1
|
Siegerist F, Campbell KN, Endlich N. A new era in nephrology: the role of super-resolution microscopy in research, medical diagnostic, and drug discovery. Kidney Int 2025; 107:994-1001. [PMID: 40139567 DOI: 10.1016/j.kint.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/18/2024] [Accepted: 01/28/2025] [Indexed: 03/29/2025]
Abstract
For decades, electron microscopy has been the primary method to visualize ultrastructural details of the kidney, including podocyte foot processes and the slit diaphragm. Despite its status as the gold standard, electron microscopy has significant limitations: it requires laborious sample preparation, works only with very small samples, is mainly qualitative, and is prone to misinterpretation because of section angle bias. In addition, combining imaging and protein staining with antibodies poses a challenge, limiting electron microscopy's integration into routine research and diagnostic workflows. As imaging technology advances, super-resolution microscopy, with an optical resolution below 100 nm, presents a promising alternative for detailed insights into glomerular ultrastructure. This review explores various super-resolution techniques, particularly 3-dimensional structured illumination microscopy, and demonstrates how they can be applied to standard histological sections. The 3-dimensional structured illumination microscopy-based measurement procedure-podocyte exact morphology measurement procedure-offers a novel approach to quantifying podocyte foot process morphology and can detect podocyte foot process changes even before proteinuria is present. Furthermore, the podocyte exact morphology measurement procedure can be combined with mRNA detection, multiplex staining, and deep learning algorithms, making it a powerful tool for kidney research, preclinical studies, and personalized diagnostics. This advancement has the potential to accelerate drug development and enhance therapeutic precision, heralding a new era of high-precision nephrology.
Collapse
Affiliation(s)
- Florian Siegerist
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany; Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics, University Medicine Greifswald, Greifswald, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Greifswald/Rostock, Germany
| | - Kirk N Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany; NIPOKA GmbH, Greifswald, Germany.
| |
Collapse
|
2
|
Lorenzi T, Painter KJ, Villa C. Phenotype structuring in collective cell migration: a tutorial of mathematical models and methods. J Math Biol 2025; 90:61. [PMID: 40377698 PMCID: PMC12084280 DOI: 10.1007/s00285-025-02223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/10/2025] [Accepted: 04/19/2025] [Indexed: 05/18/2025]
Abstract
Populations are heterogeneous, deviating in numerous ways. Phenotypic diversity refers to the range of traits or characteristics across a population, where for cells this could be the levels of signalling, movement and growth activity, etc. Clearly, the phenotypic distribution - and how this changes over time and space - could be a major determinant of population-level dynamics. For instance, across a cancerous population, variations in movement, growth, and ability to evade death may determine its growth trajectory and response to therapy. In this review, we discuss how classical partial differential equation (PDE) approaches for modelling cellular systems and collective cell migration can be extended to include phenotypic structuring. The resulting non-local models - which we refer to as phenotype-structured partial differential equations (PS-PDEs) - form a sophisticated class of models with rich dynamics. We set the scene through a brief history of structured population modelling, and then review the extension of several classic movement models - including the Fisher-KPP and Keller-Segel equations - into a PS-PDE form. We proceed with a tutorial-style section on derivation, analysis, and simulation techniques. First, we show a method to formally derive these models from underlying agent-based models. Second, we recount travelling waves in PDE models of spatial spread dynamics and concentration phenomena in non-local PDE models of evolutionary dynamics, and combine the two to deduce phenotypic structuring across travelling waves in PS-PDE models. Third, we discuss numerical methods to simulate PS-PDEs, illustrating with a simple scheme based on the method of lines and noting the finer points of consideration. We conclude with a discussion of future modelling and mathematical challenges.
Collapse
Affiliation(s)
- Tommaso Lorenzi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Kevin J Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio, Politecnico di Torino, Viale Pier Andrea Mattioli, 39, 10125, Torino, Italy.
| | - Chiara Villa
- Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions UMR 7598, 75005, Paris, France
- Université Paris-Saclay, Inria, Centre Inria de Saclay, 91120, Palaiseau, France
| |
Collapse
|
3
|
Mezache L, Leterrier C. Advancing Super-Resolution Microscopy: Recent Innovations in Commercial Instruments. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozaf004. [PMID: 40183990 DOI: 10.1093/mam/ozaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 04/05/2025]
Abstract
Super-resolution microscopy techniques have accelerated scientific progress, enabling researchers to explore cellular structures and dynamics with unprecedented detail. This review highlights the most recent developments in commercially available super-resolution microscopes, focusing on the most widely used techniques: confocal laser scanning systems, structured illumination microscopy (SIM), stimulated emission depletion (STED) microscopy, and single-molecule localization microscopy (SMLM). We detail the technological advancements of Confocal.NL's GAIA, Nikon's NSPARC, CSR Biotech's MI-SIM, Zeiss's Lattice SIM 5, Leica's STELLARIS STED, and abberior's STED and MINFLUX systems, as well as Abbelight's SAFe MN360 and Bruker's Vutara VXL SMLM platforms. These advancements address the need for enhanced resolution, reduced phototoxicity, and improved imaging capabilities in a range of sample types, while also aiming to enhance user friendliness.
Collapse
Affiliation(s)
- Louisa Mezache
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 27 Blvd Jean Moulin, 13005 Marseille, France
| | - Christophe Leterrier
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 27 Blvd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
4
|
Frolikova M, Blazikova M, Capek M, Chmelova H, Valecka J, Kolackova V, Valaskova E, Gregor M, Komrskova K, Horvath O, Novotny I. Innovative sample preparation using alcohol dehydration and high refractive index medium enables acquisition of two-channel super-resolution 3D STED image of an entire oocyte. J Microsc 2025; 297:165-178. [PMID: 39392013 PMCID: PMC11733846 DOI: 10.1111/jmi.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Super-resolution (SR) microscopy is a cutting-edge method that can provide detailed structural information with high resolution. However, the thickness of the specimen has been a major limitation for SR methods, and large biological structures have posed a challenge. To overcome this, the key step is to optimise sample preparation to ensure optical homogeneity and clarity, which can enhance the capabilities of SR methods for the acquisition of thicker structures. Oocytes are the largest cells in the mammalian body and are crucial objects in reproductive biology. They are especially useful for studying membrane proteins. However, oocytes are extremely fragile and sensitive to mechanical manipulation and osmotic shocks, making sample preparation a critical and challenging step. We present an innovative, simple and sensitive approach to oocyte sample preparation for 3D STED acquisition. This involves alcohol dehydration and mounting into a high refractive index medium. This extended preparation procedure allowed us to successfully obtain a unique two-channel 3D STED SR image of an entire mouse oocyte. By optimising sample preparation, it is possible to overcome current limitations of SR methods and obtain high-resolution images of large biological structures, such as oocytes, in order to study fundamental biological processes. Lay Abstract: Super-resolution (SR) microscopy is a cutting-edge tool that allows scientists to view incredibly fine details in biological samples. However, it struggles with larger, thicker specimens, as they need to be optically clear and uniform for the best imaging results. In this study, we refined the sample preparation process to make it more suitable for SR microscopy. Our method includes carefully dehydrating biological samples with alcohol and then transferring them into a mounting medium that enhances optical clarity. This improved protocol enables high-resolution imaging of thick biological structures, which was previously challenging. By optimizing this preparation method, we hope to expand the use of SR microscopy for studying large biological samples, helping scientists better understand complex biological structures.
Collapse
Affiliation(s)
- Michaela Frolikova
- Laboratory of Reproductive BiologyInstitute of Biotechnology of the Czech Academy of SciencesBIOCEVPrumyslovaVestecCzech Republic
| | - Michaela Blazikova
- Light Microscopy Core FacilityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Martin Capek
- Light Microscopy Core FacilityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Laboratory of BiomathematicsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Helena Chmelova
- Light Microscopy Core FacilityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Valecka
- Light Microscopy Core FacilityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Veronika Kolackova
- Centre of the Region Hana for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesOlomoucCzech Republic
| | - Eliska Valaskova
- Laboratory of Reproductive BiologyInstitute of Biotechnology of the Czech Academy of SciencesBIOCEVPrumyslovaVestecCzech Republic
| | - Martin Gregor
- Laboratory of Integrative BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Katerina Komrskova
- Laboratory of Reproductive BiologyInstitute of Biotechnology of the Czech Academy of SciencesBIOCEVPrumyslovaVestecCzech Republic
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Ondrej Horvath
- Light Microscopy Core FacilityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Ivan Novotny
- Light Microscopy Core FacilityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
5
|
Zhang Y, Bai L, Wang X, Zhao Y, Zhang T, Ye L, Du X, Zhang Z, Du J, Wang K. Super-resolution imaging of fast morphological dynamics of neurons in behaving animals. Nat Methods 2025; 22:177-186. [PMID: 39578627 DOI: 10.1038/s41592-024-02535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
Neurons are best studied in their native states in which their functional and morphological dynamics support animals' natural behaviors. Super-resolution microscopy can potentially reveal these dynamics in higher details but has been challenging in behaving animals due to severe motion artifacts. Here we report multiplexed, line-scanning, structured illumination microscopy, which can tolerate motion of up to 50 μm s-1 while achieving 150-nm and 100-nm lateral resolutions in its linear and nonlinear forms, respectively. We continuously imaged the dynamics of spinules in dendritic spines and axonal boutons volumetrically over thousands of frames and tens of minutes in head-fixed mouse brains during sleep-wake cycles. Super-resolution imaging of axonal boutons revealed spinule dynamics on a scale of seconds. Simultaneous two-color imaging further enabled analyses of the spatial distributions of diverse PSD-95 clusters and opened up possibilities to study their correlations with the structural dynamics of dendrites in the brains of head-fixed awake mice.
