1
|
Lammers AR, Stakes SA. Kinetics of Symmetrical Versus Asymmetrical In-Phase Gaits During Arboreal Locomotion. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:159-171. [PMID: 39469840 PMCID: PMC11788878 DOI: 10.1002/jez.2878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Quadrupedal animals traveling on arboreal supports change aspects of locomotion to avoid slipping and falls. This study compares locomotor biomechanics in two small mammals: first, the gray short-tailed opossum (Monodelphis domestica) predominantly trots, which is a symmetrical gait. The second species, the Siberian chipmunk (Tamias sibiricus), primarily bounds or half-bounds. Trotting and bounding differ fundamentally in three aspects: location and timing of hand and foot placement; in the way that the trunk bends (trotting, mediolateral bending; bounding, flexion, and extension); and in the dynamics of the center of mass. Both species ran on a flat track and a 2 cm diameter cylindrical track, instrumented with a force plate or pole. For bounding chipmunks, the force pole was modified to measure force only on the right side. We measured speed, duty factor, and force, and calculated vertical, braking, propulsive, and net mediolateral impulses. Vertical and fore-aft impulses were different between trotting opossums and bounding chipmunks, but between trackway types, these impulses were similar within each species. The modifications used by each species to travel on arboreal supports were similar, except in one important respect. Net mediolateral impulse in opossums changed from laterally directed on the flat trackway to medial on the arboreal. But in chipmunks, these impulses on the flat track were medially-directed, and on the arboreal track, the amount of variability was substantially greater. We conclude that chipmunks-and perhaps any bounding animal-are less consistent from stride to stride in their locomotion. This inconsistency requires constant medial and lateral impulses to correct their trajectory when traveling on arboreal surfaces.
Collapse
Affiliation(s)
- Andrew R. Lammers
- Department of Health Sciences and Human PerformanceCleveland State UniversityClevelandOhioUSA
| | - Sarah A. Stakes
- School of Health SciencesCleveland State UniversityClevelandOhioUSA
| |
Collapse
|
2
|
Granatosky MC, Dickinson E, Young MW, Lemelin P. A coati conundrum: how variation in levels of arboreality influences gait mechanics among three musteloid species. J Exp Biol 2024; 227:jeb247630. [PMID: 39318348 DOI: 10.1242/jeb.247630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
The gait characteristics associated with arboreal locomotion have been frequently discussed in the context of primate evolution, wherein they present as a trio of distinctive features: a diagonal-sequence, diagonal-couplet gait pattern; a protracted arm at forelimb touchdown; and a hindlimb-biased weight support pattern. The same locomotor characteristics have been found in the woolly opossum, a fine-branch arborealist similar in ecology to some small-bodied primates. To further our understanding of the functional link between arboreality and primate-like locomotion, we present comparative data collected in the laboratory for three musteloid taxa. Musteloidea represents an ecologically diverse superfamily spanning numerous locomotor specializations that includes the highly arboreal kinkajou (Potos flavus), mixed arboreal/terrestrial red pandas (Ailurus fulgens) and primarily terrestrial coatis (Nasua narica). This study applies a combined kinetic and kinematic approach to compare the locomotor behaviors of these three musteloid taxa, representing varying degrees of arboreal specialization. We observed highly arboreal kinkajous to share many locomotor traits with primates. In contrast, red pandas (mixed terrestrial/arborealist) showed gait characteristics found in most non-primate mammals. Coatis, however, demonstrated a unique combination of locomotor traits, combining a lateral-sequence, lateral-couplet gait pattern typical of long-legged, highly terrestrial mammals, varying degrees of arm protraction, and a hindlimb-biased weight support pattern typical of most primates and woolly opossums. We conclude that the three gait characteristics traditionally used to describe arboreal walking in primates can occur independently from one another and not necessarily as a suite of interdependent characteristics, a phenomenon that has been reported for some primates.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Duke Lemur Center, Duke University, Durham, NC 27705, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Pierre Lemelin
- Division of Anatomy, Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2H7
| |
Collapse
|
3
|
Druelle F, Leti I, Bokika Ngawolo JC, Narat V. Vertical climbing in free-ranging bonobos: An exploratory study integrating locomotor performance and substrate compliance. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24894. [PMID: 38180148 DOI: 10.1002/ajpa.24894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVES Ecological factors and body size shape animal movement and adaptation. Large primates such as bonobos excel in navigating the demanding substrates of arboreal habitats. However, current approaches lack comprehensive assessment of climbing performance in free-ranging individuals, limiting our understanding of locomotor adaptations. This study aims to explore climbing performance in free-ranging bonobos and how substrate properties affect their behavior. METHODS We collected data on the climbing performance of habituated bonobos, Pan paniscus, in the Bolobo Territory, Democratic Republic of Congo. We analyzed 46 climbing bouts (12 ascents, 34 descents) while moving on vertical substrates of varying diameter and compliance levels. This study assessed the average speed, peak acceleration, resting postures, and transitions between climbing and other locomotor modes. RESULTS During climbing sequences and transitions, bonobos mitigate speed variations. They also exhibit regular pauses during climbing and show higher speeds during descent in contrast to their ascent. Regarding the influence of substrate properties, bonobos exhibit higher speed when ascending on thin and slightly flexible substrates, while they appear to achieve higher speeds when descending on large and stiff substrates, by using a "fire-pole slide" submode. DISCUSSION Bonobos demonstrate remarkable abilities for negotiating vertical substrates and substrate properties influence their performance. Our results support the idea that bonobos adopt a behavioral strategy that aligns with the notion of minimizing costs. Overall, the adoption of high velocities and the use of low-cost resting postures may reduce muscle fatigue. These aspects could represent important targets of selection to ensure ecological efficiency in bonobos.
Collapse
Affiliation(s)
- François Druelle
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Paris, France
- Functional Morphology Laboratory, University of Antwerp, Antwerp, Belgium
| | - Innocent Leti
- NGO Mbou-Mon-Tour, Kinshasa, Democratic Republic of the Congo
| | | | - Victor Narat
- Eco-Anthropologie, UMR 7206, MNHN-CNRS-Univ. Paris Cité, Paris, France
- Bonobo Eco, Saint Brice sur Vienne, Vienne, France
| |
Collapse
|
4
|
Arias AA, Azizi E. Modulation of limb mechanics in alligators moving across varying grades. J Exp Biol 2023; 226:jeb246025. [PMID: 37930362 DOI: 10.1242/jeb.246025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Graded substrates require legged animals to modulate their limb mechanics to meet locomotor demands. Previous work has elucidated strategies used by cursorial animals with upright limb posture, but it remains unclear how sprawling species such as alligators transition between grades. We measured individual limb forces and 3D kinematics as alligators walked steadily across level, 15 deg incline and 15 deg decline conditions. We compared our results with the literature to determine how limb posture alters strategies for managing the energetic variation that accompanies shifts in grade. We found that juvenile alligators maintain spatiotemporal characteristics of gait and locomotor speed while selectively modulating craniocaudal impulses (relative to level) when transitioning between grades. Alligators seem to accomplish this using a variety of kinematic strategies, but consistently sprawl both limb pairs outside of the parasagittal plane during decline walking. This latter result suggests alligators and other sprawling species may use movements outside of the parasagittal plane as an axis of variation to modulate limb mechanics when transitioning between graded substrates. We conclude that limb mechanics during graded locomotion are fairly predictable across quadrupedal species, regardless of body plan and limb posture, with hindlimbs playing a more propulsive role and forelimbs functioning to dissipate energy. Future work will elucidate how shifts in muscle properties or function underlie such shifts in limb kinematics.
