1
|
Touré H, Durand N, Orgeur M, Galindo LA, Girard-Misguich F, Guénal I, Herrmann JL, Szuplewski S. ENaC is a host susceptibility factor to bacterial infections in cystic fibrosis context. Commun Biol 2025; 8:653. [PMID: 40269088 PMCID: PMC12019357 DOI: 10.1038/s42003-025-07877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/03/2025] [Indexed: 04/25/2025] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by dysfunction in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel. Patients with CF are hypersusceptible to Mycobacterium abscessus infection, a fast-growing mycobacterium and harmful opportunistic pathogen. Although CFTR dysfunction is known as a host susceptibility factor for M. abscessus infection, the functional impact of the trimeric Epithelial sodium Channel (ENaC), whose activity is negatively regulated by CFTR, towards M. abscessus infection has not been explored yet. To address this issue, we took advantage of miR-263a deficient Drosophila presenting a CF-like phenotype due to ENaC hyperactivity (ENaC+ ). We observed that the ENaC+ flies were as hypersusceptible to M. abscessus infection as the Cftr-deficient flies. The hypersensitivity of ENaC+ flies to M. abscessus infection was fully rescued by blocking ENaC hyperactivity, both chemically and genetically. Furthermore, we observed that ENaC hyperactivity per se was detrimental to ENaC+ Drosophila, as they were unable to mount an efficient humoral immune response. Upon infection, ENaC+ flies failed to upregulate 20-hydroxyecdysone production, which subsequently altered the production of protective antimicrobial peptides against M. abscessus. Overall, our results show that ENaC plays a key role in host susceptibility to M. abscessus infection and, correlatively to other CF pathogens.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, U1173 Infection et Inflammation, Montigny-le-Bretonneux, France
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nicolas Durand
- Université Paris-Saclay, UVSQ, INSERM, U1173 Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Mickael Orgeur
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Lee Ann Galindo
- Université Paris-Saclay, UVSQ, INSERM, U1173 Infection et Inflammation, Montigny-le-Bretonneux, France
- The American University of Paris, Paris, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, U1173 Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- Université Paris-Saclay, UVSQ, EA 4589 Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, U1173 Infection et Inflammation, Montigny-le-Bretonneux, France.
- Assistance Publique - Hôpitaux de Paris, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France.
| | - Sébastien Szuplewski
- Université Paris-Saclay, UVSQ, EA 4589 Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.
| |
Collapse
|
2
|
Ji Y, Gao B, Zhao D, Zhang L, Wu H, Xie Y, Shi Q, Wang Y, Guo W. The role of 20-hydroxyecdysone and juvenile hormone in insecticidal activity of Bacillus thuringiensis regulated by DUOX-ROS immunity in Spodoptera exigua. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106222. [PMID: 40015833 DOI: 10.1016/j.pestbp.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 03/01/2025]
Abstract
Insect midgut bacteria can be transferred to the blood cavity due to Bt infection and proliferate, becoming pathogens and enhancing Bt insecticidal activity. Dual oxidase (DUOX)-reactive oxygen species (ROS) signaling pathway plays a key role in regulating microbial homeostasis and resisting pathogen infection. However, the functions of MEKK and MKK associated with DUOX-ROS immunity are rarely studied in insects, moreover, the regulatory mechanisms underlying DUOX-ROS immunity via 20-Hydroxyecdysone (20E) and juvenile hormone (JH) are underexplored. In this study, we investigated that Spodoptera exigua MAPK kinase kinase 4 (SeMEKK4) and MAPK kinase 6 (SeMKK6) were required for Sep38β expression, and RNAi-mediated knockdown of SeMEKK4 and SeMKK6 significantly decreased ROS level and increased bacterial load in the midgut of S. exigua larvae, thereby enhancing Bt insecticidal activity. Furthermore, 20E and JH titers were elevated in insects infected with Bt. 20E upregulated the expression of SeMEKK4, SeMKK6, and Sep38β through SeEcR and SeUSP receptors, and activated the expression of SeDUOX to increase ROS level and decrease bacterial load in the midgut, which was not conducive to the enhancement of Bt insecticide activity. JH showed an opposite effect on midgut-related DUOX-ROS immunity via SeMet1 and SeMet2, and it was noteworthy that JH played a dominant role in negatively regulating DUOX-ROS immunity post Bt infection, which enhanced Bt insecticidal activity. This is an adjustment strategy for insects to cope with Bt infection, providing a new perspective for pest management.
Collapse
Affiliation(s)
- Yujie Ji
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Gao
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Lu Zhang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Wu
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifan Xie
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiuyu Shi
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Zhang Y, Ding KT, Yang NW, Lv ZC, Wang ZY, Zhang YJ, Liu WX, Guo JY. Juvenile Hormone and Ecdysteroids Facilitate the Adult Reproduction Through the Methoprene-Tolerant Gene and Ecdysone Receptor Gene in the Female Spodoptera frugiperda. Int J Mol Sci 2025; 26:1914. [PMID: 40076541 PMCID: PMC11900537 DOI: 10.3390/ijms26051914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Insects, as the most diverse and numerous group in the animal kingdom, are at least partly dependent on the reproduction process, which is strictly regulated by the 'classic' insect hormones: juvenile hormone (JH), and 20-hydroxyecdysone (20E). However, the regulatory mechanism governing the reproduction of JH and 20E in Spodoptera frugiperda remains unclear. In this study, ovarian development and ovulation in female S. frugiperda were assessed through dissection of the ovaries following treatment with JH analog (JHA) and 20E. Moreover, the expression patterns of the JH-signal and 20E-signal-related genes were determined by quantitative PCR (qPCR), and RNA interference (RNAi) was used to investigate the role of JH and 20E-induced genes. Ovarian development was observed by microdissection, and JH and 20E titers were determined by ELISA. Kr-h1, Vg, and USP expression were determined by qPCR. Dissection and qPCR results showed that JHA and 20E promoted ovarian development, egg maturation, and egg laying by upregulating Methoprene-Tolerant (Met) and Ecdysone Receptor (EcR)expression. Additionally, the RNAi results showed that the injection of dsMet and dsEcR markedly delayed ovarian development, inhibited egg maturation, and halted egg production. Knockdown of Met and EcR significantly reduced JH and 20E content and inhibited the transcription of Kr-h1 and USP. These results indicate that JH and 20E facilitate adult reproduction through the methoprene-tolerant gene and ecdysone receptor gene in female S. frugiperda.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (K.-T.D.); (N.-W.Y.); (Z.-C.L.); (Z.-Y.W.); (Y.-J.Z.)
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui-Ting Ding
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (K.-T.D.); (N.-W.Y.); (Z.-C.L.); (Z.-Y.W.); (Y.-J.Z.)
| | - Nian-Wan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (K.-T.D.); (N.-W.Y.); (Z.-C.L.); (Z.-Y.W.); (Y.-J.Z.)
| | - Zhi-Chuang Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (K.-T.D.); (N.-W.Y.); (Z.-C.L.); (Z.-Y.W.); (Y.-J.Z.)
| | - Zhen-Ying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (K.-T.D.); (N.-W.Y.); (Z.-C.L.); (Z.-Y.W.); (Y.-J.Z.)
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (K.-T.D.); (N.-W.Y.); (Z.-C.L.); (Z.-Y.W.); (Y.-J.Z.)
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (K.-T.D.); (N.-W.Y.); (Z.-C.L.); (Z.-Y.W.); (Y.-J.Z.)
| | - Jian-Yang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (K.-T.D.); (N.-W.Y.); (Z.-C.L.); (Z.-Y.W.); (Y.-J.Z.)
| |
Collapse
|
4
|
Vieira CS, Bisogno S, Salvemini M, Loza Telleria E, Volf P. Azadirachtin disrupts ecdysone signaling and alters sand fly immunity. Parasit Vectors 2024; 17:526. [PMID: 39707409 DOI: 10.1186/s13071-024-06589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/17/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Leishmaniasis is a group of neglected vector-borne diseases transmitted by phlebotomine sand flies. Leishmania parasites must overcome various defenses in the sand fly midgut, including the insects's immune response. Insect immunity is regulated by the ecdysone hormone, which binds to its nuclear receptor (EcR) and activates the transcription of genes involved in insect immunity. However, the role of ecdysone in sand fly immunity has never been studied. Phlebotomus perniciosus is a natural vector of Leishmania infantum; here, we manipulated its neuroendocrine system using azadirachtin (Aza), a natural compound known to affect ecdysone synthesis. METHODS Phlebotomus perniciosus larvae and adult females were fed on food containing either Aza alone or Aza plus ecdysone, and the effects on mortality and ecdysis were evaluated. Genes related to ecdysone signaling and immunity were identified in P. perniciosus, and the expression of antimicrobial peptides (AMPs), EcR, the ecdysone-induced genes Eip74EF and Eip75B, and the transcription factor serpent were analyzed using quantitative polymerase chain reaction (PCR). RESULTS Aza treatment inhibited molting of first-instar (L1) larvae to L2, with only 10% of larvae molting compared to 95% in the control group. Serpent and Eip74EF, attacin, defensin 1, and defensin 2 genes were downregulated by Aza treatment in larvae. Similarly, Aza-treated adult females also presented suppression of ecdysone signaling-related genes and the AMPs attacin and defensin 2. Notably, all gene repression caused by Aza was reversed by adding ecdysone concomitantly with Aza to the larval or female food, indicating that these genes are effective markers for ecdysone repression. CONCLUSIONS These results highlight the critical role of ecdysone in regulating the development and immunity of P. perniciosus, which potentially could interfere with Leishmania infection.
Collapse
Affiliation(s)
- Cecilia Stahl Vieira
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Sara Bisogno
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Ghassah M, Polunina YA, Chmykhalo VK, Lebedeva LA, Shidlovskii YV, Kachaev ZM. Ecdysone promotes gene- and pathogen-specific immune responses to Micrococcus luteus and Bacillus subtilis in Drosophila S2 cells. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104710. [PMID: 39288896 DOI: 10.1016/j.jinsphys.2024.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
In Drosophila, the 20-hydroxyecdysone (20E) hormone regulates numerous essential biological processes. Here, we studied the contribution of 20E to the activity of immune signaling pathways and antimicrobial activity using the model Drosophila S2 cells. We found that while 20E alone has no essential effect on this system, pretreating S2 cells with 20E followed by incubation with Escherichia coli or Micrococcus luteus stimulates the induction of a limited number of antimicrobial peptide (AMP) genes, such as Diptericin (Dpt) and Drosomycin (Drs). Contrary to this, cells pretreatment with 20E simulates the activity of numerous Bacillus subtilis-induced AMP genes. Interestingly, it also significantly promotes the expression of components of both the Toll (Dif, Dorsal, etc.) and the IMD pathways (Relish, IMD, etc.) in the presence of Bacillus subtilis. Unexpectedly, simultaneous treatment of S2 cells by 20E and all three bacteria shows another pattern of activity and leads to a suppression of Drosocin (Dro) induction, in particular. Our study reveals that the contribution of 20E to immune genes activity varies for different genes and depends on the mode of 20E interplay with the pathogen and the nature of the pathogen itself.