Collapse
Affiliation(s)
- Yujie Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Bai
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuchen Zhao
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianlei Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lichen Ye
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xufei Du
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiulin Du
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kai Wang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
6
|
Schachter I. Lipid demixing reduces energy barriers for high-curvature vesicle budding. Biophys J 2024:S0006-3495(24)04073-6. [PMID: 39673133 DOI: 10.1016/j.bpj.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024] Open
Abstract
Under standard physiological conditions, budding relies on asymmetries, including differences in leaflet composition, area, and osmotic conditions, and involves large curvature changes in nanoscale lipid vesicles. So far, the combined impact of asymmetry and high curvatures on budding has remained unknown. Here, using the continuum elastic theory, the budding pathway is detailed under realistic conditions. The model enables a quantitative description of the budding process and the budded state of both ideally and nonideally mixed lipid nanoscale vesicles. It shows that budding is less favored in smaller vesicles but that lipid demixing can significantly reduce its energy barrier, and yet high compositional deviations of more than 7% between the bud and vesicle only occur with phase separation on the bud.
Collapse
Affiliation(s)
- Itay Schachter
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Chemistry, The Fritz Haber Research Center, The Harvey M. Kruger Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
7
|
Olaya-Bravo K, Martínez-Flores D, Rodríguez-Hernández AP, Tobías-Juárez I, Castro-Rodríguez JA, Sampieri A, Vaca L. Resolving viral structural complexity by super-resolution microscopy. Arch Virol 2024; 170:5. [PMID: 39652240 DOI: 10.1007/s00705-024-06192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 12/17/2024]
Abstract
In this review, we discuss different super-resolution microscopy (SRM) techniques employed to study viral structures and virus composition with nanometric resolution. We describe the basic principles of the different microscopy methods utilized to break the light diffraction limit, enabling the study of protein composition in viral structures. Finally, we demonstrate for the first time the differential spatial distribution of two structural proteins in an individual baculovirus using single-molecule super-resolution microscopy. We discuss the future of these powerful methods for virology, medicine, and biotechnology applications.
Collapse
Affiliation(s)
- Kevin Olaya-Bravo
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Daniel Martínez-Flores
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Aaron Pavel Rodríguez-Hernández
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ileana Tobías-Juárez
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Jorge A Castro-Rodríguez
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alicia Sampieri
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luis Vaca
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Deolal P, Scholz J, Ren K, Bragulat-Teixidor H, Otsuka S. Sculpting nuclear envelope identity from the endoplasmic reticulum during the cell cycle. Nucleus 2024; 15:2299632. [PMID: 38238284 PMCID: PMC10802211 DOI: 10.1080/19491034.2023.2299632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The nuclear envelope (NE) regulates nuclear functions, including transcription, nucleocytoplasmic transport, and protein quality control. While the outer membrane of the NE is directly continuous with the endoplasmic reticulum (ER), the NE has an overall distinct protein composition from the ER, which is crucial for its functions. During open mitosis in higher eukaryotes, the NE disassembles during mitotic entry and then reforms as a functional territory at the end of mitosis to reestablish nucleocytoplasmic compartmentalization. In this review, we examine the known mechanisms by which the functional NE reconstitutes from the mitotic ER in the continuous ER-NE endomembrane system during open mitosis. Furthermore, based on recent findings indicating that the NE possesses unique lipid metabolism and quality control mechanisms distinct from those of the ER, we explore the maintenance of NE identity and homeostasis during interphase. We also highlight the potential significance of membrane junctions between the ER and NE.
Collapse
Affiliation(s)
- Pallavi Deolal
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Julia Scholz
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Kaike Ren
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Helena Bragulat-Teixidor
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Shotaro Otsuka
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| |
Collapse
|
9
|
Umney O, Leng J, Canettieri G, Galdo NARD, Slaney H, Quirke P, Peckham M, Curd A. Annotation and automated segmentation of single-molecule localisation microscopy data. J Microsc 2024; 296:214-226. [PMID: 39092628 DOI: 10.1111/jmi.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Single Molecule Localisation Microscopy (SMLM) is becoming a widely used technique in cell biology. After processing the images, the molecular localisations are typically stored in a table as xy (or xyz) coordinates, with additional information, such as number of photons, etc. This set of coordinates can be used to generate an image to visualise the molecular distribution, for example, a 2D or 3D histogram of localisations. Many different methods have been devised to analyse SMLM data, among which cluster analysis of the localisations is popular. However, it can be useful to first segment the data, to extract the localisations in a specific region of a cell or in individual cells, prior to downstream analysis. Here we describe a pipeline for annotating localisations in an SMLM dataset in which we compared membrane segmentation approaches, including Otsu thresholding and machine learning models, and subsequent cell segmentation. We used an SMLM dataset derived from dSTORM images of sectioned cell pellets, stained for the membrane proteins EGFR (epidermal growth factor receptor) and EREG (epiregulin) as a test dataset. We found that a Cellpose model retrained on our data performed the best in the membrane segmentation task, allowing us to perform downstream cluster analysis of membrane versus cell interior localisations. We anticipate this will be generally useful for SMLM analysis.
Collapse
Affiliation(s)
- Oliver Umney
- Faculty of Engineering and Physical Sciences, School of Computing, University of Leeds, Leeds, UK
| | - Joanna Leng
- Faculty of Engineering and Physical Sciences, School of Computing, University of Leeds, Leeds, UK
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Institute Pasteur Italy - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Natalia A Riobo-Del Galdo
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- School of Medicine, Leeds Institute for Medical Research, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Hayley Slaney
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Philip Quirke
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Michelle Peckham
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Alistair Curd
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Faculty of Engineering and Physical Sciences, School of Physics, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Qin G, Guan X, Mao J, Feng Z, Yang W, Wang S, Zhen Z, Miao X, Cheng Y, Wang Z, Wang X, Huang F, He H. Nanosilver-Enhanced Far-Field Fluorescence Fluctuations for Super-Resolution Microscopy. NANO LETTERS 2024; 24:15186-15194. [PMID: 39530767 DOI: 10.1021/acs.nanolett.4c05155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Fluctuation-based super-resolution microscopy enhances image resolution using signal fluctuations, yet the inherent fluctuations of fluorophores limit its spatiotemporal resolution. In this work, we reveal a far-field enhancement (FFE) effect via a nanosilver film that significantly boosts fluorescence fluctuations of fluorophores positioned up to 10 μm away. The FFE effect arises from the interference of scattered light from the nanosilver film and photothermal-induced refractive index changes in the imaging medium, which create periodic auxiliary illumination on the sample. This phenomenon enabled the development of far-field enhanced super-resolution microscopy (FFE-SRM), a technique compatible with commonly used fluorophores. FFE-SRM improves temporal resolution up to 10-fold and enhances spatial resolution by about 2-fold over various SRM methods, including stochastic optical fluctuation imaging, super-resolution radial fluctuation, mean-shift super-resolution, and direct stochastic optical reconstruction microscopy. We demonstrated the potential of FFE-SRM by revealing mitochondrial dynamics in live-cell imaging, advancing super-resolution imaging, and cellular process exploration.
Collapse
Affiliation(s)
- Guangyong Qin
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xin Guan
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jian Mao
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenzhen Feng
- Technical Center of Qingdao Customs District, Qingdao 266500, China
| | - Wenxuan Yang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shenming Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zheng Zhen
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xintong Miao
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yifeng Cheng
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhirui Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
11
|
Mezei T, Kolcsár M, Joó A, Gurzu S. Image Analysis in Histopathology and Cytopathology: From Early Days to Current Perspectives. J Imaging 2024; 10:252. [PMID: 39452415 PMCID: PMC11508754 DOI: 10.3390/jimaging10100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Both pathology and cytopathology still rely on recognizing microscopical morphologic features, and image analysis plays a crucial role, enabling the identification, categorization, and characterization of different tissue types, cell populations, and disease states within microscopic images. Historically, manual methods have been the primary approach, relying on expert knowledge and experience of pathologists to interpret microscopic tissue samples. Early image analysis methods were often constrained by computational power and the complexity of biological samples. The advent of computers and digital imaging technologies challenged the exclusivity of human eye vision and brain computational skills, transforming the diagnostic process in these fields. The increasing digitization of pathological images has led to the application of more objective and efficient computer-aided analysis techniques. Significant advancements were brought about by the integration of digital pathology, machine learning, and advanced imaging technologies. The continuous progress in machine learning and the increasing availability of digital pathology data offer exciting opportunities for the future. Furthermore, artificial intelligence has revolutionized this field, enabling predictive models that assist in diagnostic decision making. The future of pathology and cytopathology is predicted to be marked by advancements in computer-aided image analysis. The future of image analysis is promising, and the increasing availability of digital pathology data will invariably lead to enhanced diagnostic accuracy and improved prognostic predictions that shape personalized treatment strategies, ultimately leading to better patient outcomes.
Collapse
Affiliation(s)
- Tibor Mezei
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Melinda Kolcsár
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - András Joó
- Accenture Romania, 540035 Targu Mures, Romania;
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| |
Collapse
|
12
|
Bharathan NK, Mattheyses AL, Kowalczyk AP. The desmosome comes into focus. J Cell Biol 2024; 223:e202404120. [PMID: 39120608 PMCID: PMC11317759 DOI: 10.1083/jcb.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
13
|
Kim D, Bossi ML, Belov VN, Hell SW. Supramolecular Complex of Cucurbit[7]uril with Diketopyrrolopyrole Dye: Fluorescence Boost, Biolabeling and Optical Microscopy. Angew Chem Int Ed Engl 2024; 63:e202410217. [PMID: 38881490 DOI: 10.1002/anie.202410217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
New photostable and bright supramolecular complexes based on cucurbit[7]uril (CB7) host and diketopyrrolopyrole (DPP) guest dyes having two positively charged 4-(trimethylammonio)phenyl groups were prepared and characterized. The dye core displays large Stokes shift (in H2O, abs./emission max. 480/550 nm; ϵ~19 000, τfl>4 ns), strong binding with the host (~560 nM Kd) and a linker affording fluorescence detection of bioconjugates with antibody and nanobody. Combination of protein-functionalized DPP dye with CB7 improves photostability and affords up to 12-fold emission gain. Two-color confocal and stimulated emission depletion (STED) microscopy with 595 nm or 655 nm STED depletion lasers shows that the presence of CB7 not only leads to improved brightness and image quality, but also results in DPP becoming cell-permeable.