Collapse
Affiliation(s)
- Adrien A Arias
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Fannin LD, Joy MS, Dominy NJ, McGraw WS, DeSilva JM. Downclimbing and the evolution of ape forelimb morphologies. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230145. [PMID: 37680499 PMCID: PMC10480693 DOI: 10.1098/rsos.230145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
The forelimbs of hominoid primates (apes) are decidedly more flexible than those of monkeys, especially at the shoulder, elbow and wrist joints. It is tempting to link the greater mobility of these joints to the functional demands of vertical climbing and below-branch suspension, but field-based kinematic studies have found few differences between chimpanzees and monkeys when comparing forelimb excursion angles during vertical ascent (upclimbing). There is, however, a strong theoretical argument for focusing instead on vertical descent (downclimbing), which motivated us to quantify the effects of climbing directionality on the forelimb kinematics of wild chimpanzees (Pan troglodytes) and sooty mangabeys (Cercocebus atys). We found that the shoulders and elbows of chimpanzees and sooty mangabeys subtended larger joint angles during bouts of downclimbing, and that the magnitude of this difference was greatest among chimpanzees. Our results cast new light on the functional importance of downclimbing, while also burnishing functional hypotheses that emphasize the role of vertical climbing during the evolution of apes, including the human lineage.
Collapse
Affiliation(s)
- Luke D. Fannin
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
- Ecology, Evolution, Environment and Society, Dartmouth College, Hanover, NH 03755, USA
| | - Mary S. Joy
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
| | - Nathaniel J. Dominy
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - W. Scott McGraw
- Department of Anthropology, The Ohio State University, Columbus, OH 43210, USA
| | - Jeremy M. DeSilva
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
- Ecology, Evolution, Environment and Society, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
6
|
Naylor ER, Kawano SM. Mudskippers modulate their locomotor kinematics when moving on deformable and inclined substrates. Integr Comp Biol 2022; 62:icac084. [PMID: 35679069 DOI: 10.1093/icb/icac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many ecological factors influence animal movement, including properties of the media that they move on or through. Animals moving in terrestrial environments encounter conditions that can be challenging for generating propulsion and maintaining stability, such as inclines and deformable substrates that can cause slipping and sinking. In response, tetrapods tend to adopt a more crouched posture and lower their center of mass on inclines and increase the surface area of contact on deformable substrates, such as sand. Many amphibious fishes encounter the same challenges when moving on land, but how these finned animals modulate their locomotion with respect to different environmental conditions and how these modifications compare with those seen within tetrapods is relatively understudied. Mudskippers (Gobiidae: Oxudercinae) are a particularly noteworthy group of amphibious fishes in this context given that they navigate a wide range of environmental conditions, from flat mud to inclined mangrove trees. They use a unique form of terrestrial locomotion called 'crutching', where their pectoral fins synchronously lift and vault the front half of the body forward before landing on their pelvic fins while the lower half of the body and tail are kept straight. However, recent work has shown that mudskippers modify some aspects of their locomotion when crutching on deformable surfaces, particularly those at an incline. For example, on inclined dry sand, mudskippers bent their bodies laterally and curled and extended their tails to potentially act as a secondary propulsor and/or anti-slip device. In order to gain a more comprehensive understanding of the functional diversity and context-dependency of mudskipper crutching, we compared their kinematics on different combinations of substrate types (solid, mud, dry sand) and inclines (0°, 10°, 20°). In addition to increasing lateral bending on deformable and inclined substrates, we found that mudskippers increased the relative contact time and contact area of their paired fins while becoming more crouched, responses comparable to those seen in tetrapods and other amphibious fishes. Mudskippers on these substrates also exhibited previously undocumented behaviors, such as extending and adpressing the distal portions of their pectoral fins more anteriorly, dorsoventrally bending their trunk, "belly-flopping" on sand, and "gripping" the mud substrate with their pectoral fin rays. Our study highlights potential compensatory mechanisms shared among vertebrates in terrestrial environments while also illustrating that locomotor flexibility and even novelty can emerge when animals are challenged with environmental variation.
Collapse
Affiliation(s)
- Emily R Naylor
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, U.S.A
| | - Sandy M Kawano
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, U.S.A
| |
Collapse
|
7
|
Schapker NM, Chadwell BA, Young JW. Robust locomotor performance of squirrel monkeys (Saimiri boliviensis) in response to simulated changes in support diameter and compliance. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:417-433. [PMID: 34985803 DOI: 10.1002/jez.2574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Arboreal environments require overcoming navigational challenges not typically encountered in other terrestrial habitats. Supports are unevenly distributed and vary in diameter, orientation, and compliance. To better understand the strategies that arboreal animals use to maintain stability in this environment, laboratory researchers must endeavor to mimic those conditions. Here, we evaluate how squirrel monkeys (Saimiri boliviensis) adjust their locomotor mechanics in response to variation in support diameter and compliance. We used high-speed cameras to film two juvenile female monkeys as they walked across poles of varying diameters (5, 2.5, and 1.25 cm). Poles were mounted on either a stiff wooden base ("stable" condition) or foam blocks ("compliant" condition). Six force transducers embedded within the pole trackway recorded substrate reaction forces during locomotion. We predicted that squirrel monkeys would walk more slowly on narrow and compliant supports and adopt more "compliant" gait mechanics, increasing stride lengths, duty factors, and an average number of limbs gripping the support, while the decreasing center of mass height, stride frequencies, and peak forces. We observed few significant adjustments to squirrel monkey locomotor kinematics in response to changes in either support diameter or compliance, and the changes we did observe were often tempered by interactions with locomotor speed. These results differ from a similar study of common marmosets (i.e., Callithrix jacchus, with relatively poor grasping abilities), where variation in diameter and compliance substantially impacted gait kinematics. Squirrel monkeys' strong grasping apparatus, long and mobile tails, and other adaptations for arboreal travel likely facilitate robust locomotor performance despite substrate precarity.
Collapse
Affiliation(s)
- Nicole M Schapker
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
- Cellular and Molecular Biology Program, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Brad A Chadwell
- Department of Anatomy, Idaho College of Osteopathic Medicine (ICOM), Meridian, Idaho, USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
- Cellular and Molecular Biology Program, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
8
|
Löffler L, Wölfer J, Gavrilei F, Nyakatura JA. Computational Modeling of Gluteus Medius Muscle Moment Arm in Caviomorph Rodents Reveals Ecomorphological Specializations. Front Bioeng Biotechnol 2022; 10:806314. [PMID: 35694234 PMCID: PMC9174681 DOI: 10.3389/fbioe.2022.806314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Vertebrate musculoskeletal locomotion is realized through lever-arm systems. The instantaneous muscle moment arm (IMMA), which is expected to be under selective pressure and thus of interest for ecomorphological studies, is a key aspect of these systems. The IMMA changes with joint motion. It’s length change is technically difficult to acquire and has not been compared in a larger phylogenetic ecomorphological framework, yet. Usually, proxies such as osteological in-levers are used instead. We used 18 species of the ecologically diverse clade of caviomorph rodents to test whether its diversity is reflected in the IMMA of the hip extensor M. gluteus medius. A large IMMA is beneficial for torque generation; a small IMMA facilitates fast joint excursion. We expected large IMMAs in scansorial species, small IMMAs in fossorial species, and somewhat intermediate IMMAs in cursorial species, depending on the relative importance of acceleration and joint angular velocity. We modeled the IMMA over the entire range of possible hip extensions and applied macroevolutionary model comparison to selected joint poses. We also obtained the osteological in-lever of the M. gluteus medius to compare it to the IMMA. At little hip extension, the IMMA was largest on average in scansorial species, while the other two lifestyles were similar. We interpret this as an emphasized need for increased hip joint torque when climbing on inclines, especially in a crouched posture. Cursorial species might benefit from fast joint excursion, but their similarity with the fossorial species is difficult to interpret and could hint at ecological similarities. At larger extension angles, cursorial species displayed the second-largest IMMAs after scansorial species. The larger IMMA optimum results in powerful hip extension which coincides with forward acceleration at late stance beneficial for climbing, jumping, and escaping predators. This might be less relevant for a fossorial lifestyle. The results of the in-lever only matched the IMMA results of larger hip extension angles, suggesting that the modeling of the IMMA provides more nuanced insights into adaptations of musculoskeletal lever-arm systems than this osteological proxy.