Collapse
Affiliation(s)
- Mona Ghassah
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation; School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russian Federation.
| | - Yulia A Polunina
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Victor K Chmykhalo
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Lyubov A Lebedeva
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russian Federation
| | - Zaur M Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation.
| |
Collapse
|
6
|
Xi Y, Li J, Wu Z, Ma Y, Li J, Yang Z, Wang F, Yang D, Jiang Y, Yi Q, Huang S. Yorkie negatively regulates the Crustin expression during molting in Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105242. [PMID: 39128619 DOI: 10.1016/j.dci.2024.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Molting is a key biological process of crustaceans, which is mainly regulated by 20-hydroxyecdyone (20E). The molting cycle could be divided into three main stages including pre-molt, post-molt and inter-molt stages. The mechanism of immune regulation during molting process still requires further exploration. Yorkie (Yki) is a pivotal transcription factor in the Hippo signaling pathway, and it plays an essential role in regulating cell growth and immune response. In the present study, a Yki gene was identified from Eriocheir sinensis (designed as EsYki), and the regulatory role of EsYki in controlling the expression of antimicrobial peptide genes throughout the molting process was investigated. The mRNA expression level of EsYki was higher at the pre-molt stage compared to the post-molt stage and inter-molt stage. Following the injection of 20E, there was a notable and consistent rise in the EsYki mRNA expression in haemocytes. The increase was observed from 3 h to 48 h with the maximum level at 12 h. And the phosphorylation of Yki in the haemocytes was also significantly up-regulated at 3 h post 20E injection. Moreover, the levels of EsYki mRNA expression at three molting stages were significantly increased post Aeromonas hydrophila stimulation. The maximum level was detected at post-molt stage following A. hydrophila stimulation, while the lowest level was observed at inter-molt stage. The expression pattern of EsCrus was in contrast to EsCrus. After EsYki mRNA transcripts were inhibited by Yki inhibitor (CA3), the mRNA expression levels of EsCrus1 and EsCrus2 following A. hydrophila stimulation were significantly elevated. Furthermore, the phosphorylation level of NF-κB was also increased following the inhibition of Yki. Collectively, our findings indicated that EsYki could be induced by 20E and has a suppressive effect on the expression of EsCrus via inhibiting NF-κB during molting process. This research contributes to the understanding of the immunological regulation mechanism during molting process in crustaceans.
Collapse
Affiliation(s)
- Yuting Xi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jialin Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zihao Wu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Dazuo Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian, 116023, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian, 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China.
| |
Collapse
|
7
|
Li P, Zhang H, Tan A, Hu Z, Peng L, Hou Y. Spätzle Regulates Developmental and Immune Trade-Offs Induced by Bacillus thuringiensis Priming in Rhynchophorus ferrugineus. INSECTS 2024; 15:925. [PMID: 39769527 PMCID: PMC11677516 DOI: 10.3390/insects15120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
The red palm weevil (RPW) is an invasive pest that causes devastating damage to a variety of palm plants, which exhibit specific immune priming to Bacillus thuringiensis (Bt). However, immune priming in RPW may incur a high fitness cost, and its molecular signaling pathways have not yet been reported. Here, we investigated the effect of Bt priming on RPW development and subsequently analyzed the hormonal and immune-related molecular pathways influencing the fitness cost induced by Bt priming. Bt priming delayed the body weight gain of fifth-instar larvae and prolonged their developmental duration. Bt priming significantly reduced the 20-hydroxyecdysone (20E) content in RPW hemolymph, and the expression levels of the 20E biosynthesis-related genes SHADOW and SHADE were significantly downregulated. Furthermore, we analyzed Toll pathway genes influencing Bt priming and found that only Spätzle (SPZ) transcription was significantly activated under Bt priming. After silencing SPZ expression, the negative effects of Bt priming on development, SHADOW expression, and 20E synthesis were eliminated, thereby suggesting that SPZ is a key molecular signal mediating developmental and immune trade-offs induced by Bt priming. Our results elucidate the molecular cascade pathway of immune priming and provide new targets for improving the efficiency of RPW biological controls.
Collapse
Affiliation(s)
- Pengju Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - He Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anran Tan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuolin Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Lisi F, Amichot M, Desneux N, Gatti JL, Guedes RNC, Nazzi F, Pennacchio F, Russo A, Sánchez-Bayo F, Wang X, Zappalà L, Biondi A. Pesticide immunotoxicity on insects - Are agroecosystems at risk? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175467. [PMID: 39155008 DOI: 10.1016/j.scitotenv.2024.175467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
Recent years have witnessed heightened scrutiny of the non-target sublethal effects of pesticides on behavioural and physiological traits of insects. Traditionally, attention has focused on investigating pesticides' primary modes of action, often overlooking the potential secondary mechanisms. This review brings forth the nuanced impacts of sublethal pesticide exposure on the immune system of target and non-target insect species. Pesticides, such as for example neonicotinoids, suppress immune response, while others, like certain organophosphates and some insect growth regulators (IGRs), appear to bolster immunocompetence under certain circumstances. Beyond their individual impacts, the synergic effects of pesticide mixtures on insect immunity are garnering increasing interest. This review thus summarizes recent advances in the immunomodulatory effects of pesticides, detailing both mechanisms and consequences of such interactions. The implications of these effects for ecosystem preservation and viability of beneficial organisms, such as pollinators and natural enemies of pests, are discussed. The review also considers further research directions on pesticide secondary modes of action and explores potential implications for integrated pest management (IPM) programs, as several model organisms studied are crop pest species. While current data provide an expansive overview of how insect innate immunity is modulated, concrete endpoints remain elusive requiring further research into pesticide secondary modes of actions.
Collapse
Affiliation(s)
- Fabrizio Lisi
- University of Catania, Department of Agriculture, Food and Environment, via Santa Sofia 100, 95123 Catania, Italy
| | - Marcel Amichot
- INRAE, Université Côte d'Azur, CNRS, UMR ISA, 06903 Sophia-Antipolis, France
| | - Nicolas Desneux
- INRAE, Université Côte d'Azur, CNRS, UMR ISA, 06903 Sophia-Antipolis, France
| | - Jean-Luc Gatti
- INRAE, Université Côte d'Azur, CNRS, UMR ISA, 06903 Sophia-Antipolis, France
| | | | - Francesco Nazzi
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), Udine, Italy
| | - Francesco Pennacchio
- University of Naples, Department of Entomology and Zoology, Portici, Naples, Italy
| | - Agatino Russo
- University of Catania, Department of Agriculture, Food and Environment, via Santa Sofia 100, 95123 Catania, Italy
| | | | - Xingeng Wang
- USDA ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - Lucia Zappalà
- University of Catania, Department of Agriculture, Food and Environment, via Santa Sofia 100, 95123 Catania, Italy
| | - Antonio Biondi
- University of Catania, Department of Agriculture, Food and Environment, via Santa Sofia 100, 95123 Catania, Italy.
| |
Collapse
|
9
|
Li J, Ma Y, Wu Z, Li J, Wang F, Yang Z, Xi Y, Yang D, Jiang Y, Yi Q, Huang S. The involvement of tumor necrosis factor receptor-associated factor 6 in regulating immune response by NF-κB at pre-molt stage of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109842. [PMID: 39153580 DOI: 10.1016/j.fsi.2024.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Molting is a crucial biological process of crustaceans. Crustaceans go through three separate stages throughout their molting process, including pre-molt, post-molt and inter-molt. However, the exact mechanism of immunological modulation during molting remains unclear. Tumor necrosis factor receptor-associated factor 6 (TRAF6) has been extensively documented to participate in immune defense. In the present study, a TRAF6 gene with two TRAF-type zinc finger domains was identified from Eriocheir sinensis (designed as EsTRAF6), and its role in regulating immune response during molting process was explored. The mRNA expression level of EsTRAF6 at pre-molt stage was higher than that at post-molt stage and inter-molt stage. After Aeromonas hydrophila stimulation, the expression levels of EsTRAF6, EsRelish and anti-lipopolysaccharide factors (ALFs) genes exhibited a considerable increase at three molting stages. Subsequently, the expression patterns of EsTRAF6 and EsRelish in response to the treatment with 20-hydroxyecdysone (20E) were examined. The mRNA expression of EsTRAF6 and EsRelish were significantly increased at 12 h after 20E injection. Additionally, the protein expression level of TRAF6 was also up-regulated in 20E group compared to control group. Furthermore, the role of EsTRAF6 in regulating the anti- ALFs expression at pre-molt stage post A. hydrophila stimulation was investigated. Following the inhibition of the EsTRAF6 transcript using RNAi or the injection of inhibitor (TMBPS), there was a notable decrease of the EsALF1, EsALF2 and EsALF3 transcripts. Moreover, a significant reduction in the phosphorylation level of NF-κB at pre-molt stage was observed after A. hydrophila stimulation in TRAF6-inhibited crabs. Collectively, our results suggest that EsTRAF6 could be induced by 20E and promoted the EsALFs expression by activating NF-κB at pre-molt stage, which provides a novel insight into the research of immune regulatory mechanism during the process of molting of crustaceans.
Collapse
Affiliation(s)
- Jialin Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zihao Wu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuting Xi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Dazuo Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China.
| |
Collapse
|
10
|
Ouali R, Vieira LR, Salmon D, Bousbata S. Trypanosoma cruzi reprograms mitochondrial metabolism within the anterior midgut of its vector Rhodnius prolixus during the early stages of infection. Parasit Vectors 2024; 17:381. [PMID: 39242536 PMCID: PMC11380418 DOI: 10.1186/s13071-024-06415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/18/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Trypanosoma cruzi is transmitted to humans by hematophagous bugs belonging to the Triatominae subfamily. Its intra-vectorial cycle is complex and occurs exclusively in the insect's midgut. Dissecting the elements involved in the cross-talk between the parasite and its vector within the digestive tract should provide novel targets for interrupting the parasitic life cycle and affecting vectorial competence. These interactions are shaped by the strategies that parasites use to infect and exploit their hosts, and the host's responses that are designed to detect and eliminate parasites. The objective of the current study is to characterize the impact of T. cruzi establishment within its vector on the dynamics of its midgut. METHODS In this study, we evaluated the impact of T. cruzi infection on protein expression within the anterior midgut of the model insect Rhodnius prolixus at 6 and 24 h post-infection (hpi) using high-throughput quantitative proteomics. RESULTS Shortly after its ingestion, the parasite modulates the proteome of the digestive epithelium by upregulating 218 proteins and negatively affecting the expression of 11 proteins involved in a wide array of cellular functions, many of which are pivotal due to their instrumental roles in cellular metabolism and homeostasis. This swift response underscores the intricate manipulation of the vector's cellular machinery by the parasite. Moreover, a more in-depth analysis of proteins immediately induced by the parasite reveals a pronounced predominance of mitochondrial proteins, thereby altering the sub-proteomic landscape of this organelle. This includes various complexes of the respiratory chain involved in ATP generation. In addition to mitochondrial metabolic dysregulation, a significant number of detoxifying proteins, such as antioxidant enzymes and P450 cytochromes, were immediately induced by the parasite, highlighting a stress response. CONCLUSIONS This study is the first to illustrate the response of the digestive epithelium upon contact with T. cruzi, as well as the alteration of mitochondrial sub-proteome by the parasite. This manipulation of the vector's physiology is attributable to the cascade activation of a signaling pathway by the parasite. Understanding the elements of this response, as well as its triggers, could be the foundation for innovative strategies to control the transmission of American trypanosomiasis, such as the development of targeted interventions aimed at disrupting parasite proliferation and transmission within the triatomine vector.