Collapse
Affiliation(s)
- Dojin Kim
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
| | - Mariano L Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Vladimir N Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstrasse 29, 69120, Heidelberg, Germany
| |
Collapse
|
14
|
Bhushan V, Nita-Lazar A. Recent Advancements in Subcellular Proteomics: Growing Impact of Organellar Protein Niches on the Understanding of Cell Biology. J Proteome Res 2024; 23:2700-2722. [PMID: 38451675 PMCID: PMC11296931 DOI: 10.1021/acs.jproteome.3c00839] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The mammalian cell is a complex entity, with membrane-bound and membrane-less organelles playing vital roles in regulating cellular homeostasis. Organellar protein niches drive discrete biological processes and cell functions, thus maintaining cell equilibrium. Cellular processes such as signaling, growth, proliferation, motility, and programmed cell death require dynamic protein movements between cell compartments. Aberrant protein localization is associated with a wide range of diseases. Therefore, analyzing the subcellular proteome of the cell can provide a comprehensive overview of cellular biology. With recent advancements in mass spectrometry, imaging technology, computational tools, and deep machine learning algorithms, studies pertaining to subcellular protein localization and their dynamic distributions are gaining momentum. These studies reveal changing interaction networks because of "moonlighting proteins" and serve as a discovery tool for disease network mechanisms. Consequently, this review aims to provide a comprehensive repository for recent advancements in subcellular proteomics subcontexting methods, challenges, and future perspectives for method developers. In summary, subcellular proteomics is crucial to the understanding of the fundamental cellular mechanisms and the associated diseases.
Collapse
Affiliation(s)
- Vanya Bhushan
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
15
|
Power RM, Tschanz A, Zimmermann T, Ries J. Build and operation of a custom 3D, multicolor, single-molecule localization microscope. Nat Protoc 2024; 19:2467-2525. [PMID: 38702387 DOI: 10.1038/s41596-024-00989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/19/2024] [Indexed: 05/06/2024]
Abstract
Single-molecule localization microscopy (SMLM) enables imaging scientists to visualize biological structures with unprecedented resolution. Particularly powerful implementations of SMLM are capable of three-dimensional, multicolor and high-throughput imaging and can yield key biological insights. However, widespread access to these technologies is limited, primarily by the cost of commercial options and complexity of de novo development of custom systems. Here we provide a comprehensive guide for interested researchers who wish to establish a high-end, custom-built SMLM setup in their laboratories. We detail the initial configuration and subsequent assembly of the SMLM, including the instructions for the alignment of all the optical pathways, the software and hardware integration, and the operation of the instrument. We describe the validation steps, including the preparation and imaging of test and biological samples with structures of well-defined geometries, and assist the user in troubleshooting and benchmarking the system's performance. Additionally, we provide a walkthrough of the reconstruction of a super-resolved dataset from acquired raw images using the Super-resolution Microscopy Analysis Platform. Depending on the instrument configuration, the cost of the components is in the range US$95,000-180,000, similar to other open-source advanced SMLMs, and substantially lower than the cost of a commercial instrument. A builder with some experience of optical systems is expected to require 4-8 months from the start of the system construction to attain high-quality three-dimensional and multicolor biological images.
Collapse
Affiliation(s)
- Rory M Power
- EMBL Imaging Centre, EMBL Heidelberg, Heidelberg, Germany.
| | - Aline Tschanz
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Timo Zimmermann
- EMBL Imaging Centre, EMBL Heidelberg, Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Jonas Ries
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Heidelberg, Germany.
- Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria.
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Vienna, Austria.
- University of Vienna, Faculty of Physics, Vienna, Austria.
| |
Collapse
|
16
|
DʼEste E, Lukinavičius G, Lincoln R, Opazo F, Fornasiero EF. Advancing cell biology with nanoscale fluorescence imaging: essential practical considerations. Trends Cell Biol 2024; 34:671-684. [PMID: 38184400 DOI: 10.1016/j.tcb.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Recently, biologists have gained access to several far-field fluorescence nanoscopy (FN) technologies that allow the observation of cellular components with ~20 nm resolution. FN is revolutionizing cell biology by enabling the visualization of previously inaccessible subcellular details. While technological advances in microscopy are critical to the field, optimal sample preparation and labeling are equally important and often overlooked in FN experiments. In this review, we provide an overview of the methodological and experimental factors that must be considered when performing FN. We present key concepts related to the selection of affinity-based labels, dyes, multiplexing, live cell imaging approaches, and quantitative microscopy. Consideration of these factors greatly enhances the effectiveness of FN, making it an exquisite tool for numerous biological applications.
Collapse
Affiliation(s)
- Elisa DʼEste
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
| | - Gražvydas Lukinavičius
- Chromatin Labelling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
| | - Richard Lincoln
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen (UMG), Göttingen 37073, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center, Göttingen 37075, Germany; NanoTag Biotechnologies GmbH, Göttingen 37079, Germany.
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen (UMG), Göttingen 37073, Germany; Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| |
Collapse
|
17
|
Mello MG, Westerhausen MT, Lockwood TE, Singh P, Wanagat J, Bishop DP. Immunolabelling perturbs the endogenous and antibody-conjugated elemental concentrations during immuno-mass spectrometry imaging. Anal Bioanal Chem 2024; 416:2725-2735. [PMID: 37801117 PMCID: PMC10997740 DOI: 10.1007/s00216-023-04967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Immuno-mass spectrometry imaging uses lanthanide-conjugated antibodies to spatially quantify biomolecules via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The multi-element capabilities allow for highly multiplexed analyses that may include both conjugated antibodies and endogenous metals to reveal relationships between disease and chemical composition. Sample handling is known to perturb the composition of the endogenous elements, but there has been little investigation into the effects of immunolabelling and coverslipping. Here, we used cryofixed muscle sections to examine the impact of immunolabelling steps on the concentrations of a Gd-conjugated anti-dystrophin primary antibody, and the endogenous metals Cu and Zn. Primary antibody incubation resulted in a decrease in Zn, and an increase in Cu. Zn was removed from the cytoplasm where it was hypothesised to be more labile, whereas concentrated locations of Zn remained in the cell membrane in all samples that underwent the immunostaining process. Cu increased in concentration and was found mostly in the cell membrane. The concentration of the Gd-conjugated antibody when compared to the standard air-dried sample was not significantly different when coverslipped using an organic mounting medium, whereas use of an aqueous mounting medium significantly reduced the concentration of Gd. These results build on the knowledge of how certain sample handling techniques change elemental concentrations and distributions in tissue sections. Immunolabelling steps impact the concentration of endogenous elements, and separate histological sections are required for the quantitative analysis of endogenous elements and biomolecules. Additionally, coverslipping tissue sections for complementary immunohistochemical/immunofluorescent imaging may compromise the integrity of the elemental label, and organic mounting media are recommended over aqueous mounting media.
Collapse
Affiliation(s)
- Monique G Mello
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Mika T Westerhausen
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Thomas E Lockwood
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Prashina Singh
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
18
|
Struckman HL, Moise N, Vanslembrouck B, Rothacker N, Chen Z, van Hengel J, Weinberg SH, Veeraraghavan R. Indirect Correlative Light and Electron Microscopy (iCLEM): A Novel Pipeline for Multiscale Quantification of Structure From Molecules to Organs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:318-333. [PMID: 38525890 PMCID: PMC11057817 DOI: 10.1093/mam/ozae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/09/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
Correlative light and electron microscopy (CLEM) methods are powerful methods that combine molecular organization (from light microscopy) with ultrastructure (from electron microscopy). However, CLEM methods pose high cost/difficulty barriers to entry and have very low experimental throughput. Therefore, we have developed an indirect correlative light and electron microscopy (iCLEM) pipeline to sidestep the rate-limiting steps of CLEM (i.e., preparing and imaging the same samples on multiple microscopes) and correlate multiscale structural data gleaned from separate samples imaged using different modalities by exploiting biological structures identifiable by both light and electron microscopy as intrinsic fiducials. We demonstrate here an application of iCLEM, where we utilized gap junctions and mechanical junctions between muscle cells in the heart as intrinsic fiducials to correlate ultrastructural measurements from transmission electron microscopy (TEM), and focused ion beam scanning electron microscopy (FIB-SEM) with molecular organization from confocal microscopy and single molecule localization microscopy (SMLM). We further demonstrate how iCLEM can be integrated with computational modeling to discover structure-function relationships. Thus, we present iCLEM as a novel approach that complements existing CLEM methods and provides a generalizable framework that can be applied to any set of imaging modalities, provided suitable intrinsic fiducials can be identified.
Collapse
Affiliation(s)
- Heather L Struckman
- Department of Biomedical Engineering, College of Engineering, 2124 Fontana Labs, 140 W. 19th Ave, The Ohio State University, Columbus, OH 43210, USA
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| | - Nicolae Moise
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| | - Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, Entrance 36, 9000 Ghent, Belgium
| | - Nathan Rothacker
- Department of Biomedical Engineering, College of Engineering, 2124 Fontana Labs, 140 W. 19th Ave, The Ohio State University, Columbus, OH 43210, USA
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| | - Zhenhui Chen
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Room E400, 1801 N. Senate Blvd., Suite E400, Indianapolis, IN 46202, USA
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, Entrance 36, 9000 Ghent, Belgium
| | - Seth H Weinberg
- Department of Biomedical Engineering, College of Engineering, 2124 Fontana Labs, 140 W. 19th Ave, The Ohio State University, Columbus, OH 43210, USA
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, 2124 Fontana Labs, 140 W. 19th Ave, The Ohio State University, Columbus, OH 43210, USA
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Zhang H, Lesnov GD, Subach OM, Zhang W, Kuzmicheva TP, Vlaskina AV, Samygina VR, Chen L, Ye X, Nikolaeva AY, Gabdulkhakov A, Papadaki S, Qin W, Borshchevskiy V, Perfilov MM, Gavrikov AS, Drobizhev M, Mishin AS, Piatkevich KD, Subach FV. Bright and stable monomeric green fluorescent protein derived from StayGold. Nat Methods 2024; 21:657-665. [PMID: 38409224 PMCID: PMC11852770 DOI: 10.1038/s41592-024-02203-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
The high brightness and photostability of the green fluorescent protein StayGold make it a particularly attractive probe for long-term live-cell imaging; however, its dimeric nature precludes its application as a fluorescent tag for some proteins. Here, we report the development and crystal structures of a monomeric variant of StayGold, named mBaoJin, which preserves the beneficial properties of its precursor, while serving as a tag for structural proteins and membranes. Systematic benchmarking of mBaoJin against popular green fluorescent proteins and other recently introduced monomeric and pseudomonomeric derivatives of StayGold established mBaoJin as a bright and photostable fluorescent protein, exhibiting rapid maturation and high pH/chemical stability. mBaoJin was also demonstrated for super-resolution, long-term live-cell imaging and expansion microscopy. We further showed the applicability of mBaoJin for neuronal labeling in model organisms, including Caenorhabditis elegans and mice.
