1
|
Castro-Olivares A, Des M, deCastro M, Thomas B, Gómez-Gesteira M. Assessing the vulnerability of commercial bivalves to intensifying atmospheric heatwaves in coastal ecosystems. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107210. [PMID: 40349399 DOI: 10.1016/j.marenvres.2025.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/09/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Heatwaves are expected to intensify and become more frequent throughout the 21st century, posing significant threats to coastal ecosystems and socio-economically important species. Shellfisheries based on intertidal and shallow subtidal infaunal bivalves such as Ruditapes decussatus, Ruditapes philippinarum, Venerupis corrugata, and Cerastoderma edule are of significant socio-economic importance in Europe, particularly in the Galician Rías Baixas (NW Spain). This study evaluates how future atmospheric heatwaves may compromise the thermal dynamics of these four commercially important bivalves in the Ría de Arousa. Global atmospheric and oceanic climate data from CMIP6 were downscaled using the WRF and Delft3D-FLOW models. The WRF model was used to characterize atmospheric heatwaves for the period 2025-2099 under the SSP2-4.5 and SSP5-8.5 pathways, while the Delft3D-FLOW model calculated bottom water temperatures under the SSP5-8.5 pathway during the most intense future atmospheric heatwave. Thermal exposure on bivalves was evaluated using a 1D sediment heat transport model. The analysis of atmospheric heatwaves revealed a total of 88 events projected throughout the 21st century, with an increase of the frequency, duration, and intensity over time, particularly during summer months. A significant increase in bottom water temperature in the estuary's inner areas was simulated under the most intense future atmospheric heatwave, driven by extreme air temperature and calm winds. The species V. corrugata and C. edule experienced the longest exposure to high temperatures, linked to their shallower burrowing depths and lower thermal tolerance, while R. decussatus and R. philippinarum remained unaffected during the atmospheric heatwave simulated. These findings highlight the vulnerability of certain bivalve species to intensifying heatwaves, which could lead to greater socioeconomic consequences.
Collapse
Affiliation(s)
- A Castro-Olivares
- Centro de Investigación Mariña, Universidade de Vigo, Environmental Physics Laboratory (EPhysLab), Campus As Lagoas s/n, 32004, Ourense, Spain.
| | - M Des
- Centro de Investigación Mariña, Universidade de Vigo, Environmental Physics Laboratory (EPhysLab), Campus As Lagoas s/n, 32004, Ourense, Spain
| | - M deCastro
- Centro de Investigación Mariña, Universidade de Vigo, Environmental Physics Laboratory (EPhysLab), Campus As Lagoas s/n, 32004, Ourense, Spain
| | - B Thomas
- Centro de Investigación Mariña, Universidade de Vigo, Environmental Physics Laboratory (EPhysLab), Campus As Lagoas s/n, 32004, Ourense, Spain
| | - M Gómez-Gesteira
- Centro de Investigación Mariña, Universidade de Vigo, Environmental Physics Laboratory (EPhysLab), Campus As Lagoas s/n, 32004, Ourense, Spain
| |
Collapse
|
2
|
Melero Y, Evans LC, Kuussaari M, Schmucki R, Stefanescu C, Roy DB, Oliver TH. Species responses to weather anomalies depend on local adaptation and range position. Commun Biol 2025; 8:660. [PMID: 40275062 PMCID: PMC12022152 DOI: 10.1038/s42003-025-08032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Species show intra-specific variation in responses to climate change linked to adaptation to the local climatic conditions. Likewise, species are expected to be more resilient to climate change at the centre of their bioclimatic niche, but this pattern is not general. We show that species sensitivity to climatic anomalies varies with local adaptation and the position in the bioclimatic niche, using long-term butterfly monitoring data for 34 species. Climatic anomalies negatively affected all populations of locally adapted species. Globally adapted species were positively or negatively affected by climatic anomalies, depending on population location and direction of anomalies. These responses impacted population trends as globally adapted species showed steeper declines at the trailing margin. Surprisingly, locally adapted species showed stable abundances at the trailing margin, but declines at the leading; which could be explained by the with the 'warmer is better' hypothesis where thermodynamics limit insect performance at cooler conditions.
Collapse
Affiliation(s)
- Yolanda Melero
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Spain.
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, UK.
- CREAF, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Luke C Evans
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, UK
- Butterfly Conservation, Wareham, Dorset, UK
| | - Mikko Kuussaari
- Finnish Environment Institute (SYKE), Nature Solutions Unit, Helsinki, Finland
| | - Reto Schmucki
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
| | | | - David B Roy
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Tom H Oliver
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, UK
| |
Collapse
|
3
|
Jo TS. Integrating temperature-dependent production of environmental DNA into its relationship with organism abundance. J Therm Biol 2025; 129:104120. [PMID: 40300401 DOI: 10.1016/j.jtherbio.2025.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 05/01/2025]
Abstract
Despite a consensus on the correlative relationship between environmental DNA (eDNA) concentration and organism abundance, precise and reliable abundance estimation using eDNA analysis is in its infancy. Previous studies suggested that water temperature could drive both eDNA degradation and production, but it remains unclarified how the eDNA-abundance relationship is influenced by water temperatures. To address the knowledge gap, numerical simulations considering temperature-dependent eDNA production and degradation were conducted by re-analyzing a previous dataset estimating fish eDNA production and decay rates at different water temperatures, followed by generating population-level eDNA concentrations depending on a given temperature, the number of individuals, and their mass distribution. Results showed that water temperatures had a positive, but relatively small, effect on the strength (R2 value) of the eDNA-abundance relationship, regardless of eDNA production scenarios. In contrast, the sensitivity (regression slope) of the relationship was enhanced by warmer temperatures when temperature-dependent eDNA production was considered, but it decreased unless it was considered. Although further efforts should be required to integrate organism physiology into eDNA production, the present study implied the importance of linking the production mechanism of eDNA particles to organism physiology, offering a groundwork for theorizing the eDNA-abundance relationship depending on environmental conditions, including temperatures, for making eDNA signals more quantitative and reliable.
Collapse
Affiliation(s)
- Toshiaki S Jo
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan; Graduate School of Informatics, Kyoto University: 36-1, Yoshida-Honmachi, Sakyo-ku, Kyoto City, Kyoto 606-8501, Japan.
| |
Collapse
|
4
|
Shocket MS, Bernhardt JR, Miazgowicz KL, Orakzai A, Savage VM, Hall RJ, Ryan SJ, Murdock CC. Mean daily temperatures predict the thermal limits of malaria transmission better than hourly rate summation. Nat Commun 2025; 16:3441. [PMID: 40216754 PMCID: PMC11992237 DOI: 10.1038/s41467-025-58612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Temperature shapes the geographic distribution, seasonality, and magnitude of mosquito-borne disease outbreaks. Models predicting transmission often use mosquito and pathogen thermal responses measured at constant temperatures. However, mosquitoes live in fluctuating temperatures. Rate summation--non-linear averaging of trait values measured at constant temperatures-is commonly used to infer performance in fluctuating environments, but its accuracy is rarely validated. We measured three traits that impact transmission-bite rate, survival, fecundity-in a malaria mosquito (Anopheles stephensi) across three diurnal temperature ranges (0, 9, and 12 °C). We compared transmission thermal suitability models with temperature-trait relationships observed under constant temperatures, fluctuating temperatures, and those predicted by rate summation. We mapped results across An. stephenesi's native Asian and invasive African ranges. We found: 1) daily temperature fluctuation trait values substantially differ from both constant temperature experiments and rate summation; 2) rate summation partially captured decreases in performance near thermal optima, yet incorrectly predicted increases near thermal limits; and 3) while thermal suitability across constant temperatures did not perfectly capture fluctuating environments, it was better than rate summation for estimating and mapping thermal limits. Our study provides insight into methods for predicting mosquito-borne disease risk and emphasizes the need to improve understanding of organismal performance under fluctuating conditions.
Collapse
Affiliation(s)
- Marta S Shocket
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
- Department of Geography and the Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
- Department of Ecology and Evolutionary Biology and Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Joey R Bernhardt
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Kerri L Miazgowicz
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Alyzeh Orakzai
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Van M Savage
- Department of Ecology and Evolutionary Biology and Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Richard J Hall
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Sadie J Ryan
- Department of Geography and the Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Courtney C Murdock
- Odum School of Ecology, University of Georgia, Athens, GA, USA.
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
- Cornell University, Ithaca, NY, USA.
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
5
|
Rosenthal MF, Elias DO. The influence of temperature on courtship and mate choice in a wolf spider: implications for mating success in variable environments. Evolution 2025; 79:641-649. [PMID: 39873451 DOI: 10.1093/evolut/qpaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 01/30/2025]
Abstract
The selection of animal signal form often changes significantly with the environment, yet signal form may be environment-dependent. Little is known about how variation in individual responses to changing environments affects the relationship between selection and the subsequent evolution of signal traits. To address this question, we assess the effects of variation in temperature on individual signaling and mating behavior responses across temperatures in the wolf spider Schizocosa floridana. By running repeated-measures trials, we find that temperature has predictable effects on signal form, but that the performance of individual courters is not consistent across temperatures. Traits associated with courtship rate generally increase at higher temperatures but inter-individual consistency in response to temperature change is low, despite consistent female preferences for increased courtship rate at all temperatures. Interestingly, the production of the likely most recently evolved signal component, the chirp, is consistent within signalers and predicts male performance across temperatures. Despite this, female preferences for chirp duration appear only at higher temperatures. Taken together, our results suggest that individual courter responses to changing temperatures have the potential to dampen or eliminate patterns of selection that are evident across temperatures. We discuss these results in light of current research on mating behavior and sexual selection.
Collapse
Affiliation(s)
- Malcolm F Rosenthal
- Ecology, Evolution and Environmental Biology (E3B), Columbia University, New York, NY 10027, United States
| | - Damian O Elias
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
6
|
Mihaljevic JR, Páez DJ. Systematic shifts in the variation among host individuals must be considered in climate-disease theory. Proc Biol Sci 2025; 292:20242515. [PMID: 39904391 PMCID: PMC11793970 DOI: 10.1098/rspb.2024.2515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 02/06/2025] Open
Abstract
To make more informed predictions of host-pathogen interactions under climate change, studies have incorporated the thermal performance of host, vector and pathogen traits into disease models to quantify effects on average transmission rates. However, this body of work has omitted the fact that variation in susceptibility among individual hosts affects disease spread and long-term patterns of host population dynamics. Furthermore, and especially for ectothermic host species, variation in susceptibility is likely to be plastic, influenced by variables such as environmental temperature. For example, as host individuals respond idiosyncratically to temperature, this could affect the population-level variation in susceptibility, such that there may be predictable functional relationships between variation in susceptibility and temperature. Quantifying the relationship between temperature and among-host trait variation will therefore be critical for predicting how climate change and disease will interact to influence host-pathogen population dynamics. Here, we use a model to demonstrate how short-term effects of temperature on the distribution of host susceptibility can drive epidemic characteristics, fluctuations in host population sizes and probabilities of host extinction. Our results emphasize that more research is needed in disease ecology and climate biology to understand the mechanisms that shape individual trait variation, not just trait averages.
