore, our data show that remodelling of the FRC cytoskeleton in response to DCs is a two-step process requiring podoplanin partner proteins CD44 and CD9. Firstly, CLEC-2 and podoplanin binding inhibits FRC contractility, and, secondly, FRCs form protrusions and spread, which requires both CD44 and CD9. Together, we show a multi-faceted FRC response to DCs, which requires CD44 and CD9 in addition to podoplanin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sophie E. Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
10
|
de Winde CM, Munday C, Acton SE. Molecular mechanisms of dendritic cell migration in immunity and cancer. Med Microbiol Immunol 2020; 209:515-529. [PMID: 32451606 PMCID: PMC7395046 DOI: 10.1007/s00430-020-00680-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous population of antigen-presenting cells that act to bridge innate and adaptive immunity. DCs are critical in mounting effective immune responses to tissue damage, pathogens and cancer. Immature DCs continuously sample tissues and engulf antigens via endocytic pathways such as phagocytosis or macropinocytosis, which result in DC activation. Activated DCs undergo a maturation process by downregulating endocytosis and upregulating surface proteins controlling migration to lymphoid tissues where DC-mediated antigen presentation initiates adaptive immune responses. To traffic to lymphoid tissues, DCs must adapt their motility mechanisms to migrate within a wide variety of tissue types and cross barriers to enter lymphatics. All steps of DC migration involve cell-cell or cell-substrate interactions. This review discusses DC migration mechanisms in immunity and cancer with a focus on the role of cytoskeletal processes and cell surface proteins, including integrins, lectins and tetraspanins. Understanding the adapting molecular mechanisms controlling DC migration in immunity provides the basis for therapeutic interventions to dampen immune activation in autoimmunity, or to improve anti-tumour immune responses.
Collapse
Affiliation(s)
- Charlotte M de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Clare Munday
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
11
|
Majdoubi A, Lee JS, Balood M, Sabourin A, DeMontigny A, Kishta OA, Moulefera MA, Galbas T, Yun TJ, Talbot S, Ishido S, Cheong C, Thibodeau J. Downregulation of MHC Class II by Ubiquitination Is Required for the Migration of CD206 + Dendritic Cells to Skin-Draining Lymph Nodes. THE JOURNAL OF IMMUNOLOGY 2019; 203:2887-2898. [PMID: 31659013 DOI: 10.4049/jimmunol.1900593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are critical players in skin homeostasis. A subset of mannose receptor (CD206)-expressing monocyte-derived DCs was found in skin, and their migratory counterpart is present in skin-draining lymph nodes (sdLNs). Skin CD206+ DCs were shown to upregulate MHC class II (MHCII) progressively, raising the question of whether this feature affects their biology. In this study, we assessed the role of MHCII regulation in the development and migration of these cells in mouse models expressing differential MHCII levels. Using CD206 as a surrogate marker, we found that skin CD206+ DCs develop in an MHCII-independent manner. However, their migration to sdLNs was affected by overexpression rather than absence or lower expression of MHCII. Accordingly, B16 tumor growth was exacerbated in mice overexpressing MHCII in the absence of ubiquitination. Mechanistically, CD206+ DCs from these mice showed decreased IRF4 and CCR7 expression. LPS, which is known to promote monocyte-derived DC recruitment to sdLNs, partially improved these defects. However, GM-CSF delivery restored CD206+ DC migration by promoting IRF4 expression. Collectively, these data show that MHCII downregulation is crucial for IRF4-dependent migration of CD206+ DCs to sdLNs in health and disease.
Collapse
Affiliation(s)
- Abdelilah Majdoubi
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal H3T 1J4, Quebec, Canada
| | - Jun Seong Lee
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal H3T 1J4, Quebec, Canada
| | - Mohammad Balood
- Département de Pharmacologie, Université de Montréal, Montreal H3T 1J4, Quebec, Canada
| | - Antoine Sabourin
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal H3T 1J4, Quebec, Canada
| | - Auriane DeMontigny
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal H3T 1J4, Quebec, Canada
| | - Osama A Kishta
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal H3T 1J4, Quebec, Canada
| | - Mohamed Abdelwafi Moulefera
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal H3T 1J4, Quebec, Canada
| | - Tristan Galbas
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal H3T 1J4, Quebec, Canada
| | - Tae Jin Yun
- Institut de Recherches Cliniques de Montréal, Montreal H2W 1R7, Quebec, Canada; and
| | - Sébastien Talbot
- Département de Pharmacologie, Université de Montréal, Montreal H3T 1J4, Quebec, Canada
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Cheolho Cheong
- Institut de Recherches Cliniques de Montréal, Montreal H2W 1R7, Quebec, Canada; and
| | - Jacques Thibodeau
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal H3T 1J4, Quebec, Canada;
| |
Collapse
|
12
|
Bros M, Haas K, Moll L, Grabbe S. RhoA as a Key Regulator of Innate and Adaptive Immunity. Cells 2019; 8:cells8070733. [PMID: 31319592 PMCID: PMC6678964 DOI: 10.3390/cells8070733] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
RhoA is a ubiquitously expressed cytoplasmic protein that belongs to the family of small GTPases. RhoA acts as a molecular switch that is activated in response to binding of chemokines, cytokines, and growth factors, and via mDia and the ROCK signaling cascade regulates the activation of cytoskeletal proteins, and other factors. This review aims to summarize our current knowledge on the role of RhoA as a general key regulator of immune cell differentiation and function. The contribution of RhoA for the primary functions of innate immune cell types, namely neutrophils, macrophages, and conventional dendritic cells (DC) to (i) get activated by pathogen-derived and endogenous danger signals, (ii) migrate to sites of infection and inflammation, and (iii) internalize pathogens has been fairly established. In activated DC, which constitute the most potent antigen-presenting cells of the immune system, RhoA is also important for the presentation of pathogen-derived antigen and the formation of an immunological synapse between DC and antigen-specific T cells as a prerequisite to induce adaptive T cell responses. In T cells and B cells as the effector cells of the adaptive immune system Rho signaling is pivotal for activation and migration. More recently, mutations of Rho and Rho-modulating factors have been identified to predispose for autoimmune diseases and as causative for hematopoietic malignancies.
Collapse
Affiliation(s)
- Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Katharina Haas
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Lorna Moll
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
13
|
First person – Lotte de Winde. J Cell Sci 2018. [DOI: 10.1242/jcs.225482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Lotte de Winde is the first author on ‘C-type lectin-like receptor 2 (CLEC-2)-dependent dendritic cell migration is controlled by tetraspanin CD37’, published in Journal of Cell Science. Lotte conducted the research in this article while a PhD student at the Radboud Institute for Molecular Life Sciences, The Netherlands, under the supervision of Prof. Annemiek van Spriel and Prof. Carl Figdor. She is now a Postdoctoral Research Fellow in the lab of Dr Sophie Acton at the MRC Laboratory for Molecular Cell Biology, UK. Here, she studies the plasma membrane organisation and dynamics of podoplanin and its partner proteins on fibroblastic reticular cells (FRCs), and how changes in this organisation shape downstream signalling and FRC function.
Collapse
|