Collapse
Affiliation(s)
- Hanbin Zhang
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Gleb D Lesnov
- Complex of NBICS Technologies, National Research Center 'Kurchatov Institute', Moscow, Russia
| | - Oksana M Subach
- Complex of NBICS Technologies, National Research Center 'Kurchatov Institute', Moscow, Russia
| | - Wenhao Zhang
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tatyana P Kuzmicheva
- Complex of NBICS Technologies, National Research Center 'Kurchatov Institute', Moscow, Russia
| | - Anna V Vlaskina
- Complex of NBICS Technologies, National Research Center 'Kurchatov Institute', Moscow, Russia
| | - Valeriya R Samygina
- Complex of NBICS Technologies, National Research Center 'Kurchatov Institute', Moscow, Russia
- Institute of Crystallography of Federal Research Scientific Center 'Crystallography and Photonics' of the Russian Academy of Sciences, Moscow, Russia
| | - Liangyi Chen
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Xianxin Ye
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Alena Yu Nikolaeva
- Complex of NBICS Technologies, National Research Center 'Kurchatov Institute', Moscow, Russia
| | - Azat Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Stavrini Papadaki
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wenming Qin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute CAS, Shanghai, China
| | | | - Maxim M Perfilov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Gavrikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Drobizhev
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Alexander S Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Fedor V Subach
- Complex of NBICS Technologies, National Research Center 'Kurchatov Institute', Moscow, Russia.
| |
Collapse
|
20
|
Lee CH, Wallace DC, Burke PJ. Photobleaching and phototoxicity of mitochondria in live cell fluorescent super-resolution microscopy. MITOCHONDRIAL COMMUNICATIONS 2024; 2:38-47. [PMID: 39449993 PMCID: PMC11500826 DOI: 10.1016/j.mitoco.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Photobleaching and phototoxicity can induce detrimental effects on cell viability and compromise the integrity of collected data, particularly in studies utilizing super-resolution microscopes. Given the involvement of multiple factors, it is currently challenging to propose a single set of standards for assessing the potential of phototoxicity. The objective of this paper is to present empirical data on the effects of photobleaching and phototoxicity on mitochondria during super-resolution imaging of mitochondrial structure and function using Airyscan and the fluorescent structure dyes Mitotracker green (MTG), 10-N-nonyl acridine orange (NAO), and voltage dye Tetramethylrhodamine, Ethyl Ester (TMRE). We discern two related phenomena. First, phototoxicity causes a transformation of mitochondria from tubular to spherical shape, accompanied by a reduction in the number of cristae. Second, phototoxicity impacts the mitochondrial membrane potential. Through these parameters, we discovered that upon illumination, NAO is much more phototoxic to mitochondria compared to MTG or TMRE and that these parameters can be used to evaluate the relative phototoxicity of various mitochondrial dye-illumination combinations during mitochondrial imaging.
Collapse
Affiliation(s)
- Chia-Hung Lee
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, United States
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia and Department of Pediatrics, Division of Human Genetics, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Peter J. Burke
- Department of Electrical Engineering and Computer Science, United States
| |
Collapse
|
21
|
Gómez-de-Mariscal E, Del Rosario M, Pylvänäinen JW, Jacquemet G, Henriques R. Harnessing artificial intelligence to reduce phototoxicity in live imaging. J Cell Sci 2024; 137:jcs261545. [PMID: 38324353 PMCID: PMC10912813 DOI: 10.1242/jcs.261545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Fluorescence microscopy is essential for studying living cells, tissues and organisms. However, the fluorescent light that switches on fluorescent molecules also harms the samples, jeopardizing the validity of results - particularly in techniques such as super-resolution microscopy, which demands extended illumination. Artificial intelligence (AI)-enabled software capable of denoising, image restoration, temporal interpolation or cross-modal style transfer has great potential to rescue live imaging data and limit photodamage. Yet we believe the focus should be on maintaining light-induced damage at levels that preserve natural cell behaviour. In this Opinion piece, we argue that a shift in role for AIs is needed - AI should be used to extract rich insights from gentle imaging rather than recover compromised data from harsh illumination. Although AI can enhance imaging, our ultimate goal should be to uncover biological truths, not just retrieve data. It is essential to prioritize minimizing photodamage over merely pushing technical limits. Our approach is aimed towards gentle acquisition and observation of undisturbed living systems, aligning with the essence of live-cell fluorescence microscopy.
Collapse
Affiliation(s)
| | | | - Joanna W. Pylvänäinen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku 20500, Finland
| | - Guillaume Jacquemet
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku 20500, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Bioimaging, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku 20100, Finland
| | - Ricardo Henriques
- Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
22
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
23
|
McLaughlin MR, Weaver SA, Syed F, Evans-Molina C. Advanced Imaging Techniques for the Characterization of Subcellular Organelle Structure in Pancreatic Islet β Cells. Compr Physiol 2023; 14:5243-5267. [PMID: 38158370 PMCID: PMC11490899 DOI: 10.1002/cphy.c230002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Type 2 diabetes (T2D) affects more than 32.3 million individuals in the United States, creating an economic burden of nearly $966 billion in 2021. T2D results from a combination of insulin resistance and inadequate insulin secretion from the pancreatic β cell. However, genetic and physiologic data indicate that defects in β cell function are the chief determinant of whether an individual with insulin resistance will progress to a diagnosis of T2D. The subcellular organelles of the insulin secretory pathway, including the endoplasmic reticulum, Golgi apparatus, and secretory granules, play a critical role in maintaining the heavy biosynthetic burden of insulin production, processing, and secretion. In addition, the mitochondria enable the process of insulin release by integrating the metabolism of nutrients into energy output. Advanced imaging techniques are needed to determine how changes in the structure and composition of these organelles contribute to the loss of insulin secretory capacity in the β cell during T2D. Several microscopy techniques, including electron microscopy, fluorescence microscopy, and soft X-ray tomography, have been utilized to investigate the structure-function relationship within the β cell. In this overview article, we will detail the methodology, strengths, and weaknesses of each approach. © 2024 American Physiological Society. Compr Physiol 14:5243-5267, 2024.
Collapse
Affiliation(s)
- Madeline R. McLaughlin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Staci A. Weaver
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Farooq Syed
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
24
|
Laine RF, Heil HS, Coelho S, Nixon-Abell J, Jimenez A, Wiesner T, Martínez D, Galgani T, Régnier L, Stubb A, Follain G, Webster S, Goyette J, Dauphin A, Salles A, Culley S, Jacquemet G, Hajj B, Leterrier C, Henriques R. High-fidelity 3D live-cell nanoscopy through data-driven enhanced super-resolution radial fluctuation. Nat Methods 2023; 20:1949-1956. [PMID: 37957430 PMCID: PMC10703683 DOI: 10.1038/s41592-023-02057-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
Live-cell super-resolution microscopy enables the imaging of biological structure dynamics below the diffraction limit. Here we present enhanced super-resolution radial fluctuations (eSRRF), substantially improving image fidelity and resolution compared to the original SRRF method. eSRRF incorporates automated parameter optimization based on the data itself, giving insight into the trade-off between resolution and fidelity. We demonstrate eSRRF across a range of imaging modalities and biological systems. Notably, we extend eSRRF to three dimensions by combining it with multifocus microscopy. This realizes live-cell volumetric super-resolution imaging with an acquisition speed of ~1 volume per second. eSRRF provides an accessible super-resolution approach, maximizing information extraction across varied experimental conditions while minimizing artifacts. Its optimal parameter prediction strategy is generalizable, moving toward unbiased and optimized analyses in super-resolution microscopy.
Collapse
Affiliation(s)
- Romain F Laine
- Laboratory for Molecular Cell Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
- Micrographia Bio, Translation and Innovation Hub, London, UK
| | - Hannah S Heil
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Simao Coelho
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jonathon Nixon-Abell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Cambridge Institute for Medical Research, Cambridge Univeristy, Cambridge, UK
| | - Angélique Jimenez
- Aix-Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Theresa Wiesner
- Aix-Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Damián Martínez
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Tommaso Galgani
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Paris, France
- Revvity Signals, Tres Cantos, Madrid, Spain
| | - Louise Régnier
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Paris, France
| | - Aki Stubb
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Munster, Germany
| | - Gautier Follain
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Samantha Webster
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Aurelien Dauphin
- Unite Genetique et Biologie du Développement U934, PICT-IBiSA, Institut Curie, INSERM, CNRS, PSL Research University, Paris, France
| | - Audrey Salles
- Institut Pasteur, Université Paris Cité, Unit of Technology and Service Photonic BioImaging (UTechS PBI), C2RT, Paris, France
| | - Siân Culley
- Laboratory for Molecular Cell Biology, University College London, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Bassam Hajj
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Paris, France.
| | | | - Ricardo Henriques
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- The Francis Crick Institute, London, UK.