Collapse
Affiliation(s)
- Radouane Ouali
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Sabrina Bousbata
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
| |
Collapse
|
11
|
Basu A, Singh A, Ruchitha BG, Prasad NG. Experimental adaptation to pathogenic infection ameliorates negative effects of mating on host post-infection survival in Drosophila melanogaster. ZOOLOGY 2024; 166:126198. [PMID: 39173303 DOI: 10.1016/j.zool.2024.126198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Sexual activity (mating) negatively affects immune function in various insect species across both sexes. In Drosophila melanogaster females, mating increases susceptibility to pathogenic challenges and encourages within-host pathogen proliferation. This effect is pathogen and host genotype dependent. We tested if mating-induced increased susceptibility to infections is more, or less, severe in hosts experimentally adapted to pathogenic infection. We selected replicate D. melanogaster populations for increased post-infection survival following infection with a bacterial pathogen, Enterococcus faecalis. We found that females from the selected populations were better at surviving a pathogenic infection compared to the females from the control populations. This was true in the case of both the pathogen used for selection and other novel pathogens (i.e., pathogens the hosts have not encountered in recent history). Additionally, the negative effect of mating on post-infection survival was limited to only the females from control populations. Therefore, we have demonstrated that experimental selection for increased post-infection survival ameliorates negative effects of mating on host susceptibility to infections.
Collapse
Affiliation(s)
- Aabeer Basu
- Indian Institute of Science Education and Research (IISER), Mohali, India.
| | - Aparajita Singh
- Indian Institute of Science Education and Research (IISER), Mohali, India.
| | - B G Ruchitha
- Indian Institute of Science Education and Research (IISER), Mohali, India.
| | | |
Collapse
|
12
|
Ning M, Li Q, Fan L, Guo C, Zhang B, Li J, Ren X, Li B, Zhu J. RNA interference-mediated silencing of ctl13 inhibits innate immunity and development in stored pest Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106104. [PMID: 39277426 DOI: 10.1016/j.pestbp.2024.106104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
C-type lectins (CTLs) play a pivotal role in the regulation of insect immunity and growth, making them potential molecular targets for RNA interference (RNAi)-mediated pest control. Although multiple CTLs have been identified in the genomes of various insects, their specific functions and underlying molecular mechanisms remain unclear. In the present study, a novel CTL, Tcctl13 with a single CRD, was identified in Tribolium castaneum. Tcctl13 is expressed in diverse immune-related tissues and developmental stages, with a notable increase in its expression upon exposure to lipopolysaccharides (LPS) and peptidoglycan (PGN). Molecular docking and enzyme-linked immunosorbent assay (ELISA) analyses revealed that TcCTL13 possesses the ability interacted with LPS and PGN. The binding and agglutinating activities of recombinant TcCTL13 (rTcCTL13) were demonstrated against both gram-negative and positive bacteria. After using RNAi to silence Tcctl13, the expression of the eight antimicrobial peptide (AMP) genes was significantly reduced. In addition, knocking down Tcctl13 during the early larval or pupal stage hindered, the normal metamorphosis process in T. castaneum, ultimately leading to the demise of all beetles. Further research showed that Tcctl13 and nine AMPs were significantly downregulation after 20-Hydroxyecdysone (20E) injection. Instead, the up-regulation of Tcctl13 and six AMPs was observed following interference with the 20E receptor (ecdysone receptor, EcR), indicating that the function of Tcctl13 is regulated by 20E in T. castaneum. Collectively, these findings suggest that Tcctl13 plays a role in the regulation of innate immunity and development in T. castaneum, offering a promising molecular target for managing insect pests using RNAi-based approaches.
Collapse
Affiliation(s)
- Mingxiao Ning
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qing Li
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lixia Fan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Changying Guo
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Bingchun Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jia Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xianfeng Ren
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China..
| | - Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
13
|
Ye C, Ho R, Moberg KH, Zheng JQ. Adverse impact of female reproductive signaling on age-dependent neurodegeneration after mild head trauma in Drosophila. eLife 2024; 13:RP97908. [PMID: 39213032 PMCID: PMC11364438 DOI: 10.7554/elife.97908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify sex peptide signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| | - Ryan Ho
- College of Art and Science, Emory UniversityAtlantaUnited States
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| | - James Q Zheng
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
- Department of Neurology, Emory University School of MedicineAtlantaUnited States
- Center for Neurodegenerative Diseases, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
14
|
Qu J, Feng Y, Zou X, Zhou Y, Cao W. Transcriptome and proteome analyses reveal genes and signaling pathways involved in the response to two insect hormones in the insect-fungal pathogen Hirsutella satumaensis. mSystems 2024; 9:e0016624. [PMID: 38984826 PMCID: PMC11334460 DOI: 10.1128/msystems.00166-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024] Open
Abstract
The insect hormones ecdysone (20E) and juvenile hormone III (JH) have been demonstrated to stimulate the secretion of conidia mucilage and pigments in Hirsutella satumaensis. However, the underlying mechanisms remain elusive. Here, comparative transcriptome and proteome analyses were performed to identify the fungal genes and proteins of H. satumaensis that are up- or downregulated in response to insect hormones. A total of 17,407 unigenes and 1,016 proteins in conidia mucilage were identified. The genes involved in response to the hormones were classified into four functional groups: (1) stress response-related genes that are required for the removal of reactive oxygen species (glutathione synthetase, c7144) and genes involved in the response to osmotic stress in the hemocoel, such as those encoding proteins involved in the G, mTOR, and MAPK signaling pathways (2); insect hormone metabolic genes, including genes encoding ecdysteroid UDP-glucosyltransferase, ecdysteroid-22-kinase, and a key aldehyde dehydrogenase in a juvenile hormone synthesis pathway (3); secretory proteins that share homology with those of the host Bombyx mori, including fibrohexamerin, sericin 1, metalloprotease 1 protein, and silk gum protein, which were revealed by the omics data; and (4) proteins related to amino sugar metabolism and oxidative phosphorylation that were specifically expressed in mucilage in response to 20E and JH, respectively. These findings revealed that H. satumaensis can mount effective responses by modulating the expression of genes involved in the detoxification, adaptation, and evasion of insect hormone-mediated immune responses, providing fresh insights into fungal pathogen-host insect interactions.IMPORTANCEInsect hormones are highly important for the regulation of insect growth, development, and immune system function. Thus, the expansion of entomopathogenic fungi (EPF) could be affected by these hormones when they inhabit the host hemocoel. However, the molecular basis of EPF in response to insect hormones has yet to be determined. Our results revealed that EPF are impacted by 20E and JH, both of which act as signals, as these hormones lead to changes in metabolic pathways of the fungus, thus demonstrating a direct relationship between the fungus and the hormones. Furthermore, adaptive strategies, such as the use of ecdysone-inactivating enzymes and secreted filamentous proteins in H. satumaensis, which strongly resemble those of the host insect, have been discovered, thus illustrating the importance of adaptation to insect hormones for a better understanding of the interaction between insects and EPF.
Collapse
Affiliation(s)
- Jiaojiao Qu
- College of Tea Sciences, Guizhou University, Guiyang, China
| | - Yongli Feng
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Xiao Zou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yeming Zhou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Wei Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Kang P, Liu P, Kim J, Kumar A, Bolton M, Murzyna W, Anderson ZJ, Frank LN, Kavlock N, Hoffman E, Martin CC, Dorneich-Hayes MK, Miao T, Shimell M, Chen W, Hu Y, Powell-Coffman JA, O’Connor MB, Perrimon N, Bai H. Insect hormone PTTH regulates lifespan through temporal and spatial activation of NF-κB signaling during metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.30.560323. [PMID: 37873203 PMCID: PMC10592873 DOI: 10.1101/2023.09.30.560323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The prothoracicotropic hormone (PTTH) is a well-known neuropeptide that regulates insect metamorphosis (the juvenile-to-adult transition) by inducing the biosynthesis of steroid hormones. However, the role of PTTH in adult physiology and longevity is largely unexplored. Here, we show that Ptth loss-of-function mutants are long-lived and exhibit increased resistance to oxidative stress in Drosophila. Intriguingly, we find that loss of Ptth blunt age-dependent upregulation of NF-κB signaling specifically in fly hepatocytes (oenocytes). We further show that oenocyte-specific overexpression of Relish/NF-κB blocks the lifespan extension of Ptth mutants, suggesting that PTTH regulates lifespan through oenocyte-specific NF-κB signaling. Surprisingly, adult-specific knockdown of Ptth did not prolong lifespan, indicating that PTTH controls longevity through developmental programs. Indeed, knockdown of PTTH receptor Torso in prothoracic gland (PG) during fly development prolongs lifespan. To uncover the developmental processes underlying PTTH-regulated lifespan, we perform a developmental transcriptomic analysis and identify an unexpected activation of NF-κB signaling in developing oenocytes during fly metamorphosis, which is blocked in Ptth mutants. Importantly, knockdown of Relish/NF-κB specifically in oenocytes during early pupal stages significantly prolongs the lifespan of adult flies. Thus, our findings uncover an unexpected role of PTTH in controlling adult lifespan through temporal and spatial activation of NF-κB signaling in developing hepatocytes and highlight the vital role of developmental NF-κB signaling in shaping adult physiology.
Collapse
Affiliation(s)
- Ping Kang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Peiduo Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Jinoh Kim
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Marie Bolton
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Wren Murzyna
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Zenessa J. Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Lexi N. Frank
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Nicholas Kavlock
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Elizabeth Hoffman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Chad C. Martin
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | | | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Weihang Chen
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jo Anne Powell-Coffman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
16
|
Konopińska N, Gmyrek R, Bylewska N, Tchórzewska S, Nowicki G, Lubawy J, Walkowiak-Nowicka K, Urbański A. The allatotropin/orexin system as an example of immunomodulatory properties of neuropeptides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 171:104149. [PMID: 38871133 DOI: 10.1016/j.ibmb.2024.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The central nervous system (CNS) plays a critical role in signal integration in animals and allows the orchestration of life processes to maintain homeostasis. Current research clearly shows that inflammatory processes can also be modulated by the CNS via the neuroendocrine system. One of the neuropeptide families that participate in vertebrates in this process is orexins (OXs). Interestingly, our previous results suggested that a similar dependency may also exist between neuropeptides and immune system activity in insects. Due to the structural homology of orexin and allatotropin receptors and the functional similarity between these two neuropeptide families, the main aim of this research was to perform a complex analysis of the relationships between allatotropin (AT) and the insect immune response. Our results revealed functional similarities between vertebrate OXs and insect ATs. Similar effects were observed in the profile of the expression level of the gene encoding the AT precursor in the Tenebrio molitor nervous system and in the general action of Tenmo-AT on selected immune parameters of the tested beetles. Moreover, for the first time in insects, we confirmed the role of cytokines in the modulation of neuroendocrine system by determining the effect of Spätzle-like protein injection on the expression of genes encoding AT precursor and receptor. All these results are important for understanding the evolutionary basis of hormonal regulation of the immune response.
Collapse
Affiliation(s)
- Natalia Konopińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Radosław Gmyrek
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Bylewska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sara Tchórzewska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
17
|
Ye C, Ho R, Moberg KH, Zheng JQ. Sexual Dimorphism in Age-Dependent Neurodegeneration After Mild Head Trauma in Drosophila : Unveiling the Adverse Impact of Female Reproductive Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583747. [PMID: 38496515 PMCID: PMC10942469 DOI: 10.1101/2024.03.06.583747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify Sex Peptide (SP) signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.