Collapse
|
9
|
Scheidt A, Ditzel PC, Geiger SM, Wagner FC, Mülling CKW, Nyakatura JA. A therian mammal with sprawling kinematics? Gait and 3D forelimb X-ray motion analysis in tamanduas. J Exp Biol 2022; 225:275397. [PMID: 35554550 DOI: 10.1242/jeb.243625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Therian mammals are known to move their forelimbs in a parasagittal plane, retracting the mobilised scapula during stance phase. Non-cursorial therian mammals often abduct the elbow out of the shoulder-hip parasagittal plane. This is especially prominent in Tamandua (Xenarthra), which suggests they employ aspects of sprawling (e.g., lizard-like-) locomotion. Here, we test if tamanduas use sprawling forelimb kinematics, i.e., a largely immobile scapula with pronounced lateral spine bending and long-axis rotation of the humerus. We analyse high speed videos and use X-ray motion analysis of tamanduas walking and balancing on branches of varying inclinations and provide a quantitative characterization of gaits and forelimb kinematics. Tamanduas displayed lateral sequence lateral-couplets gaits on flat ground and horizontal branches, but increased diagonality on steeper in- and declines, resulting in lateral sequence diagonal-couplets gaits. This result provides further evidence for high diagonality in arboreal species, likely maximising stability in arboreal environments. Further, the results reveal a mosaic of sprawling and parasagittal kinematic characteristics. The abducted elbow results from a constantly internally rotated scapula about its long axis and a retracted humerus. Scapula retraction contributes considerably to stride length. However, lateral rotation in the pectoral region of the spine (range: 21°) is higher than reported for other therian mammals. Instead, it is similar to skinks and alligators, indicating an aspect generally associated with sprawling locomotion is characteristic for forelimb kinematics of tamanduas. Our study contributes to a growing body of evidence of highly variable non-cursorial therian mammal locomotor kinematics.
Collapse
Affiliation(s)
- Adrian Scheidt
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Paulo C Ditzel
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Sandra M Geiger
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Franziska C Wagner
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Christoph K W Mülling
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - John A Nyakatura
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
10
|
Wright MA, Sears KE, Pierce SE. Comparison of Hindlimb Muscle Architecture Properties in Small-Bodied, Generalist Mammals Suggests Similarity in Soft Tissue Anatomy. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Yuan J, Wang Z, Song Y, Dai Z. Peking geckos (Gekko swinhonis) traversing upward steps: the effect of step height on the transition from horizontal to vertical locomotion. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:421-433. [PMID: 35362821 DOI: 10.1007/s00359-022-01548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022]
Abstract
The ability to transition between surfaces (e.g., from the ground to vertical barriers, such as walls, tree trunks, or rock surfaces) is important for the Peking gecko's (Gekko swinhonis Günther 1864) survival. However, quantitative research on gecko's kinematic performance and the effect of obstacle height during transitional locomotion remains scarce. In this study, the transitional locomotion of geckos facing different obstacle heights was assessed. Remarkably, geckos demonstrated a bimodal locomotion ability, as they could climb and jump. Climbing was more common on smaller obstacles and took longer than jumping. The jumping type depended on the obstacle height: when geckos could jump onto the obstacle, the vertical velocity increased with obstacle height; however, geckos jumped from a closer position when the obstacle height exceeded this range and would get attached to the vertical surface. A stability analysis of vertical surface landing using a collision model revealed that geckos can reduce their restraint impulse by increasing the landing angle through limb extension close to the body, consequently dissipating collision energy and reducing their horizontal and vertical velocities. The findings of this study reveal the adaptations evolved by geckos to move in their environments and may have applicability in the robotics field.
Collapse
Affiliation(s)
- Jiwei Yuan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Zhouyi Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China.
| | - Yi Song
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Zhendong Dai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| |
Collapse
|
12
|
Naylor ER, Higham TE. High‐speed terrestrial substrate transitions: How a fleeing cursorial day gecko copes with compliance changes that are experienced in nature. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Emily R. Naylor
- Department of Evolution Ecology & Organismal Biology University of California Riverside CA USA
- Department of Biological Sciences The George Washington University Washington DC USA
| | - Timothy E. Higham
- Department of Evolution Ecology & Organismal Biology University of California Riverside CA USA
| |
Collapse
|
13
|
Aretz JM, Brown CE, Deban SM. Vertical locomotion in the arboreal salamander
Aneides vagrans. J Zool (1987) 2021. [DOI: 10.1111/jzo.12934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. M. Aretz
- Department of Integrative Biology, University of South Florida Tampa FL USA
| | - C. E. Brown
- Department of Integrative Biology, University of South Florida Tampa FL USA
| | - S. M. Deban
- Department of Integrative Biology, University of South Florida Tampa FL USA
| |
Collapse
|
14
|
Ramamurthy DL, Dodson HK, Krubitzer LA. Developmental plasticity of texture discrimination following early vision loss in the marsupial Monodelphis domestica. J Exp Biol 2021. [PMCID: PMC8181249 DOI: 10.1242/jeb.236646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Behavioral strategies that depend on sensory information are not immutable; rather they can be shaped by the specific sensory context in which animals develop. This behavioral plasticity depends on the remarkable capacity of the brain to reorganize in response to alterations in the sensory environment, particularly when changes in sensory input occur at an early age. To study this phenomenon, we utilize the short-tailed opossum, a marsupial that has been a valuable animal model to study developmental plasticity due to the extremely immature state of its nervous system at birth. Previous studies in opossums have demonstrated that removal of retinal inputs early in development results in profound alterations to cortical connectivity and functional organization of visual and somatosensory cortex; however, behavioral consequences of this plasticity are not well understood. We trained early blind and sighted control opossums to perform a two-alternative forced choice texture discrimination task. Whisker trimming caused an acute deficit in discrimination accuracy for both groups, indicating the use of a primarily whisker-based strategy to guide choices based on tactile cues. Mystacial whiskers were important for performance in both groups; however, genal whiskers only contributed to behavioral performance in early blind animals. Early blind opossums significantly outperformed their sighted counterparts in discrimination accuracy, with discrimination thresholds that were lower by ∼75 μm. Our results support behavioral compensation following early blindness using tactile inputs, especially the whisker system.
Collapse
Affiliation(s)
- Deepa L. Ramamurthy
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Heather K. Dodson
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Leah A. Krubitzer
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Psychology, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
15
|
Wölfer J, Aschenbach T, Michel J, Nyakatura JA. Mechanics of Arboreal Locomotion in Swinhoe’s Striped Squirrels: A Potential Model for Early Euarchontoglires. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.636039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Differences between arboreal and terrestrial supports likely pose less contrasting functional demands on the locomotor system at a small body size. For arboreal mammals of small body size, asymmetrical gaits have been demonstrated to be advantageous to increase dynamic stability. Many of the extant arboreal squirrel-related rodents display a small body size, claws on all digits, and limited prehensility, a combination that was proposed to have characterized the earliest Euarchontoglires. Thus, motion analysis of such a modern analog could shed light onto the early locomotor evolution of eurarchontoglirans. In this study, we investigated how Swinhoe’s striped squirrels (Tamiops swinhoei; Scuiromorpha) adjust their locomotion when faced with different orientations on broad supports and simulated small branches. We simultaneously recorded high-Hz videos (501 trials) and support reaction forces (451 trials) of squirrels running on two types of instrumented trackways installed at either a 45° incline (we recorded locomotion on inclines and declines) or with a horizontal orientation. The striped squirrels almost exclusively used asymmetrical gaits with a preference for full bounds. Locomotion on simulated branches did not differ substantially from locomotion on the flat trackway. We interpreted several of the quantified adjustments on declines and inclines (in comparison to horizontal supports) as mechanisms to increase stability (e.g., by minimizing toppling moments) and as adjustments to the differential loading of fore- and hind limbs on inclined supports. Our data, in addition to published comparative data and similarities to the locomotion of other small arboreal rodents, tree shrews, and primates as well as a likely small body size at the crown-group node of Euarchontoglires, render a preference for asymmetrical gaits in early members of the clade plausible. This contributes to our understanding of the ancestral lifestyle of this mammalian ‘superclade’.
