1
|
Fugate J, Wallace C, Aikens EO, Jesmer B, Kauffman M. Origin stories: how does learned migratory behaviour arise in populations? Biol Rev Camb Philos Soc 2025; 100:996-1014. [PMID: 39727267 DOI: 10.1111/brv.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
Although decades of research have deepened our understanding of the proximate triggers and ultimate drivers of migrations for a range of taxa, how populations establish migrations remains a mystery. However, recent studies have begun to illuminate the interplay between genetically inherited and learned migrations, opening the door to the evaluation of how migration may be learned, established, and maintained. Nevertheless, for migratory species where the role of learning is evident, we lack a comprehensive framework for understanding how populations learn specific routes and refine migratory movements over time (i.e., their origins). This review draws on advances in behavioural and movement ecology to offer a comprehensive framework for how populations could transition from resident to migratory by connecting cognitive research on fine-scale perceptual cues and movement decisions with literature on learning and cultural transmission, to the emergent pattern of migration. We synthesize the multiple cognitive mechanisms and processes that allow a population to respond to seasonal resource limitation, then encode spatial and environmental information about resource availability in memory and engage in social learning to navigate their landscapes and track resources better. A rise in global reintroduction efforts, along with human-induced rapid shifts in environmental cues and changing landscapes make evaluating the origins of this threatened behaviour more urgent than ever.
Collapse
Affiliation(s)
- Janey Fugate
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, Wyoming, 82071, USA
| | - Cody Wallace
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, Wyoming, 82071, USA
| | - Ellen O Aikens
- School of Computing and the Haub School of the Environment, University of Wyoming, 1000 E University Ave, Laramie, Wyoming, 82071, USA
| | - Brett Jesmer
- Department of Fish and Wildlife Conservation, Virginia Tech, 310 West Campus Dr, Blacksburg, Virginia, 24061, USA
| | - Matthew Kauffman
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, Wyoming, 82071, USA
| |
Collapse
|
2
|
Irvine LM, Lagerquist BA, Schorr GS, Falcone EA, Mate BR, Palacios DM. Ecological drivers of movement for two sympatric marine predators in the California current large marine ecosystem. MOVEMENT ECOLOGY 2025; 13:19. [PMID: 40102967 PMCID: PMC11917063 DOI: 10.1186/s40462-025-00542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND An animal's movement reflects behavioral decisions made to address ecological needs; specifically, that movement will become less directional in regions with high prey availability, indicating foraging behavior. In the marine realm, animal behavior occurs below the sea surface and is difficult to observe. We used an extensive satellite tagging dataset to explore how physical and biological habitat characteristics influence blue (Balaenoptera musculus) and fin (B. physalus) whale movement and foraging behavior in the California Current Ecosystem across four known bioregions. METHODS We fitted movement models to 14 years of blue whale satellite tracking data and 13 years of fin whale data to characterize their movement persistence, with higher move persistence values representing more directional movement and lower move persistence values representing less directional movement. Models were evaluated against a range of physical and biological environmental predictors to identify significant correlates of low move persistence (i.e., presumed intensified foraging behavior). We then used data from a subset of sensor-equipped tags that monitored vertical behavior (e.g., dive and feeding), in addition to movement, to test the relationship between vertical behavior and movement persistence. RESULTS Low move persistence was strongly correlated with shallower water depth and sea surface height for both species, with additional effects of chlorophyll-a concentration, vorticity and marine nekton biomass for blue whales. Data from sensor-equipped tags additionally showed that low move persistence occurred when whales made more numerous feeding dives. Temporal patterns of bioregion occupancy coincided with seasonal peaks in productivity. Most blue whale low-move-persistence movements occurred in the northern, nearshore bioregion with a late-season peak in productivity and were evenly distributed across all bioregions for fin whales. CONCLUSIONS We demonstrated that low move persistence is indicative of increased feeding behavior for both blue and fin whales. The environmental drivers of low move persistence were similar to those previously identified for survey-based species distribution models, linking environmental metrics to subsurface behavior. Occupancy and movement behavior patterns across bioregions indicate both species moved to exploit seasonal and spatial variability in productivity, with blue whales especially focusing on the bioregion of highest productivity during late summer and fall.
Collapse
Affiliation(s)
- Ladd M Irvine
- Marine Mammal Institute, Oregon State University, Newport, OR, USA.
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, USA.
| | - Barbara A Lagerquist
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, USA
| | | | | | - Bruce R Mate
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, USA
| | - Daniel M Palacios
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, USA
- Center for Coastal Studies, Provincetown, MA, USA
| |
Collapse
|
3
|
Goldbogen JA, Cade DE. How do feeding biomechanics, extreme predator-prey size ratios and the rare enemy effect determine energetics and ecology at the largest scale? J Exp Biol 2025; 228:JEB247875. [PMID: 39973188 DOI: 10.1242/jeb.247875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The most recent and largest radiation of marine filter feeders are edentulous baleen whales (Mysticeti) that use keratinized racks of fringed and matted baleen to filter zooplankton (e.g. krill) or small schooling fish (e.g. anchovies, sardines). Rorqual whales (Balaeopteridae) exhibit the greatest size range among mysticetes and employ a unique lunge-feeding mechanism whereby engulfment and filtration are temporally decoupled. As a result, lunge feeding confers the ability to rapidly engulf large prey aggregations, such as krill or schooling fish, followed by a prolonged filter phase. In contrast, engulfment and filtration occur at the same time in all other gigantic filter feeders (e.g. basking sharks, whale sharks) at slow speeds. Although lunges in rorquals occur at higher speeds, the extreme predator-prey ratios at play suggest that whales may not be able to overcome the escape abilities of scattering prey. These types of prey have been engaged in evolutionary arms races with smaller predators for tens of millions of years prior to the rise of today's ocean giants. Extant rorqual whales evolved gigantism only in the last few million years; thus, they represent rare enemies of small prey such that flight responses may be delayed until escape is less likely. Data from whale-borne movement-sensing tags, looming stimulus experiments and stomach contents suggest a potential trade-off in capture efficiency for different prey types (e.g. fish versus krill) with increasing whale body size. Such constraints likely shaped the ecology and energetics of foraging at the largest scales.