Collapse
|
18
|
Galambos N, Vincent-Monegat C, Vallier A, Parisot N, Heddi A, Zaidman-Rémy A. Cereal weevils' antimicrobial peptides: at the crosstalk between development, endosymbiosis and immune response. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230062. [PMID: 38497254 PMCID: PMC10945404 DOI: 10.1098/rstb.2023.0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 03/19/2024] Open
Abstract
Interactions between animals and microbes are ubiquitous in nature and strongly impact animal physiology. These interactions are shaped by the host immune system, which responds to infections and contributes to tailor the associations with beneficial microorganisms. In many insects, beneficial symbiotic associations not only include gut commensals, but also intracellular bacteria, or endosymbionts. Endosymbionts are housed within specialized host cells, the bacteriocytes, and are transmitted vertically across host generations. Host-endosymbiont co-evolution shapes the endosymbiont genome and host immune system, which not only fights against microbial intruders, but also ensures the preservation of endosymbionts and the control of their load and location. The cereal weevil Sitophilus spp. is a remarkable model in which to study the evolutionary adaptation of the immune system to endosymbiosis owing to its binary association with a unique, relatively recently acquired nutritional endosymbiont, Sodalis pierantonius. This Gram-negative bacterium has not experienced the genome size shrinkage observed in long-term endosymbioses and has retained immunogenicity. We focus here on the sixteen antimicrobial peptides (AMPs) identified in the Sitophilus oryzae genome and their expression patterns in different tissues, along host development or upon immune challenges, to address their potential functions in the defensive response and endosymbiosis homeostasis along the insect life cycle. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- N. Galambos
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | | | - A. Vallier
- INRAE, INSA Lyon, BF2I, UMR203, 69621 Villeurbanne, France
| | - N. Parisot
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | - A. Heddi
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | - A. Zaidman-Rémy
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
- Institut universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
19
|
Li J, Fu N, Ge S, Ren L, Luo Y. Physiological Measurements and Transcriptomics Reveal the Fitness Costs of Monochamus saltuarius to Bursaphelenchus xylophilus. Int J Mol Sci 2024; 25:4906. [PMID: 38732123 PMCID: PMC11084816 DOI: 10.3390/ijms25094906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
The pine wood nematode (PWN) uses several Monochamus species as vehicles, through a temporary hitchhiking process known as phoresy, enabling it to access new host plant resources. Monochamus saltuarius acts as a new and major vector of the PWN in Northeastern China, showing lower PWN carrying capacity and a shorter transmission cycle compared to established vectors. The apparently altered symbiotic relationship offers an interesting area for researching the costs and adaptions involved in nematode-beetle, a specialized phoresy. We analyzed the response and fitness costs of M. saltuarius through physiological measurements and transcriptomics. The PWN exerted adverse repercussions on the growth and development of M. saltuarius. The PWN accelerated larval development into pupae, while beetle adults carrying the PWN exhibited an elevated abnormality rate and mortality, and reduced starvation resistance. During the pupal stage, the expression of growth-related genes, including ecdysone-inducible genes (E74EA), cuticle proteins, and chitin genes (CHTs), markedly increased. Meanwhile, the induced immune response, mainly by the IMD and Toll signaling pathways, could be a contributing factor to adult abnormality and mortality. Adult gonads and trachea exhibited enrichment in pathways related to fatty acid elongation, biosynthesis, and metabolism. FASN, ELOVL, and SCD possibly contributed to resistance against PWN. Our research indicated that phoretic interactions between vector beetles and PWN vary throughout the vector's lifespan, particularly before and after entry into the trachea. This study highlighted the fitness costs of immunity and metabolism on the vector beetle, indicating the adaptation mechanisms and evolutionary trade-offs to PWN.
Collapse
Affiliation(s)
- Jiaxing Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.G.)
| | - Ningning Fu
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding 071033, China;
| | - Sixun Ge
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.G.)
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.G.)
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.G.)
| |
Collapse
|
20
|
Hixson B, Huot L, Morejon B, Yang X, Nagy P, Michel K, Buchon N. The transcriptional response in mosquitoes distinguishes between fungi and bacteria but not Gram types. BMC Genomics 2024; 25:353. [PMID: 38594632 PMCID: PMC11003161 DOI: 10.1186/s12864-024-10153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
Mosquitoes are prolific vectors of human pathogens, therefore a clear and accurate understanding of the organization of their antimicrobial defenses is crucial for informing the development of transmission control strategies. The canonical infection response in insects, as described in the insect model Drosophila melanogaster, is pathogen type-dependent, with distinct stereotypical responses to Gram-negative bacteria and Gram-positive bacteria/fungi mediated by the activation of the Imd and Toll pathways, respectively. To determine whether this pathogen-specific discrimination is shared by mosquitoes, we used RNAseq to capture the genome-wide transcriptional response of Aedes aegypti and Anopheles gambiae (s.l.) to systemic infection with Gram-negative bacteria, Gram-positive bacteria, yeasts, and filamentous fungi, as well as challenge with heat-killed Gram-negative, Gram-positive, and fungal pathogens. From the resulting data, we found that Ae. aegypti and An. gambiae both mount a core response to all categories of infection, and this response is highly conserved between the two species with respect to both function and orthology. When we compared the transcriptomes of mosquitoes infected with different types of bacteria, we observed that the intensity of the transcriptional response was correlated with both the virulence and growth rate of the infecting pathogen. Exhaustive comparisons of the transcriptomes of Gram-negative-challenged versus Gram-positive-challenged mosquitoes yielded no difference in either species. In Ae. aegypti, however, we identified transcriptional signatures specific to bacterial infection and to fungal infection. The bacterial infection response was dominated by the expression of defensins and cecropins, while the fungal infection response included the disproportionate upregulation of an uncharacterized family of glycine-rich proteins. These signatures were also observed in Ae. aegypti challenged with heat-killed bacteria and fungi, indicating that this species can discriminate between molecular patterns that are specific to bacteria and to fungi.
Collapse
Affiliation(s)
- Bretta Hixson
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Louise Huot
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Bianca Morejon
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Xiaowei Yang
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
- Current address: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute for Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Peter Nagy
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
Erler S, Cotter SC, Freitak D, Koch H, Palmer-Young EC, de Roode JC, Smilanich AM, Lattorff HMG. Insects' essential role in understanding and broadening animal medication. Trends Parasitol 2024; 40:338-349. [PMID: 38443305 DOI: 10.1016/j.pt.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Like humans, animals use plants and other materials as medication against parasites. Recent decades have shown that the study of insects can greatly advance our understanding of medication behaviors. The ease of rearing insects under laboratory conditions has enabled controlled experiments to test critical hypotheses, while their spectrum of reproductive strategies and living arrangements - ranging from solitary to eusocial communities - has revealed that medication behaviors can evolve to maximize inclusive fitness through both direct and indirect fitness benefits. Studying insects has also demonstrated in some cases that medication can act through modulation of the host's innate immune system and microbiome. We highlight outstanding questions, focusing on costs and benefits in the context of inclusive host fitness.
Collapse
Affiliation(s)
- Silvio Erler
- Institute for Bee Protection, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig, Germany; Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.
| | | | - Dalial Freitak
- Institute for Biology, University of Graz, Graz, Austria
| | | | | | | | | | | |
Collapse
|
22
|
Li B, Wang D, Xie X, Chen X, Liang G, Xing D, Zhao T, Wu J, Zhou X, Li C. Mosquito E-20-Monooxygenase Gene Knockout Increases Dengue Virus Replication in Aedes aegypti Cells. Viruses 2024; 16:525. [PMID: 38675868 PMCID: PMC11054288 DOI: 10.3390/v16040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
E-20-monooxygenase (E20MO) is an enzymatic product of the shade (shd) locus (cytochrome p450, E20MO). Initially discovered in Drosophila, E20MO facilitates the conversion of ecdysone (E) into 20-hydroxyecdysone (20E) and is crucial for oogenesis. Prior research has implicated 20E in growth, development, and insecticide resistance. However, little attention has been given to the association between the E20MO gene and DENV2 infection. The transcriptome of Ae. aegypti cells (Aag2 cells) infected with DENV2 revealed the presence of the E20MO gene. The subsequent quantification of E20MO gene expression levels in Aag2 cells post-DENV infection was carried out. A CRISPR/Cas9 system was utilized to create an E20MO gene knockout cell line (KO), which was then subjected to DENV infection. Analyses of DENV2 copies in KO and wild-type (WT) cells were conducted at different days post-infection (dpi). Plasmids containing E20MO were constructed and transfected into KO cells, with pre- and post-transfection viral copy comparisons. Gene expression levels of E20MO increased after DENV infection. Subsequently, a successful generation of an E20MO gene knockout cell line and the verification of code-shifting mutations at both DNA and RNA levels were achieved. Furthermore, significantly elevated DENV2 RNA copies were observed in the mid-infection phase for the KO cell line. Viral RNA copies were lower in cells transfected with plasmids containing E20MO, compared to KO cells. Through knockout and plasmid complementation experiments in Aag2 cells, the role of E20MO in controlling DENV2 replication was demonstrated. These findings contribute to our understanding of the intricate biological interactions between mosquitoes and arboviruses.
Collapse
Affiliation(s)
- Bo Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Di Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoxue Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoli Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Guorui Liang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
23
|
Jones TB, Mackey T, Juba AN, Amin K, Atyam A, McDole M, Yancy J, Thomas TC, Buhlman LM. Mild traumatic brain injury in Drosophila melanogaster alters reactive oxygen and nitrogen species in a sex-dependent manner. Exp Neurol 2024; 372:114621. [PMID: 38029809 PMCID: PMC10872660 DOI: 10.1016/j.expneurol.2023.114621] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Traumatic brain injury (TBI) is an outside force causing a modification in brain function and/or structural brain pathology that upregulates brain inducible nitric oxide synthase (iNOS), instigating increased levels of nitric oxide activity which is implicated in secondary pathology leading to behavioral deficits (Hall et al., 2012; Garry et al., 2015; Kozlov et al., 2017). In mammals, TBI-induced NO production activates an immune response and potentiates metabolic crisis through mitochondrial dysfunction coupled with vascular dysregulation; however, the direct influence on pathology is complicated by the activation of numerous secondary cascades and activation of other reactive oxygen species. Drosophila TBI models have demonstrated key features of mammalian TBI, including temporary incapacitation, disorientation, motor deficits, activation of innate immunity (inflammation), and autophagy responses observed immediately after injury (Katzenberger et al., 2013; Barekat et al., 2016; Simon et al., 2017; Anderson et al., 2018; Buhlman et al., 2021b). We hypothesized that acute behavioral phenotypes would be associated with deficits in climbing behavior and increased oxidative stress. Because flies lack mammalian-like cardiovascular and adaptive immune systems, we were able to make our observations in the absence of vascular disruption and adaptive immune system interference in a system where highly targeted interventions can be rapidly evaluated. To demonstrate the induction of injury, ten-day-old transgenic flies received an injury of increasing angles from a modified high impact trauma (HIT) device where angle-dependent increases occurred for acute neurological behavior assessments and twenty-four-hour mortality, and survival was significantly decreased. Injury caused sex-dependent effects on climbing activity and measures of oxidative stress. Specifically, after a single 60-degree HIT, female flies exhibited significant impairments in climbing activity beyond that observed in male flies. We also found that several measures of oxidative stress, including Drosophila NOS (dNOS) expression, protein nitration, and hydrogen peroxide production were significantly decreased in female flies. Interestingly, protein nitration was also decreased in males, but surpassed sham levels with a more severe injury. We also observed decreased autophagy demand in vulnerable dopaminergic neurons in female, but not male flies. In addition, mitophagy initiation was decreased in females. Collectively, our data suggest that TBI in flies induces acute behavioral phenotypes and climbing deficits that are analogous to mammalian TBI. We also observed that various indices of oxidative stress, including dNOS expression, protein tyrosine nitration, and hydrogen peroxide levels, as well as basal levels of autophagy, are altered in response to injury, an effect that is more pronounced in female flies.