Collapse
|
16
|
Wheatley R, Buettel JC, Brook BW, Johnson CN, Wilson RP. Accidents alter animal fitness landscapes. Ecol Lett 2021; 24:920-934. [PMID: 33751743 DOI: 10.1111/ele.13705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023]
Abstract
Animals alter their habitat use in response to the energetic demands of movement ('energy landscapes') and the risk of predation ('the landscape of fear'). Recent research suggests that animals also select habitats and move in ways that minimise their chance of temporarily losing control of movement and thereby suffering slips, falls, collisions or other accidents, particularly when the consequences are likely to be severe (resulting in injury or death). We propose that animals respond to the costs of an 'accident landscape' in conjunction with predation risk and energetic costs when deciding when, where, and how to move in their daily lives. We develop a novel theoretical framework describing how features of physical landscapes interact with animal size, morphology, and behaviour to affect the risk and severity of accidents, and predict how accident risk might interact with predation risk and energetic costs to dictate movement decisions across the physical landscape. Future research should focus on testing the hypotheses presented here for different real-world systems to gain insight into the relative importance of theorised effects in the field.
Collapse
Affiliation(s)
- Rebecca Wheatley
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessie C Buettel
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Barry W Brook
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Christopher N Johnson
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Rory P Wilson
- Department of Biosciences, Swansea University, Swansea, UK
| |
Collapse
|
17
|
Not all fine-branch locomotion is equal: Grasping morphology determines locomotor performance on narrow supports. J Hum Evol 2020; 142:102767. [DOI: 10.1016/j.jhevol.2020.102767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023]
|
18
|
Bone microstructure in finite element modeling: the functional role of trabeculae in the femoral head of Sciurus vulgaris. ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00456-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Higham TE, Schmitz L. A Hierarchical View of Gecko Locomotion: Photic Environment, Physiological Optics, and Locomotor Performance. Integr Comp Biol 2019; 59:443-455. [DOI: 10.1093/icb/icz092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Terrestrial animals move in complex habitats that vary over space and time. The characteristics of these habitats are not only defined by the physical environment, but also by the photic environment, even though the latter has largely been overlooked. For example, numerous studies of have examined the role of habitat structure, such as incline, perch diameter, and compliance, on running performance. However, running performance likely depends heavily on light level. Geckos are an exceptional group for analyzing the role of the photic environment on locomotion as they exhibit several independent shifts to diurnality from a nocturnal ancestor, they are visually-guided predators, and they are extremely diverse. Our initial goal is to discuss the range of photic environments that can be encountered in terrestrial habitats, such as day versus night, canopy cover in a forest, fog, and clouds. We then review the physiological optics of gecko vision with some new information about retina structures, the role of vision in motor-driven behaviors, and what is known about gecko locomotion under different light conditions, before demonstrating the effect of light levels on gecko locomotor performance. Overall, we highlight the importance of integrating sensory and motor information and establish a conceptual framework as guide for future research. Several future directions, such as understanding the role of pupil dynamics, are dependent on an integrative framework. This general framework can be extended to any motor system that relies on sensory information, and can be used to explore the impact of performance features on diversification and evolution.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Lars Schmitz
- W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, Claremont, CA 91711, USA
| |
Collapse
|
20
|
Naylor ER, Higham TE. Attachment Beyond the Adhesive System: The Contribution of Claws to Gecko Clinging and Locomotion. Integr Comp Biol 2019; 59:168-181. [DOI: 10.1093/icb/icz027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Attachment is imperative for many biological functions, such as holding position and climbing, but can be challenged by natural conditions. Adhesive toe pads and claws have evolved in multiple terrestrial lineages as important dynamic attachment mechanisms, and some clades (e.g., geckos) exhibit both features. The functional relationship of these features that comprise a complex attachment system is not well-understood, particularly within lizards (i.e., if pads and claws are redundant or multifunctional). Geckos exhibit highly adept frictional adhesive toe pads that continue to fuel biological inquiry and inspiration. However, gecko claws (the ancestral lizard clinging condition) have received little attention in terms of their functional or evolutionary significance. We assessed claw function in Thecadactylus rapicauda using assays of clinging performance and locomotor trials on different surfaces (artificial and natural) and inclines with claws intact, then partially removed. Area root mean square height (Sq), a metric of 3D surface roughness, was later quantified for all test surfaces, including acrylic, sandpaper, and two types of leaves (smooth and hairy). Maximum clinging force significantly declined on all non-acrylic surfaces after claw removal, indicating a substantial contribution to static clinging on rough and soft surfaces. With and without claws, clinging force exhibited a negative relationship with Sq. However, claw removal had relatively little impact on locomotor function on surfaces of different roughness at low inclines (≤30°). High static and dynamic safety factor estimates support these observations and demonstrate the species’ robust frictional adhesive system. However, maximum station-holding capacity significantly declined on the rough test surface after partial claw removal, showing that geckos rely on their claws to maintain purchase on rough, steeply inclined surfaces. Our results point to a context-dependent complex attachment system within geckos, in which pads dominate on relatively smooth surfaces and claws on relatively rough surfaces, but also that these features function redundantly, possibly synergistically, on surfaces that allow attachment of both the setae and the claw (as in some insects). Our study provides important novel perspectives on gecko attachment, which we hope will spur future functional studies, new evolutionary hypotheses, and biomimetic innovation, along with collaboration and integration of perspectives across disciplines.
Collapse
Affiliation(s)
- Emily R Naylor
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
21
|
Battles AC, Irschick DJ, Kolbe JJ. Do structural habitat modifications associated with urbanization influence locomotor performance and limb kinematics in Anolis lizards? Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractUrbanization significantly alters habitats for arboreal species, increasing the frequency of very smooth substrates by substituting artificial objects, such as metal poles and painted walls, for some trees. Because they experience these novel substrates more often, urban animals may use strategies to overcome challenges from substrate smoothness that animals from natural habitats do not. We assessed locomotor performance and two-dimensional hindlimb kinematics of two species of Anolis lizards (Anolis cristatellus and Anolis sagrei) from both urban and natural habitats in Miami, Florida. We ran lizards on six racetracks, crossing three substrates of increasing smoothness (rough bark, concrete blocks, and smooth, unpainted wood) with two inclinations (37° and vertical). We found that on vertical tracks with smooth substrates, lizards ran slower, took shorter strides and exhibited more contracted limb postures at the end of their stance than when running on the inclined track. Urban lizards, which are likely to be exposed more often to smooth substrates, did not adjust their movement to increase performance relative to lizards from natural habitats. This result, and the similarity of kinematic strategies between the two species, suggests the locomotor responses of lizards to substrate properties are highly conserved, which may be a mitigating factor that dampens or obviates the effects of natural selection on locomotor behaviour.
Collapse
Affiliation(s)
- Andrew C Battles
- University of Rhode Island, Biological Sciences, Kingston, RI, USA
| | - Duncan J Irschick
- University of Massachusetts Amherst, Department of Biology, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Jason J Kolbe
- University of Rhode Island, Biological Sciences, Kingston, RI, USA
| |
Collapse
|
22
|
Miller CE, Johnson LE, Pinkard H, Lemelin P, Schmitt D. Limb phase flexibility in walking: a test case in the squirrel monkey ( Saimiri sciureus). Front Zool 2019; 16:5. [PMID: 30820237 PMCID: PMC6380004 DOI: 10.1186/s12983-019-0299-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/10/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Previous analyses of factors influencing footfall timings and gait selection in quadrupeds have focused on the implications for energetic cost or gait mechanics separately. Here we present a model for symmetrical walking gaits in quadrupedal mammals that combines both factors, and aims to predict the substrate contexts in which animals will select certain ranges of footfall timings that (1) minimize energetic cost, (2) minimize rolling and pitching moments, or (3) balance the two. We hypothesize that energy recovery will be a priority on all surfaces, and will be the dominant factor determining footfall timings on flat, ground-like surfaces. The ability to resist pitch and roll, however, will play a larger role in determining footfall choice on narrower and more complex branch-like substrates. As a preliminary test of the expectations of the model, we collected sample data on footfall timings in a primate with relatively high flexibility in footfall timings - the squirrel monkey (Saimiri sciureus) - walking on a flat surface, straight pole, and a pole with laterally-projecting branches to simulate simplified ground and branch substrates. We compare limb phase values on these supports to the expectations of the model. RESULTS As predicted, walking steps on the flat surface tended towards limb phase values that promote energy exchange. Both pole substrates induced limb phase values predicted to favor reduced pitching and rolling moments. CONCLUSIONS These data provide novel insight into the ways in which animals may choose to adjust their behavior in response to movement on flat versus complex substrates and the competing selective factors that influence footfall timing in mammals. These data further suggest a pathway for future investigations using this perspective.