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
25
|
Louvel V, Haase R, Mercey O, Laporte MH, Eloy T, Baudrier É, Fortun D, Soldati-Favre D, Hamel V, Guichard P. iU-ExM: nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy. Nat Commun 2023; 14:7893. [PMID: 38036510 PMCID: PMC10689735 DOI: 10.1038/s41467-023-43582-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
Expansion microscopy (ExM) is a highly effective technique for super-resolution fluorescence microscopy that enables imaging of biological samples beyond the diffraction limit with conventional fluorescence microscopes. Despite the development of several enhanced protocols, ExM has not yet demonstrated the ability to achieve the precision of nanoscopy techniques such as Single Molecule Localization Microscopy (SMLM). Here, to address this limitation, we have developed an iterative ultrastructure expansion microscopy (iU-ExM) approach that achieves SMLM-level resolution. With iU-ExM, it is now possible to visualize the molecular architecture of gold-standard samples, such as the eight-fold symmetry of nuclear pores or the molecular organization of the conoid in Apicomplexa. With its wide-ranging applications, from isolated organelles to cells and tissue, iU-ExM opens new super-resolution avenues for scientists studying biological structures and functions.
Collapse
Affiliation(s)
- Vincent Louvel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Romuald Haase
- Department of Microbiology and Molecular medicine, University of Geneva, Geneva, Switzerland
| | - Olivier Mercey
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Marine H Laporte
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Thibaut Eloy
- ICube - UMR7357, CNRS, University of Strasbourg, Strasbourg, France
| | - Étienne Baudrier
- ICube - UMR7357, CNRS, University of Strasbourg, Strasbourg, France
| | - Denis Fortun
- ICube - UMR7357, CNRS, University of Strasbourg, Strasbourg, France
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular medicine, University of Geneva, Geneva, Switzerland
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
26
|
Alexandrov T, Saez‐Rodriguez J, Saka SK. Enablers and challenges of spatial omics, a melting pot of technologies. Mol Syst Biol 2023; 19:e10571. [PMID: 37842805 PMCID: PMC10632737 DOI: 10.15252/msb.202110571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 10/17/2023] Open
Abstract
Spatial omics has emerged as a rapidly growing and fruitful field with hundreds of publications presenting novel methods for obtaining spatially resolved information for any omics data type on spatial scales ranging from subcellular to organismal. From a technology development perspective, spatial omics is a highly interdisciplinary field that integrates imaging and omics, spatial and molecular analyses, sequencing and mass spectrometry, and image analysis and bioinformatics. The emergence of this field has not only opened a window into spatial biology, but also created multiple novel opportunities, questions, and challenges for method developers. Here, we provide the perspective of technology developers on what makes the spatial omics field unique. After providing a brief overview of the state of the art, we discuss technological enablers and challenges and present our vision about the future applications and impact of this melting pot.
Collapse
Affiliation(s)
- Theodore Alexandrov
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- BioInnovation InstituteCopenhagenDenmark
| | - Julio Saez‐Rodriguez
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Sinem K Saka
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
27
|
Geiser A, Foylan S, Tinning PW, Bryant NJ, Gould GW. GLUT4 dispersal at the plasma membrane of adipocytes: a super-resolved journey. Biosci Rep 2023; 43:BSR20230946. [PMID: 37791639 PMCID: PMC10600063 DOI: 10.1042/bsr20230946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023] Open
Abstract
In adipose tissue, insulin stimulates glucose uptake by mediating the translocation of GLUT4 from intracellular vesicles to the plasma membrane. In 2010, insulin was revealed to also have a fundamental impact on the spatial distribution of GLUT4 within the plasma membrane, with the existence of two GLUT4 populations at the plasma membrane being defined: (1) as stationary clusters and (2) as diffusible monomers. In this model, in the absence of insulin, plasma membrane-fused GLUT4 are found to behave as clusters. These clusters are thought to arise from exocytic events that retain GLUT4 at their fusion sites; this has been proposed to function as an intermediate hub between GLUT4 exocytosis and re-internalisation. By contrast, insulin stimulation induces the dispersal of GLUT4 clusters into monomers and favours a distinct type of GLUT4-vesicle fusion event, known as fusion-with-release exocytosis. Here, we review how super-resolution microscopy approaches have allowed investigation of the characteristics of plasma membrane-fused GLUT4 and further discuss regulatory step(s) involved in the GLUT4 dispersal machinery, introducing the scaffold protein EFR3 which facilitates localisation of phosphatidylinositol 4-kinase type IIIα (PI4KIIIα) to the cell surface. We consider how dispersal may be linked to the control of transporter activity, consider whether macro-organisation may be a widely used phenomenon to control proteins within the plasma membrane, and speculate on the origin of different forms of GLUT4-vesicle exocytosis.
Collapse
Affiliation(s)
- Angéline Geiser
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Shannan Foylan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Peter W Tinning
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Nia J Bryant
- Department of Biology, University of York, Heslington, York, U.K
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| |
Collapse
|
28
|
Balasubramanian H, Hobson CM, Chew TL, Aaron JS. Imagining the future of optical microscopy: everything, everywhere, all at once. Commun Biol 2023; 6:1096. [PMID: 37898673 PMCID: PMC10613274 DOI: 10.1038/s42003-023-05468-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
The optical microscope has revolutionized biology since at least the 17th Century. Since then, it has progressed from a largely observational tool to a powerful bioanalytical platform. However, realizing its full potential to study live specimens is hindered by a daunting array of technical challenges. Here, we delve into the current state of live imaging to explore the barriers that must be overcome and the possibilities that lie ahead. We venture to envision a future where we can visualize and study everything, everywhere, all at once - from the intricate inner workings of a single cell to the dynamic interplay across entire organisms, and a world where scientists could access the necessary microscopy technologies anywhere.
Collapse
Affiliation(s)
| | - Chad M Hobson
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA.
| |
Collapse
|
29
|
Jain P, Geisler C, Leitz D, Udachin V, Nagorny S, Weingartz T, Adams J, Schmidt A, Rembe C, Egner A. Super-resolution Reflection Microscopy via Absorbance Modulation. ACS NANOSCIENCE AU 2023; 3:375-380. [PMID: 37868228 PMCID: PMC10588435 DOI: 10.1021/acsnanoscienceau.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 10/24/2023]
Abstract
In recent years, fluorescence microscopy has been revolutionized. Reversible switching of fluorophores has enabled circumventing the limits imposed by diffraction. Thus, resolution down to the molecular scale became possible. However, to the best of our knowledge, the application of the principles underlying super-resolution fluorescence microscopy to reflection microscopy has not been experimentally demonstrated. Here, we present the first evidence that this is indeed possible. A layer of photochromic molecules referred to as the absorbance modulation layer (AML) is applied to a sample under investigation. The AML-coated sample is then sequentially illuminated with a one-dimensional (1D) focal intensity distribution (similar to the transverse laser mode TEM01) at wavelength λ1 = 325 nm to create a subwavelength aperture within the AML, followed by illumination with a Gaussian focal spot at λ2 = 633 nm for high-resolution imaging. Using this method, called absorbance modulation imaging (AMI) in reflection, we demonstrate a 2.4-fold resolution enhancement over the diffraction limit for a numerical aperture (NA) of 0.65 and wavelength (λ) of 633 nm.
Collapse
Affiliation(s)
- Parul Jain
- Department
of Optical Nanoscopy, Institute for Nanophotonics
Göttingen e.V., 37077 Göttingen, Germany
| | - Claudia Geisler
- Department
of Optical Nanoscopy, Institute for Nanophotonics
Göttingen e.V., 37077 Göttingen, Germany
| | - Dennis Leitz
- Institute
of Electrical Information Technology, Clausthal
University of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Viktor Udachin
- Clausthal
Center of Materials Technology, Clausthal
University of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Sven Nagorny
- Institute
of Organic Chemistry, Clausthal University
of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Thea Weingartz
- Institute
of Organic Chemistry, Clausthal University
of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Jörg Adams
- Institute
of Physical Chemistry, Clausthal University
of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Andreas Schmidt
- Institute
of Organic Chemistry, Clausthal University
of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Christian Rembe
- Institute
of Electrical Information Technology, Clausthal
University of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Alexander Egner
- Department
of Optical Nanoscopy, Institute for Nanophotonics
Göttingen e.V., 37077 Göttingen, Germany
| |
Collapse
|
30
|
Bingham D, Jakobs CE, Wernert F, Boroni-Rueda F, Jullien N, Schentarra EM, Friedl K, Da Costa Moura J, van Bommel DM, Caillol G, Ogawa Y, Papandréou MJ, Leterrier C. Presynapses contain distinct actin nanostructures. J Cell Biol 2023; 222:e202208110. [PMID: 37578754 PMCID: PMC10424573 DOI: 10.1083/jcb.202208110] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
The architecture of the actin cytoskeleton that concentrates at presynapses remains poorly known, hindering our understanding of its roles in synaptic physiology. In this work, we measure and visualize presynaptic actin by diffraction-limited and super-resolution microscopy, thanks to a validated model of bead-induced presynapses in cultured neurons. We identify a major population of actin-enriched presynapses that concentrates more presynaptic components and shows higher synaptic vesicle cycling than their non-enriched counterparts. Pharmacological perturbations point to an optimal actin amount and the presence of distinct actin structures within presynapses. We directly visualize these nanostructures using Single Molecule Localization Microscopy (SMLM), defining three distinct types: an actin mesh at the active zone, actin rails between the active zone and deeper reserve pools, and actin corrals around the whole presynaptic compartment. Finally, CRISPR-tagging of endogenous actin allows us to validate our results in natural synapses between cultured neurons, confirming the role of actin enrichment and the presence of three types of presynaptic actin nanostructures.