Collapse
Affiliation(s)
- T Bucky Jones
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA; Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Tracy Mackey
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Amber N Juba
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Kush Amin
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Amruth Atyam
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Madison McDole
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Jarod Yancy
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Phoenix VA Health Care System, Phoenix, AZ, USA.
| | - Lori M Buhlman
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
24
|
Du XX, Cao SK, Xiao HY, Yang CJ, Zeng AP, Chen G, Yu H. Feeding Spodoptera exigua larvae with gut-derived Escherichia sp. increases larval juvenile hormone levels inhibiting cannibalism. Commun Biol 2023; 6:1086. [PMID: 37884600 PMCID: PMC10603045 DOI: 10.1038/s42003-023-05466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Feed quality influences insect cannibalistic behavior and gut microbial communities. In the present study, Spodoptera exigua larvae were fed six different artificial diets, and one of these diets (Diet 3) delayed larval cannibalistic behavior and reduced the cannibalism ratio after ingestion. Diet 3-fed larvae had the highest gut bacterial load (1.396 ± 0.556 × 1014 bacteria/mg gut), whereas Diet 2-fed larvae had the lowest gut bacterial load (3.076 ± 1.368 × 1012 bacteria/mg gut). The gut bacterial composition and diversity of different diet-fed S. exigua larvae varied according to the 16S rRNA gene sequence analysis. Enterobacteriaceae was specific to the Diet 3-fed larval gut. Fifteen culturable bacterial isolates were obtained from the midgut of Diet 3-fed larvae. Of these, ten belonged to Escherichia sp. After administration with Diet 1- or 2-fed S. exigua larvae, two bacterial isolates (SePC-12 and -37) delayed cannibalistic behavior in both tested larval groups. Diet 2-fed larvae had the lowest Juvenile hormone (JH) concentration and were more aggressive against intraspecific predation. However, SePC-12 loading increased the JH hormone levels in Diet 2-fed larvae and inhibited their cannibalism. Bacteria in the larval midgut are involved in the stabilization of JH levels, thereby regulating host larval cannibalistic behavior.
Collapse
Affiliation(s)
- Xing-Xing Du
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Sheng-Kai Cao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Hua-Yan Xiao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chang-Jin Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Ai-Ping Zeng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Gong Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
25
|
Arch M, Vidal M, Fuentes E, Abat AS, Cardona PJ. The reproductive status determines tolerance and resistance to Mycobacterium marinum in Drosophila melanogaster. Evol Med Public Health 2023; 11:332-347. [PMID: 37868078 PMCID: PMC10590161 DOI: 10.1093/emph/eoad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/27/2023] [Indexed: 10/24/2023] Open
Abstract
Sex and reproductive status of the host have a major impact on the immune response against infection. Our aim was to understand their impact on host tolerance or resistance in the systemic Mycobacterium marinum infection of Drosophila melanogaster. We measured host survival and bacillary load at time of death, as well as expression by quantitative real-time polymerase chain reaction of immune genes (diptericin and drosomycin). We also assessed the impact of metabolic and hormonal regulation in the protection against infection by measuring expression of upd3, impl2 and ecR. Our data showed increased resistance in actively mating flies and in mated females, while reducing their tolerance to infection. Data suggests that Toll and immune deficiency (Imd) pathways determine tolerance and resistance, respectively, while higher basal levels of ecR favours the stimulation of the Imd pathway. A dual role has been found for upd3 expression, linked to increased/decreased mycobacterial load at the beginning and later in infection, respectively. Finally, impl2 expression has been related to increased resistance in non-actively mating males. These results allow further assessment on the differences between sexes and highlights the role of the reproductive status in D. melanogaster to face infections, demonstrating their importance to determine resistance and tolerance against M. marinum infection.
Collapse
Affiliation(s)
- Marta Arch
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
| | - Maria Vidal
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Esther Fuentes
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Catalonia, Spain
| | - Anmaw Shite Abat
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Department of Veterinary Paraclinical Studies, University of Gondar, Gondar, Ethiopia
| | - Pere-Joan Cardona
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Catalonia, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
26
|
Yüksel E, Yıldırım A, İmren M, Canhilal R, Dababat AA. Xenorhabdus and Photorhabdus Bacteria as Potential Candidates for the Control of Culex pipiens L. (Diptera: Culicidae), the Principal Vector of West Nile Virus and Lymphatic Filariasis. Pathogens 2023; 12:1095. [PMID: 37764903 PMCID: PMC10537861 DOI: 10.3390/pathogens12091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Vector-borne diseases pose a severe threat to human and animal health. Culex pipiens L. (Diptera: Culicidae) is a widespread mosquito species and serves as a vector for the transmission of infectious diseases such as West Nile disease and Lymphatic Filariasis. Synthetic insecticides have been the prime control method for many years to suppress Cx. pipiens populations. However, recently, the use of insecticides has begun to be questioned due to the detrimental impact on human health and the natural environment. Therefore, many authorities urge the development of eco-friendly control methods that are nontoxic to humans. The bacterial associates [Xenorhabdus and Photorhabdus spp. (Enterobacterales: Morganellaceae)] of entomopathogenic nematodes (EPNs) (Sterinernema spp. and Heterorhabditis spp.) (Rhabditida: Heterorhabditidae and Steinernematidae) are one of the green approaches to combat a variety of insect pests. In the present study, the mosquitocidal activity of the cell-free supernatants and cell suspension (4 × 107 cells mL-1) of four different symbiotic bacteria (Xenorhabdus nematophila, X. bovienii, X. budapestensis, and P. luminescens subsp. kayaii) was assessed against different development stages of Cx. pipiens (The 1st/2nd and 3rd/4th instar larvae and pupa) under laboratory conditions. The bacterial symbionts were able to kill all the development stages with varying levels of mortality. The 1st/2nd instar larvae exhibited the highest susceptibility to the cell-free supernatants and cell suspensions of symbiotic bacteria and the efficacy of the cell-free supernatants and cell suspensions gradually declined with increasing phases of growth. The highest effectiveness was achieved by the X. bovienii KCS-4S strain inducing 95% mortality to the 1st/2nd instar larvae. The results indicate that tested bacterial symbionts have great potential as an eco-friendly alternative to insecticides.
Collapse
Affiliation(s)
- Ebubekir Yüksel
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Kayseri 38030, Türkiye;
| | - Alparslan Yıldırım
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38280, Türkiye;
| | - Mustafa İmren
- Department of Plant Protection, Faculty of Agriculture, Abant Izzet Baysal University, Bolu 14030, Türkiye;
| | - Ramazan Canhilal
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Kayseri 38030, Türkiye;
| | | |
Collapse
|
27
|
Magistrado D, El-Dougdoug NK, Short SM. Sugar restriction and blood ingestion shape divergent immune defense trajectories in the mosquito Aedes aegypti. Sci Rep 2023; 13:12368. [PMID: 37524824 PMCID: PMC10390476 DOI: 10.1038/s41598-023-39067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Immune defense is comprised of (1) resistance: the ability to reduce pathogen load, and (2) tolerance: the ability to limit the disease severity induced by a given pathogen load. The study of tolerance in the field of animal immunity is fairly nascent in comparison to resistance. Consequently, studies which examine immune defense comprehensively (i.e. considering both resistance and tolerance in conjunction) are uncommon, despite their exigency in achieving a thorough understanding of immune defense. Furthermore, understanding tolerance in arthropod disease vectors is uniquely relevant, as tolerance is essential to the cyclical transmission of pathogens by arthropods. Here, we tested the effect(s) of dietary sucrose concentration and blood ingestion on resistance and tolerance to Escherichia coli infection in the yellow fever mosquito Aedes aegypti. Resistance and tolerance were measured concurrently and at multiple timepoints. We found that mosquitoes from the restricted sugar treatment displayed enhanced resistance at all timepoints post-infection compared to those from the laboratory standard sugar treatment. Blood also improved resistance, but only early post-infection. While sucrose restriction had no effect on tolerance, we show that consuming blood prior to bacterial infection ameliorates a temporal decline in tolerance that mosquitoes experience when provided with only sugar meals. Taken together, our findings indicate that different dietary components can have unique and sometimes temporally dynamic impacts on resistance and tolerance.
Collapse
Affiliation(s)
- Dom Magistrado
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA
| | - Noha K El-Dougdoug
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, Egypt
| | - Sarah M Short
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
28
|
Belavilas-Trovas A, Tastsoglou S, Dong S, Kefi M, Tavadia M, Mathiopoulos KD, Dimopoulos G. Long non-coding RNAs regulate Aedes aegypti vector competence for Zika virus and reproduction. PLoS Pathog 2023; 19:e1011440. [PMID: 37319296 DOI: 10.1371/journal.ppat.1011440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical regulatory roles in various cellular and metabolic processes in mosquitoes and all other organisms studied thus far. In particular, their involvement in essential processes such as reproduction makes them potential targets for the development of novel pest control approaches. However, their function in mosquito biology remains largely unexplored. To elucidate the role of lncRNAs in mosquitoes' reproduction and vector competence for arboviruses, we have implemented a computational and experimental pipeline to mine, screen, and characterize lncRNAs related to these two biological processes. Through analysis of publicly available Zika virus (ZIKV) infection-regulated Aedes aegypti transcriptomes, at least six lncRNAs were identified as being significantly upregulated in response to infection in various mosquito tissues. The roles of these ZIKV-regulated lncRNAs (designated Zinc1, Zinc2, Zinc3, Zinc9, Zinc10 and Zinc22), were further investigated by dsRNA-mediated silencing studies. Our results show that silencing of Zinc1, Zinc2, and Zinc22 renders mosquitoes significantly less permissive to ZIKV infection, while silencing of Zinc22 also reduces fecundity, indicating a potential role for Zinc22 in trade-offs between vector competence and reproduction. We also found that silencing of Zinc9 significantly increases fecundity but has no effect on ZIKV infection, suggesting that Zinc9 may be a negative regulator of oviposition. Our work demonstrates that some lncRNAs play host factor roles by facilitating viral infection in mosquitoes. We also show that lncRNAs can influence both mosquito reproduction and permissiveness to virus infection, two biological systems with important roles in mosquito vectorial capacity.
Collapse
Affiliation(s)
- Alexandros Belavilas-Trovas
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mary Kefi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mihra Tavadia
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kostas D Mathiopoulos
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
29
|
Abstract
Endocrine signaling networks control diverse biological processes and life history traits across metazoans. In both invertebrate and vertebrate taxa, steroid hormones regulate immune system function in response to intrinsic and environmental stimuli, such as microbial infection. The mechanisms of this endocrine-immune regulation are complex and constitute an ongoing research endeavor facilitated by genetically tractable animal models. The 20-hydroxyecdysone (20E) is the major steroid hormone in arthropods, primarily studied for its essential role in mediating developmental transitions and metamorphosis; 20E also modulates innate immunity in a variety of insect taxa. This review provides an overview of our current understanding of 20E-mediated innate immune responses. The prevalence of correlations between 20E-driven developmental transitions and innate immune activation are summarized across a range of holometabolous insects. Subsequent discussion focuses on studies conducted using the extensive genetic resources available in Drosophila that have begun to reveal the mechanisms underlying 20E regulation of immunity in the contexts of both development and bacterial infection. Lastly, I propose directions for future research into 20E regulation of immunity that will advance our knowledge of how interactive endocrine networks coordinate animals' physiological responses to environmental microbes.