Collapse
Affiliation(s)
| | | | - Henry Pinkard
- Center for Computational Biology, University of California, Berkeley, California USA
| | - Pierre Lemelin
- Division of Anatomy, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta Canada
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina USA
| |
Collapse
|
23
|
Clemente CJ, Dick TJM, Wheatley R, Gaschk J, Nasir AFAA, Cameron SF, Wilson RS. Moving in complex environments: a biomechanical analysis of locomotion on inclined and narrow substrates. J Exp Biol 2019; 222:jeb.189654. [DOI: 10.1242/jeb.189654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/14/2019] [Indexed: 11/20/2022]
Abstract
Characterisation of an organism's performance in different habitats provides insight into the conditions that allow it to survive and reproduce. In recent years, Northern quolls (Dasyurus hallucatus)—a medium-sized semi-arboreal marsupial native to northern Australia—have undergone significant population declines within open forest, woodland and riparian habitats, but less so in rocky areas. To help understand this decline, we quantified the biomechanical performance of wild Northern quolls as they ran up inclined narrow (13 mm pole) and inclined wide (90 mm platform) substrates. We predicted that quolls may possess biomechanical adaptations to increase stability on narrow surfaces, which are more common in rocky habitats. Our results display that quolls have some biomechanical characteristics consistent with a stability advantage on narrow surfaces. This includes the coupled use of limb pairs, as indicated via a decrease in footfall time, and an ability to produce corrective torques to counteract the toppling moments commonly encountered during gait on narrow surfaces. However, speed was constrained on narrow surfaces, and quolls did not adopt diagonal sequence gaits unlike true arboreal specialists such as primates. In comparison with key predators, such as cats and dogs, Northern quolls appear inferior in terrestrial environments but have a stability advantage at higher speeds on narrow supports. This may partially explain the heterogenous declines in Northern quoll populations among various habitats on mainland Australia.
Collapse
Affiliation(s)
- Christofer J. Clemente
- School of Science and Engineering, University of the Sunshine Coast, QLD, Australia
- School of Biological Sciences, University of Queensland, QLD, Australia
| | - Taylor J. M. Dick
- School of Biomedical Sciences, University of Queensland, QLD, Australia
| | - Rebecca Wheatley
- School of Biological Sciences, University of Queensland, QLD, Australia
| | - Joshua Gaschk
- School of Science and Engineering, University of the Sunshine Coast, QLD, Australia
| | | | - Skye F. Cameron
- School of Biological Sciences, University of Queensland, QLD, Australia
| | - Robbie S. Wilson
- School of Biological Sciences, University of Queensland, QLD, Australia
| |
Collapse
|
24
|
Motion analysis of non-model organisms using a hierarchical model: Influence of setup enclosure dimensions on gait parameters of Swinhoe's striped squirrels as a test case. ZOOLOGY 2018; 129:35-44. [PMID: 30170746 DOI: 10.1016/j.zool.2018.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 11/23/2022]
Abstract
In in-vivo motion analyses, data from a limited number of subjects and trials is used as proxy for locomotion properties of entire populations, yet the inherent hierarchy of the individual and population level is usually not accounted for. Despite the increasing availability of hierarchical model frameworks for statistical analyses, they have not been applied extensively to comparative motion analysis. As a case study for the use of hierarchical models, we analyzed locomotor parameters of four Swinhoe's striped squirrels. The small-bodied arboreal mammals exhibit brief bouts of rapid asymmetric gaits. Spatio-temporal parameters on runways with experimentally varied dimensions of the setup enclosure were compared to test for their potentially confounding effects. We applied principal component analysis to evaluate changes to the overall locomotor pattern. A common, non-hierarchical, pooled statistical analysis of the data revealed significant differences in some of the parameters depending on enclosure dimensions. In contrast, we used a hierarchical Bayesian generalized linear model (GLM) that considers subject specific differences and population effects to compare the effect of enclosure dimensions on the measured parameters and the principal components. None of the population effects were confirmed by the hierarchical GLM. The confounding effect of a single subject that deviates in its locomotor behavior is potentially bigger than the influence of the experimental variation in enclosure dimensions. Our findings justify the common practice of researchers to intuitively select an enclosure with dimensions assumed as "non-constraining". Hierarchical models can easily be designed to cope with limited sample size and bias introduced by deviating behavior of individuals. When limited data is available-a typical restriction of in-vivo motion analyses of non-model organisms-density distributions of the Bayesian GLM used here remain reliable and the hierarchical structure of the model optimally exploits all available information. We provide code to be adjusted to other research questions.
Collapse
|
25
|
Hanna JB, Granatosky MC, Rana P, Schmitt D. The evolution of vertical climbing in primates: evidence from reaction forces. J Exp Biol 2017; 220:3039-3052. [PMID: 28620013 DOI: 10.1242/jeb.157628] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/09/2017] [Indexed: 11/20/2022]
Abstract
Vertical climbing is an essential behavior for arboreal animals, yet limb mechanics during climbing are poorly understood and rarely compared with those observed during horizontal walking. Primates commonly engage in both arboreal walking and vertical climbing, and this makes them an ideal taxa in which to compare these locomotor forms. Additionally, primates exhibit unusual limb mechanics compared with most other quadrupeds, with weight distribution biased towards the hindlimbs, a pattern that is argued to have evolved in response to the challenges of arboreal walking. Here we test an alternative hypothesis that functional differentiation between the limbs evolved initially as a response to climbing. Eight primate species were recorded locomoting on instrumented vertical and horizontal simulated arboreal runways. Forces along the axis of, and normal to, the support were recorded. During walking, all primates displayed forelimbs that were net braking, and hindlimbs that were net propulsive. In contrast, both limbs served a propulsive role during climbing. In all species, except the lorisids, the hindlimbs produced greater propulsive forces than the forelimbs during climbing. During climbing, the hindlimbs tends to support compressive loads, while the forelimb forces tend to be primarily tensile. This functional disparity appears to be body-size dependent. The tensile loading of the forelimbs versus the compressive loading of the hindlimbs observed during climbing may have important evolutionary implications for primates, and it may be the case that hindlimb-biased weight support exhibited during quadrupedal walking in primates may be derived from their basal condition of climbing thin branches.
Collapse
Affiliation(s)
- Jandy B Hanna
- West Virginia School of Osteopathic Medicine, Biomedical Sciences, Lewisburg, WV 24901, USA
| | - Michael C Granatosky
- Duke University, Evolutionary Anthropology, Durham, NC 27708, USA
- University of Chicago, Organismal Biology and Anatomy, Chicago, IL 60637, USA
| | - Pooja Rana
- West Virginia School of Osteopathic Medicine, Biomedical Sciences, Lewisburg, WV 24901, USA
| | - Daniel Schmitt
- Duke University, Evolutionary Anthropology, Durham, NC 27708, USA
| |
Collapse
|
26
|
Karantanis N, Rychlik L, Herrel A, Youlatos D. Arboreality in acacia rats (
Thallomys paedulcus
; Rodentia, Muridae): gaits and gait metrics. J Zool (1987) 2017. [DOI: 10.1111/jzo.12473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N.‐E. Karantanis
- Department of Zoology School of Biology Aristotle University of Thessaloniki Thessaloniki Greece
| | - L. Rychlik
- Department of Systematic Zoology Institute of Environmental Biology Faculty of Biology Adam Mickiewicz University Poznań Poland
| | - A. Herrel
- Département d'Ecologie et de Gestion de la Biodiversité Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle Paris France
| | - D. Youlatos
- Department of Zoology School of Biology Aristotle University of Thessaloniki Thessaloniki Greece
| |
Collapse
|
27
|
Karantanis NE, Rychlik L, Herrel A, Youlatos D. Arboreal gaits in three sympatric rodents Apodemus agrarius, Apodemus flavicollis (Rodentia, Muridae) and Myodes glareolus (Rodentia, Cricetidae). Mamm Biol 2017. [DOI: 10.1016/j.mambio.2016.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Karantanis NE, Rychlik L, Herrel A, Youlatos D. Vertical Locomotion in Micromys minutus (Rodentia: Muridae): Insights into the Evolution of Eutherian Climbing. J MAMM EVOL 2016. [DOI: 10.1007/s10914-016-9374-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Young JW, Stricklen BM, Chadwell BA. Effects of support diameter and compliance on common marmoset (Callithrix jacchus) gait kinematics. J Exp Biol 2016; 219:2659-72. [DOI: 10.1242/jeb.140939] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Locomotion is precarious in an arboreal habitat, where supports can vary in both diameter and level of compliance. Several previous studies have evaluated the influence of substrate diameter on the locomotor performance of arboreal quadrupeds. The influence of substrate compliance, however, has been mostly unexamined. Here, we used a multifactorial experimental design to investigate how perturbations in both diameter and compliance affect the gait kinematics of marmosets (Callithrix jacchus; N=2) moving over simulated arboreal substrates. We used 3D-calibrated video to quantify marmoset locomotion over a horizontal trackway consisting of variably sized poles (5, 2.5 and 1.25 cm in diameter), analyzing a total of 120 strides. The central portion of the trackway was either immobile or mounted on compliant foam blocks, depending on condition. We found that narrowing diameter and increasing compliance were both associated with relatively longer substrate contact durations, though adjustments to diameter were often inconsistent relative to compliance-related adjustments. Marmosets also responded to narrowing diameter by reducing speed, flattening center of mass (CoM) movements and dampening support displacement on the compliant substrate. For the subset of strides on the compliant support, we found that speed, contact duration and CoM amplitude explained >60% of the variation in substrate displacement over a stride, suggesting a direct performance advantage to these kinematic adjustments. Overall, our results show that compliant substrates can exert a significant influence on gait kinematics. Substrate compliance, and not just support diameter, should be considered a critical environmental variable when evaluating locomotor performance in arboreal quadrupeds.