Collapse
Affiliation(s)
- Joseph R. Mihaljevic
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ86011, USA
| | - David J. Páez
- School of Aquatic and Fishery Sciences, The University of Washington, Seattle, WA98195, USA
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, Nordland, WA98358, USA
| |
Collapse
|
7
|
Wang WWY, Page NR, Strickler AM, Kusaka AK, Gunderson AR. Heat sensitivity of sperm in the lizard Anolis sagrei. J Exp Biol 2025; 228:jeb249435. [PMID: 39670469 DOI: 10.1242/jeb.249435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
The heat sensitivity of reproduction is a critical determinant of population persistence under climate change. However, the heat sensitivity of gametes has been much less studied relative to that of adults. We developed a method to measure the heat tolerance limits of lizard sperm cells, and used the method to test several aspects of sperm cell thermal biology in the brown anole lizard (Anolis sagrei). We estimated the repeatability of sperm traits by measuring heat tolerance and baseline motility of ejaculated sperm from the same individuals multiple times over 21 days. To investigate co-adaptation of sperm and adult thermal traits, we tested for a correlation between sperm heat tolerance and the heat tolerance of the adults that produced them. Furthermore, we tested for effects of episodic heat stress experienced by males on sperm performance. Sperm heat tolerance and motility were both repeatable, consistent with evolutionary potential, though there was clear evidence for environmental effects on these traits as well. Contrary to the expectation of thermal co-adaptation, we found no correlation between sperm and adult heat tolerance. A single, episodic extreme heat event experienced by adult males immediately impaired sperm motility, consistent with detrimental effects of adult heat stress on sperm stored within males. Our study adds to the mounting evidence that sperm are heat-sensitive and represent a vulnerability to global warming, but also suggest evolutionary potential for thermal adaptation at the gamete level.
Collapse
Affiliation(s)
- Wayne Wen-Yeu Wang
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Natalie R Page
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Anthony M Strickler
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Alicia K Kusaka
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Alex R Gunderson
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
8
|
Tranmer AW, Bertagnoli A, Hurst A, Ubing C, Sholtes J, Tonina D. Fluvial pools as reach-scale thermal regulators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177890. [PMID: 39671926 DOI: 10.1016/j.scitotenv.2024.177890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/15/2024]
Abstract
Water temperature is a fundamental driver of physical processes, metabolic rates, and habitat availability in fluvial systems. As anthropogenic activities and climate change increase river temperatures and associated thermal stress on aquatic organisms, river restoration has focused on moderating thermal regimes and creating localized cold-water refuges. Restoration of a 2.5 km-long gravel-bed reach of the Grande Ronde River (Oregon, USA) provided a unique opportunity to compare the pre- and post-restoration influences of hyporheic and groundwater discharge and pool stratification in generating local and reach-scale thermal buffering under similar valley and riparian conditions. Field data and numerical simulations demonstrate that hyporheic discharge had limited influence on the surface water temperature because of its low magnitude relative to the streamflow. In contrast, pools excavated during restoration, with flow depths up to 2.2 m, showed thermal stratification during summer low-flow conditions that generated a temperature differential in the pool bottoms up to 4.6 °C. The duration that an individual pool could maintain water temperatures below the mortality threshold for salmonids (T < 25 °C) increased with dimensionless residual pool depth (Dr⁎ = Dr/Df, where Dr is the residual pool depth and Df the mean flow depth). However, no pools were capable of maintaining sublethal temperatures for the entire summer period. The cumulative effect of stratified pools generated reach-scale thermal buffering by exporting cool water downstream during the day. Measured field values indicate that relative to the upstream reach boundary, maximum daily water temperatures at the downstream boundary of the study site would increase by an average of 1.5 °C before restoration but decrease by an average of 3 °C after restoration. At the reach scale, a sequence of stratified pools induced downstream thermal buffering but could not completely relieve the unsuitable warm water temperatures entering the upstream end of the reach.
Collapse
Affiliation(s)
- Andrew W Tranmer
- Center for Ecohydraulics Research, Department of Civil and Environmental Engineering, University of Idaho, 322 E. Front St., Boise, ID 83702, USA.
| | - Andrea Bertagnoli
- Center for Ecohydraulics Research, Department of Civil and Environmental Engineering, University of Idaho, 322 E. Front St., Boise, ID 83702, USA
| | - Aaron Hurst
- Sedimentation and River Hydraulics Group, U.S. Bureau of Reclamation Technical Service Center, Denver Federal Center, Building 67, Denver, CO 80225, USA
| | - Caroline Ubing
- Sedimentation and River Hydraulics Group, U.S. Bureau of Reclamation Technical Service Center, Denver Federal Center, Building 67, Denver, CO 80225, USA
| | - Joel Sholtes
- Department of Civil Architectural and Environmental Engineering, University of Colorado, Boulder, 1410 N 7(th) St, Grand Junction, CO 81507, USA
| | - Daniele Tonina
- Center for Ecohydraulics Research, Department of Civil and Environmental Engineering, University of Idaho, 322 E. Front St., Boise, ID 83702, USA
| |
Collapse
|
9
|
Ten Caten C, Dallas T. Population variability across geographical ranges: perspectives and challenges. Proc Biol Sci 2025; 292:20241644. [PMID: 39876735 PMCID: PMC11775592 DOI: 10.1098/rspb.2024.1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Populations fluctuate over time and across geographical space, and understanding how different factors contribute to population variability is a central goal in population ecology. There is a particular interest in identifying trends of population variability within geographical ranges as population densities of species can fluctuate substantially across geographical space. A common assumption is that populations vary more near species geographical range edges because of unsuitable environments and higher vulnerability to environmental variability in these areas. However, empirical data rarely support this expectation, suggesting that population variability is not related to its position within species geographical ranges. We propose that performance curves, which describe the relationship between population growth rates and environmental conditions, can be used to disentangle geographical patterns of population variability. Performance curves are important for understanding population variability because populations fluctuate more in locations where they have lower growth rates owing to unsuitable environmental conditions. This is important for the assessment of these geographical patterns in population variability because geographical edges often do not reflect environmental edges. Considering species performance curves when evaluating geographical patterns of population variability would also allow researchers to detect populations that are more susceptible to future changes in environmental conditions.
Collapse
Affiliation(s)
- Cleber Ten Caten
- Department of Biological Sciences, University of South Carolina, Columbia, SC29208, USA
| | - Tad Dallas
- Department of Biological Sciences, University of South Carolina, Columbia, SC29208, USA
| |
Collapse
|
10
|
Crino OL, Wild KH, Friesen CR, Leibold D, Laven N, Peardon AY, Recio P, Salin K, Noble DWA. From eggs to adulthood: sustained effects of early developmental temperature and corticosterone exposure on physiology and body size in an Australian lizard. J Exp Biol 2024; 227:jeb249234. [PMID: 39665281 DOI: 10.1242/jeb.249234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/02/2024] [Indexed: 12/13/2024]
Abstract
Developing animals are increasingly exposed to elevated temperatures as global temperatures rise as a result of climate change. Vertebrates can be affected by elevated temperatures during development directly, and indirectly through maternal effects (e.g. exposure to prenatal glucocorticoid hormones). Past studies have examined how elevated temperatures and glucocorticoid exposure during development independently affect vertebrates. However, exposure to elevated temperatures and prenatal corticosterone could have interactive effects on developing animals that affect physiology and life-history traits across life. We tested interactions between incubation temperature and prenatal corticosterone exposure in the delicate skink (Lampropholis delicata). We treated eggs with high or low doses of corticosterone and incubated eggs at 23°C (cool) or 28°C (warm). We measured the effects of these treatments on development time, body size and survival from hatching to adulthood and on adult hormone levels and mitochondrial respiration. We found no evidence for interactive effects of incubation temperature and prenatal corticosterone exposure on phenotype. However, incubation temperature and corticosterone treatment each independently decreased body size at hatching and these effects were sustained into the juvenile period and adulthood. Lizards exposed to low doses of corticosterone during development had elevated levels of baseline corticosterone as adults. Additionally, lizards incubated at cool temperatures had higher levels of baseline corticosterone and more efficient mitochondria as adults compared with lizards incubated at warm temperatures. Our results show that developmental conditions can have sustained effects on morphological and physiological traits in oviparous lizards but suggest that incubation temperature and prenatal corticosterone do not have interactive effects.
Collapse
Affiliation(s)
- Ondi L Crino
- College of Science and Engineering, Flinders University, Bedford Park, SA 5001, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Kristoffer H Wild
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- School of BioSciences , The University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences , University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dalton Leibold
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Naomi Laven
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Amelia Y Peardon
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Pablo Recio
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Karine Salin
- Ifremer, Laboratory of Environmental Marine Sciences, University Brest, CNRS, IRD, 29280 Plouzané, France
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
11
|
Couper LI, Nalukwago DU, Lyberger KP, Farner JE, Mordecai EA. How Much Warming Can Mosquito Vectors Tolerate? GLOBAL CHANGE BIOLOGY 2024; 30:e17610. [PMID: 39624973 PMCID: PMC11645978 DOI: 10.1111/gcb.17610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/16/2024]
Abstract
Climate warming is expected to substantially impact the global landscape of mosquito-borne disease, but these impacts will vary across disease systems and regions. Understanding which diseases, and where within their distributions, these impacts are most likely to occur is critical for preparing public health interventions. While research has centered on potential warming-driven expansions in vector transmission, less is known about the potential for vectors to experience warming-driven stress or even local extirpations. In conservation biology, species risk from climate warming is often quantified through vulnerability indices such as thermal safety margins-the difference between an organism's upper thermal limit and its habitat temperature. Here, we estimated thermal safety margins for 8 mosquito species that are the vectors of malaria, dengue, chikungunya, Zika, West Nile and other major arboviruses, across their known ranges to investigate which mosquitoes and regions are most and least vulnerable to climate warming. We find that several of the most medically important mosquito vector species, including Ae. aegypti and An. gambiae, have positive thermal safety margins across the majority of their ranges when realistic assumptions of mosquito behavioral thermoregulation are incorporated. On average, the lowest climate vulnerability, in terms of both the magnitude and duration of thermal safety, was just south of the equator and at northern temperate range edges, and the highest climate vulnerability was in the subtropics. Mosquitoes living in regions including the Middle East, the western Sahara, and southeastern Australia, which are largely comprised of desert and xeric shrubland biomes, have the highest climate vulnerability across vector species.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, California, USA
- Division of Environmental Health Sciences, University of California, Berkeley, California, USA
| | | | - Kelsey P Lyberger
- Department of Biology, Stanford University, Stanford, California, USA
| | - Johannah E Farner
- Department of Biology, Stanford University, Stanford, California, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Tsang B, Gerlai R. Nature versus laboratory: how to optimize housing conditions for zebrafish neuroscience research. Trends Neurosci 2024; 47:985-993. [PMID: 39307630 DOI: 10.1016/j.tins.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 12/12/2024]
Abstract
Although zebrafish (Danio rerio) neuroscience research is rapidly expanding, the fundamental question of how these fish should be maintained in research laboratories remains largely unstudied. This may explain the diverse practices and broad range of environmental parameters used in zebrafish facilities. Here, we provide examples of these parameters and practices, including housing density, tank size, and water chemistry. We discuss the principles of stochastic resonance versus homeostasis and provide hypothetical examples to explain why keeping zebrafish outside of their tolerated range of environmental parameters may increase phenotypical variance and reduce replicability. We call for systematic studies to establish the optimal maintenance conditions for zebrafish. Furthermore, we discuss why knowing more about the natural behavior and ecology of this species could be a guiding principle for these studies.