Collapse
Affiliation(s)
- Jeremy A Goldbogen
- Hopkins Marine Station, Oceans Department, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA 93950, USA
| | - David E Cade
- Hopkins Marine Station, Oceans Department, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA 93950, USA
| |
Collapse
|
4
|
Zhang F, Zhang T, Dong H, Jiang J, Yang G, Seim I, Tian R. Comparative Genomics Uncovers Molecular Adaptations for Cetacean Deep-Sea Diving. Mol Ecol 2025:e17678. [PMID: 39898416 DOI: 10.1111/mec.17678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
Cetaceans show remarkable diversity in diving capability, implying a range of adaptive strategies to hazards such as hydrostatic pressure and oxidative stress, but few studies have considered the evolution of extreme diving. Here, we first examined the relationship between morphological and physiological factors and diving capability and then considered the molecular evolution of candidate deep-sea diving traits in a genomic dataset of cetaceans. Our dataset included six super-divers, sperm whales (families Physeteridae and Kogiidae) and beaked whales (Ziphiidae), species that can dive deeper than 1000 m for about an hour or longer. We found a positive association between diving capability and oxygen-linked globins, and super-diver myoglobin (MB) is under positive selection and harbours a reported functional amino acid change. Blubber thickness was positively associated, likely to provide thermal insulation and hydrostatic pressure resistance. Super-divers have gene changes that may contribute to differences in the composition of outer blubber neutral lipids (triacylglycerols and wax esters), fatty acids and cholesterol. Total lung capacity relative to body mass showed a negative association, ostensibly to limit gas bubbles that can cause decompression sickness. A functional assay suggests that an ATP8B1 amino acid substitution may reduce lung injury in super-divers. Super-diver XDH has two unique amino acids and a decreased ability to produce uric acid under hypoxia when its ROS-generating XO isoform is prevalent, suggesting that it reduces cell damage from oxidative stress and uric acid accumulation in species with prolonged dives. Our study deepens the understanding of how deep-sea diving emerged in the cetacean lineage.
Collapse
Affiliation(s)
- Fan Zhang
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of the Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tong Zhang
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of the Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hao Dong
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of the Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jie Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of the Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ran Tian
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of the Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
Jauhal AA, Constantine R, Newcomb RD. A Comparative Genomics Approach to Understanding the Evolution of Olfaction in Cetaceans. J Mol Evol 2024; 92:912-929. [PMID: 39581917 DOI: 10.1007/s00239-024-10217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024]
Abstract
Major evolutionary transitions, such as the shift of cetaceans from terrestrial to marine life, can put pressure on sensory systems to adapt to a new set of relevant stimuli. Relatively little is known about the role of smell in the evolution of mysticetes (baleen whales). While their toothed cousins, the odontocetes, lack the anatomical features to smell, it is less clear whether baleen whales have retained this sense, and if so, when the pressure on olfaction diverged in the cetacean evolutionary lineage. We examined eight genes encoding olfactory signal transduction pathway components and key chaperones for signs of inactivating mutations and selective pressures. All of the genes we examined were intact in all eight mysticete genomes examined, despite inactivating mutations in odontocete homologs in multiple genes. We also tested several models representing various hypotheses regarding the evolutionary history of olfaction in cetaceans. Our results support a model where olfactory ability is specifically reduced in the odontocete lineage following their split from stem cetaceans and serve to clarify the evolutionary history of olfaction in cetaceans.
Collapse
Affiliation(s)
- April A Jauhal
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- The New Zealand Institute for Plant & Food Research, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Rochelle Constantine
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research, Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
6
|
Thepault A, Rodrigues ASL, Drago L, Grémillet D. Food chain without giants: modelling the trophic impact of bowhead whaling on little auk populations in the Atlantic Arctic. Proc Biol Sci 2024; 291:20241183. [PMID: 39163979 PMCID: PMC11335397 DOI: 10.1098/rspb.2024.1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/18/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
In the Atlantic Arctic, bowhead whales (Balaena mysticetus) were nearly exterminated by European whalers between the seventeenth and nineteenth centuries. The collapse of the East Greenland-Svalbard-Barents Sea population, from an estimated 50 000 to a few hundred individuals, drastically reduced predation on mesozooplankton. Here, we tested the hypothesis that this event strongly favoured the demography of the little auk (Alle alle), a zooplanktivorous feeder competitor of bowhead whales and the most abundant seabird in the Arctic. To estimate the effect of bowhead whaling on little auk abundance, we modelled the trophic niche overlap between the two species using deterministic simulations of mesozooplankton spatial distribution. We estimated that bowhead whaling could have led to a 70% increase in northeast Atlantic Arctic little auk populations, from 2.8 to 4.8 million breeding pairs. While corresponding to a major population increase, this is far less than predicted by previous studies. Our study illustrates how a trophic shift can result from the near extirpation of a marine megafauna species, and the methodological framework we developed opens up new opportunities for marine trophic modelling.