Collapse
Affiliation(s)
- Jesse W. Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
- Musculoskeletal Biology Research Focus Area, NEOMED, Rootstown, OH 44272, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| | - Bethany M. Stricklen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Brad A. Chadwell
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| |
Collapse
|
30
|
Shapiro LJ, Kemp AD, Young JW. Effects of Substrate Size and Orientation on Quadrupedal Gait Kinematics in Mouse Lemurs (
Microcebus murinus
). ACTA ACUST UNITED AC 2016; 325:329-43. [DOI: 10.1002/jez.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Liza J. Shapiro
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Addison D. Kemp
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Jesse W. Young
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| |
Collapse
|
31
|
Birn-Jeffery AV, Higham TE. Geckos decouple fore- and hind limb kinematics in response to changes in incline. Front Zool 2016; 13:11. [PMID: 26941828 PMCID: PMC4776376 DOI: 10.1186/s12983-016-0144-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/25/2016] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Terrestrial animals regularly move up and down surfaces in their natural habitat, and the impacts of moving uphill on locomotion are commonly examined. However, if an animal goes up, it must go down. Many morphological features enhance locomotion on inclined surfaces, including adhesive systems among geckos. Despite this, it is not known whether the employment of the adhesive system results in altered locomotor kinematics due to the stereotyped motions that are necessary to engage and disengage the system. Using a generalist pad-bearing gecko, Chondrodactylus bibronii, we determined whether changes in slope impact body and limb kinematics. RESULTS Despite the change in demand, geckos did not change speed on any incline. This constant speed was achieved by adjusting stride frequency, step length and swing time. Hind limb, but not forelimb, kinematics were altered on steep downhill conditions, thus resulting in significant de-coupling of the limbs. CONCLUSIONS Unlike other animals on non-level conditions, the geckos in our study only minimally alter the movements of distal limb elements, which is likely due to the constraints associated with the need for rapid attachment and detachment of the adhesive system. This suggests that geckos may experience a trade-off between successful adhesion and the ability to respond dynamically to locomotor perturbations.
Collapse
Affiliation(s)
- Aleksandra V. Birn-Jeffery
- />Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
- />Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521 USA
| | - Timothy E. Higham
- />Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521 USA
| |
Collapse
|
32
|
Wilkinson H, Thavarajah N, Codd J. The metabolic cost of walking on an incline in the Peacock (Pavo cristatus). PeerJ 2015; 3:e987. [PMID: 26056619 PMCID: PMC4458126 DOI: 10.7717/peerj.987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/09/2015] [Indexed: 11/20/2022] Open
Abstract
Altering speed and moving on a gradient can affect an animal's posture and gait, which in turn can change the energetic requirements of terrestrial locomotion. Here, the energetic and kinematic effects of locomoting on an incline were investigated in the Indian peacock, Pavo cristatus. The mass-specific metabolic rate of the Indian peacock was elevated on an incline, but this change was not dependent on the angle ascended and the cost of lifting remained similar between the two inclines (+5 and +7°). Interestingly, the Indian peacock had the highest efficiency when compared to any other previously studied avian biped, despite the presence of a large train. Duty factors were higher for birds moving on an incline, but there was no difference between +5 and +7°. Our results highlight the importance of investigating kinematic responses during energetic studies, as these may enable explanation of what is driving the underlying metabolic differences when moving on inclines. Further investigations are required to elucidate the underlying mechanical processes occurring during incline movement.
Collapse
Affiliation(s)
- Holly Wilkinson
- Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Nathan Thavarajah
- Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Jonathan Codd
- Faculty of Life Sciences, University of Manchester , Manchester , UK
| |
Collapse
|
33
|
Birn-Jeffery AV, Higham TE. Geckos significantly alter foot orientation to facilitate adhesion during downhill locomotion. Biol Lett 2015; 10:20140456. [PMID: 25319816 DOI: 10.1098/rsbl.2014.0456] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Geckos employ their adhesive system when moving up an incline, but the directionality of the system may limit function on downhill surfaces. Here, we use a generalist gecko to test whether limb modulation occurs on downhill slopes to allow geckos to take advantage of their adhesive system. We examined three-dimensional limb kinematics for geckos moving up and down a 45° slope. Remarkably, the hind limbs were rotated posteriorly on declines, resulting in digit III of the pes facing a more posterior direction (opposite to the direction of travel). No significant changes in limb orientation were found in any other condition. This pes rotation leads to a dramatic shift in foot function that facilitates the use of the adhesive system as a brake/stabilizer during downhill locomotion and, although this rotation is not unique to geckos, it is significant for the deployment of adhesion. Adhesion is not just advantageous for uphill locomotion but can be employed to help deal with the effects of gravity during downhill locomotion, highlighting the incredible multi-functionality of this key innovation.
Collapse
Affiliation(s)
| | - Timothy E Higham
- Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
34
|
Higham TE, Measey GJ, Birn-Jeffery AV, Herrel A, Tolley KA. Functional divergence between morphs of a dwarf chameleon: differential locomotor kinematics in relation to habitat structure. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Timothy E. Higham
- Department of Biology; University of California; 900 University Avenue Riverside CA 92521 USA
| | - G. John Measey
- Centre for Invasion Biology; Department of Botany & Zoology; Stellenbosch University; Merriman Avenue Stellenbosch South Africa
| | | | - Anthony Herrel
- Département d'Ecologie et de Gestion de la Biodiversité; Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle; 55 rue Buffon 75005 Paris France
- Ghent University; Evolutionary Morphology of Vertebrates; K.L. Ledeganckstraat 35 B-9000 Gent Belgium
| | - Krystal A. Tolley
- Applied Biodiversity Research Division; South African National Biodiversity Institute; Claremont 7735 Cape Town South Africa
- Department of Botany & Zoology; Stellenbosch University; Merriman Avenue Stellenbosch South Africa
| |
Collapse
|
35
|
Wang Z, Dai Z, Ji A, Ren L, Xing Q, Dai L. Biomechanics of gecko locomotion: the patterns of reaction forces on inverted, vertical and horizontal substrates. BIOINSPIRATION & BIOMIMETICS 2015; 10:016019. [PMID: 25650374 DOI: 10.1088/1748-3190/10/1/016019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The excellent locomotion ability of geckos on various rough and/or inclined substrates has attracted scientists' attention for centuries. However, the moving ability of gecko-mimicking robots on various inclined surfaces still lags far behind that of geckos, mainly because our understanding of how geckos govern their locomotion is still very poor. To reveal the fundamental mechanism of gecko locomotion and also to facilitate the design of gecko-mimicking robots, we have measured the reaction forces (RFs) acting on each individual foot of moving geckos on inverted, vertical and horizontal substrates (i.e. ceiling, wall and floor), have associated the RFs with locomotion behaviors by using high-speed camera, and have presented the relationships of the force components with patterns of reaction forces (PRFs). Geckos generate different PRF on ceiling, wall and floor, that is, the PRF is determined by the angles between the direction of gravity and the substrate on which geckos move. On the ceiling, geckos produce reversed shear forces acting on the front and hind feet, which pull away from the body in both lateral and fore-aft directions. They use a very large supporting angle from 21° to 24° to reduce the forces acting on their legs and feet. On the floor, geckos lift their bodies using a supporting angle from 76° to 78°, which not only decreases the RFs but also improves their locomotion ability. On the wall, geckos generate a reliable self-locking attachment by using a supporting angle of 14.8°, which is only about half of the critical angle of detachment.