Collapse
Affiliation(s)
- Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Lucore JM, Beehner JC, White AF, Sinclair LF, Martins VA, Kovalaskas SA, Ordoñez JC, Bergman TJ, Benítez ME, Marshall AJ. High temperatures are associated with decreased immune system performance in a wild primate. SCIENCE ADVANCES 2024; 10:eadq6629. [PMID: 39612329 PMCID: PMC11619714 DOI: 10.1126/sciadv.adq6629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024]
Abstract
Rising temperatures due to climate change are predicted to threaten the persistence of wild animals, but there is little evidence that climate change has pushed species beyond their thermal tolerance. The immune system is an ideal avenue to assess the effects of climate change because immune performance is sensitive to changes in temperature and immune competency can affect reproductive success. We investigate the effect of rising temperatures on a biomarker of nonspecific immune performance in a wild population of capuchin monkeys and provide compelling evidence that immune performance is associated with ambient temperature. Critically, we found that immune performance in young individuals is more sensitive to high temperatures compared to other age groups. Coupled with evidence of rising temperatures in the region, our results offer insight into how climate change will affect the immune system of wild mammals.
Collapse
Affiliation(s)
- Jordan M. Lucore
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
| | - Jacinta C. Beehner
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Amy F. White
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Anthropology, Durham University, Durham, UK
| | - Lorena F. Sinclair
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
| | | | - Sarah A. Kovalaskas
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Anthropology, Emory University, Atlanta, GA, USA
| | - Juan Carlos Ordoñez
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
| | - Thore J. Bergman
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Marcela E. Benítez
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Anthropology, Emory University, Atlanta, GA, USA
| | - Andrew J. Marshall
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Program in the Environment, University of Michigan, Ann Arbor, MI, USA
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Program in Computing for the Arts and Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Martínez-De León G, Thakur MP. Ecological debts induced by heat extremes. Trends Ecol Evol 2024; 39:1024-1034. [PMID: 39079760 DOI: 10.1016/j.tree.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 11/08/2024]
Abstract
Heat extremes have become the new norm in the Anthropocene. Their potential to trigger major ecological responses is widely acknowledged, but their unprecedented severity hinders our ability to predict the magnitude of such responses, both during and after extreme heat events. To address this challenge we propose a conceptual framework inspired by the core concepts of ecological stability and thermal biology to depict how responses of populations and communities accumulate at three response stages (exposure, resistance, and recovery). Biological mechanisms mitigating responses at a given stage incur associated costs that only become apparent at other response stages; these are known as 'ecological debts'. We outline several scenarios for how ecological responses associate with debts to better understand biodiversity changes caused by heat extremes.
Collapse
Affiliation(s)
| | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Hall JM, Tiatragul S, Turner MK, Warner DA. Within the optimal thermal range, temperature fluctuations with similar means have little effect on offspring phenotypes: A comparison of two approaches that simulate natural nest conditions. J Therm Biol 2024; 125:103949. [PMID: 39306971 DOI: 10.1016/j.jtherbio.2024.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/28/2024] [Indexed: 11/25/2024]
Abstract
Temperature influences nearly every aspect of organismal function. Because aspects of global change such as urbanization and climate change influence temperature, researchers must consider how altering thermal regimes will impact biodiversity across the planet. To do so, they often measure temperature in natural and/or human-modified habitats, replicate those temperatures in laboratory experiments to understand organismal responses, and make predictions under models of future change. Consequently, accurately representing temperature in the laboratory is an important concern, yet few studies have assessed the consequences of simulating thermal conditions in different ways. We used nest temperatures for two urban-dwelling, invasive lizards (Anolis sagrei and A. cristatellus) to create two egg incubation treatments in the laboratory. Like most studies of thermal developmental plasticity, we created daily repeating thermal fluctuations; however, we used different methods to create temperature treatments that differed in the magnitude and breadth of thermal cycles, and then evaluated the effects of these different approaches on embryo development and hatchling phenotypes. Additionally, we measured embryo heart rate, a proxy for metabolism, across temperature to understand the immediate effects of treatments. We found that treatments had minimal effect on phenotypes likely because temperatures were within the optimal thermal range for each species and were similar in mean temperature. We conclude that slight differences in thermal treatments may be unimportant so long as temperatures are within a range appropriate for development, and we make several recommendations for future studies of developmental plasticity.
Collapse
Affiliation(s)
- Joshua M Hall
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA; Department of Biology, Tennessee Tech University, Cookeville, TN, 38505, USA.
| | - Sarin Tiatragul
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA; Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Mallory K Turner
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
16
|
Blanchard TS, Earhart ML, Shatsky AK, Schulte PM. Intraspecific variation in thermal performance curves for early development in Fundulus heteroclitus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:827-844. [PMID: 38769744 DOI: 10.1002/jez.2827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Thermal performance curves (TPCs) provide a framework for understanding the effects of temperature on ectotherm performance and fitness. TPCs are often used to test hypotheses regarding local adaptation to temperature or to develop predictions for how organisms will respond to climate warming. However, for aquatic organisms such as fishes, most TPCs have been estimated for adult life stages, and little is known about the shape of TPCs or the potential for thermal adaptation at sensitive embryonic life stages. To examine how latitudinal gradients shape TPCs at early life stages in fishes, we used two populations of Fundulus heteroclitus that have been shown to exhibit latitudinal variation along the thermal cline as adults. We exposed embryos from both northern and southern populations and their reciprocal crosses to eight different temperatures (15°C, 18°C, 21°C, 24°C, 27°C, 30°C, 33°C, and 36°C) until hatch and examined the effects of developmental temperature on embryonic and larval traits (shape of TPCs, heart rate, and body size). We found that the pure southern embryos had a right-shifted TPC (higher thermal optimum (Topt) for developmental rate, survival, and embryonic growth rate) whereas pure northern embryos had a vertically shifted TPC (higher maximum performance (Pmax) for developmental rate). Differences across larval traits and cross-type were also found, such that northern crosses hatched faster and hatched at a smaller size compared to the pure southern population. Overall, these observed differences in embryonic and larval traits are consistent with patterns of both local adaptation and countergradient variation.
Collapse
Affiliation(s)
- Tessa S Blanchard
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Madison L Earhart
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ariel K Shatsky
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Ghosh S, Matthews B, Petchey OL. Temperature and biodiversity influence community stability differently in birds and fishes. Nat Ecol Evol 2024; 8:1835-1846. [PMID: 39112662 DOI: 10.1038/s41559-024-02493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
Determining the factors that affect community stability is crucial to understanding the maintenance of biodiversity and ecosystem functioning in the face of global warming. We investigated how four temperature components (that is, median, variability, trend and extremes) affected diversity-synchrony-stability relationships for 1,246 bird and 580 fish communities from temperate regions. We hypothesized a stabilizing effect on the community if the variation in species' response to changing median temperature decreases overall community synchrony (hypothesis H1) and if temperature extremes reduce interspecific synchrony at extreme abundances due to variation in species' thermal tolerance limits (hypothesis H2). We found support for H1 in fish and for H2 in bird communities. Here we showed that the abiotic components (that is, the median, variability, trend and extremes of temperature) had more indirect effects on community stability, predominantly by affecting the biotic components (that is, diversity, synchrony). Considering various temperature components' direct as well as indirect impacts on stability for terrestrial versus aquatic communities will improve our mechanistic understanding of biodiversity change in response to global climatic stressors.
Collapse
Affiliation(s)
- Shyamolina Ghosh
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Shocket MS, Bernhardt JR, Miazgowicz KL, Orakzai A, Savage VM, Hall RJ, Ryan SJ, Murdock CC. Mean daily temperatures can predict the thermal limits of malaria transmission better than rate summation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614098. [PMID: 39386442 PMCID: PMC11463682 DOI: 10.1101/2024.09.20.614098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Temperature shapes the distribution, seasonality, and magnitude of mosquito-borne disease outbreaks. Mechanistic models predicting transmission often use mosquito and pathogen thermal responses from constant temperature experiments. However, mosquitoes live in fluctuating environments. Rate summation (nonlinear averaging) is a common approach to infer performance in fluctuating environments, but its accuracy is rarely validated. We measured three mosquito traits that impact transmission (bite rate, survival, fecundity) in a malaria mosquito (Anopheles stephensi) across temperature gradients with three diurnal temperature ranges (0, 9 and 12°C). We compared thermal suitability models with temperature-trait relationships observed under constant temperatures, fluctuating temperatures, and those predicted by rate summation. We mapped results across An. stephenesi's native Asian and invasive African ranges. We found: 1) daily temperature fluctuation significantly altered trait thermal responses; 2) rate summation partially captured decreases in performance near thermal optima, but also incorrectly predicted increases near thermal limits; and 3) while thermal suitability characterized across constant temperatures did not perfectly capture suitability in fluctuating environments, it was more accurate for estimating and mapping thermal limits than predictions from rate summation. Our study provides insight into methods for predicting mosquito-borne disease risk and emphasizes the need to improve understanding of organismal performance under fluctuating conditions.
Collapse
Affiliation(s)
- Marta S. Shocket
- Lancaster Environment Centre, Lancaster University, UK
- Department of Geography, University of Florida, USA
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, USA
| | | | | | | | - Van M. Savage
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, USA
| | - Richard J. Hall
- Department of Infectious Diseases, University of Georgia, USA
- Odum School of Ecology, University of Georgia, USA
| | | | | |
Collapse
|
19
|
Zuelow AN, Roberts KT, Burnaford JL, Burnett NP. Freezing and Mechanical Failure of a Habitat-Forming Kelp in the Rocky Intertidal Zone. Integr Comp Biol 2024; 64:222-233. [PMID: 38521985 DOI: 10.1093/icb/icae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/25/2024] Open
Abstract
Kelp and other habitat-forming seaweeds in the intertidal zone are exposed to a suite of environmental factors, including temperature and hydrodynamic forces, that can influence their growth, survival, and ecological function. Relatively little is known about the interactive effect of temperature and hydrodynamic forces on kelp, especially the effect of cold stress on biomechanical resistance to hydrodynamic forces. We used the intertidal kelp Egregia menziesii to investigate how freezing in air during a low tide changes the kelp's resistance to breaking from hydrodynamic forces. We conducted a laboratory experiment to test how short-term freezing, mimicking a brief low-tide freezing event, affected the kelp's mechanical properties. We also characterized daily minimum winter temperatures in an intertidal E. menziesii population on San Juan Island, WA, near the center of the species' geographic range. In the laboratory, acute freezing events decreased the strength and toughness of kelp tissue by 8-20% (change in medians). During low tides in the field, we documented sub-zero temperatures, snow, and low canopy cover (compared to summer surveys). These results suggest that freezing can contribute to frond breakage and decreased canopy cover in intertidal kelp. Further work is needed to understand whether freezing and the biomechanical performance in cold temperatures influence the fitness and ecological function of kelp and whether this will change as winter conditions, such as freezing events and storms, change in frequency and intensity.