Collapse
Affiliation(s)
- Amaury Thepault
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Mécanismes adaptatifs et évolution (MECADEV UMR 7179), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Brunoy, France
| | | | - Laetitia Drago
- Laboratoire d’Océanographie de Villefranche-sur-mer, Sorbonne Université, Villefranche-sur-mer, France
- Sorbonne Université UMR 7159 CNRS-IRD-MNHN, LOCEAN-IPSL, Sorbonne Université, Paris, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Gil KN, Vogl AW, Shadwick RE. Morphology and Mechanics of the Fin Whale Esophagus: The Key to Fast Processing of Large Food Volumes by Rorquals. Integr Org Biol 2024; 6:obae020. [PMID: 38962731 PMCID: PMC11221840 DOI: 10.1093/iob/obae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/29/2024] [Indexed: 07/05/2024] Open
Abstract
Lunge feeding rorqual whales feed by engulfing a volume of prey laden water that can be as large as their own body. Multiple feeding lunges occur during a single foraging dive and the time between each lunge can be as short as 30 s (Goldbogen et al. 2013). During this short inter-lunge time, water is filtered out through baleen to concentrate prey in the oral cavity, and then the prey is swallowed prior to initiating the next lunge. Prey density in the ocean varies greatly, and despite the potential of swallowing a massive volume of concentrated prey as a slurry, the esophagus of rorqual whales has been anecdotally described as unexpectedly narrow with a limited capacity to expand. How rorquals swallow large quantities of food down a narrow esophagus during a limited inter-lunge time remains unknown. Here, we show that the small diameter muscular esophagus in the fin whale is optimized to transport a slurry of food to the stomach. A thick wall of striated muscle occurs at the pharyngeal end of the esophagus which, together with the muscular wall of the pharynx, may generate a pressure head for transporting the food down the esophagus to the stomach as a continuous stream rather than separating the food into individual boluses swallowed separately. This simple model is consistent with estimates of prey density and stomach capacity. Rorquals may be the only animals that capture a volume of food too large to swallow as a single intact bolus without oral processing, so the adaptations of the esophagus are imperative for transporting these large volumes of concentrated food to the stomach during a time-limited dive involving multiple lunges.
Collapse
Affiliation(s)
- K N Gil
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - A W Vogl
- Life Sciences Institute and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - R E Shadwick
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
8
|
Rojano-Doñate L, Teilmann J, Wisniewska DM, Jensen FH, Siebert U, McDonald BI, Elmegaard SL, Sveegaard S, Dietz R, Johnson M, Madsen PT. Low hunting costs in an expensive marine mammal predator. SCIENCE ADVANCES 2024; 10:eadj7132. [PMID: 38748803 PMCID: PMC11318689 DOI: 10.1126/sciadv.adj7132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/11/2024] [Indexed: 08/15/2024]
Abstract
Many large terrestrial mammalian predators use energy-intensive, high-risk, high-gain strategies to pursue large, high-quality prey. However, similar-sized marine mammal predators with even higher field metabolic rates (FMRs) consistently target prey three to six orders of magnitude smaller than themselves. Here, we address the question of how these active and expensive marine mammal predators can gain sufficient energy from consistently targeting small prey during breath-hold dives. Using harbor porpoises as model organisms, we show that hunting small aquatic prey is energetically cheap (<20% increase in FMR) for these marine predators, but it requires them to spend a large proportion (>60%) of time foraging. We conclude that this grazing foraging strategy on small prey is viable for marine mammal predators despite their high FMR because they can hunt near continuously at low marginal expense. Consequently, cessation of foraging due to human disturbance comes at a high cost, as porpoises must maintain their high thermoregulation costs with a reduced energy intake.
Collapse
Affiliation(s)
- Laia Rojano-Doñate
- Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Jonas Teilmann
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | | | - Frants H. Jensen
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Siri L. Elmegaard
- Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Signe Sveegaard
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Mark Johnson
- Department of Biology, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
9
|
Rule JP, Duncan RJ, Marx FG, Pollock TI, Evans AR, Fitzgerald EM. Giant baleen whales emerged from a cold southern cradle. Proc Biol Sci 2023; 290:20232177. [PMID: 38113937 PMCID: PMC10730287 DOI: 10.1098/rspb.2023.2177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Baleen whales (mysticetes) include the largest animals on the Earth. How they achieved such gigantic sizes remains debated, with previous research focusing primarily on when mysticetes became large, rather than where. Here, we describe an edentulous baleen whale fossil (21.12-16.39 mega annum (Ma)) from South Australia. With an estimated body length of 9 m, it is the largest mysticete from the Early Miocene. Analysing body size through time shows that ancient baleen whales from the Southern Hemisphere were larger than their northern counterparts. This pattern seemingly persists for much of the Cenozoic, even though southern specimens contribute only 19% to the global mysticete fossil record. Our findings contrast with previous ideas of a single abrupt shift towards larger size during the Plio-Pleistocene, which we here interpret as a glacially driven Northern Hemisphere phenomenon. Our results highlight the importance of incorporating Southern Hemisphere fossils into macroevolutionary patterns, especially in light of the high productivity of Southern Ocean environments.