Collapse
Affiliation(s)
- Dominic Bingham
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | | | - Florian Wernert
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | - Fanny Boroni-Rueda
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | - Nicolas Jullien
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | | | - Karoline Friedl
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
- Abbelight, Cachan, France
| | | | | | - Ghislaine Caillol
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
31
|
Friedl K, Mau A, Boroni-Rueda F, Caorsi V, Bourg N, Lévêque-Fort S, Leterrier C. Assessing crosstalk in simultaneous multicolor single-molecule localization microscopy. CELL REPORTS METHODS 2023; 3:100571. [PMID: 37751691 PMCID: PMC10545913 DOI: 10.1016/j.crmeth.2023.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023]
Abstract
Single-molecule localization microscopy (SMLM) can reach sub-50 nm resolution using techniques such as stochastic optical reconstruction microscopy (STORM) or DNA-point accumulation for imaging in nanoscale topography (PAINT). Here we implement two approaches for faster multicolor SMLM by splitting the emitted fluorescence toward two cameras: simultaneous two-color DNA-PAINT (S2C-DNA-PAINT) that images spectrally separated red and far-red imager strands on each camera, and spectral demixing dSTORM (SD-dSTORM) where spectrally close far-red fluorophores appear on both cameras before being identified by demixing. Using S2C-DNA-PAINT as a reference for low crosstalk, we evaluate SD-dSTORM crosstalk using three types of samples: DNA origami nanorulers of different sizes, single-target labeled cells, or cells labeled for multiple targets. We then assess if crosstalk can affect the detection of biologically relevant subdiffraction patterns. Extending these approaches to three-dimensional acquisition and SD-dSTORM to three-color imaging, we show that spectral demixing is an attractive option for robust and versatile multicolor SMLM investigations.
Collapse
Affiliation(s)
- Karoline Friedl
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France; Abbelight, 191 Avenue Aristide Briand, 94230 Cachan, France
| | - Adrien Mau
- Abbelight, 191 Avenue Aristide Briand, 94230 Cachan, France; Université Paris Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Fanny Boroni-Rueda
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | | | - Nicolas Bourg
- Abbelight, 191 Avenue Aristide Briand, 94230 Cachan, France
| | - Sandrine Lévêque-Fort
- Université Paris Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Christophe Leterrier
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France.
| |
Collapse
|
32
|
Parisi M, Lucidi M, Visca P, Cincotti G. Super-Resolution Optical Imaging of Bacterial Cells. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2023; 29:1-13. [DOI: 10.1109/jstqe.2022.3228121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Miranda Parisi
- Engineering Department, University Roma Tre, Rome, Italy
| | | | - Paolo Visca
- Science Department, University Roma Tre, Rome, Italy
| | | |
Collapse
|
33
|
Bian J, Su X, Yuan X, Zhang Y, Lin J, Li X. Endoplasmic reticulum membrane contact sites: cross-talk between membrane-bound organelles in plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2956-2967. [PMID: 36847172 DOI: 10.1093/jxb/erad068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/20/2023] [Indexed: 05/21/2023]
Abstract
Eukaryotic cells contain organelles surrounded by monolayer or bilayer membranes. Organelles take part in highly dynamic and organized interactions at membrane contact sites, which play vital roles during development and response to stress. The endoplasmic reticulum extends throughout the cell and acts as an architectural scaffold to maintain the spatial distribution of other membrane-bound organelles. In this review, we highlight the structural organization, dynamics, and physiological functions of membrane contact sites between the endoplasmic reticulum and various membrane-bound organelles, especially recent advances in plants. We briefly introduce how the combined use of dynamic and static imaging techniques can enable monitoring of the cross-talk between organelles via membrane contact sites. Finally, we discuss future directions for research fields related to membrane contact.
Collapse
Affiliation(s)
- Jiahui Bian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Su
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyan Yuan
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Botany, Chinese Academy of Sciences, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
34
|
Arnould B, Quillin AL, Heemstra JM. Tracking the Message: Applying Single Molecule Localization Microscopy to Cellular RNA Imaging. Chembiochem 2023; 24:e202300049. [PMID: 36857087 PMCID: PMC10192057 DOI: 10.1002/cbic.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/02/2023]
Abstract
RNA function is increasingly appreciated to be more complex than merely communicating between DNA sequence and protein structure. RNA localization has emerged as a key contributor to the intricate roles RNA plays in the cell, and the link between dysregulated spatiotemporal localization and disease warrants an exploration beyond sequence and structure. However, the tools needed to visualize RNA with precise resolution are lacking in comparison to methods available for studying proteins. In the past decade, many techniques have been developed for imaging RNA, and in parallel super resolution and single-molecule techniques have enabled imaging of single molecules in cells. Of these methods, single molecule localization microscopy (SMLM) has shown significant promise for probing RNA localization. In this review, we highlight current approaches that allow super resolution imaging of specific RNA transcripts and summarize challenges and future opportunities for developing innovative RNA labeling methods that leverage the power of SMLM.
Collapse
Affiliation(s)
- Benoît Arnould
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexandria L Quillin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jennifer M Heemstra
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
35
|
Almahayni K, Nestola G, Spiekermann M, Möckl L. Simple, Economic, and Robust Rail-Based Setup for Super-Resolution Localization Microscopy. J Phys Chem A 2023; 127:4553-4560. [PMID: 37163339 DOI: 10.1021/acs.jpca.3c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Research during the past 2 decades has showcased the power of single-molecule localization microscopy (SMLM) as a tool for exploring the nanoworld. However, SMLM systems are typically available in specialized laboratories and imaging facilities, owing to their expensiveness as well as complex assembly and alignment procedure. Here, we lay out the blueprint of a sturdy, rail-based, cost-efficient, multicolor SMLM setup that is easy to construct and align in service of simplifying the accessibility of SMLM. We characterize the optical properties of the design and assess its capabilities, robustness, and stability. The performance of the system is assayed using super-resolution imaging of biological samples. We believe that this design will make SMLM more affordable and broaden its availability.
Collapse
Affiliation(s)
- Karim Almahayni
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
- Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Gianluca Nestola
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
| | - Malte Spiekermann
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
| |
Collapse
|
36
|
Appeltshauser L, Linke J, Heil HS, Karus C, Schenk J, Hemmen K, Sommer C, Doppler K, Heinze KG. Super-resolution imaging pinpoints the periodic ultrastructure at the human node of Ranvier and its disruption in patients with polyneuropathy. Neurobiol Dis 2023; 182:106139. [PMID: 37146836 DOI: 10.1016/j.nbd.2023.106139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
The node of Ranvier is the key element in saltatory conduction along myelinated axons, but its specific protein organization remains elusive in the human species. To shed light on nanoscale anatomy of the human node of Ranvier in health and disease, we assessed human nerve biopsies of patients with polyneuropathy by super-resolution fluorescence microscopy. We applied direct stochastic optical reconstruction microscopy (dSTORM) and supported our data by high-content confocal imaging combined with deep learning-based analysis. As a result, we revealed a ~ 190 nm periodic protein arrangement of cytoskeletal proteins and axoglial cell adhesion molecules in human peripheral nerves. In patients with polyneuropathy, periodic distances increased at the paranodal region of the node of Ranvier, both at the axonal cytoskeleton and at the axoglial junction. In-depth image analysis revealed a partial loss of proteins of the axoglial complex (Caspr-1, neurofascin-155) in combination with detachment from the cytoskeletal anchor protein ß2-spectrin. High content analysis showed that such paranodal disorganization occurred especially in acute and severe axonal neuropathy with ongoing Wallerian degeneration and related cytoskeletal damage. We provide nanoscale and protein-specific evidence for the prominent, but vulnerable role of the node of Ranvier for axonal integrity. Furthermore, we show that super-resolution imaging can identify, quantify and map elongated periodic protein distances and protein interaction in histopathological tissue samples. We thus introduce a promising tool for further translational applications of super resolution microscopy.
Collapse
Affiliation(s)
| | - Janis Linke
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany; Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Hannah S Heil
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany; Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Christine Karus
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Joachim Schenk
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katherina Hemmen
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.
| | - Katrin G Heinze
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
37
|
Wang Y, Wang P, Li C. Fluorescence microscopic platforms imaging mitochondrial abnormalities in neurodegenerative diseases. Adv Drug Deliv Rev 2023; 197:114841. [PMID: 37088402 DOI: 10.1016/j.addr.2023.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Neurodegenerative diseases (NDs) are progressive disorders that cause the degeneration of neurons. Mitochondrial dysfunction is a common symptom in NDs and plays a crucial role in neuronal loss. Mitochondrial abnormalities can be observed in the early stages of NDs and evolve throughout disease progression. Visualizing mitochondrial abnormalities can help understand ND progression and develop new therapeutic strategies. Fluorescence microscopy is a powerful tool for dynamically imaging mitochondria due to its high sensitivity and spatiotemporal resolution. This review discusses the relationship between mitochondrial dysfunction and ND progression, potential biomarkers for imaging dysfunctional mitochondria, advances in fluorescence microscopy for detecting organelles, the performance of fluorescence probes in visualizing ND-associated mitochondria, and the challenges and opportunities for developing new generations of fluorescence imaging platforms for monitoring mitochondria in NDs.
Collapse
Affiliation(s)
- Yicheng Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengwei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University Shanghai 201203, China.
| |
Collapse
|
38
|
Laporte MH, Bertiaux É, Hamel V, Guichard P. [Closer to the native architecture of the cell using Cryo-ExM]. Med Sci (Paris) 2023; 39:351-358. [PMID: 37094268 DOI: 10.1051/medsci/2023052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Most cellular imaging techniques, such as light or electron microscopy, require that the biological sample is first fixed by chemical cross-linking agents. This necessary step is also known to damage molecular nanostructures or even sub-cellular organization. To overcome this problem, another fixation approach was invented more than 40 years ago, which consists in cryo-fixing biological samples, thus allowing to preserve their native state. However, this method has been scarcely used in light microscopy due to the complexity of its implementation. In this review, we present a recently developed super-resolution method called expansion microscopy, which, when coupled with cryo-fixation, allows to visualize at a nanometric resolution the cell architecture as close as possible to its native state.