Collapse
Affiliation(s)
- Angelina N Zuelow
- Department of Biological Science, CSU Fullerton, Fullerton, CA 92831, USA
| | - Kevin T Roberts
- Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
20
|
Takii R, Fujimoto M, Pandey A, Jaiswal K, Shearwin-Whyatt L, Grutzner F, Nakai A. HSF1 is required for cellular adaptation to daily temperature fluctuations. Sci Rep 2024; 14:21361. [PMID: 39266731 PMCID: PMC11393418 DOI: 10.1038/s41598-024-72415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
The heat shock response (HSR) is a universal mechanism of cellular adaptation to elevated temperatures and is regulated by heat shock transcription factor 1 (HSF1) or HSF3 in vertebrate endotherms, such as humans, mice, and chickens. We here showed that HSF1 and HSF3 from egg-laying mammals (monotremes), with a low homeothermic capacity, equally possess a potential to maximally induce the HSR, whereas either HSF1 or HSF3 from birds have this potential. Therefore, we focused on cellular adaptation to daily temperature fluctuations and found that HSF1 was required for the proliferation and survival of human cells under daily temperature fluctuations. The ectopic expression of vertebrate HSF1 proteins, but not HSF3 proteins, restored the resistance in HSF1-null cells, regardless of the induction of heat shock proteins. This function was associated with the up-regulation of specific HSF1-target genes. These results indicate the distinct role of HSF1 in adaptation to thermally fluctuating environments and suggest association of homeothermic capacity with functional diversification of vertebrate HSF genes.
Collapse
Affiliation(s)
- Ryosuke Takii
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Akanksha Pandey
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Kritika Jaiswal
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Linda Shearwin-Whyatt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Frank Grutzner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan.
| |
Collapse
|
21
|
Stocker CW, Bamford SM, Jahn M, Mazué GPF, Pettersen AK, Ritchie D, Rubin AM, Noble DWA, Seebacher F. The Effect of Temperature Variability on Biological Responses of Ectothermic Animals-A Meta-Analysis. Ecol Lett 2024; 27:e14511. [PMID: 39354891 DOI: 10.1111/ele.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024]
Abstract
Climate change is altering temperature means and variation, and both need to be considered in predictions underpinning conservation. However, there is no consensus in the literature regarding the effects of temperature fluctuations on biological functions. Fluctuations may affect biological responses because of inequalities from non-linear responses, endocrine regulation or exposure to damaging temperatures. Here we establish the current state of knowledge of how temperature fluctuations impact biological responses within individuals and populations compared to constant temperatures with the same mean. We conducted a meta-analysis of 143 studies on ectothermic animals (1492 effect sizes, 118 species). In this study, 89% of effect sizes were derived from diel cycles, but there were no significant differences between diel cycles and shorter (<8 h) or longer (>48 h) cycles in their effect on biological responses. We show that temperature fluctuations have little effect overall on trait mean and variance. Nonetheless, temperature fluctuations can be stressful: fluctuations increased 'gene expression' in aquatic animals, which was driven mainly by increased hsp70. Fluctuating temperatures also decreased longevity, and increased amplitudes had negative effects on population responses in aquatic organisms. We conclude that mean temperatures and extreme events such as heat waves are important to consider, but regular (particularly diel) temperature fluctuations are less so.
Collapse
Affiliation(s)
- Clayton W Stocker
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Stephanie M Bamford
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Miki Jahn
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Geoffrey P F Mazué
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Amanda K Pettersen
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Daniel Ritchie
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander M Rubin
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Pilakouta N, Allan D, Moore E, Russell AA. Chronic and acute thermal stressors have non-additive effects on fertility. Proc Biol Sci 2024; 291:rspb20241086. [PMID: 39288799 PMCID: PMC11407864 DOI: 10.1098/rspb.2024.1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Climate change is driving both higher mean temperatures and a greater likelihood of heatwaves, which are becoming longer and more intense. Previous work has looked at these two types of thermal stressors in isolation, focusing on the effects of either a small, long-term increase in temperature or a large, short-term increase in temperature. Yet, a fundamental gap in our understanding is the combined effect of chronic and acute thermal stressors and, in particular, its impact on vital processes such as reproduction. Here, we investigated the independent and interactive effects of higher constant temperatures and short-term heatwave events on reproductive success and offspring fitness in an insect study system, the burying beetle Nicrophorus vespilloides. We found a substantial reduction in key fitness traits (fecundity, hatching success and offspring size) after exposure to both a heatwave and higher constant temperatures, but not after exposure to only one of these thermal stressors. This indicates that the effects of chronic and acute thermal stressors are amplified when they act in combination, as is very likely to occur in natural populations. Our findings, therefore, suggest that, by not considering the potential multiplicative effects of different types of thermal stressors, we may be underestimating the effects of climate change on animal fertility.
Collapse
Affiliation(s)
- Natalie Pilakouta
- Centre for Biological Diversity, School of Biology, University of St Andrews, St AndrewsKY16 9TH, UK
| | - Daniel Allan
- Centre for Biological Diversity, School of Biology, University of St Andrews, St AndrewsKY16 9TH, UK
| | - Ellie Moore
- Centre for Biological Diversity, School of Biology, University of St Andrews, St AndrewsKY16 9TH, UK
| | - Alison A. Russell
- Centre for Biological Diversity, School of Biology, University of St Andrews, St AndrewsKY16 9TH, UK
| |
Collapse
|
23
|
Stahlschmidt ZR. Warm and thermally variable incubation conditions reduce embryonic performance and carry over to influence hatchling tradeoffs. J Therm Biol 2024; 124:103946. [PMID: 39265502 DOI: 10.1016/j.jtherbio.2024.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
Animals' thermal sensitivities have long been characterized by thermal performance curves (TPCs) or reaction norms, and TPCs may predict animals' responses to climate change. Typically, TPCs are parameterized by measuring performance at a range of constant temperatures. Yet, animals encounter a range of thermal environments, and temperature variability is an aspect of climate change that may affect animals more than gradual warming. Daily temperature variability is particularly important for eggs in most taxa because they are highly sensitive to temperature and cannot behaviorally avoid stressful temperatures. Thus, the legacy of thermal conditions experienced during incubation may carryover to subsequent life stages. Here, I factorially manipulated mean temperature (20, 25, or 30 °C) and daily temperature range (DTR; ±0, 5, or 10 °C) during incubation for eggs of the variable field cricket (Gryllus lineaticeps) to integrate the role of DTR into the established paradigm of TPCs. Low DTR (±5 °C) was not generally costly, and it even improved hatchling starvation resistance (sensu hormesis). However, high DTR (±10 °C) reduced and delayed hatching at a warm mean temperature (30 °C). The effects of high DTR carried over to accelerate hatchling development at an expense to hatchling starvation resistance-therefore, thermal conditions during incubation can shape tradeoffs among important traits related to life history and stress tolerance later in life. In sum, animals may exhibit complex responses to their increasingly warmer, more thermally variable environments.
Collapse
|
24
|
Villeneuve AR, White ER. Predicting organismal response to marine heatwaves using dynamic thermal tolerance landscape models. J Anim Ecol 2024. [PMID: 38850096 DOI: 10.1111/1365-2656.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 06/09/2024]
Abstract
Marine heatwaves (MHWs) can cause thermal stress in marine organisms, experienced as extreme 'pulses' against the gradual trend of anthropogenic warming. When thermal stress exceeds organismal capacity to maintain homeostasis, organism survival becomes time-limited and can result in mass mortality events. Current methods of detecting and categorizing MHWs rely on statistical analysis of historic climatology and do not consider biological effects as a basis of MHW severity. The re-emergence of ectotherm thermal tolerance landscape models provides a physiological framework for assessing the lethal effects of MHWs by accounting for both the magnitude and duration of extreme heat events. Here, we used a simulation approach to understand the effects of a suite of MHW profiles on organism survival probability across (1) three thermal tolerance adaptive strategies, (2) interannual temperature variation and (3) seasonal timing of MHWs. We identified survival isoclines across MHW magnitude and duration where acute (short duration-high magnitude) and chronic (long duration-low magnitude) events had equivalent lethal effects on marine organisms. While most research attention has focused on chronic MHW events, we show similar lethal effects can be experienced by more common but neglected acute marine heat spikes. Critically, a statistical definition of MHWs does not accurately categorize biological mortality. By letting organism responses define the extremeness of a MHW event, we can build a mechanistic understanding of MHW effects from a physiological basis. Organism responses can then be transferred across scales of ecological organization and better predict marine ecosystem shifts to MHWs.
Collapse
Affiliation(s)
- Andrew R Villeneuve
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Easton R White
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
25
|
Perotti O, Esparza GV, Booth DS. A red algal polysaccharide influences the multicellular development of the choanoflagellate Salpingoeca rosetta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594265. [PMID: 38798503 PMCID: PMC11118467 DOI: 10.1101/2024.05.14.594265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We uncovered an interaction between a choanoflagellate and alga, in which porphyran, a polysaccharide produced by the red alga Porphyra umbilicalis, induces multicellular development in the choanoflagellate Salpingoeca rosetta. We first noticed this possible interaction when we tested the growth of S. rosetta in media that was steeped with P. umbilicalis as a nutritional source. Under those conditions, S. rosetta formed multicellular rosette colonies even in the absence of any bacterial species that can induce rosette development. In biochemical purifications, we identified porphyran, a extracellular polysaccharide produced by red algae, as the rosette inducing factor The response of S. rosetta to porphyran provides a biochemical insight for associations between choanoflagellates and algae that have been observed since the earliest descriptions of choanoflagellates. Moreover, this work provides complementary evidence to ecological and geochemical studies that show the profound impact algae have exerted on eukaryotes and their evolution, including a rise in algal productivity that coincided with the origin of animals, the closest living relatives of choanoflagellates.
Collapse
Affiliation(s)
- Olivia Perotti
- Chan Zuckerberg Biohub, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
- Present address: Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Gabriel Viramontes Esparza
- Chan Zuckerberg Biohub, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
- Tetrad Graduate Group, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
| | - David S. Booth
- Chan Zuckerberg Biohub, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
- Tetrad Graduate Group, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
| |
Collapse
|
26
|
Williams-Simon PA, Oster C, Moaton JA, Ghidey R, Ng’oma E, Middleton KM, King EG. Naturally segregating genetic variants contribute to thermal tolerance in a Drosophila melanogaster model system. Genetics 2024; 227:iyae040. [PMID: 38506092 PMCID: PMC11075556 DOI: 10.1093/genetics/iyae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants within the genes that control this trait is of high importance if we want to better comprehend thermal physiology. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource as a model system. First, we used quantitative genetics and Quantitative Trait Loci mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to (1) alter tissue-specific gene expression and (2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
Collapse
Affiliation(s)
- Patricka A Williams-Simon
- Department of Biology, University of Pennsylvania, 433 S University Ave., 226 Leidy Laboratories, Philadelphia, PA 19104, USA
| | - Camille Oster
- Ash Creek Forest Management, 2796 SE 73rd Ave., Hillsboro, OR 97123, USA
| | | | - Ronel Ghidey
- ECHO Data Analysis Center, Johns Hopkins Bloomberg School of Public Health, 504 Cathedral St., Baltimore, MD 2120, USA
| | - Enoch Ng’oma
- Division of Biology, University of Missouri, 226 Tucker Hall, Columbia, MO 65211, USA
| | - Kevin M Middleton
- Division of Biology, University of Missouri, 222 Tucker Hall, Columbia, MO 65211, USA
| | - Elizabeth G King
- Division of Biology, University of Missouri, 401 Tucker Hall, Columbia, MO 65211, USA
| |
Collapse
|
27
|
Ratz T, Chechi TS, Dimopoulou AI, Sedlmair SD, Tuni C. Heatwaves inflict reproductive but not survival costs to male insects. J Exp Biol 2024; 227:jeb246698. [PMID: 38436413 DOI: 10.1242/jeb.246698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Climate change is having a dramatic effect on the environment, with rising global temperatures and more frequent extreme climatic events, such as heatwaves, that can hamper organisms' biological functions. Although it is clear that sudden and extreme temperatures can damage reproductive processes, there is limited understanding of the effects of heatwaves on male mating behaviour and reproductive success. We tested for the effects of heat stress induced by ecologically relevant heatwaves (33°C and 39°C for five consecutive days) on the mating behaviour, reproductive success, body mass and survival of male field crickets Gryllus bimaculatus, paired with untreated females. We predicted life-history and reproductive costs would increase with increasing heatwave intensity. Consistent with our expectations, males exposed to the highest heatwave temperature produced the fewest offspring, while having to increase courtship effort to successfully mate. Males also gained relatively more weight following heatwave exposure. Given that we found no difference in lifetime survival, our results suggest a potential trade-off in resource allocation between somatic maintenance and reproductive investment. Taken together, our findings indicate that sublethal effects of heatwaves could reduce the growth and persistence of animal populations by negatively impacting reproductive rates. These findings highlight the need for considering thermal ecologies, life history and behaviour to better understand the consequences of extreme climatic events on individuals and populations.