Collapse
Affiliation(s)
- Scott A. Keith
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
30
|
Palli SR. Juvenile hormone receptor Methoprene tolerant: Functions and applications. VITAMINS AND HORMONES 2023; 123:619-644. [PMID: 37718000 DOI: 10.1016/bs.vh.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
During the past 15years, after confirming Methoprene tolerant (Met) as a juvenile hormone (JH) receptor, tremendous progress has been made in understanding the function of Met in supporting JH signal transduction. Met role in JH regulation of development, including metamorphosis, reproduction, diapause, cast differentiation, behavior, im`munity, sleep and epigenetic modifications, have been elucidated. Met's Heterodimeric partners involved in performing some of these functions were discovered. The availability of JH response elements (JHRE) and JH receptor allowed the development of screening assays in cell lines and yeast. These screening assays facilitated the identification of new chemicals that function as JH agonists and antagonists. These new chemicals and others that will likely be discovered in the near future by using JH receptor and JHRE will lead to highly effective species-specific environmentally friendly insecticides for controlling pests and disease vectors.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
31
|
Kurogi Y, Imura E, Mizuno Y, Hoshino R, Nouzova M, Matsuyama S, Mizoguchi A, Kondo S, Tanimoto H, Noriega FG, Niwa R. Female reproductive dormancy in Drosophila is regulated by DH31-producing neurons projecting into the corpus allatum. Development 2023; 150:dev201186. [PMID: 37218457 PMCID: PMC10233717 DOI: 10.1242/dev.201186] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023]
Abstract
Female insects can enter reproductive diapause, a state of suspended egg development, to conserve energy under adverse environments. In many insects, including the fruit fly, Drosophila melanogaster, reproductive diapause, also frequently called reproductive dormancy, is induced under low-temperature and short-day conditions by the downregulation of juvenile hormone (JH) biosynthesis in the corpus allatum (CA). In this study, we demonstrate that neuropeptide Diuretic hormone 31 (DH31) produced by brain neurons that project into the CA plays an essential role in regulating reproductive dormancy by suppressing JH biosynthesis in adult D. melanogaster. The CA expresses the gene encoding the DH31 receptor, which is required for DH31-triggered elevation of intracellular cAMP in the CA. Knocking down Dh31 in these CA-projecting neurons or DH31 receptor in the CA suppresses the decrease of JH titer, normally observed under dormancy-inducing conditions, leading to abnormal yolk accumulation in the ovaries. Our findings provide the first molecular genetic evidence demonstrating that CA-projecting peptidergic neurons play an essential role in regulating reproductive dormancy by suppressing JH biosynthesis.
Collapse
Affiliation(s)
- Yoshitomo Kurogi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Eisuke Imura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Yosuke Mizuno
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryo Hoshino
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Marcela Nouzova
- Department of Biological Sciences and BSI, Florida International University, 11200 SW 8th street, Miami, FL 33199, USA
- Institute of Parasitology, Biology Center of the Academy of Sciences of the Czech Republic,37005, České Budějovice, Czech Republic
| | - Shigeru Matsuyama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi 470-0195, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585, Japan
- Invertebrate Genetics Laboratory, National Institute of Genetics, Yata 111, Mishima, Shizuoka 411-8540, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Sendai, Miyagi 980-8577, Japan
| | - Fernando G. Noriega
- Department of Biological Sciences and BSI, Florida International University, 11200 SW 8th street, Miami, FL 33199, USA
- Department of Parasitology, University of South Bohemia, České Budějovice 37005, Czech Republic
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
32
|
Ye C, Behnke JA, Hardin KR, Zheng JQ. Drosophila melanogaster as a model to study age and sex differences in brain injury and neurodegeneration after mild head trauma. Front Neurosci 2023; 17:1150694. [PMID: 37077318 PMCID: PMC10106652 DOI: 10.3389/fnins.2023.1150694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Repetitive physical insults to the head, including those that elicit mild traumatic brain injury (mTBI), are a known risk factor for a variety of neurodegenerative conditions including Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although most individuals who sustain mTBI typically achieve a seemingly full recovery within a few weeks, a subset experience delayed-onset symptoms later in life. As most mTBI research has focused on the acute phase of injury, there is an incomplete understanding of mechanisms related to the late-life emergence of neurodegeneration after early exposure to mild head trauma. The recent adoption of Drosophila-based brain injury models provides several unique advantages over existing preclinical animal models, including a tractable framework amenable to high-throughput assays and short relative lifespan conducive to lifelong mechanistic investigation. The use of flies also provides an opportunity to investigate important risk factors associated with neurodegenerative conditions, specifically age and sex. In this review, we survey current literature that examines age and sex as contributing factors to head trauma-mediated neurodegeneration in humans and preclinical models, including mammalian and Drosophila models. We discuss similarities and disparities between human and fly in aging, sex differences, and pathophysiology. Finally, we highlight Drosophila as an effective tool for investigating mechanisms underlying head trauma-induced neurodegeneration and for identifying therapeutic targets for treatment and recovery.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph A. Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
33
|
Zhang R, Chen X, Wang Y, Bai X, Yang Q, Zhong Y, Yu XQ, Jin F, Yang W. BmMD-2A responds to 20-hydroxyecdysone and regulates Bombyx mori silkworm innate immunity in larva-to-pupa metamorphosis. INSECT SCIENCE 2023; 30:411-424. [PMID: 35871306 DOI: 10.1111/1744-7917.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
20E-hydroxyecdysone (20E) plays important roles in larval molting and metamorphosis in insects and is also involved in the insect innate immune response. Insect metamorphosis is a highly successful strategy for environmental adaptation and is the most vulnerable stage during which the insect is susceptible to various pathogens. 20E regulates a series of antimicrobial peptides (AMPs) through the immunodeficiency (IMD) pathway activation in Drosophila; nevertheless, whether other immune pathways are involved in 20E-regulated insect immunity is unknown. Our previous studies showed that BmMD-2A is a member of the MD-2-related lipid recognition (ML) family of proteins that are involved in the Bombyx mori innate immunity Toll signaling pathway. In this study, we further demonstrate that BmMD-2A is also positively regulated by 20E, and the BmMD-2A neutralization experiment suggested that 20E activates some downstream immune effect factors, the AMP genes against Escherichia coli and Staphylococcus aureus, through the regulation of BmMD-2A in larval metamorphosis, implying that B. mori may use the Toll-ML signaling pathway to maintain innate immune balance in the larval-pupal metamorphosis stage, which is a different innate immunity pathway regulated by 20E compared to the IMD pathway in Drosophila.
Collapse
Affiliation(s)
- Ruonan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xue Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xu Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qiong Yang
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yangjin Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fengliang Jin
- Guangdong Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wanying Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
34
|
Amaro-Sánchez T, Ruiz-Guzmán G, Hernández-Martínez S, Krams I, Rantala MJ, Contreras-Garduño J. Effect of juvenile hormone on phenoloxidase and hemocyte number: The role of age, sex, and immune challenge. Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110827. [PMID: 36610635 DOI: 10.1016/j.cbpb.2023.110827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Hormones are key factors in determining the response of organisms to their environment. For example, the juvenile hormone (JH) coordinates the insects' development, reproduction, and survival. However, it is still unclear how the impact of juvenile hormone on insect immunity varies depending on the sex and reproductive state of the individual, as well as the type of the immune challenge (i.e., Gram-positive or Gram-negative bacteria). We used Tenebrio molitor and methoprene, a JH analog (JHa) to explore these relationships. We tested the effect of methoprene on phenoloxidase activity (PO), an important component of humoral immunity in insects, and hemocyte number. Lyophilized Gram-positive Staphylococcus aureus or Gram-negative Escherichia coli were injected for the immune challenge. The results suggest that JH did not affect the proPO, PO activity, or hemocyte number of larvae. JH and immune challenge affected the immune response and consequently, affected adult developmental stage and sex. We propose that the influence of JH on the immune response depends on age, sex, the immune response parameter, and the immune challenge, which may explain the contrasting results about the role of JH in the insect immune response.
Collapse
Affiliation(s)
- Tania Amaro-Sánchez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta s/n, Colonia Noria Alta, 36050 Guanajuato, Mexico
| | - Gloria Ruiz-Guzmán
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No.8701, Col. Ex-Hacienda San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| | - Salvador Hernández-Martínez
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62300 Cuernavaca, Morelos, Mexico
| | - Indrikis Krams
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; Department of Biotechnology, Daugavpils University, Daugavpils 5401, Latvia; Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Riga 1004, Latvia
| | - Markus J Rantala
- Department of Biology & Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No.8701, Col. Ex-Hacienda San José de la Huerta, 58190 Morelia, Michoacán, Mexico.
| |
Collapse
|
35
|
Attarianfar M, Mikani A, Mehrabadi M. Fenoxycarb exposure affects antiviral immunity and HaNPV infection in the cotton bollworm, Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2023; 79:1078-1085. [PMID: 36424349 DOI: 10.1002/ps.7301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/25/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Application of insect growth regulators (IGR) is a good option for insect pest management because of their fewer adverse effects on humans and domestic animals. These compounds are capable of interfering with normal growth and development by mimicking the actions of hormones such as juvenile hormone (JH) or ecdysone. The effect of JH and its analogs on some aspects of insect immunity has been determined, yet their possible effects on antiviral immunity response has not been investigated yet. Considering the importance of antiviral response in viral replication, in this study the effects of the JH analog (JHA), fenoxycarb on the antiviral immunity pathway core genes [i.e. micro (mi)RNA, small interfering (si)RNA and apoptosis] of Helicoverpa armigera (Hubner) larvae were investigated. The effect of fenoxycarb on the susceptibility of the larvae to H. armigera nuclear polyhedrosis virus (HaNPV) also was assessed. RESULTS The results showed that the transcription level of miRNA (Dicer1, Ago1), siRNA (Dicer2, Ago2) and apoptosis (Caspase1, Caspase5) core genes in H. armigera larvae were decreased significantly after 24, 48 and 96 h feeding on a diet containing lethal and sublethal doses of fenoxycarb. Moreover, the mortality rate to HaNPV in the larvae treated with fenoxycarb increased compared to the control, leading to an increased replication of HaNPV. CONCLUSION Together, our results suggest that the antiviral immune system could be modulated by JHA and facilitate HaNPV replication in the larvae, increasing the mortality rate of the insect larvae. Understanding the effect of JHA on antiviral immunity is an important step toward the process of exploiting JHAs and viral pathogens to control insect pests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marzieh Attarianfar
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Azam Mikani
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
36
|
Okamoto N, Fujinaga D, Yamanaka N. Steroid hormone signaling: What we can learn from insect models. VITAMINS AND HORMONES 2023; 123:525-554. [PMID: 37717997 DOI: 10.1016/bs.vh.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ecdysteroids are a group of steroid hormones in arthropods with pleiotropic functions throughout their life history. Ecdysteroid research in insects has made a significant contribution to our current understanding of steroid hormone signaling in metazoans, but how far can we extrapolate our findings in insects to other systems, such as mammals? In this chapter, we compare steroid hormone signaling in insects and mammals from multiple perspectives and discuss similarities and differences between the two lineages. We also highlight a few understudied areas and remaining questions of steroid hormone biology in metazoans and propose potential future research directions.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daiki Fujinaga
- Department of Entomology, University of California, Riverside, CA, United States
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, CA, United States.
| |
Collapse
|
37
|
Attarianfar M, Mikani A, Mehrabadi M. The endocrine disruptor, fenoxycarb modulates gut immunity and gut bacteria titer in the cotton bollworm, Helicoverpa armigera. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109507. [PMID: 36368508 DOI: 10.1016/j.cbpc.2022.109507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The endocrine system modulates several physiological functions such as development and metamorphosis in insects. The normal growth and development of insects is interfered with insect growth regulators (IGRs), which act as mimics of insect hormones like juvenile hormone (JH) and ecdysone hormone. The effects of JH and its analogs on systemic immunity have been identified. However the effect of these compounds on local gut immunity is largely unknown. In this study, the effects of JH analog fenoxycarb on the local gut immunity of Helicoverpa armigera, gut bacteria population, and their role in the pathogenicity of Bacillus thuringiensis (Bt) were analyzed. The results showed that feeding fenoxycarb causes a decrease in the transcription level of IMD (Relish and PGPR-LC), ROS (DUOX and SOD) related genes and antimicrobial peptides (AMPs), followed by an overpopulation of gut bacteria. The fenoxycarb-treated larvae showed higher susceptibility to Bt compared to the control larvae. Overall, these findings collectively suggest that JH analog affects local gut immunity and gut bacteria titer.