Collapse
Affiliation(s)
- James P. Rule
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Sciences, Museums Victoria Research Institute, Museums Victoria, Melbourne, Victoria 3001, Australia
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Ruairidh J. Duncan
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Sciences, Museums Victoria Research Institute, Museums Victoria, Melbourne, Victoria 3001, Australia
| | - Felix G. Marx
- Museum of New Zealand Te Papa Tongarewa, Wellington 6011, New Zealand
- Department of Geology, University of Otago, Dunedin 9016, New Zealand
| | - Tahlia I. Pollock
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Alistair R. Evans
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Sciences, Museums Victoria Research Institute, Museums Victoria, Melbourne, Victoria 3001, Australia
| | - Erich M.G. Fitzgerald
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Sciences, Museums Victoria Research Institute, Museums Victoria, Melbourne, Victoria 3001, Australia
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
10
|
Silva FA, Picorelli ACR, Veiga GS, Nery MF. Patterns of enrichment and acceleration in evolutionary rates of promoters suggest a role of regulatory regions in cetacean gigantism. BMC Ecol Evol 2023; 23:62. [PMID: 37872505 PMCID: PMC10594719 DOI: 10.1186/s12862-023-02171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Cetaceans (whales, porpoises, and dolphins) are a lineage of aquatic mammals from which some species became giants. Only recently, gigantism has been investigated from the molecular point of view. Studies focused mainly on coding regions, and no data on the influence of regulatory regions on gigantism in this group was available. Accordingly, we investigated the molecular evolution of non-coding regulatory regions of genes already described in the literature for association with size in mammals, focusing mainly on the promoter regions. For this, we used Ciiider and phyloP tools. Ciiider identifies significantly enriched transcription factor binding sites, and phyloP estimates the molecular evolution rate of the promoter. RESULTS We found evidence of enrichment of transcription binding factors related to large body size, with distinct patterns between giant and non-giant cetaceans in the IGFBP7 and NCAPG promoters, in which repressive agents are present in small cetaceans and those that stimulate transcription, in giant cetaceans. In addition, we found evidence of acceleration in the IGF2, IGFBP2, IGFBP7, and ZFAT promoters. CONCLUSION Our results indicate that regulatory regions may also influence cetaceans' body size, providing candidate genes for future research to understand the molecular basis of the largest living animals.
Collapse
Affiliation(s)
- Felipe A Silva
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Agnello C R Picorelli
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Giovanna S Veiga
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Mariana F Nery
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil.
| |
Collapse
|
11
|
Costa DP, Favilla AB. Field physiology in the aquatic realm: ecological energetics and diving behavior provide context for elucidating patterns and deviations. J Exp Biol 2023; 226:jeb245832. [PMID: 37843467 DOI: 10.1242/jeb.245832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Comparative physiology has developed a rich understanding of the physiological adaptations of organisms, from microbes to megafauna. Despite extreme differences in size and a diversity of habitats, general patterns are observed in their physiological adaptations. Yet, many organisms deviate from the general patterns, providing an opportunity to understand the importance of ecology in determining the evolution of unusual adaptations. Aquatic air-breathing vertebrates provide unique study systems in which the interplay between ecology, physiology and behavior is most evident. They must perform breath-hold dives to obtain food underwater, which imposes a physiological constraint on their foraging time as they must resurface to breathe. This separation of two critical resources has led researchers to investigate these organisms' physiological adaptations and trade-offs. Addressing such questions on large marine animals is best done in the field, given the difficulty of replicating the environment of these animals in the lab. This Review examines the long history of research on diving physiology and behavior. We show how innovative technology and the careful selection of research animals have provided a holistic understanding of diving mammals' physiology, behavior and ecology. We explore the role of the aerobic diving limit, body size, oxygen stores, prey distribution and metabolism. We then identify gaps in our knowledge and suggest areas for future research, pointing out how this research will help conserve these unique animals.
Collapse
Affiliation(s)
- Daniel P Costa
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Arina B Favilla
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
12
|
Werth AJ, Crompton AW. Cetacean tongue mobility and function: A comparative review. J Anat 2023; 243:343-373. [PMID: 37042479 PMCID: PMC10439401 DOI: 10.1111/joa.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Cetaceans are atypical mammals whose tongues often depart from the typical (basal) mammalian condition in structure, mobility, and function. Their tongues are dynamic, innovative multipurpose tools that include the world's largest muscular structures. These changes reflect the evolutionary history of cetaceans' secondary adaptation to a fully aquatic environment. Cetacean tongues play no role in mastication and apparently a greatly reduced role in nursing (mainly channeling milk ingestion), two hallmarks of Mammalia. Cetacean tongues are not involved in drinking, breathing, vocalizing, and other non-feeding activities; they evidently play no or little role in taste reception. Although cetaceans do not masticate or otherwise process food, their tongues retain key roles in food ingestion, transport, securing/positioning, and swallowing, though by different means than most mammals. This is due to cetaceans' aquatic habitat, which in turn altered their anatomy (e.g., the intranarial larynx and consequent soft palate alteration). Odontocetes ingest prey via raptorial biting or tongue-generated suction. Odontocete tongues expel water and possibly uncover benthic prey via hydraulic jetting. Mysticete tongues play crucial roles driving ram, suction, or lunge ingestion for filter feeding. The uniquely flaccid rorqual tongue, not a constant volume hydrostat (as in all other mammalian tongues), invaginates into a balloon-like pouch to temporarily hold engulfed water. Mysticete tongues also create hydrodynamic flow regimes and hydraulic forces for baleen filtration, and possibly for cleaning baleen. Cetacean tongues lost or modified much of the mobility and function of generic mammal tongues, but took on noteworthy morphological changes by evolving to accomplish new tasks.