Collapse
Affiliation(s)
- Tom Ratz
- Department of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstraße 190, 8057 Zürich, Switzerland
| | - Tejinder Singh Chechi
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Aliki-Ioanna Dimopoulou
- Department of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Stephanie Daniela Sedlmair
- Department of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Cristina Tuni
- Department of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
28
|
Pawar S, Huxley PJ, Smallwood TRC, Nesbit ML, Chan AHH, Shocket MS, Johnson LR, Kontopoulos DG, Cator LJ. Variation in temperature of peak trait performance constrains adaptation of arthropod populations to climatic warming. Nat Ecol Evol 2024; 8:500-510. [PMID: 38273123 DOI: 10.1038/s41559-023-02301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
The capacity of arthropod populations to adapt to long-term climatic warming is currently uncertain. Here we combine theory and extensive data to show that the rate of their thermal adaptation to climatic warming will be constrained in two fundamental ways. First, the rate of thermal adaptation of an arthropod population is predicted to be limited by changes in the temperatures at which the performance of four key life-history traits can peak, in a specific order of declining importance: juvenile development, adult fecundity, juvenile mortality and adult mortality. Second, directional thermal adaptation is constrained due to differences in the temperature of the peak performance of these four traits, with these differences expected to persist because of energetic allocation and life-history trade-offs. We compile a new global dataset of 61 diverse arthropod species which provides strong empirical evidence to support these predictions, demonstrating that contemporary populations have indeed evolved under these constraints. Our results provide a basis for using relatively feasible trait measurements to predict the adaptive capacity of diverse arthropod populations to geographic temperature gradients, as well as ongoing and future climatic warming.
Collapse
Affiliation(s)
- Samraat Pawar
- Department of Life Sciences, Imperial College London, Ascot, UK.
| | - Paul J Huxley
- Department of Life Sciences, Imperial College London, Ascot, UK.
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA.
| | - Thomas R C Smallwood
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Miles L Nesbit
- Department of Life Sciences, Imperial College London, Ascot, UK
- The Pirbright Institute, Woking, UK
| | - Alex H H Chan
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Marta S Shocket
- Department of Geography, University of Florida, Gainesville, FL, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| | | | - Lauren J Cator
- Department of Life Sciences, Imperial College London, Ascot, UK.
| |
Collapse
|
29
|
Dewenter BS, Shah AA, Hughes J, Poff NL, Thompson R, Kefford BJ. The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis. Ecol Evol 2024; 14:e10937. [PMID: 38405410 PMCID: PMC10891360 DOI: 10.1002/ece3.10937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
Climate change involves increases in mean temperature and changes in temperature variability at multiple temporal scales but research rarely considers these temporal scales. The climate variability hypothesis (CVH) provides a conceptual framework for exploring the potential effects of annual scale thermal variability across climatic zones. The CVH predicts ectotherms in temperate regions tolerate a wider range of temperatures than those in tropical regions in response to greater annual variability in temperate regions. However, various other aspects of thermal regimes (e.g. diel variability), organisms' size and taxonomic identity are also hypothesised to influence thermal tolerance. Indeed, high temperatures in the tropics have been proposed as constraining organisms' ability to tolerate a wide range of temperatures, implying that high annual maximum temperatures would be associated with tolerating a narrow range of temperatures. We measured thermal regimes and critical thermal limits (CTmax and CTmin) of freshwater insects in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) along elevation gradients in streams in temperate and tropical regions of eastern Australia and tested the CVH by determining which variables were most correlated with thermal breadth (T br = CTmax - CTmin). Consistent with the CVH, T br tended to increase with increasing annual temperature range. T br also increased with body size and T br was generally wider in Plecoptera than in Ephemeroptera or Trichoptera. We also find some support for a related hypothesis, the climate extreme hypothesis (CEH), particularly for predicting upper thermal limits. We found no evidence that higher annual maximum temperature constrained individuals' abilities to tolerate a wide range of temperatures. The support for the CVH we document suggests that temperate organisms may be able to tolerate wider ranges of temperatures than tropical organisms. There is an urgent need to investigate other aspects of thermal regimes, such as diel temperature cycling and minimum temperature.
Collapse
Affiliation(s)
- Beatrice S. Dewenter
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Alisha A. Shah
- W.K. Kellogg Biological Station, Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Jane Hughes
- School of Environment and ScienceGriffith UniversityNathanQueenslandAustralia
| | - N. LeRoy Poff
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Ross Thompson
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Ben J. Kefford
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
30
|
Couper LI, Farner JE, Lyberger KP, Lee AS, Mordecai EA. Mosquito thermal tolerance is remarkably constrained across a large climatic range. Proc Biol Sci 2024; 291:20232457. [PMID: 38264779 PMCID: PMC10806440 DOI: 10.1098/rspb.2023.2457] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life-history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1200 km, we found limited variation in upper thermal tolerance between populations. In particular, the upper thermal limits of all life-history traits varied by less than 3°C across the species range and, for most traits, did not differ significantly between populations. For one life-history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found that maximum environmental temperatures across most of the species' range already regularly exceed the highest upper thermal limits estimated under constant temperatures. This result suggests that strategies for coping with and/or avoiding thermal extremes are likely key components of current and future mosquito thermal tolerance.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Johannah E. Farner
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Kelsey P. Lyberger
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Alexandra S. Lee
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Erin A. Mordecai
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Johnson CA, Ren R, Buckley LB. Temperature Sensitivity of Fitness Components across Life Cycles Drives Insect Responses to Climate Change. Am Nat 2023; 202:753-766. [PMID: 38033177 DOI: 10.1086/726896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractThermal performance curves (TPCs) are increasingly used as a convenient approach to predict climate change impacts on ectotherms that accounts for organismal thermal sensitivity; however, directly applying TPCs to temperature data to estimate fitness has yielded contrasting predictions depending on assumptions regarding climate variability. We compare direct application of TPCs to an approach integrating TPCs for different fitness components (e.g., per capita birth rate, adult life span) across ectotherm life cycles into a population dynamic model, which we independently validated with census data and applied to hemipteran insect populations across latitude. The population model predicted that climate change will reduce insect fitness more at higher latitudes due to its effects on survival but will reduce net reproductive rate more at lower latitudes due to its effects on fecundity. Directly applying TPCs underestimated climate change impacts on fitness relative to incorporating the TPCs into the population model due to simplifying survival dynamics across the life cycle. The population model predicted that climate change will reduce mean insect density and increase population variability at higher latitudes via reduced survival, despite faster development and a longer activity period. Our study highlights the importance of considering how multiple fitness components respond to climate variability across the life cycle to better understand and anticipate the ecological consequence of climate change.
Collapse
|
32
|
Qu HC, Yang Y, Cui ZC, Wang D, Xue CD, Qin KR. Temperature-mediated diffusion of nanoparticles in semidilute polymer solutions. Electrophoresis 2023; 44:1899-1906. [PMID: 37736676 DOI: 10.1002/elps.202300054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
The temperature is often a critical factor affecting the diffusion of nanoparticles in complex physiological media, but its specific effects are still to be fully understood. Here, we constructed a temperature-regulated model of semidilute polymer solution and experimentally investigated the temperature-mediated diffusion of nanoparticles using the particle tracking method. By examining the ensemble-averaged mean square displacements (MSDs), we found that the MSD grows gradually as the temperature increases while the transition time from sublinear to linear stage in MSD decreases. Meanwhile, the temperature-dependent measured diffusivity of the nanoparticles shows an exponential growth. We revealed that these temperature-mediated changes are determined by the composite effect of the macroscale property of polymer solution and the microscale dynamics of polymer chain as well as nanoparticles. Furthermore, the measured non-Gaussian displacement probability distributions were found to exhibit non-Gaussian fat tails, and the tailed distribution is enhanced as the temperature increases. The non-Gaussianity was calculated and found to vary in the same trend with the tailed distribution, suggesting the occurrence of hopping events. This temperature-mediated non-Gaussian feature validates the recent theory of thermally induced activated hopping. Our results highlight the temperature-mediated changes in diffusive transport of nanoparticles in polymer solutions and may provide the possible strategy to improve drug delivery in physiological media.
Collapse
Affiliation(s)
- Heng-Chao Qu
- Affiliated Central Hospital of Dalian University of Technology, Dalian, P. R. China
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Yi Yang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Zhi-Chao Cui
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Dong Wang
- Affiliated Central Hospital of Dalian University of Technology, Dalian, P. R. China
| | - Chun-Dong Xue
- Affiliated Central Hospital of Dalian University of Technology, Dalian, P. R. China
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
- Faculty of Medicine, Dalian University of Technology, Dalian, P. R. China
| | - Kai-Rong Qin
- Affiliated Central Hospital of Dalian University of Technology, Dalian, P. R. China
- Faculty of Medicine, Dalian University of Technology, Dalian, P. R. China
| |
Collapse
|
33
|
Couper LI, Farner JE, Lyberger KP, Lee AS, Mordecai EA. Mosquito thermal tolerance is remarkably constrained across a large climatic range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530886. [PMID: 37961581 PMCID: PMC10634975 DOI: 10.1101/2023.03.02.530886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity, and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1,200 km, we found remarkably limited variation in upper thermal tolerance between populations, with the upper thermal limits of fitness varying by <1°C across the species range. For one life history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found environmental temperatures already regularly exceed our highest estimated upper thermal limits throughout most of the species range, suggesting limited potential for mosquito thermal tolerance to evolve on pace with warming. Strategies for avoiding high temperatures such as diapause, phenological shifts, and behavioral thermoregulation are likely important for mosquito persistence.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Johannah E. Farner
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Kelsey P. Lyberger
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Alexandra S. Lee
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Erin A. Mordecai
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| |
Collapse
|
34
|
Dong YW. Roles of multi-level temperature-adaptive responses and microhabitat variation in establishing distributions of intertidal species. J Exp Biol 2023; 226:jeb245745. [PMID: 37909420 DOI: 10.1242/jeb.245745] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
How intertidal species survive their harsh environment and how best to evaluate and forecast range shifts in species distribution are two important and closely related questions for intertidal ecologists and global change biologists. Adaptive variation in responses of organisms to environmental change across all levels of biological organization - from behavior to molecular systems - is of key importance in setting distribution patterns, yet studies often neglect the interactions of diverse types of biological variation (e.g. differences in thermal optima owing to genetic and acclimation-induced effects) with environmental variation, notably at the scale of microhabitats. Intertidal species have to cope with extreme and frequently changing thermal stress, and have shown high variation in thermal sensitivities and adaptive responses at different levels of biological organization. Here, I review the physiological and biochemical adaptations of intertidal species to environmental temperature on multiple spatial and temporal scales. With fine-scale datasets for the thermal limits of individuals and for environmental temperature variation at the microhabitat scale, we can map the thermal sensitivity for each individual in different microhabitats, and then scale up the thermal sensitivity analysis to the population level and, finally, to the species level by incorporating physiological traits into species distribution models. These more refined mechanistic models that include consideration of physiological variations have higher predictive power than models that neglect these variations, and they will be crucial to answering the questions posed above concerning adaptive mechanisms and the roles they play in governing distribution patterns in a rapidly changing world.