Collapse
Affiliation(s)
- Marine H Laporte
- Department of Molecular and Cellular Biology, Université de Genève, 30 quai Ernest Ansermet, 1211 Genève, Suisse
| | - Éloïse Bertiaux
- Department of Molecular and Cellular Biology, Université de Genève, 30 quai Ernest Ansermet, 1211 Genève, Suisse
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, Université de Genève, 30 quai Ernest Ansermet, 1211 Genève, Suisse
| | - Paul Guichard
- Department of Molecular and Cellular Biology, Université de Genève, 30 quai Ernest Ansermet, 1211 Genève, Suisse
| |
Collapse
|
39
|
Weidner J, Neitzel C, Gote M, Deck J, Küntzelmann K, Pilarczyk G, Falk M, Hausmann M. Advanced image-free analysis of the nano-organization of chromatin and other biomolecules by Single Molecule Localization Microscopy (SMLM). Comput Struct Biotechnol J 2023; 21:2018-2034. [PMID: 36968017 PMCID: PMC10030913 DOI: 10.1016/j.csbj.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
The cell as a system of many components, governed by the laws of physics and chemistry drives molecular functions having an impact on the spatial organization of these systems and vice versa. Since the relationship between structure and function is an almost universal rule not only in biology, appropriate methods are required to parameterize the relationship between the structure and function of biomolecules and their networks, the mechanisms of the processes in which they are involved, and the mechanisms of regulation of these processes. Single molecule localization microscopy (SMLM), which we focus on here, offers a significant advantage for the quantitative parametrization of molecular organization: it provides matrices of coordinates of fluorescently labeled biomolecules that can be directly subjected to advanced mathematical analytical procedures without the need for laborious and sometimes misleading image processing. Here, we propose mathematical tools for comprehensive quantitative computer data analysis of SMLM point patterns that include Ripley distance frequency analysis, persistent homology analysis, persistent 'imaging', principal component analysis and co-localization analysis. The application of these methods is explained using artificial datasets simulating different, potentially possible and interpretatively important situations. Illustrative analyses of real complex biological SMLM data are presented to emphasize the applicability of the proposed algorithms. This manuscript demonstrated the extraction of features and parameters quantifying the influence of chromatin (re)organization on genome function, offering a novel approach to study chromatin architecture at the nanoscale. However, the ability to adapt the proposed algorithms to analyze essentially any molecular organizations, e.g., membrane receptors or protein trafficking in the cytosol, offers broad flexibility of use.
Collapse
Affiliation(s)
- Jonas Weidner
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Charlotte Neitzel
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Martin Gote
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Jeanette Deck
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Kim Küntzelmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Götz Pilarczyk
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Martin Falk
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Siu DMD, Lee KCM, Chung BMF, Wong JSJ, Zheng G, Tsia KK. Optofluidic imaging meets deep learning: from merging to emerging. LAB ON A CHIP 2023; 23:1011-1033. [PMID: 36601812 DOI: 10.1039/d2lc00813k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Propelled by the striking advances in optical microscopy and deep learning (DL), the role of imaging in lab-on-a-chip has dramatically been transformed from a silo inspection tool to a quantitative "smart" engine. A suite of advanced optical microscopes now enables imaging over a range of spatial scales (from molecules to organisms) and temporal window (from microseconds to hours). On the other hand, the staggering diversity of DL algorithms has revolutionized image processing and analysis at the scale and complexity that were once inconceivable. Recognizing these exciting but overwhelming developments, we provide a timely review of their latest trends in the context of lab-on-a-chip imaging, or coined optofluidic imaging. More importantly, here we discuss the strengths and caveats of how to adopt, reinvent, and integrate these imaging techniques and DL algorithms in order to tailor different lab-on-a-chip applications. In particular, we highlight three areas where the latest advances in lab-on-a-chip imaging and DL can form unique synergisms: image formation, image analytics and intelligent image-guided autonomous lab-on-a-chip. Despite the on-going challenges, we anticipate that they will represent the next frontiers in lab-on-a-chip imaging that will spearhead new capabilities in advancing analytical chemistry research, accelerating biological discovery, and empowering new intelligent clinical applications.
Collapse
Affiliation(s)
- Dickson M D Siu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
| | - Kelvin C M Lee
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
| | - Bob M F Chung
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Justin S J Wong
- Conzeb Limited, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| |
Collapse
|
41
|
Arizono M, Idziak A, Quici F, Nägerl UV. Getting sharper: the brain under the spotlight of super-resolution microscopy. Trends Cell Biol 2023; 33:148-161. [PMID: 35906123 DOI: 10.1016/j.tcb.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023]
Abstract
Brain cells such as neurons and astrocytes exhibit an extremely elaborate morphology, and their functional specializations like synapses and glial processes often fall below the resolution limit of conventional light microscopy. This is a huge obstacle for neurobiologists because the nanoarchitecture critically shapes fundamental functions like synaptic transmission and Ca2+ signaling. Super-resolution microscopy can overcome this problem, offering the chance to visualize the structural and molecular organization of brain cells in a living and dynamic tissue context, unlike traditional methods like electron microscopy or atomic force microscopy. This review covers the basic principles of the main super-resolution microscopy techniques in use today and explains how their specific strengths can illuminate the nanoscale mechanisms that govern brain physiology.
Collapse
Affiliation(s)
- Misa Arizono
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Agata Idziak
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France
| | - Federica Quici
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France.
| |
Collapse
|
42
|
Andersen C, Zulueta Díaz YDLM, Kure JL, Hessellund Eriksen M, Lovatt AL, Lagerholm C, Morales S, Sehayek S, Sheard TMD, Wiseman PW, Arnspang EC. Angiotensin II Treatment Induces Reorganization and Changes in the Lateral Dynamics of Angiotensin II Type 1 Receptor in the Plasma Membrane Elucidated by Photoactivated Localization Microscopy Combined with Image Spatial Correlation Analysis. Anal Chem 2023; 95:730-738. [PMID: 36574961 DOI: 10.1021/acs.analchem.2c02720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mechanisms by which angiotensin II type 1 receptor is distributed and the diffusional pattern in the plasma membrane (PM) remain unclear, despite their crucial role in cardiovascular homeostasis. In this work, we obtained quantitative information of angiotensin II type 1 receptor (AT1R) lateral dynamics as well as changes in the diffusion properties after stimulation with ligands in living cells using photoactivated localization microscopy (PALM) combined with image spatial-temporal correlation analysis. To study the organization of the receptor at the nanoscale, expansion microscopy (ExM) combined with PALM was performed. This study revealed that AT1R lateral diffusion increased after binding to angiotensin II (Ang II) and the receptor diffusion was transiently confined in the PM. In addition, ExM revealed that AT1R formed nanoclusters at the PM and the cluster size significantly decreased after Ang II treatment. Taking these results together suggest that Ang II binding and activation cause reorganization and changes in the dynamics of AT1R at the PM.
Collapse
Affiliation(s)
- Camilla Andersen
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M5230, Denmark
| | | | - Jakob L Kure
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M5230, Denmark
| | - Mathias Hessellund Eriksen
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M5230, Denmark
| | - Adam Leslie Lovatt
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M5230, Denmark
| | | | - Sebastian Morales
- Department of Physics and Department of Chemistry, McGill University, MontrealH3A 0B8, Canada
| | - Simon Sehayek
- Department of Physics and Department of Chemistry, McGill University, MontrealH3A 0B8, Canada
| | - Thomas M D Sheard
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, U.K
| | - Paul W Wiseman
- Department of Physics and Department of Chemistry, McGill University, MontrealH3A 0B8, Canada
| | - Eva C Arnspang
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M5230, Denmark
| |
Collapse
|
43
|
Mironov AA, Beznoussenko GV. Algorithm for Modern Electron Microscopic Examination of the Golgi Complex. Methods Mol Biol 2022; 2557:161-209. [PMID: 36512216 DOI: 10.1007/978-1-0716-2639-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Golgi complex (GC) is an essential organelle of the eukaryotic exocytic pathway. It has a very complexed structure and thus localization of its resident proteins is not trivial. Fast development of microscopic methods generates a huge difficulty for Golgi researchers to select the best protocol to use. Modern methods of light microscopy, such as super-resolution light microscopy (SRLM) and electron microscopy (EM), open new possibilities in analysis of various biological structures at organelle, cell, and organ levels. Nowadays, new generation of EM methods became available for the study of the GC; these include three-dimensional EM (3DEM), correlative light-EM (CLEM), immune EM, and new estimators within stereology that allow realization of maximal goal of any morphological study, namely, to achieve a three-dimensional model of the sample with optimal level of resolution and quantitative determination of its chemical composition. Methods of 3DEM have partially overlapping capabilities. This requires a careful comparison of these methods, identification of their strengths and weaknesses, and formulation of recommendations for their application to cell or tissue samples. Here, we present an overview of 3DEM methods for the study of the GC and some basics for how the images are formed and how the image quality can be improved.
Collapse
|
44
|
Zhao B, Luo Z, Zhang H, Zhang H. Imaging tools for plant nanobiotechnology. Front Genome Ed 2022; 4:1029944. [PMID: 36569338 PMCID: PMC9772283 DOI: 10.3389/fgeed.2022.1029944] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The successful application of nanobiotechnology in biomedicine has greatly changed the traditional way of diagnosis and treating of disease, and is promising for revolutionizing the traditional plant nanobiotechnology. Over the past few years, nanobiotechnology has increasingly expanded into plant research area. Nanomaterials can be designed as vectors for targeted delivery and controlled release of fertilizers, pesticides, herbicides, nucleotides, proteins, etc. Interestingly, nanomaterials with unique physical and chemical properties can directly affect plant growth and development; improve plant resistance to disease and stress; design as sensors in plant biology; and even be used for plant genetic engineering. Similarly, there have been concerns about the potential biological toxicity of nanomaterials. Selecting appropriate characterization methods will help understand how nanomaterials interact with plants and promote advances in plant nanobiotechnology. However, there are relatively few reviews of tools for characterizing nanomaterials in plant nanobiotechnology. In this review, we present relevant imaging tools that have been used in plant nanobiotechnology to monitor nanomaterial migration, interaction with and internalization into plants at three-dimensional lengths. Including: 1) Migration of nanomaterial into plant organs 2) Penetration of nanomaterial into plant tissues (iii)Internalization of nanomaterials by plant cells and interactions with plant subcellular structures. We compare the advantages and disadvantages of current characterization tools and propose future optimal characterization methods for plant nanobiotechnology.