Collapse
Affiliation(s)
| | - A. W. Crompton
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
13
|
Videsen SKA, Simon M, Christiansen F, Friedlaender A, Goldbogen J, Malte H, Segre P, Wang T, Johnson M, Madsen PT. Cheap gulp foraging of a giga-predator enables efficient exploitation of sparse prey. SCIENCE ADVANCES 2023; 9:eade3889. [PMID: 37352356 PMCID: PMC10289661 DOI: 10.1126/sciadv.ade3889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
The giant rorqual whales are believed to have a massive food turnover driven by a high-intake lunge feeding style aptly described as the world's largest biomechanical action. This high-drag feeding behavior is thought to limit dive times and constrain rorquals to target only the densest prey patches, making them vulnerable to disturbance and habitat change. Using biologging tags to estimate energy expenditure as a function of feeding rates on 23 humpback whales, we show that lunge feeding is energetically cheap. Such inexpensive foraging means that rorquals are flexible in the quality of prey patches they exploit and therefore more resilient to environmental fluctuations and disturbance. As a consequence, the food turnover and hence the ecological role of these marine giants have likely been overestimated.
Collapse
Affiliation(s)
- Simone K. A. Videsen
- Zoophysiology, Department of Biology, Aarhus University, Denmark
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Malene Simon
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Fredrik Christiansen
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
- Marine Mammal Research, Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Ari Friedlaender
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jeremy Goldbogen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - Hans Malte
- Zoophysiology, Department of Biology, Aarhus University, Denmark
| | - Paolo Segre
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Denmark
| | - Mark Johnson
- Zoophysiology, Department of Biology, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Peter T. Madsen
- Zoophysiology, Department of Biology, Aarhus University, Denmark
| |
Collapse
|
14
|
Kok ACM, Hildebrand MJ, MacArdle M, Martinez A, Garrison LP, Soldevilla MS, Hildebrand JA. Kinematics and energetics of foraging behavior in Rice's whales of the Gulf of Mexico. Sci Rep 2023; 13:8996. [PMID: 37268677 DOI: 10.1038/s41598-023-35049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
Rorqual foraging behavior varies with species, prey type and foraging conditions, and can be a determining factor for their fitness. Little is known about the foraging ecology of Rice's whales (Balaenoptera ricei), an endangered species with a population of fewer than 100 individuals. Suction cup tags were attached to two Rice's whales to collect information on their diving kinematics and foraging behavior. The tagged whales primarily exhibited lunge-feeding near the sea bottom and to a lesser extent in the water-column and at the sea surface. During 6-10 min foraging dives, the whales typically circled their prey before executing one or two feeding lunges. Longer duration dives and dives with more feeding-lunges were followed by an increase in their breathing rate. The median lunge rate of one lunge per dive of both animals was much lower than expected based on comparative research on other lunge-feeding baleen whales, and may be associated with foraging on fish instead of krill or may be an indication of different foraging conditions. Both animals spent extended periods of the night near the sea surface, increasing the risk for ship strike. Furthermore, their circling before lunging may increase the risk for entanglement in bottom-longline fishing gear. Overall, these data show that Rice's whale foraging behavior differs from other lunge feeding rorqual species and may be a significant factor in shaping our understanding of their foraging ecology. Efforts to mitigate threats to Rice's whales will benefit from improved understanding of patterns in their habitat use and fine-scale ecology.
Collapse
Affiliation(s)
- Annebelle C M Kok
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Maya J Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maria MacArdle
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anthony Martinez
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, National Marine Fisheries Service, Miami, FL, USA
| | - Lance P Garrison
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, National Marine Fisheries Service, Miami, FL, USA
| | - Melissa S Soldevilla
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, National Marine Fisheries Service, Miami, FL, USA
| | - John A Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
15
|
Pearson HC, Savoca MS, Costa DP, Lomas MW, Molina R, Pershing AJ, Smith CR, Villaseñor-Derbez JC, Wing SR, Roman J. Whales in the carbon cycle: can recovery remove carbon dioxide? Trends Ecol Evol 2023; 38:238-249. [PMID: 36528413 DOI: 10.1016/j.tree.2022.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022]
Abstract
The great whales (baleen and sperm whales), through their massive size and wide distribution, influence ecosystem and carbon dynamics. Whales directly store carbon in their biomass and contribute to carbon export through sinking carcasses. Whale excreta may stimulate phytoplankton growth and capture atmospheric CO2; such indirect pathways represent the greatest potential for whale-carbon sequestration but are poorly understood. We quantify the carbon values of whales while recognizing the numerous ecosystem, cultural, and moral motivations to protect them. We also propose a framework to quantify the economic value of whale carbon as populations change over time. Finally, we suggest research to address key unknowns (e.g., bioavailability of whale-derived nutrients to phytoplankton, species- and region-specific variability in whale carbon contributions).
Collapse
Affiliation(s)
- Heidi C Pearson
- Department of Natural Sciences, University of Alaska Southeast, Juneau, AK, USA.
| | - Matthew S Savoca
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Michael W Lomas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Renato Molina
- Rosenstiel School of Marine, Atmospheric, and Earth Science and Miami Herbert Business School, University of Miami, Miami, FL, USA
| | | | - Craig R Smith
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Juan Carlos Villaseñor-Derbez
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA; Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Stephen R Wing
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Joe Roman
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
| |
Collapse
|
16
|
Silva FA, Souza ÉMS, Ramos E, Freitas L, Nery MF. The molecular evolution of genes previously associated with large sizes reveals possible pathways to cetacean gigantism. Sci Rep 2023; 13:67. [PMID: 36658131 PMCID: PMC9852289 DOI: 10.1038/s41598-022-24529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/16/2022] [Indexed: 01/21/2023] Open
Abstract
Cetaceans are a group of aquatic mammals with the largest body sizes among living animals, including giant representatives such as blue and fin whales. To understand the genetic bases of gigantism in cetaceans, we performed molecular evolutionary analyses on five genes (GHSR, IGF2, IGFBP2, IGFBP7, and EGF) from the growth hormone/insulin-like growth factor axis, and four genes (ZFAT, EGF, LCORL, and PLAG1) previously described as related to the size of species evolutionarily close to cetaceans, such as pigs, cows, and sheep. Our dataset comprised 19 species of cetaceans, seven of which are classified as giants because they exceed 10 m in length. Our results revealed signs of positive selection in genes from the growth hormone/insulin-like growth factor axis and also in those related to body increase in cetacean-related species. In addition, pseudogenization of the EGF gene was detected in the lineage of toothless cetaceans, Mysticeti. Our results suggest the action of positive selection on gigantism in genes that act both in body augmentation and in mitigating its consequences, such as cancer suppression when involved in processes such as division, migration, and cell development control.