Collapse
Affiliation(s)
- Zhouyi Wang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Wang Z, Dai Z, Li W, Ji A, Wang W. How do the substrate reaction forces acting on a gecko's limbs respond to inclines? Naturwissenschaften 2015; 102:1259. [PMID: 25645733 DOI: 10.1007/s00114-015-1259-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 11/27/2022]
Abstract
Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome these challenges, climbing geckos execute complex and accurate movements that involve both the front and hind limbs. Few studies have examined gecko's SRF on steeper inclines of greater than 90°. To reveal how the SRFs acting on the front and hind limbs respond to angle incline changes, we obtained detailed measurements of the three-dimensional SRFs acting on the individual limbs of the tokay gecko while it climbed on an inclined angle of 0-180°. The fore-aft forces acting on the front and hind limbs show opposite trends on inverted inclines of greater than 120°, indicating propulsion mechanism changes in response to inclines. When the incline angles change, the forces exerted in the normal and fore-aft directions by gecko's front and hind limbs are reassigned to take full advantage of limbs' different roles in overcoming resistance and in propelling locomotion. This also ensures that weight acts in the angle range between the forces generated by the front and hind limbs. The change in the distribution of SRF with a change in the incline angle is directly linked to the favorable trade-off between locomotive maneuverability and stability.
Collapse
Affiliation(s)
- Zhouyi Wang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, Jiangsu, 210016, China
| | | | | | | | | |
Collapse
|
37
|
Hesse B, Nyakatura JA, Fischer MS, Schmidt M. Adjustments of Limb Mechanics in Cotton-top Tamarins to Moderate and Steep Support Orientations: Significance for the Understanding of Early Primate Evolution. J MAMM EVOL 2014. [DOI: 10.1007/s10914-014-9283-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Locomotor kinematics of the gecko (Tokay gecko) upon challenge with various inclines. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0557-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Birn-Jeffery AV, Higham TE. The Scaling of Uphill and Downhill Locomotion in Legged Animals. Integr Comp Biol 2014; 54:1159-72. [DOI: 10.1093/icb/icu015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Shapiro LJ, Young JW, VandeBerg JL. Body size and the small branch niche: Using marsupial ontogeny to model primate locomotor evolution. J Hum Evol 2014; 68:14-31. [DOI: 10.1016/j.jhevol.2013.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 10/07/2013] [Accepted: 12/10/2013] [Indexed: 11/15/2022]
|
41
|
Schmidt A. Locomotion in degus on terrestrial substrates varying in orientation - implications for biomechanical constraints and gait selection. ZOOLOGY 2014; 117:146-59. [PMID: 24439459 DOI: 10.1016/j.zool.2013.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/27/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022]
Abstract
To gain new insights into running gaits on sloped terrestrial substrates, metric and selected kinematic parameters of the common degu (Octodon degus) were examined. Individuals were filmed at their maximum voluntary running speed using a high-speed camera placed laterally to the terrestrial substrate varying in orientations from -30° to +30°, at 10° increments. Degus used trotting, lateral-sequence (LS) and diagonal-sequence (DS) running gaits at all substrate orientations. Trotting was observed across the whole speed range whereas DS running gaits occurred at significantly higher speeds than LS running gaits. Metric and kinematic changes on sloped substrates in degus paralleled those noted for most other mammals. However, the timing of metric and kinematic locomotor adjustments differed significantly between individual degus. In addition, most of these adjustments took place at 10° rather than 30° inclines and declines, indicating significant biomechanical demands even on slightly sloped terrestrial substrates. The results of this study suggest that DS and LS running gaits may represent an advantage in small to medium-sized mammals for counteracting some level of locomotor instability. Finally, changes in locomotor parameters of the forelimbs rather than the hindlimbs seem to play an important role in gait selection in small to medium-sized mammals.
Collapse
Affiliation(s)
- André Schmidt
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 120 Life Science Building, Athens, OH 45701, USA.
| |
Collapse
|
42
|
Dirks RC, Galley MR, Childress PJ, Fearon AM, Scott A, Koch LG, Britton SL, Warden SJ. Uphill running does not exacerbate collagenase-induced pathological changes in the Achilles tendon of rats selectively bred for high-capacity running. Connect Tissue Res 2013; 54:386-93. [PMID: 24060053 DOI: 10.3109/03008207.2013.848201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Achilles tendon is a frequent site for degeneration, and advanced understanding of this pathology requires an animal model that replicates the human condition. The aim of this study was to explore whether intratendinous collagenase injection combined with treadmill running created a pathology in the rat Achilles tendon consistent with human Achilles tendinosis. Collagenase was injected into one Achilles tendon of 88 high-capacity running (HCR) rats, which were randomized into treadmill running and cage control groups. Running animals ran at speeds up to 30 m/min on a treadmill at a 15° incline for up to 1 h/d, 5 d/week for 4 or 10 weeks. Cage control animals maintained cage activity. Collagenase induced molecular, histopathological and mechanical changes within the Achilles tendon at 4 weeks. The mechanical changes persisted at 10 weeks; however, the histopathological and majority of the molecular changes were no longer present at 10 weeks. Treadmill running had minimal effect and did not exacerbate the collagenase-induced changes as there were no statistical interactions between the interventions. These data suggest combined intratendinous collagenase injection and treadmill running does not create pathology within the Achilles tendon of rats selectively bred for HCR that is consistent with human Achilles tendinosis.
Collapse
Affiliation(s)
- Rachel C Dirks
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University , Indianapolis, IN , USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Uphill treadmill running does not induce histopathological changes in the rat Achilles tendon. BMC Musculoskelet Disord 2013; 14:90. [PMID: 23496843 PMCID: PMC3599857 DOI: 10.1186/1471-2474-14-90] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 03/06/2013] [Indexed: 11/25/2022] Open
Abstract
Background The purpose of this study was to investigate whether uphill treadmill running in rats created histopathological changes within the Achilles tendon consistent with Achilles tendinosis in humans. Methods Twenty-six mature rats selectively bred for high-capacity running were divided into run and cage control groups. Run group rats ran on a treadmill at a 15° incline for a maximum duration of 1 hr/d, 5 d/wk for 9 weeks at increasing speeds, while rats in the cage control group maintained normal cage activity. After 9 weeks, Achilles tendons were harvested for histological processing and semi-quantitative histopathological analysis. Results There were no significant group differences within each of the individual histopathological categories assessed (all p ≥ 0.16) or for total histopathological score (p = 0.14). Conclusions Uphill treadmill running in rats selectively bred for high-capacity running did not generate Achilles tendon changes consistent with the histopathological presentation of Achilles tendinosis in humans.