Collapse
Affiliation(s)
- Yun-Wei Dong
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao 266001, China
| |
Collapse
|
35
|
Aragon-Traverso JH, Piñeiro M, Olivares JPS, Sanabria EA. Temporal variation of thermal sensitivity to global warming: Acclimatization in the guitarist beetle, Megelenophorus americanus (Coleoptera: Tenebrionidae) from the Monte Desert. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111505. [PMID: 37619666 DOI: 10.1016/j.cbpa.2023.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Global warming is a major threat to biodiversity, the increase in mean temperature plus the higher rate and intensity of heat waves can severely affect organisms by exposing them to temperatures beyond their tolerance limits. Desert ectotherms are particularly vulnerable due to their dependence on environmental temperatures in an extreme habitat. Thermal tolerance changes depending on environmental conditions, studying these fluctuations provides a better understanding of species susceptibility to global warming. Tenebrionids are successful desert-inhabiting ectotherm taxa because of a series of adaptations for heat tolerance and water loss. We studied the seasonal variation (acclimatization) of thermal tolerance in Megelenophorus americanus, a widely distributed species in the Monte Desert (Argentina). To do this, we measured environmental and operative temperatures: body temperature (Tb), soil temperature (Ts), air temperature (Ta), environmental temperature (Te) and maximum temperature (Tmax), and tolerance proxies volunteer thermal maximum (VTmax), Fluid release (FR) and critical thermal maximum (CTmax) in a population of M. americanus from San Juan province, Argentina from October to March (full activity season). We found that Ts and Ta are accurate predictors of Tb, suggesting thermoconformism. All tolerance proxies showed differences among months, suggesting a natural acclimatization process in situ. Insects were found operating beyond VTmax (thermal stress) but they were far from reaching CTmax under natural conditions. Organisms present different degrees of tolerance plasticity that should be considered when predicting potential impacts of climate change.
Collapse
Affiliation(s)
- Juan Hector Aragon-Traverso
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan, Av. José Ignacio de la Roza 230 (O), San Juan 5400, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, CCT, San Juan, Argentina.
| | - Mauricio Piñeiro
- CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, CCT, San Juan, Argentina; Instituto de Biotecnología, Facultad de ingeniería, Universidad Nacional de San Juan, Avenida Libertador Gral. San Martín 1109 (O), San Juan 5400, Argentina
| | - Juan Pablo Segundo Olivares
- Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. José Ignacio de la Rosa y Meglioli, 5400 San Juan, Argentina
| | - Eduardo Alfredo Sanabria
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan, Av. José Ignacio de la Roza 230 (O), San Juan 5400, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, CCT, San Juan, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo. Padre Contreras 1300, Mendoza 5500, Argentina
| |
Collapse
|
36
|
Burggren WW, Mendez-Sanchez JF. "Bet hedging" against climate change in developing and adult animals: roles for stochastic gene expression, phenotypic plasticity, epigenetic inheritance and adaptation. Front Physiol 2023; 14:1245875. [PMID: 37869716 PMCID: PMC10588650 DOI: 10.3389/fphys.2023.1245875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Animals from embryos to adults experiencing stress from climate change have numerous mechanisms available for enhancing their long-term survival. In this review we consider these options, and how viable they are in a world increasingly experiencing extreme weather associated with climate change. A deeply understood mechanism involves natural selection, leading to evolution of new adaptations that help cope with extreme and stochastic weather events associated with climate change. While potentially effective at staving off environmental challenges, such adaptations typically occur very slowly and incrementally over evolutionary time. Consequently, adaptation through natural selection is in most instances regarded as too slow to aid survival in rapidly changing environments, especially when considering the stochastic nature of extreme weather events associated with climate change. Alternative mechanisms operating in a much shorter time frame than adaptation involve the rapid creation of alternate phenotypes within a life cycle or a few generations. Stochastic gene expression creates multiple phenotypes from the same genotype even in the absence of environmental cues. In contrast, other mechanisms for phenotype change that are externally driven by environmental clues include well-understood developmental phenotypic plasticity (variation, flexibility), which can enable rapid, within-generation changes. Increasingly appreciated are epigenetic influences during development leading to rapid phenotypic changes that can also immediately be very widespread throughout a population, rather than confined to a few individuals as in the case of favorable gene mutations. Such epigenetically-induced phenotypic plasticity can arise rapidly in response to stressors within a generation or across a few generations and just as rapidly be "sunsetted" when the stressor dissipates, providing some capability to withstand environmental stressors emerging from climate change. Importantly, survival mechanisms resulting from adaptations and developmental phenotypic plasticity are not necessarily mutually exclusive, allowing for classic "bet hedging". Thus, the appearance of multiple phenotypes within a single population provides for a phenotype potentially optimal for some future environment. This enhances survival during stochastic extreme weather events associated with climate change. Finally, we end with recommendations for future physiological experiments, recommending in particular that experiments investigating phenotypic flexibility adopt more realistic protocols that reflect the stochastic nature of weather.
Collapse
Affiliation(s)
- Warren W. Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Jose Fernando Mendez-Sanchez
- Laboratorio de Ecofisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
37
|
Krichel L, Kirk D, Pencer C, Hönig M, Wadhawan K, Krkošek M. Short-term temperature fluctuations increase disease in a Daphnia-parasite infectious disease system. PLoS Biol 2023; 21:e3002260. [PMID: 37683040 PMCID: PMC10491407 DOI: 10.1371/journal.pbio.3002260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/18/2023] [Indexed: 09/10/2023] Open
Abstract
Climate change has profound effects on infectious disease dynamics, yet the impacts of increased short-term temperature fluctuations on disease spread remain poorly understood. We empirically tested the theoretical prediction that short-term thermal fluctuations suppress endemic infection prevalence at the pathogen's thermal optimum. This prediction follows from a mechanistic disease transmission model analyzed using stochastic simulations of the model parameterized with thermal performance curves (TPCs) from metabolic scaling theory and using nonlinear averaging, which predicts ecological outcomes consistent with Jensen's inequality (i.e., reduced performance around concave-down portions of a thermal response curve). Experimental observations of replicated epidemics of the microparasite Ordospora colligata in Daphnia magna populations indicate that temperature variability had the opposite effect of our theoretical predictions and instead increase endemic infection prevalence. This positive effect of temperature variability is qualitatively consistent with a published hypothesis that parasites may acclimate more rapidly to fluctuating temperatures than their hosts; however, incorporating hypothetical effects of delayed host acclimation into the mechanistic transmission model did not fully account for the observed pattern. The experimental data indicate that shifts in the distribution of infection burden underlie the positive effect of temperature fluctuations on endemic prevalence. The increase in disease risk associated with climate fluctuations may therefore result from disease processes interacting across scales, particularly within-host dynamics, that are not captured by combining standard transmission models with metabolic scaling theory.
Collapse
Affiliation(s)
- Leila Krichel
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Devin Kirk
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Clara Pencer
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Madison Hönig
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| | - Kiran Wadhawan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Krkošek
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Rollins-Smith LA, Le Sage EH. Heat stress and amphibian immunity in a time of climate change. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220132. [PMID: 37305907 PMCID: PMC10258666 DOI: 10.1098/rstb.2022.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 06/13/2023] Open
Abstract
As a class of vertebrates, amphibians, are at greater risk for declines or extinctions than any other vertebrate group, including birds and mammals. There are many threats, including habitat destruction, invasive species, overuse by humans, toxic chemicals and emerging diseases. Climate change which brings unpredictable temperature changes and rainfall constitutes an additional threat. Survival of amphibians depends on immune defences functioning well under these combined threats. Here, we review the current state of knowledge of how amphibians respond to some natural stressors, including heat and desiccation stress, and the limited studies of the immune defences under these stressful conditions. In general, the current studies suggest that desiccation and heat stress can activate the hypothalamus pituitary-interrenal axis, with possible suppression of some innate and lymphocyte-mediated responses. Elevated temperatures can alter microbial communities in amphibian skin and gut, resulting in possible dysbiosis that fosters reduced resistance to pathogens. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Louise A. Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily H. Le Sage
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
39
|
Williams-Simon PA, Oster C, Moaton JA, Ghidey R, Ng'oma E, Middleton KM, Zars T, King EG. Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547110. [PMID: 37461510 PMCID: PMC10350013 DOI: 10.1101/2023.07.06.547110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation, are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants of the genes that control this trait is of high importance if we want to better comprehend how this trait evolves in natural populations. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource (DSPR) as a model system. First, we used quantitative genetics and Quantitative Trait Loci (QTL) mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to 1) alter tissue-specific gene expression and 2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
Collapse
|
40
|
Desforges JE, Birnie-Gauvin K, Jutfelt F, Gilmour KM, Eliason EJ, Dressler TL, McKenzie DJ, Bates AE, Lawrence MJ, Fangue N, Cooke SJ. The ecological relevance of critical thermal maxima methodology for fishes. JOURNAL OF FISH BIOLOGY 2023; 102:1000-1016. [PMID: 36880500 DOI: 10.1111/jfb.15368] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/28/2023] [Indexed: 05/13/2023]
Abstract
Critical thermal maxima methodology (CTM) has been used to infer acute upper thermal tolerance in fishes since the 1950s, yet its ecological relevance remains debated. In this study, the authors synthesize evidence to identify methodological concerns and common misconceptions that have limited the interpretation of critical thermal maximum (CTmax ; value for an individual fish during one trial) in ecological and evolutionary studies of fishes. They identified limitations of, and opportunities for, using CTmax as a metric in experiments, focusing on rates of thermal ramping, acclimation regimes, thermal safety margins, methodological endpoints, links to performance traits and repeatability. Care must be taken when interpreting CTM in ecological contexts, because the protocol was originally designed for ecotoxicological research with standardized methods to facilitate comparisons within study individuals, across species and contexts. CTM can, however, be used in ecological contexts to predict impacts of environmental warming, but only if parameters influencing thermal limits, such as acclimation temperature or rate of thermal ramping, are taken into account. Applications can include mitigating the effects of climate change, informing infrastructure planning or modelling species distribution, adaptation and/or performance in response to climate-related temperature change. The authors' synthesis points to several key directions for future research that will further aid the application and interpretation of CTM data in ecological contexts.