Collapse
Affiliation(s)
- Felipe André Silva
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| | - Érica M. S. Souza
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| | - Elisa Ramos
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| | - Lucas Freitas
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| | - Mariana F. Nery
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| |
Collapse
|
17
|
Gough WT, Cade DE, Czapanskiy MF, Potvin J, Fish FE, Kahane-Rapport SR, Savoca MS, Bierlich KC, Johnston DW, Friedlaender AS, Szabo A, Bejder L, Goldbogen JA. Fast and Furious: Energetic Tradeoffs and Scaling of High-Speed Foraging in Rorqual Whales. Integr Org Biol 2022; 4:obac038. [PMID: 36127894 PMCID: PMC9475666 DOI: 10.1093/iob/obac038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/30/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Although gigantic body size and obligate filter feeding mechanisms have evolved in multiple vertebrate lineages (mammals and fishes), intermittent ram (lunge) filter feeding is unique to a specific family of baleen whales: rorquals. Lunge feeding is a high cost, high benefit feeding mechanism that requires the integration of unsteady locomotion (i.e., accelerations and maneuvers); the impact of scale on the biomechanics and energetics of this foraging mode continues to be the subject of intense study. The goal of our investigation was to use a combination of multi-sensor tags paired with UAS footage to determine the impact of morphometrics such as body size on kinematic lunging parameters such as fluking timing, maximum lunging speed, and deceleration during the engulfment period for a range of species from minke to blue whales. Our results show that, in the case of krill-feeding lunges and regardless of size, animals exhibit a skewed gradient between powered and fully unpowered engulfment, with fluking generally ending at the point of both the maximum lunging speed and mouth opening. In all cases, the small amounts of propulsive thrust generated by the tail were unable to overcome the high drag forces experienced during engulfment. Assuming this thrust to be minimal, we predicted the minimum speed of lunging across scale. To minimize the energetic cost of lunge feeding, hydrodynamic theory predicts slower lunge feeding speeds regardless of body size, with a lower boundary set by the ability of the prey to avoid capture. We used empirical data to test this theory and instead found that maximum foraging speeds remain constant and high (∼4 m s–1) across body size, even as higher speeds result in lower foraging efficiency. Regardless, we found an increasing relationship between body size and this foraging efficiency, estimated as the ratio of energetic gain from prey to energetic cost. This trend held across timescales ranging from a single lunge to a single day and suggests that larger whales are capturing more prey—and more energy—at a lower cost.
Collapse
Affiliation(s)
- William T Gough
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - David E Cade
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - Max F Czapanskiy
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - Jean Potvin
- Saint Louis University , Saint Louis, MO 63103, USA
| | - Frank E Fish
- West Chester University , West Chester, PA 19383, USA
| | | | - Matthew S Savoca
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - K C Bierlich
- Oregon State University , Corvallis, OR 97331, USA
| | | | | | - Andy Szabo
- Alaska Whale Foundation , Sitka, AK, 99835, USA
| | - Lars Bejder
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa , Kaheohe, HI 96822, USA
- Department of Bioscience, Aarhus University , Aarhus 8000, Denmark
| | - Jeremy A Goldbogen
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| |
Collapse
|
18
|
Johnston DR, Rayment W, Dawson SM. Morphometrics and body condition of southern right whales on the calving grounds at Port Ross, Auckland Islands. Mamm Biol 2022. [DOI: 10.1007/s42991-021-00175-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Anatomical, Ontogenetic, and Genomic Homologies Guide Reconstructions of the Teeth-to-Baleen Transition in Mysticete Whales. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Andreas J, Beguš G, Bronstein MM, Diamant R, Delaney D, Gero S, Goldwasser S, Gruber DF, de Haas S, Malkin P, Pavlov N, Payne R, Petri G, Rus D, Sharma P, Tchernov D, Tønnesen P, Torralba A, Vogt D, Wood RJ. Toward understanding the communication in sperm whales. iScience 2022; 25:104393. [PMID: 35663036 PMCID: PMC9160774 DOI: 10.1016/j.isci.2022.104393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Machine learning has been advancing dramatically over the past decade. Most strides are human-based applications due to the availability of large-scale datasets; however, opportunities are ripe to apply this technology to more deeply understand non-human communication. We detail a scientific roadmap for advancing the understanding of communication of whales that can be built further upon as a template to decipher other forms of animal and non-human communication. Sperm whales, with their highly developed neuroanatomical features, cognitive abilities, social structures, and discrete click-based encoding make for an excellent model for advanced tools that can be applied to other animals in the future. We outline the key elements required for the collection and processing of massive datasets, detecting basic communication units and language-like higher-level structures, and validating models through interactive playback experiments. The technological capabilities developed by such an undertaking hold potential for cross-applications in broader communities investigating non-human communication and behavioral research.