Collapse
Affiliation(s)
- Marzieh Attarianfar
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran. https://twitter.com/@attarianfar
| | - Azam Mikani
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran.
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran.
| |
Collapse
|
38
|
Yu J, Wang H, Chen W, Song H, Wang Y, Liu Z, Xu B. 20-Hydroxyecdysone and Receptor Interplay in the Regulation of Hemolymph Glucose Level in Honeybee ( Apis mellifera) Larvae. Metabolites 2023; 13:metabo13010080. [PMID: 36677005 PMCID: PMC9865031 DOI: 10.3390/metabo13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
The hormone 20-hydroxyecdysone (20E) and the ecdysone receptors (ECR and USP) play critical roles in the growth and metabolism of insects, including honeybees. In this study, we investigated the effect of 20E on the growth and development of honeybee larvae by rearing them in vitro and found reduced food consumption and small-sized pupae with increasing levels of 20E. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based analysis of widely targeted metabolomics was used to examine the changes in the metabolites after an exogenous 20E application to honeybee larvae and the underlying mechanisms. A total of 374 different metabolites were detected between the control group and the 20E treatment group, covering 12 subclasses. The most significant changes occurred in 7-day-old larvae, where some monosaccharides, such as D-Glucose and UDP-galactose, were significantly upregulated. In addition, some metabolic pathways, such as glycolysis/gluconeogenesis and galactose metabolism, were affected by the 20E treatment, suggesting that the 20E treatment disrupts the metabolic homeostasis of honeybee larvae hemolymph and that the response of honeybee larvae to the 20E treatment is dynamic and contains many complex pathways. Many genes involved in carbohydrate metabolism, including genes of the glycolysis and glycogen synthesis pathways, were downregulated during molting and pupation after the 20E treatment. In contrast, the expression levels of the genes related to gluconeogenesis and glycogenolysis were significantly increased, which directly or indirectly upregulated glucose levels in the hemolymph, whereas RNA interference with the 20E receptor EcR-USP had an opposite effect to that of the 20E treatment. Taken together, 20E plays a critical role in the changes in carbohydrate metabolism during metamorphosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baohua Xu
- Correspondence: ; Tel.: +86-13805488930
| |
Collapse
|
39
|
Zhang L, Tang X, Wang Z, Tang F. The transcriptomic response of Hyphantria cunea (Drury) to the infection of Serratia marcescens Bizio based on full-length SMRT transcriptome sequencing. Front Cell Infect Microbiol 2023; 13:1093432. [PMID: 36896191 PMCID: PMC9989771 DOI: 10.3389/fcimb.2023.1093432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Hyphantria cunea (Drury) is a globally important forest pest. We found that the Serratia marcescens Bizio strain SM1 had insecticidal activity against H. cunea, but the transcriptomic response of H. cunea to SM1 were not clear. Therefore, we performed full-length sequencing of the transcriptomes of H. cunea larvae infected with SM1 and the control group. A total of 1,183 differentially expressed genes (DEGs) were identified by comparing the group infected with SM1 and the control group, including 554 downregulated genes and 629 upregulated genes. We found many downregulated genes in metabolic pathways. Furthermore, some of these downregulated genes were involved in cellular immunity, melanization, and detoxification enzymes, which showed that SM1 weakened H. cunea immunity. In addition, genes in the juvenile hormone synthesis pathway were upregulated, which was detrimental to the survival of H. cunea. This research analyzed the transcriptomic response of H. cunea to SM1 by high-throughput full-length transcriptome sequencing. The results provide useful information to explore the relationship between S. marcescens and H. cunea, and theoretical support for the application of S. marcescens and the control of H. cunea in the future.
Collapse
Affiliation(s)
- Ling Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xinyi Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
- *Correspondence: Fang Tang,
| |
Collapse
|
40
|
Lu MY, Chtarbanova S. The role of micro RNAs (miRNAs) in the regulation of Drosophila melanogaster's innate immunity. Fly (Austin) 2022; 16:382-396. [PMID: 36412256 PMCID: PMC9683055 DOI: 10.1080/19336934.2022.2149204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs ~19-22 nt long which post-transcriptionally regulate gene expression. Their ability to exhibit dynamic expression patterns coupled with their wide variety of targets allows miRNAs to regulate many processes, including the innate immune response of Drosophila melanogaster. Recent studies have identified miRNAs in Drosophila which are differentially expressed during infection with different pathogens as well as miRNAs that may affect immune signalling when differentially expressed. This review provides an overview of miRNAswhich have been identified to play a role in the immune response of Drosophila through targeting of the Toll and IMD signalling pathways and other immune processes. It will also explore the role of miRNAs in fine-tuning the immune response in Drosophila and highlight current gaps in knowledge regarding the role of miRNAs in immunity and areas for further research.
Collapse
Affiliation(s)
- Max Yang Lu
- Department of Biological Sciences, the University of Alabama, Tuscaloosa, AL, USA
| | - Stanislava Chtarbanova
- Department of Biological Sciences, the University of Alabama, Tuscaloosa, AL, USA,Center for Convergent Bioscience & Medicine, University of Alabama, Tuscaloosa, AL, USA,Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, USA,CONTACT Stanislava Chtarbanova Department of Biological Sciences, the University of Alabama, 300, Hackberry Ln, Tuscaloosa, AL-35487, USA
| |
Collapse
|
41
|
Lubawy J, Hornik J. The effect of B-type allatostatin neuropeptides on crosstalk between the insect immune response and cold tolerance. Sci Rep 2022; 12:20697. [PMID: 36450889 PMCID: PMC9712581 DOI: 10.1038/s41598-022-25235-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Insects are the largest group of arthropod phyla and are capable of surviving in a variety of environments. One of the most important factors in enabling them to do so is their resistance to temperature stress, i.e., cold tolerance. The neuroendocrine system, together with the immune system, cooperates to regulate a number of physiological processes that are essential for the stability of the organism in stressful conditions. However, to date, no one has studied the effect of insect myoinhibitory peptides (MIPs) on cold stress tolerance and immune system activity. Here, we investigated the effect of Tenmo-MIP 5 (10-6 M), cold stress (- 5 °C) and a combination of both on the immune response of Tenebrio molitor. All three treatments caused upregulation of immune-related genes (antimicrobial peptides and Toll) and increased phagocytosis activity (by approximately 10%). However, phenoloxidase activity and mortality were increased only after peptide injection and the combination of both treatments. The peptide injection combined with cold stress caused 40% higher mortality than that in the control. Together, our results show the links between cold stress, MIPs activity and the immune response, and to our knowledge, this is the first report showing the effect of MIP on the insect immune system.
Collapse
Affiliation(s)
- Jan Lubawy
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Justyna Hornik
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
42
|
State and physiology behind personality in arthropods: a review. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn the endeavour to understand the causes and consequences of the variation in animal personality, a wide range of studies were carried out, utilising various aspects to make sense of this biological phenomenon. One such aspect integrated the study of physiological traits, investigating hypothesised physiological correlates of personality. Although many of such studies were carried out on vertebrates (predominantly on birds and mammals), studies using arthropods (mainly insects) as model organisms were also at the forefront of this area of research. In order to review the current state of knowledge on the relationship between personality and the most frequently studied physiological parameters in arthropods, we searched for scientific articles that investigated this relationship. In our review, we only included papers utilising a repeated-measures methodology to be conceptually and formally concordant with the study of animal personality. Based on our literature survey, metabolic rate, thermal physiology, immunophysiology, and endocrine regulation, as well as exogenous agents (such as toxins) were often identified as significant affectors shaping animal personality in arthropods. We found only weak support for state-dependence of personality when the state is approximated by singular elements (or effectors) of condition. We conclude that a more comprehensive integration of physiological parameters with condition may be required for a better understanding of state’s importance in animal personality. Also, a notable knowledge gap persists in arthropods regarding the association between metabolic rate and hormonal regulation, and their combined effects on personality. We discuss the findings published on the physiological correlates of animal personality in arthropods with the aim to summarise current knowledge, putting it into the context of current theory on the origin of animal personality.
Collapse
|
43
|
Urbański A, Johnston P, Bittermann E, Keshavarz M, Paris V, Walkowiak-Nowicka K, Konopińska N, Marciniak P, Rolff J. Tachykinin-related peptides modulate immune-gene expression in the mealworm beetle Tenebrio molitor L. Sci Rep 2022; 12:17277. [PMID: 36241888 PMCID: PMC9568666 DOI: 10.1038/s41598-022-21605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Tachykinins (TKs) are a group of conserved neuropeptides. In insects, tachykinin-related peptides (TRPs) are important modulators of several functions such as nociception and lipid metabolism. Recently, it has become clear that TRPs also play a role in regulating the insect immune system. Here, we report a transcriptomic analysis of changes in the expression levels of immune-related genes in the storage pest Tenebrio molitor after treatment with Tenmo-TRP-7. We tested two concentrations (10-8 and 10-6 M) at two time points, 6 and 24 h post-injection. We found significant changes in the transcript levels of a wide spectrum of immune-related genes. Some changes were observed 6 h after the injection of Tenmo-TRP-7, especially in relation to its putative anti-apoptotic action. Interestingly, 24 h after the injection of 10-8 M Tenmo-TRP-7, most changes were related to the regulation of the cellular response. Applying 10-6 M Tenmo-TRP-7 resulted in the downregulation of genes associated with humoral responses. Injecting Tenmo-TRP-7 did not affect beetle survival but led to a reduction in haemolymph lysozyme-like antibacterial activity, consistent with the transcriptomic data. The results confirmed the immunomodulatory role of TRP and shed new light on the functional homology between TRPs and TKs.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland ,grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Paul Johnston
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany ,grid.419247.d0000 0001 2108 8097Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Elisa Bittermann
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Maryam Keshavarz
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Véronique Paris
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany ,grid.1008.90000 0001 2179 088XBio 21 Institute, University of Melbourne, Parkville, VIC 3052 Australia
| | - Karolina Walkowiak-Nowicka
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Konopińska
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Marciniak
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jens Rolff
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
44
|
Merleau LA, Larrigaldie I, Bousquet O, Devers S, Keller M, Lécureuil C, Meunier J. Exposure to pyriproxyfen (juvenile hormone agonist) does not alter maternal care and reproduction in the European earwig. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72729-72746. [PMID: 35610459 DOI: 10.1007/s11356-022-20970-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Sublethal exposure to pesticides can alter the survival and reproduction of a wide range of non-target organisms. However, it remains unclear whether this exposure can alter behaviours that are often essential for long-term population dynamics and maintenance, such as parental care. In this study, we tested the effect of pyriproxyfen exposure (an insect growth regulator) on maternal care in the European earwig, an insect that is both used in pest control in pip-fruit orchards and considered a pest in stone fruit orchards. We exposed 424 females at doses either 10 times lower, equivalent or 10 times higher than normal application rates in French orchards. As maternal care can change over the weeks of family life, we exposed the earwig mothers at five different days before and after egg hatching. We then measured the expression of ten forms of maternal care towards eggs and juveniles, six non-caring behaviours, eggs and juvenile development, metabolic reserves in mothers at egg hatching and females' production of a terminal clutch. First, our results revealed that the three tested doses of pyriproxyfen were non-lethal and confirmed that maternal care decreased throughout both pre- and post-hatching family life. However, we did not detect any effect of pyriproxyfen on maternal care and non-care behaviours, eggs and juvenile development, quantities of lipids, proteins and glycogen in mothers at egg hatching, and on the production of a future clutch. Overall, these findings suggest that the maximal doses of pyriproxyfen authorized in French orchards is likely to have limited effects on the short- and long-term maintenance of populations of the European earwig and raises fundamental questions about the nature of the link between juvenile hormone and parental care in insects.