Collapse
Affiliation(s)
- Bin Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Zhongxu Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Honglu Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Torres-García E, Pinto-Cámara R, Linares A, Martínez D, Abonza V, Brito-Alarcón E, Calcines-Cruz C, Valdés-Galindo G, Torres D, Jabloñski M, Torres-Martínez HH, Martínez JL, Hernández HO, Ocelotl-Oviedo JP, Garcés Y, Barchi M, D’Antuono R, Bošković A, Dubrovsky JG, Darszon A, Buffone MG, Morales RR, Rendon-Mancha JM, Wood CD, Hernández-García A, Krapf D, Crevenna ÁH, Guerrero A. Extending resolution within a single imaging frame. Nat Commun 2022; 13:7452. [PMID: 36460648 PMCID: PMC9718789 DOI: 10.1038/s41467-022-34693-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
The resolution of fluorescence microscopy images is limited by the physical properties of light. In the last decade, numerous super-resolution microscopy (SRM) approaches have been proposed to deal with such hindrance. Here we present Mean-Shift Super Resolution (MSSR), a new SRM algorithm based on the Mean Shift theory, which extends spatial resolution of single fluorescence images beyond the diffraction limit of light. MSSR works on low and high fluorophore densities, is not limited by the architecture of the optical setup and is applicable to single images as well as temporal series. The theoretical limit of spatial resolution, based on optimized real-world imaging conditions and analysis of temporal image stacks, has been measured to be 40 nm. Furthermore, MSSR has denoising capabilities that outperform other SRM approaches. Along with its wide accessibility, MSSR is a powerful, flexible, and generic tool for multidimensional and live cell imaging applications.
Collapse
Affiliation(s)
- Esley Torres-García
- grid.412873.b0000 0004 0484 1712Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Raúl Pinto-Cámara
- grid.412873.b0000 0004 0484 1712Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Alejandro Linares
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico ,grid.144532.5000000012169920XAnalytical and Quantitative Light Microscopy, Marine Biological Laboratory, Woods Hole, MA USA
| | - Damián Martínez
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Víctor Abonza
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Eduardo Brito-Alarcón
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Carlos Calcines-Cruz
- grid.9486.30000 0001 2159 0001Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gustavo Valdés-Galindo
- grid.9486.30000 0001 2159 0001Departamento de Química de Biomacromoléculas, Instituto de Química. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - David Torres
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Martina Jabloñski
- grid.464644.00000 0004 0637 7271Instituto de Biología y Medicina Experimental (IBYME‐CONICET), Buenos Aires, Argentina
| | - Héctor H. Torres-Martínez
- grid.9486.30000 0001 2159 0001Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - José L. Martínez
- grid.9486.30000 0001 2159 0001Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Haydee O. Hernández
- grid.9486.30000 0001 2159 0001Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José P. Ocelotl-Oviedo
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Yasel Garcés
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Marco Barchi
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Ana Bošković
- grid.418924.20000 0004 0627 3632Neurobiology and Epigenetics Unit, European Molecular Biology Laboratory, Monterotondo, Rome Italy
| | - Joseph G. Dubrovsky
- grid.9486.30000 0001 2159 0001Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Alberto Darszon
- grid.9486.30000 0001 2159 0001Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Mariano G. Buffone
- grid.464644.00000 0004 0637 7271Instituto de Biología y Medicina Experimental (IBYME‐CONICET), Buenos Aires, Argentina
| | - Roberto Rodríguez Morales
- grid.472559.80000 0004 0498 8706Instituto de Cibernética, Matemática y Física, Ciudad de la Habana, Cuba
| | - Juan Manuel Rendon-Mancha
- grid.412873.b0000 0004 0484 1712Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico
| | - Christopher D. Wood
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Armando Hernández-García
- grid.9486.30000 0001 2159 0001Departamento de Química de Biomacromoléculas, Instituto de Química. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Diego Krapf
- grid.47894.360000 0004 1936 8083Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
| | - Álvaro H. Crevenna
- grid.418924.20000 0004 0627 3632Neurobiology and Epigenetics Unit, European Molecular Biology Laboratory, Monterotondo, Rome Italy
| | - Adán Guerrero
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| |
Collapse
|
46
|
Practical considerations for quantitative light sheet fluorescence microscopy. Nat Methods 2022; 19:1538-1549. [PMID: 36266466 DOI: 10.1038/s41592-022-01632-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022]
Abstract
Fluorescence microscopy has evolved from a purely observational tool to a platform for quantitative, hypothesis-driven research. As such, the demand for faster and less phototoxic imaging modalities has spurred a rapid growth in light sheet fluorescence microscopy (LSFM). By restricting the excitation to a thin plane, LSFM reduces the overall light dose to a specimen while simultaneously improving image contrast. However, the defining characteristics of light sheet microscopes subsequently warrant unique considerations in their use for quantitative experiments. In this Perspective, we outline many of the pitfalls in LSFM that can compromise analysis and confound interpretation. Moreover, we offer guidance in addressing these caveats when possible. In doing so, we hope to provide a useful resource for life scientists seeking to adopt LSFM to quantitatively address complex biological hypotheses.
Collapse
|
47
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
48
|
Alva A, Brito‐Alarcón E, Linares A, Torres‐García E, Hernández HO, Pinto‐Cámara R, Martínez D, Hernández‐Herrera P, D'Antuono R, Wood C, Guerrero A. Fluorescence fluctuation-based super-resolution microscopy: Basic concepts for an easy start. J Microsc 2022; 288:218-241. [PMID: 35896096 PMCID: PMC10087389 DOI: 10.1111/jmi.13135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
Due to the wave nature of light, optical microscopy has a lower-bound lateral resolution limit of approximately half of the wavelength of visible light, that is, within the range of 200 to 350 nm. Fluorescence fluctuation-based super-resolution microscopy (FF-SRM) is a term used to encompass a collection of image analysis techniques that rely on the statistical processing of temporal variations of the fluorescence signal. FF-SRM aims to reduce the uncertainty of the location of fluorophores within an image, often improving spatial resolution by several tens of nanometers. FF-SRM is suitable for live-cell imaging due to its compatibility with most fluorescent probes and relatively simple instrumental and experimental requirements, which are mostly camera-based epifluorescence instruments. Each FF-SRM approach has strengths and weaknesses, which depend directly on the underlying statistical principles through which enhanced spatial resolution is achieved. In this review, the basic concepts and principles behind a range of FF-SRM methods published to date are described. Their operational parameters are explained and guidance for their selection is provided.
Collapse
Affiliation(s)
- Alma Alva
- Laboratorio Nacional de Microscopía Avanzada, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
| | - Eduardo Brito‐Alarcón
- Laboratorio Nacional de Microscopía Avanzada, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
| | - Alejandro Linares
- Laboratorio Nacional de Microscopía Avanzada, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
| | - Esley Torres‐García
- Laboratorio Nacional de Microscopía Avanzada, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
- Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
| | - Haydee O. Hernández
- Posgrado en Ciencia e Ingeniería de la ComputaciónUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Raúl Pinto‐Cámara
- Laboratorio Nacional de Microscopía Avanzada, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
- Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
| | - Damián Martínez
- Laboratorio Nacional de Microscopía Avanzada, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
| | - Paul Hernández‐Herrera
- Laboratorio Nacional de Microscopía Avanzada, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
| | - Rocco D'Antuono
- Crick Advanced Light Microscopy Science and Technology PlatformThe Francis Crick InstituteLondonUK
| | - Christopher Wood
- Laboratorio Nacional de Microscopía Avanzada, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
| |
Collapse
|
49
|
Barnett SFH, Goult BT. The MeshCODE to scale-visualising synaptic binary information. Front Cell Neurosci 2022; 16:1014629. [PMID: 36467609 PMCID: PMC9716431 DOI: 10.3389/fncel.2022.1014629] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 08/31/2023] Open
Abstract
The Mercator projection map of the world provides a useful, but distorted, view of the relative scale of countries. Current cellular models suffer from a similar distortion. Here, we undertook an in-depth structural analysis of the molecular dimensions in the cell's computational machinery, the MeshCODE, that is assembled from a meshwork of binary switches in the scaffolding proteins talin and vinculin. Talin contains a series of force-dependent binary switches and each domain switching state introduces quantised step-changes in talin length on a micrometre scale. The average dendritic spine is 1 μm in diameter so this analysis identifies a plausible Gearbox-like mechanism for dynamic regulation of synaptic function, whereby the positioning of enzymes and substrates relative to each other, mechanically-encoded by the MeshCODE switch patterns, might control synaptic transmission. Based on biophysical rules and experimentally derived distances, this analysis yields a novel perspective on biological digital information.
Collapse
Affiliation(s)
- Samuel F. H. Barnett
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
50
|
Abstract
When the microscope was first introduced to scientists in the 17th century, it started a revolution. Suddenly, a whole new world, invisible to the naked eye, was opened to curious explorers. In response to this realization, Nehemiah Grew, an English plant anatomist and physiologist and one of the early microscopists, noted in 1682 "that Nothing hereof remains further to be known, is a Thought not well Calculated". Since Grew made his observations, the microscope has undergone numerous variations, developing from early compound microscopes-hollow metal tubes with a lens on each end-to the modern, sophisticated, out-of-the-box super-resolution microscopes available to researchers today. In this Overview article, I describe these developments and discuss how each new and improved variant of the microscope led to major breakthroughs in the life sciences, with a focus on the plant field. These advances start with Grew's simple and-at the time-surprising realization that plant cells are as complex as animals cells, and that the different parts of the plant body indeed qualify to be called "organs", then move on to the development of the groundbreaking "cell theory" in the mid-19th century and the description of eu- and heterochromatin in the early 20th century, and finish with the precise localization of individual proteins in intact, living cells that we can perform today. Indeed, Grew was right; with ever-increasing resolution, there really does not seem to be an end to what can be explored with a microscope. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Marc Somssich
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|