Collapse
Affiliation(s)
- Jacob Andreas
- MIT CSAIL, Cambridge, MA, USA
- Project CETI, New York, NY, USA
| | - Gašper Beguš
- Department of Linguistics, University of California, Berkeley, CA, USA
- Project CETI, New York, NY, USA
| | - Michael M. Bronstein
- Department of Computer Science, University of Oxford, Oxford, UK
- IDSIA, University of Lugano, Lugano, Switzerland
- Twitter, London, UK
- Project CETI, New York, NY, USA
| | - Roee Diamant
- Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Project CETI, New York, NY, USA
| | - Denley Delaney
- Exploration Technology Lab, National Geographic Society, Washington DC, USA
- Project CETI, New York, NY, USA
| | - Shane Gero
- Dominica Sperm Whale Project, Roseau, Commonwealth of Dominica
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Project CETI, New York, NY, USA
| | - Shafi Goldwasser
- Simons Institute for the Theory of Computing, University of California, Berkeley, CA, USA
| | - David F. Gruber
- Department of Natural Sciences, Baruch College and The Graduate Center, PhD Program in Biology, City University of New York, New York, NY, USA
- Project CETI, New York, NY, USA
| | - Sarah de Haas
- Google Research, Mountain View, CA USA
- Project CETI, New York, NY, USA
| | - Peter Malkin
- Google Research, Mountain View, CA USA
- Project CETI, New York, NY, USA
| | | | | | - Giovanni Petri
- ISI Foundation, Turin, Italy
- Project CETI, New York, NY, USA
| | - Daniela Rus
- MIT CSAIL, Cambridge, MA, USA
- Project CETI, New York, NY, USA
| | | | - Dan Tchernov
- Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Project CETI, New York, NY, USA
| | - Pernille Tønnesen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Project CETI, New York, NY, USA
| | | | - Daniel Vogt
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Project CETI, New York, NY, USA
| | - Robert J. Wood
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Project CETI, New York, NY, USA
| |
Collapse
|
21
|
Sun (孙迪) D, Chai (柴思敏) S, Huang (黄鑫) X, Wang (王滢莹) Y, Xiao (肖琳琳) L, Xu (徐士霞) S, Yang (杨光) G. Novel Genomic Insights into Body Size Evolution in Cetaceans and a Resolution of Peto’s Paradox. Am Nat 2022; 199:E28-E42. [DOI: 10.1086/717768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Di Sun (孙迪)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Simin Chai (柴思敏)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Xin Huang (黄鑫)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yingying Wang (王滢莹)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Linlin Xiao (肖琳琳)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shixia Xu (徐士霞)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang (杨光)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| |
Collapse
|
22
|
Wilson L, Pine MK, Radford CA. Small recreational boats: a ubiquitous source of sound pollution in shallow coastal habitats. MARINE POLLUTION BULLETIN 2022; 174:113295. [PMID: 35090280 DOI: 10.1016/j.marpolbul.2021.113295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Sound from small recreational boats spans a wide range of frequencies and source levels, but the degree to which this impacts the soundscapes of shallow coastal habitats is poorly understood. Here, long-term passive acoustic recordings at five shallow coastal sites, including two MPAs, were used to quantify spatio-temporal variation in small boat sound and its effect on the soundscape. Boats were detected almost every day at each site, irrespective of protection status, significantly elevating the low-frequency (100-800 Hz) component of the soundscape. This frequency band is used by many species for communication, orientation, and predator avoidance. Therefore, highlighting the potential for small boat sound to alter soundscapes and mask cues. Existing tools for monitoring sound pollution are targeted at sound from shipping. These data highlight that the broadband and highly variable sound emitted by small boats must be considered when evaluating anthropogenic impacts on coastal marine ecosystems worldwide.
Collapse
Affiliation(s)
- Louise Wilson
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, PO Box 349, Warkworth 0941, New Zealand.
| | - Matthew K Pine
- Department of Biology, University of Victoria, BC, Canada
| | - Craig A Radford
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, PO Box 349, Warkworth 0941, New Zealand
| |
Collapse
|
23
|
Glaeser SP, Silva LMR, Prieto R, Silva MA, Franco A, Kämpfer P, Hermosilla C, Taubert A, Eisenberg T. A Preliminary Comparison on Faecal Microbiomes of Free-Ranging Large Baleen (Balaenoptera musculus, B. physalus, B. borealis) and Toothed (Physeter macrocephalus) Whales. MICROBIAL ECOLOGY 2022; 83:18-33. [PMID: 33745062 PMCID: PMC8881428 DOI: 10.1007/s00248-021-01729-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/03/2021] [Indexed: 05/08/2023]
Abstract
Large baleen and toothed whales play crucial ecological roles in oceans; nonetheless, very little is known about their intestinal microbiomes. Based on striking differences in natural history and thus in feeding behaviours, it can be expected that intestinal microbiomes of large baleen whales and toothed whales are different. To test this hypothesis, the phylogenetic composition of faecal microbiomes was investigated by a 16S rRNA gene amplicon sequence-based approach for Bacteria and Archaea. Faecal samples from free-ranging large whales collected off the Azores Archipelago (Portugal) were used, comprising 13 individual baleen whales (one sei, two blue and ten fin whales) and four sperm whales. The phylogenetic composition of the Bacteria faecal microbiomes of baleen and toothed whales showed no significant differences at the phylum level. However, significant differences were detected at the family and genus levels. Most abundant phyla were Firmicutes, Bacteroidetes, Proteobacteria, Tenericutes and Spirochaeta. Few highly abundant bacterial genera were identified as key taxa with a high contribution to differences among baleen and toothed whales microbiomes. Only few archaeal sequences were detected, primarily Methanomassiliicoccales representing potential methanogenic Archaea. This is the first study that directly compares the faecal bacterial and archaeal microbiomes of free-ranging baleen and toothed whales which represent the two parvorders of Cetacea which members are fully aquatic large mammals which were evolutionary split millions of years ago.