Collapse
Affiliation(s)
- Leslie-Anne Merleau
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Izïa Larrigaldie
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Océane Bousquet
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Séverine Devers
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Matthieu Keller
- Laboratoire de Physiologie de la Reproduction & des Comportements, UMR 7247 INRAE/CNRS/Université de Tours/IFCE, Nouzilly, France
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France.
| |
Collapse
|
45
|
Jugder BE, Batista JH, Gibson JA, Cunningham PM, Asara JM, Watnick PI. Vibrio cholerae high cell density quorum sensing activates the host intestinal innate immune response. Cell Rep 2022; 40:111368. [PMID: 36130487 PMCID: PMC9534793 DOI: 10.1016/j.celrep.2022.111368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/17/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Quorum sensing fundamentally alters the interaction of Vibrio cholerae with aquatic environments, environmental hosts, and the human intestine. At high cell density, the quorum-sensing regulator HapR represses not only expression of cholera toxin and the toxin co-regulated pilus, virulence factors essential in human infection, but also synthesis of the Vibrio polysaccharide (VPS) exopolysaccharide-based matrix required for abiotic and biotic surface attachment. Here, we describe a feature of V. cholerae quorum sensing that shifts the host-pathogen interaction toward commensalism. By repressing pathogen consumptive anabolic metabolism and, in particular, tryptophan uptake, V. cholerae HapR stimulates host intestinal serotonin production. This, in turn, activates host intestinal innate immune signaling to promote host survival.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Juliana H Batista
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Jacob A Gibson
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Biological and Biomedical Sciences Program, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Paul M Cunningham
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - John M Asara
- Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Blackfan Circle, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA.
| |
Collapse
|
46
|
Phurealipids, produced by the entomopathogenic bacteria, Photorhabdus, mimic juvenile hormone to suppress insect immunity and immature development. J Invertebr Pathol 2022; 193:107799. [PMID: 35850258 DOI: 10.1016/j.jip.2022.107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022]
Abstract
Phurealipids (Photorhabdus urea lipids) are synthesized from Photorhabdus bacteria that are symbiotic to entomopathogenic nematodes. Their chemical structures are similar to that of juvenile hormone (JH) and have been suspected to mimic JH signaling in immunity and the development of insects. This study investigated the physiological roles of phurealipids with respect to their contribution to bacterial pathogenicity using four natural (HB13, HB69, HB416, and HB421) and one derivative (HB27) compound. First, phurealipids like JH suppressed insect immune responses. Overall, phurealipids showed JH like immunosuppressive behavior in a lepidopteran insect Spodoptera exigua larvae. More specifically, phurealipids significantly suppressed the hemocyte spreading behavior which is a key immune response upon immune challenge. Interestingly, the methyl urea derivatives (HB13, HB27, and HB69) were more potent than the unmethylated forms (HB416 and HB421). The inhibitory activity of phurealipids prevented the cellular immune response measured by hemocytic nodule formation in response to the bacterial challenge. Phurealipids also suppressed the expression of cecropin and gallerimycin, which are two highly inducible antimicrobial peptides, in S. exigua upon immune challenge. The immunosuppressive activity of the phurealipids significantly enhanced the bacterial pathogenicity of Bacillus thuringiensis against S. exigua. Second, phurealipids like JH prevented insect metamorphosis. Especially, the methylated urea derivatives of the phurealipids showed the JH-like function by inducing the expression of S. exigua Kr-h1, a transcriptional factor. At the pupal stage, exhibiting the lowest expression of Kr-h1, phurealipid treatments elevated the expression level of Kr-h1 and delayed the pupa-to-adult metamorphosis. These results suggest that phurealipids play crucial roles in Photorhabdus pathogenicity by suppressing host immune defenses and delaying host metamorphosis.
Collapse
|
47
|
Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022; 13:905370. [PMID: 35911716 PMCID: PMC9336466 DOI: 10.3389/fimmu.2022.905370] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune response provides the first line of defense against invading pathogens, and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster employs multiple innate immune reactions to resist infection. First, epithelial tissues function as physical barriers to prevent pathogen invasion. In addition, macrophage-like plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a powerful in vivo model for studying the mechanism of innate immunity and host-pathogen interactions because Drosophila and higher organisms share conserved signaling pathways and factors. Moreover, the ease with which Drosophila genetic and physiological characteristics can be manipulated prevents interference by adaptive immunity. In this review, we discuss the signaling pathways activated in Drosophila innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as well as relevant regulatory networks. We also review the mechanisms by which different tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the brain coordinate innate immune responses. Furthermore, the latest studies in this field are outlined in this review. In summary, understanding the mechanism underlying innate immunity orchestration in Drosophila will help us better study human innate immunity-related diseases.
Collapse
|
48
|
Gordon KE, Wolfner MF, Lazzaro BP. A single mating is sufficient to induce persistent reduction of immune defense in mated female Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 140:104414. [PMID: 35728669 PMCID: PMC10162487 DOI: 10.1016/j.jinsphys.2022.104414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 05/07/2023]
Abstract
In many species, female reproductive investment comes at a cost to immunity and resistance to infection. Mated Drosophila melanogaster females are more susceptible to bacterial infection than unmated females. Transfer of the male seminal fluid protein Sex Peptide reduces female post-mating immune defense. Sex Peptide is known to cause both short- and long-term changes to female physiology and behavior. While previous studies showed that females were less resistant to bacterial infection as soon as 2.5 h and as long as 26.5 h after mating, it is unknown whether this is a binary switch from mated to unmated state or whether females can recover to unmated levels of immunity. It is additionally unknown whether repeated mating causes progressive reduction in defense capacity. We compared the immune defense of mated females when infected at 2, 4, 7, or 10 days after mating to that of unmated females and saw no recovery of immune capacity regardless of the length of time between mating and infection. Because D. melanogaster females can mate multiply, we additionally tested whether a second mating, and therefore a second transfer of seminal fluids, caused deeper reduction in immune performance. We found that females mated either once or twice before infection survived at equal proportions, both with significantly lower probability than unmated females. We conclude that a single mating event is sufficient to persistently suppress the female immune system. Interestingly, we observed that induced levels of expression of genes encoding antimicrobial peptides (AMPs) decreased with age in both experiments, partially obscuring the effects of mating. Collectively, the data indicate that being reproductively active versus reproductively inactive are alternative binary states with respect to female D. melanogaster immunity. The establishment of a suppressed immune status in reproductively active females can inform our understanding of the regulation of immune defense and the mechanisms of physiological trade-offs.
Collapse
Affiliation(s)
- Kathleen E Gordon
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | - Mariana F Wolfner
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Brian P Lazzaro
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
49
|
Liu WT, Chen CC, Ji DD, Tu WC. The cecropin-prophenoloxidase regulatory mechanism is a cross-species physiological function in mosquitoes. iScience 2022; 25:104478. [PMID: 35712072 PMCID: PMC9194137 DOI: 10.1016/j.isci.2022.104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022] Open
Abstract
This study's aim was to investigate whether the cecropin-prophenoloxidase regulatory mechanism is a cross-species physiological function among mosquitoes. BLAST and phylogenetic analysis revealed that three mosquito cecropin Bs, namely Aedes albopictus cecropin B (Aalcec B), Armigeres subalbatus cecropin B2 (Ascec B2), and Culex quinquefasciatus cecropin B1 (Cqcec B1), play crucial roles in cuticle formation during pupal development via the regulation of prophenoloxidase 3 (PPO 3). The effects of cecropin B knockdown were rescued in a cross-species manner by injecting synthetic cecropin B peptide into pupae. Further investigations showed that these three cecropin B peptides bind to TTGG(A/C)A motifs within each of the PPO 3 DNA fragments obtained from these three mosquitoes. These results suggest that Aalcec B, Ascec B2, and Cqcec B1 each play an important role as a transcription factor in cuticle formation and that similar cecropin-prophenoloxidase regulatory mechanisms exist in multiple mosquito species. Cecropin B is able to regulate PPO 3 expression in the pupae Cecropin B binds to TTGG(A/C)A motifs within the PPO 3 DNA The knockdown of cecropin B was rescued by sequence-similar cecropin B peptides The cecropin B-prophenoloxidase 3 regulatory mechanism is conserved in mosquitoes
Collapse
|
50
|
Ouali R, Vieira LR, Salmon D, Bousbata S. Rhodnius prolixus Hemolymph Immuno-Physiology: Deciphering the Systemic Immune Response Triggered by Trypanosoma cruzi Establishment in the Vector Using Quantitative Proteomics. Cells 2022; 11:1449. [PMID: 35563760 PMCID: PMC9104911 DOI: 10.3390/cells11091449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Understanding the development of Trypanosoma cruzi within the triatomine vector at the molecular level should provide novel targets for interrupting parasitic life cycle and affect vectorial competence. The aim of the current study is to provide new insights into triatomines immunology through the characterization of the hemolymph proteome of Rhodnius prolixus, a major Chagas disease vector, in order to gain an overview of its immune physiology. Surprisingly, proteomics investigation of the immunomodulation of T. cruzi-infected blood reveals that the parasite triggers an early systemic response in the hemolymph. The analysis of the expression profiles of hemolymph proteins from 6 h to 24 h allowed the identification of a broad range of immune proteins expressed already in the early hours post-blood-feeding regardless of the presence of the parasite, ready to mount a rapid response exemplified by the significant phenol oxidase activation. Nevertheless, we have also observed a remarkable induction of the immune response triggered by an rpPGRP-LC and the overexpression of defensins 6 h post-T. cruzi infection. Moreover, we have identified novel proteins with immune properties such as the putative c1q-like protein and the immunoglobulin I-set domain-containing protein, which have never been described in triatomines and could play a role in T. cruzi recognition. Twelve proteins with unknown function are modulated by the presence of T. cruzi in the hemolymph. Determining the function of these parasite-induced proteins represents an exciting challenge for increasing our knowledge about the diversity of the immune response from the universal one studied in holometabolous insects. This will provide us with clear answers for misunderstood mechanisms in host-parasite interaction, leading to the development of new generation strategies to control vector populations and pathogen transmission.
Collapse
Affiliation(s)
- Radouane Ouali
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Sabrina Bousbata
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|