Collapse
Affiliation(s)
- Jessica E Desforges
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Kim Birnie-Gauvin
- Department of Ecology, Evolution & Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Erika J Eliason
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Terra L Dressler
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Amanda E Bates
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Michael J Lawrence
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nann Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, California, USA
| | - Steven J Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
41
|
Carter MJ, Cortes PA, Rezende EL. Temperature variability and metabolic adaptation in terrestrial and aquatic ectotherms. J Therm Biol 2023; 115:103565. [PMID: 37393847 DOI: 10.1016/j.jtherbio.2023.103565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 07/04/2023]
Abstract
Thermodynamics is a major factor determining rates of energy expenditure, rates of biochemical dynamics, and ultimately the biological and ecological processes linked with resilience to global warming in ectothermic organisms. Nonetheless, whether ectothermic organisms exhibit general adaptive metabolic responses to cope with worldwide variation in thermal conditions has remained as an open question. Here we combine a model comparison approach with a global dataset of standard metabolic rates (SMR), including 1,160 measurements across 788 species of aquatic invertebrates, insects, fishes, amphibians and reptiles, to investigate the association between metabolic rates and environmental temperatures in their respective habitats. Our analyses suggest that variation in SMR after removing allometric and thermodynamic effects is best explained by the temperature range encountered across seasons, which always provided a better fit than the average temperature for the hottest and coldest month and mean annual temperatures. This pattern was consistent across taxonomic groups and robust to sensitivity analyses. Nonetheless, aquatic and terrestrial lineages responded differently to seasonality, with SMR declining - 6.8% °C-1 of thermal range across seasons in aquatic organisms and increasing 2.8% °C-1 in terrestrial organisms. These responses may reflect alternative strategies to mitigate the impact of increments in warmer temperatures on energy expenditure, either by means of metabolic reduction in thermally homogeneous water bodies or effective behavioral thermoregulation to exploit temperature heterogeneity on land.
Collapse
Affiliation(s)
- Mauricio J Carter
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago, Chile.
| | - Pablo A Cortes
- Independent Researcher, Tegualda 2000, 7770547, Ñuñoa, Chile
| | - Enrico L Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago, 6513677, Chile.
| |
Collapse
|
42
|
Dwane C, Rezende EL, Tills O, Galindo J, Rolán-Alvarez E, Rundle S, Truebano M. Thermodynamic effects drive countergradient responses in the thermal performance of Littorina saxatilis across latitude. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160877. [PMID: 36521622 DOI: 10.1016/j.scitotenv.2022.160877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Thermal performance curves (TPCs) provide a powerful framework to assess the evolution of thermal sensitivity in populations exposed to divergent selection regimes across latitude. However, there is a lack of consensus regarding the extent to which physiological adjustments that compensate for latitudinal temperature variation (metabolic cold adaptation; MCA) may alter the shape of TPCs, including potential repercussion on upper thermal limits. To address this, we compared TPCs for cardiac activity in latitudinally-separated populations of the intertidal periwinkle Littorina saxatilis. We applied a non-linear TPC modelling approach to explore how different metrics governing the shape of TPCs varied systematically in response to local adaptation and thermal acclimation. Both critical upper limits, and the temperatures at which cardiac performance was maximised, were higher in the northernmost (cold-adapted) population and displayed a countergradient latitudinal trend which was most pronounced following acclimation to low temperatures. We interpret this response as a knock-on consequence of increased standard metabolic rate in high latitude populations, indicating that physiological compensation associated with MCA may indirectly influence variation in upper thermal limits across latitude. Our study highlights the danger of assuming that variation in any one aspect of the TPC is adaptive without appropriate mechanistic and ecological context.
Collapse
Affiliation(s)
- Christopher Dwane
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| | - Enrico L Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Oliver Tills
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Juan Galindo
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Bioquímica, Genética e Inmunología, 36310 Vigo, Spain
| | - Emilio Rolán-Alvarez
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Bioquímica, Genética e Inmunología, 36310 Vigo, Spain
| | - Simon Rundle
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
43
|
Siegel P, Baker KG, Low‐Décarie E, Geider RJ. Phytoplankton competition and resilience under fluctuating temperature. Ecol Evol 2023; 13:e9851. [PMID: 36950368 PMCID: PMC10025077 DOI: 10.1002/ece3.9851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/03/2023] [Accepted: 02/02/2023] [Indexed: 03/21/2023] Open
Abstract
Environmental variability is an inherent feature of natural systems which complicates predictions of species interactions. Primarily, the complexity in predicting the response of organisms to environmental fluctuations is in part because species' responses to abiotic factors are non-linear, even in stable conditions. Temperature exerts a major control over phytoplankton growth and physiology, yet the influence of thermal fluctuations on growth and competition dynamics is largely unknown. To investigate the limits of coexistence in variable environments, stable mixed cultures with constant species abundance ratios of the marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, were exposed to different temperature fluctuation regimes (n = 17) under high and low nitrogen (N) conditions. Here we demonstrate that phytoplankton exhibit substantial resilience to temperature variability. The time required to observe a shift in the species abundance ratio decreased with increasing fluctuations, but coexistence of the two model species under high N conditions was disrupted only when amplitudes of temperature fluctuation were high (±8.2°C). N limitation caused the thermal amplitude for disruption of species coexistence to become lower (±5.9°C). Furthermore, once stable conditions were reinstated, the two species differed in their ability to recover from temperature fluctuations. Our findings suggest that despite the expectation of unequal effect of fluctuations on different competitors, cycles in environmental conditions may reduce the rate of species replacement when amplitudes remain below a certain threshold. Beyond these thresholds, competitive exclusion could, however, be accelerated, suggesting that aquatic heatwaves and N availability status are likely to lead to abrupt and unpredictable restructuring of phytoplankton community composition.
Collapse
Affiliation(s)
- Philipp Siegel
- School of Life SciencesUniversity of Essex Colchester CampusColchesterUK
| | - Kirralee G. Baker
- School of Life SciencesUniversity of Essex Colchester CampusColchesterUK
- Present address:
Institute for Marine and Antarctic StudiesUniversity of TasmaniaBattery PointTasmaniaAustralia
| | - Etienne Low‐Décarie
- School of Life SciencesUniversity of Essex Colchester CampusColchesterUK
- Present address:
Biological Informatics Center of Expertise, Agriculture and Agrifoods Canada, Government of CanadaMontrealQuebecCanada
| | - Richard J. Geider
- School of Life SciencesUniversity of Essex Colchester CampusColchesterUK
| |
Collapse
|
44
|
Lima A, Didugu BGL, Chunduri AR, Rajan R, Jha A, Mamillapalli A. Thermal tolerance role of novel polyamine, caldopentamine, identified in fifth instar Bombyx mori. Amino Acids 2023; 55:287-298. [PMID: 36562834 DOI: 10.1007/s00726-022-03226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Silkworms have limited ability to regulate their body temperature; therefore, environmental changes, such as global warming, can adversely affect their viability. Polyamines have shown protection to various organisms against heat stress. This study evaluated the qualitative and quantitative changes in heat-stressed Bombyx mori larvae polyamines. Fifth instar Bombyx mori larvae were divided into two groups; control group, reared at room temperature, i.e., 28 ± 2 °C, and the heat shock group, exposed to 40 °C. Dansylation of the whole worm polyamines and subsequent thin-layer chromatography revealed the presence of components with the same Rf value as dansyl-putrescine, spermidine, and spermine. The dansyl-putrescine, spermidine, and spermine polyamines were identified by mass spectrometric analyses. After heat shock, the thin-layer chromatography of the whole-larvae tissue extracts showed qualitative and quantitative changes in dansylated polyamines. A new polyamine, caldopentamine, was identified, which showed elevated levels in heat-stressed larvae. This polyamine could play a role in helping the larvae tolerate various stress, including thermal stress. No significant changes in silk fiber's economic and mechanical properties were observed in our study. This study indicated that PA, caldopentamine, supplementation could improve heat-stress tolerance in Bombyx mori.
Collapse
Affiliation(s)
- Anugata Lima
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Brinda Goda Lakshmi Didugu
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Alekhya Rani Chunduri
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Resma Rajan
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Anjali Jha
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Anitha Mamillapalli
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
45
|
Kefford BJ, Nichols SJ, Duncan RP. The cumulative impacts of anthropogenic stressors vary markedly along environmental gradients. GLOBAL CHANGE BIOLOGY 2023; 29:590-602. [PMID: 36114730 PMCID: PMC10087255 DOI: 10.1111/gcb.16435] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Understanding the cumulative effects of multiple stressors on biodiversity is key to managing their impacts. Stressor interactions are often studied using an additive/antagonistic/synergistic typology, aimed at identifying situations where individual stressor effects are reduced or amplified when they act in combination. Here, we analysed variation in the family richness of stream macroinvertebrates in the groups Ephemeroptera, Plecoptera and Trichoptera (EPT) at 4658 sites spanning a 32° latitudinal range in eastern Australia in relation to two largely human-induced stressors, salinity and turbidity, and two environmental gradients, temperature and slope. The cumulative and interactive effect of salinity and turbidity on EPT family richness varied across the landscape and by habitat (edge or riffle) such that we observed additive, antagonistic and synergistic outcomes depending on the environmental context. Our findings highlight the importance of understanding the consistency of multiple stressor impacts, which will involve higher-order interactions between multiple stressors and environmental factors.
Collapse
Affiliation(s)
- Ben J. Kefford
- Centre for Applied Water ScienceInstitute for Applied Ecology, University of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Susan J. Nichols
- Centre for Applied Water ScienceInstitute for Applied Ecology, University of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Richard P. Duncan
- Centre for Conservation Ecology and GenomicsInstitute for Applied Ecology, University of CanberraCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
46
|
Leung BKH, Hui TY, Williams GA. Behavioural adaptation to heat stress: Shell lifting of the hermit crab Diogenes deflectomanus. J Therm Biol 2023; 113:103476. [PMID: 37055101 DOI: 10.1016/j.jtherbio.2023.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023]
Abstract
Behavioural responses to heat and desiccation stress in ectotherms are crucial for their survival in habitats where environmental temperatures are close to or even exceed their upper thermal limits. During low tide periods when pools in intertidal sediments heat up, a novel shell lifting behaviour (when hermit crabs crawl out of pools and lift up their shells) was observed in the hermit crab, Diogenes deflectomanus, on tropical sandy shores. On-shore measurements revealed that the hermit crabs left pools and lifted their shells predominantly when pool water exceeded 35.4 °C. Standing on emersed substrates above the pool water, the hermit crabs maintained their body temperatures at 26 - 29 °C, ∼ 10 °C lower than temperatures at which their physiological performances (as measured using heart rate) reached the maximum. This mismatch between preferred body temperatures and temperatures at maximal physiological performance was also observed under a laboratory controlled thermal gradient, where hermit crabs spent more time at 22 - 26 °C as compared to > 30 °C. These behaviours suggest a thermoregulatory function of the shell lifting behaviour, where the hermit crabs can avoid further increase in body temperatures when pools heat up during low tide periods. Such a behavioural decision allows the hermit crabs to be less prone to the strong temporal fluctuation in temperatures experienced during emersion periods on thermally dynamic tropical sandy shores.