Collapse
|
44
|
Arnold AS, Lee DV, Biewener AA. Modulation of joint moments and work in the goat hindlimb with locomotor speed and surface grade. ACTA ACUST UNITED AC 2013; 216:2201-12. [PMID: 23470662 DOI: 10.1242/jeb.082495] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Goats and other quadrupeds must modulate the work output of their muscles to accommodate the changing mechanical demands associated with locomotion in their natural environments. This study examined which hindlimb joint moments goats use to generate and absorb mechanical energy on level and sloped surfaces over a range of locomotor speeds. Ground reaction forces and the three-dimensional locations of joint markers were recorded as goats walked, trotted and galloped over 0, +15 and -15 deg sloped surfaces. Net joint moments, powers and work were estimated at the goats' hip, knee, ankle and metatarsophalangeal joints throughout the stance phase via inverse dynamics calculations. Differences in locomotor speed on the level, inclined and declined surfaces were characterized and accounted for by fitting regression equations to the joint moment, power and work data plotted versus non-dimensionalized speed. During level locomotion, the net work generated by moments at each of the hindlimb joints was small (less than 0.1 J kg(-1) body mass) and did not vary substantially with gait or locomotor speed. During uphill running, by contrast, mechanical energy was generated at the hip, knee and ankle, and the net work at each of these joints increased dramatically with speed (P<0.05). The greatest increases in positive joint work occurred at the hip and ankle. During downhill running, mechanical energy was decreased in two main ways: goats generated larger knee extension moments in the first half of stance, absorbing energy as the knee flexed, and goats generated smaller ankle extension moments in the second half of stance, delivering less energy. The goats' hip extension moment in mid-stance was also diminished, contributing to the decrease in energy. These analyses offer new insight into quadrupedal locomotion, clarifying how the moments generated by hindlimb muscles modulate mechanical energy at different locomotor speeds and grades, as needed to accommodate the demands of variable terrain.
Collapse
Affiliation(s)
- Allison S Arnold
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA 01730, USA.
| | | | | |
Collapse
|
45
|
Nudds RL, Codd JR. The metabolic cost of walking on gradients with a waddling gait. J Exp Biol 2012; 215:2579-85. [DOI: 10.1242/jeb.071522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Using open-flow respirometry and video footage (25 frames s–1), the energy expenditure and hindlimb kinematics of barnacle geese, Branta leucopsis, were measured whilst they were exercising on a treadmill at gradients of +7 and –7 deg, and on a level surface. In agreement with previous studies, ascending a gradient incurred metabolic costs higher than those experienced on level ground at comparable speeds. The geese, however, are the first species to show an increased duty factor when ascending a gradient. This increased duty factor was accompanied by a longer stance time, which was probably to enable the additional force required for ascending to be generated. Contrary to previous findings, the geese did not experience decreased metabolic costs when descending a gradient. For a given speed, the geese took relatively shorter and quicker strides when walking downhill. This ‘choppy’ stride and perhaps a lack of postural plasticity (an inability to adopt a more crouched posture) may negate any energy savings gained from gravity's assistance in moving the centre of mass downhill. Also contrary to previous studies, the incremental increase in metabolic cost with increasing speed was similar for each gradient, indicating that the efficiency of locomotion (mechanical work done/chemical energy consumed) is not constant across all walking speeds. The data here suggest that there are species-specific metabolic responses to locomotion on slopes, as well as the established kinematics differences. It is likely that a suite of factors, such as ecology, posture, gait, leggedness and foot morphology, will subtly affect an organism's ability to negotiate gradients.
Collapse
Affiliation(s)
- Robert L. Nudds
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Jonathan R. Codd
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
46
|
Foster KL, Higham TE. How forelimb and hindlimb function changes with incline and perch diameter in the green anole, Anolis carolinensis. J Exp Biol 2012; 215:2288-300. [DOI: 10.1242/jeb.069856] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The range of inclines and perch diameters in arboreal habitats poses a number of functional challenges for locomotion. To effectively overcome these challenges, arboreal lizards execute complex locomotor behaviors involving both the forelimbs and the hindlimbs. However, few studies have examined the role of forelimbs in lizard locomotion. To characterize how the forelimbs and hindlimbs differentially respond to changes in substrate diameter and incline, we obtained three-dimensional high-speed video of green anoles (Anolis carolinensis) running on flat (9 cm wide) and narrow (1.3 cm) perches inclined at 0, 45 and 90 deg. Changes in perch diameter had a greater effect on kinematics than changes in incline, and proximal limb variables were primarily responsible for these kinematic changes. In addition, a number of joint angles exhibited greater excursions on the 45 deg incline compared with the other inclines. Anolis carolinensis adopted strategies to maintain stability similar to those of other arboreal vertebrates, increasing limb flexion, stride frequency and duty factor. However, the humerus and femur exhibited several opposite kinematic trends with changes in perch diameter. Further, the humerus exhibited a greater range of motion than the femur. A combination of anatomy and behavior resulted in differential kinematics between the forelimb and the hindlimb, and also a potential shift in the propulsive mechanism with changes in external demand. This suggests that a better understanding of single limb function comes from an assessment of both forelimbs and hindlimbs. Characterizing forelimb and hindlimb movements may reveal interesting functional differences between Anolis ecomorphs. Investigations into the physiological mechanisms underlying the functional differences between the forelimb and the hindlimb are needed to fully understand how arboreal animals move in complex habitats.
Collapse
Affiliation(s)
- Kathleen L. Foster
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Timothy E. Higham
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
47
|
Ontogeny of limb force distribution in squirrel monkeys (Saimiri boliviensis): Insights into the mechanical bases of primate hind limb dominance. J Hum Evol 2012; 62:473-85. [DOI: 10.1016/j.jhevol.2012.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/03/2011] [Accepted: 01/13/2012] [Indexed: 11/20/2022]
|
48
|
Young JW. Gait selection and the ontogeny of quadrupedal walking in squirrel monkeys (Saimiri boliviensis). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 147:580-92. [PMID: 22328448 DOI: 10.1002/ajpa.22016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 12/20/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
49
|
Krause C, Fischer M. Biodynamics of climbing: effects of substrate orientation on the locomotion of a highly arboreal lizard (Chamaeleo calyptratus). J Exp Biol 2012; 216:1448-57. [DOI: 10.1242/jeb.082586] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Arboreal substrates differ not only in diameter, but also continuity and orientation. To gain more insight into the dynamics of small-branch locomotion in tetrapods we studied the veiled chameleon walking on inclined and declined perches of up to 60° slope. Inclines and declines are characterized by fore- and hind limbs that equally contribute to body’s progression. The higher-positioned limb's vertical impulses decreased with slope. And while in the lower-positioned limb vertical impulses increased with substrate slope, peak vertical forces decreased. The decrease in peak vertical forces in the lower-positioned limb can be explained by a considerable increase of tensile forces in the higher-positioned limb the steeper the slope gets. In addition, limbs were more crouched on slopes while no changes in fore- and backward reach were observed. Mediolateral impulses were the smallest amongst the force components, and lateral impulses (medially-directed limb forces) exceeded medial impulses (laterally-directed limb forces). On inclines and declines limb placement was more variable than on level substrates. The tail never contacted the substrate during level locomotion. On inclines and declines the tail was held closer to the substrate, with short substrate contacts in one third of the analyzed trials. Regardless of substrate orientation the tail was always held straight above the branch, rotational moments induced by the tail were, therefore, minimized.
Collapse
|
50
|
Lees J, Folkow L, Stokkan KA, Codd J. The metabolic cost of incline locomotion in the Svalbard rock ptarmigan (Lagopus muta hyperborea): the effects of incline grade and seasonal fluctuations in body mass. J Exp Biol 2012; 216:1355-63. [DOI: 10.1242/jeb.078709] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
In a terrestrial environment animals must locomote over different terrain; despite this, the majority of studies focus on level locomotion. The influence moving up an inclined surface has on the metabolic cost of locomotion and the efficiency with which animals perform positive work against gravity is still not well understood. Generally speaking, existing data sets lack consistency in the use of grades, further compounded by differences between species in terms of morphology and locomotor gait. Here we investigated the metabolic cost of locomotion using respirometry in the Svalbard ptarmigan (Lagopus muta hyperborea). The Svalbard ptarmigan provides a unique opportunity to investigate the cost of incline locomotion as it undergoes a seasonal fluctuation in body mass, which doubles in winter, meaning the requirement for positive mechanical work also fluctuates with season. We demonstrate that at the same degree of incline, the cost of lifting 1 kg by 1 vertical metre remains relatively constant between seasons despite the large differences in body mass from summer to winter. These findings are consistent with the notion that positive mechanical work alone dictates the cost of lifting above a certain body mass. However, our data indicate that this cost may vary according to the degree of incline and gait.
Collapse
|