Collapse
|
47
|
Pham LP, Nguyen MV, Jordal AEO, Rønnestad I. Metabolic rates, feed intake, appetite control, and gut transit of clownfish Amphiprion ocellaris exposed to increased temperature and limited feed availability. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111318. [PMID: 36115553 DOI: 10.1016/j.cbpa.2022.111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
Episodes of elevated temperature, combined with lower feed availability, are among the predicted scenarios of climate change representing a challenge for coral reef fish. We investigated the response of clownfish (Amphiprion ocellaris) to a scenario in which it received a single meal to satiety after 48 h fasting at 32 °C (climate change scenario) and 28 °C (control). We analysed the metabolic rate (MR), feed intake, gut transit, and expression of selected brain neuropeptides and one receptor believed to be involved in appetite control. Fish at 32 °C ingested 17.9% less feed and had a faster gut transit than did fish at 28 °C. MR in the unfed fish was 31% higher at 32 °C compared to 28 °C. In the fed fish, postprandial MR at 28 °C was 30% higher compared to that of unfed fish, while at 32 °C it was only 15% higher. The expression of agrp1 did not differ between unfed and refed fish. The levels of both pomca and mc4r increased immediately after the meal and subsequently declined, suggesting a possible anorexic role for these genes. Notably, this pattern was accelerated in fish kept at 32 °C compared with that in fish kept at 28 °C. The dynamics of these changes in expression correspond to a faster gut transition of ingested feed at elevated temperatures. For both agrp2 and pomcb there was an increase in expression following feeding in fish maintained at 32 °C, which was not observed in fish kept at 28 °C. These results suggest that low feed availability and elevated temperature stimulate anorexigenic pathways in clownfish, resulting in significantly lower feed intake despite the temperature-induced increase in metabolic rate. This may be a mechanism to ameliorate the decrease in aerobic scope that results from higher temperatures.
Collapse
Affiliation(s)
- Linh P Pham
- Institute of Aquaculture, Nha Trang University, Nha Trang, Viet Nam; Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Minh V Nguyen
- Institute of Aquaculture, Nha Trang University, Nha Trang, Viet Nam
| | | | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
48
|
Kefford BJ, Ghalambor CK, Dewenter B, Poff NL, Hughes J, Reich J, Thompson R. Acute, diel, and annual temperature variability and the thermal biology of ectotherms. GLOBAL CHANGE BIOLOGY 2022; 28:6872-6888. [PMID: 36177681 PMCID: PMC9828456 DOI: 10.1111/gcb.16453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Global warming is increasing mean temperatures and altering temperature variability at multiple temporal scales. To better understand the consequences of changes in thermal variability for ectotherms it is necessary to consider thermal variation at different time scales (i.e., acute, diel, and annual) and the responses of organisms within and across generations. Thermodynamics constrain acute responses to temperature, but within these constraints and over longer time periods, organisms have the scope to adaptively acclimate or evolve. Yet, hypotheses and predictions about responses to future warming tend not to explicitly consider the temporal scale at which temperature varies. Here, focusing on multicellular ectothermic animals, we argue that consideration of multiple processes and constraints associated with various timescales is necessary to better understand how altered thermal variability because of climate change will affect ectotherms.
Collapse
Affiliation(s)
- Ben J. Kefford
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Cameron K. Ghalambor
- Department of Biology and Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Beatrice Dewenter
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - N. LeRoy Poff
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
- Department of Biology and Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Jane Hughes
- Australian Rivers InstituteGriffith UniversityNathanQueenslandAustralia
| | - Jollene Reich
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Ross Thompson
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
49
|
Harvey JA, Tougeron K, Gols R, Heinen R, Abarca M, Abram PK, Basset Y, Berg M, Boggs C, Brodeur J, Cardoso P, de Boer JG, De Snoo GR, Deacon C, Dell JE, Desneux N, Dillon ME, Duffy GA, Dyer LA, Ellers J, Espíndola A, Fordyce J, Forister ML, Fukushima C, Gage MJG, García‐Robledo C, Gely C, Gobbi M, Hallmann C, Hance T, Harte J, Hochkirch A, Hof C, Hoffmann AA, Kingsolver JG, Lamarre GPA, Laurance WF, Lavandero B, Leather SR, Lehmann P, Le Lann C, López‐Uribe MM, Ma C, Ma G, Moiroux J, Monticelli L, Nice C, Ode PJ, Pincebourde S, Ripple WJ, Rowe M, Samways MJ, Sentis A, Shah AA, Stork N, Terblanche JS, Thakur MP, Thomas MB, Tylianakis JM, Van Baaren J, Van de Pol M, Van der Putten WH, Van Dyck H, Verberk WCEP, Wagner DL, Weisser WW, Wetzel WC, Woods HA, Wyckhuys KAG, Chown SL. Scientists' warning on climate change and insects. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Harvey
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Kévin Tougeron
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
- EDYSAN, UMR 7058, Université de Picardie Jules Verne, CNRS Amiens France
| | - Rieta Gols
- Laboratory of Entomology Wageningen University Wageningen The Netherlands
| | - Robin Heinen
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Mariana Abarca
- Department of Biological Sciences Smith College Northampton Massachusetts USA
| | - Paul K. Abram
- Agriculture and Agri‐Food Canada, Agassiz Research and Development Centre Agassiz British Columbia Canada
| | - Yves Basset
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - Matty Berg
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Groningen Institute of Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Carol Boggs
- School of the Earth, Ocean and Environment and Department of Biological Sciences University of South Carolina Columbia South Carolina USA
- Rocky Mountain Biological Laboratory Gothic Colorado USA
| | - Jacques Brodeur
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal Québec Canada
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | - Jetske G. de Boer
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Geert R. De Snoo
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Charl Deacon
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Jane E. Dell
- Geosciences and Natural Resources Department Western Carolina University Cullowhee North Carolina USA
| | | | - Michael E. Dillon
- Department of Zoology and Physiology and Program in Ecology University of Wyoming Laramie Wyoming USA
| | - Grant A. Duffy
- School of Biological Sciences Monash University Melbourne Victoria Australia
- Department of Marine Science University of Otago Dunedin New Zealand
| | - Lee A. Dyer
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Jacintha Ellers
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Anahí Espíndola
- Department of Entomology University of Maryland College Park Maryland USA
| | - James Fordyce
- Department of Ecology and Evolutionary Biology University of Tennessee, Knoxville Knoxville Tennessee USA
| | - Matthew L. Forister
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Caroline Fukushima
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | | | | | - Claire Gely
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Mauro Gobbi
- MUSE‐Science Museum, Research and Museum Collections Office Climate and Ecology Unit Trento Italy
| | - Caspar Hallmann
- Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands
| | - Thierry Hance
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - John Harte
- Energy and Resources Group University of California Berkeley California USA
| | - Axel Hochkirch
- Department of Biogeography Trier University Trier Germany
- IUCN SSC Invertebrate Conservation Committee
| | - Christian Hof
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Ary A. Hoffmann
- Bio21 Institute, School of BioSciences University of Melbourne Melbourne Victoria Australia
| | - Joel G. Kingsolver
- Department of Biology University of North Carolina Chapel Hill North Carolina USA
| | - Greg P. A. Lamarre
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - William F. Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Blas Lavandero
- Laboratorio de Control Biológico Universidad de Talca Talca Chile
| | - Simon R. Leather
- Center for Integrated Pest Management Harper Adams University Newport UK
| | - Philipp Lehmann
- Department of Zoology Stockholm University Stockholm Sweden
- Zoological Institute and Museum University of Greifswald Greifswald Germany
| | - Cécile Le Lann
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | | | - Chun‐Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | | | | | - Chris Nice
- Department of Biology Texas State University San Marcos Texas USA
| | - Paul J. Ode
- Department of Agricultural Biology Colorado State University Fort Collins Colorado USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS Université de Tours Tours France
| | - William J. Ripple
- Department of Forest Ecosystems and Society Oregon State University Oregon USA
| | - Melissah Rowe
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
| | - Michael J. Samways
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Arnaud Sentis
- INRAE, Aix‐Marseille University, UMR RECOVER Aix‐en‐Provence France
| | - Alisha A. Shah
- W.K. Kellogg Biological Station, Department of Integrative Biology Michigan State University East Lansing Michigan USA
| | - Nigel Stork
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Nathan Queensland Australia
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Madhav P. Thakur
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Matthew B. Thomas
- York Environmental Sustainability Institute and Department of Biology University of York York UK
| | - Jason M. Tylianakis
- Bioprotection Aotearoa, School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Joan Van Baaren
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | - Martijn Van de Pol
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Wim H. Van der Putten
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Hans Van Dyck
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | | | - David L. Wagner
- Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
| | - Wolfgang W. Weisser
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - William C. Wetzel
- Department of Entomology, Department of Integrative Biology, and Ecology, Evolution, and Behavior Program Michigan State University East Lansing Michigan USA
| | - H. Arthur Woods
- Division of Biological Sciences University of Montana Missoula Montana USA
| | - Kris A. G. Wyckhuys
- Chrysalis Consulting Hanoi Vietnam
- China Academy of Agricultural Sciences Beijing China
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
50
|
Rindi L, He J, Benedetti‐Cecchi L. Spatial correlation reverses the compound effect of multiple stressors on rocky shore biofilm. Ecol Evol 2022; 12:e9418. [PMID: 36311394 PMCID: PMC9608791 DOI: 10.1002/ece3.9418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/11/2022] [Accepted: 09/19/2022] [Indexed: 12/01/2022] Open
Abstract
Understanding how multifactorial fluctuating environments affect species and communities remains one of the major challenges in ecology. The spatial configuration of the environment is known to generate complex patterns of correlation among multiple stressors. However, to what extent the spatial correlation between simultaneously fluctuating variables affects ecological assemblages in real-world conditions remains poorly understood. Here, we use field experiments and simulations to assess the influence of spatial correlation of two relevant climate variables - warming and sediment deposition following heavy precipitation - on the biomass and photosynthetic activity of rocky intertidal biofilm. First, we used a response-surface design experiment to establish the relation between biofilm, warming, and sediment deposition in the field. Second, we used the response surface to generate predictions of biofilm performance under different scenarios of warming and sediment correlation. Finally, we tested the predicted outcomes by manipulating the degree of correlation between the two climate variables in a second field experiment. Simulations stemming from the experimentally derived response surface showed how the degree and direction (positive or negative) of spatial correlation between warming and sediment deposition ultimately determined the nonlinear response of biofilm biomass (but not photosynthetic activity) to fluctuating levels of the two climate variables. Experimental results corroborated these predictions, probing the buffering effect of negative spatial correlation against extreme levels of warming and sediment deposition. Together, these results indicate that consideration of nonlinear response functions and local-scale patterns of correlation between climate drivers can improve our understanding and ability to predict ecological responses to multiple processes in heterogeneous environments.
Collapse
Affiliation(s)
- Luca Rindi
- Department of BiologyUniversity of Pisa, CoNISMaPisaItaly
| | - Jianyu He
- Department of BiologyUniversity of Pisa, CoNISMaPisaItaly
| | | |
Collapse
|