Collapse
Affiliation(s)
- Stefanie P Glaeser
- Institute of Applied Microbiology, Justus Liebig University Giessen, IFZ-Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Liliana M R Silva
- Institute of Parasitology, Justus Liebig University, Giessen, Germany
| | - Rui Prieto
- Institute of Marine Research (IMAR) and Okeanos R&D Centre, University of the Azores, Horta, Portugal
- MARE-Marine and Environmental Sciences Centre, Lisbon, Portugal
| | - Mónica A Silva
- Institute of Marine Research (IMAR) and Okeanos R&D Centre, University of the Azores, Horta, Portugal
| | - Angel Franco
- Institute of Applied Microbiology, Justus Liebig University Giessen, IFZ-Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus Liebig University Giessen, IFZ-Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University, Giessen, Germany
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory (LHL), Giessen, Germany
| |
Collapse
|
24
|
Sander PM, Griebeler EM, Klein N, Juarbe JV, Wintrich T, Revell LJ, Schmitz L. Early giant reveals faster evolution of large body size in ichthyosaurs than in cetaceans. Science 2021; 374:eabf5787. [PMID: 34941418 DOI: 10.1126/science.abf5787] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- P Martin Sander
- Abteilung Paläontologie, Institut für Geowissenschaften, Universität Bonn, 53115 Bonn, Germany.,The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Eva Maria Griebeler
- Institut für Organismische und Molekulare Evolutionsbiologie, Evolutionäre Ökologie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Nicole Klein
- Abteilung Paläontologie, Institut für Geowissenschaften, Universität Bonn, 53115 Bonn, Germany
| | - Jorge Velez Juarbe
- Department of Mammalogy, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Tanja Wintrich
- Abteilung Paläontologie, Institut für Geowissenschaften, Universität Bonn, 53115 Bonn, Germany.,Anatomisches Institut, Universität Bonn, 53115 Bonn, Germany
| | - Liam J Revell
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.,Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Lars Schmitz
- The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA.,W.M. Keck Science Department of Claremont McKenna, Scripps, and Pitzer Colleges, Claremont, CA 91711, USA
| |
Collapse
|
25
|
Blawas AM, Nowacek DP, Rocho-Levine J, Robeck TR, Fahlman A. Scaling of heart rate with breathing frequency and body mass in cetaceans. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200223. [PMID: 34121456 PMCID: PMC8200651 DOI: 10.1098/rstb.2020.0223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 01/23/2023] Open
Abstract
Plasticity in the cardiac function of a marine mammal facilitates rapid adjustments to the contrasting metabolic demands of breathing at the surface and diving during an extended apnea. By matching their heart rate (fH) to their immediate physiological needs, a marine mammal can improve its metabolic efficiency and maximize the proportion of time spent underwater. Respiratory sinus arrhythmia (RSA) is a known modulation of fH that is driven by respiration and has been suggested to increase cardiorespiratory efficiency. To investigate the presence of RSA in cetaceans and the relationship between fH, breathing rate (fR) and body mass (Mb), we measured simultaneous fH and fR in five cetacean species in human care. We found that a higher fR was associated with a higher mean instantaneous fH (ifH) and minimum ifH of the RSA. By contrast, fH scaled inversely with Mb such that larger animals had lower mean and minimum ifHs of the RSA. There was a significant allometric relationship between maximum ifH of the RSA and Mb, but not fR, which may indicate that this parameter is set by physical laws and not adjusted dynamically with physiological needs. RSA was significantly affected by fR and was greatly reduced with small increases in fR. Ultimately, these data show that surface fHs of cetaceans are complex and the fH patterns we observed are controlled by several factors. We suggest the importance of considering RSA when interpreting fH measurements and particularly how fR may drive fH changes that are important for efficient gas exchange. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.
Collapse
Affiliation(s)
- Ashley M. Blawas
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA
| | - Douglas P. Nowacek
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA
- Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | | | | | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain 46005
- Global Diving Research, Inc., Ottawa, Canada, K2 J 5E8
| |
Collapse
|
26
|
Potvin J, Cade DE, Werth AJ, Shadwick RE, Goldbogen JA. Rorqual Lunge-Feeding Energetics Near and Away from the Kinematic Threshold of Optimal Efficiency. Integr Org Biol 2021; 3:obab005. [PMID: 34104873 PMCID: PMC8179629 DOI: 10.1093/iob/obab005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Humpback and blue whales are large baleen-bearing cetaceans, which use a unique prey-acquisition strategy—lunge feeding—to engulf entire patches of large plankton or schools of forage fish and the water in which they are embedded. Dynamically, and while foraging on krill, lunge-feeding incurs metabolic expenditures estimated at up to 20.0 MJ. Because of prey abundance and its capture in bulk, lunge feeding is carried out at high acquired-to-expended energy ratios of up to 30 at the largest body sizes (∼27 m). We use bio-logging tag data and the work-energy theorem to show that when krill-feeding at depth while using a wide range of prey approach swimming speeds (2–5 m/s), rorquals generate significant and widely varying metabolic power output during engulfment, typically ranging from 10 to 50 times the basal metabolic rate of land mammals. At equal prey field density, such output variations lower their feeding efficiency two- to three-fold at high foraging speeds, thereby allowing slow and smaller rorquals to feed more efficiently than fast and larger rorquals. The analysis also shows how the slowest speeds of harvest so far measured may be connected to the biomechanics of the buccal cavity and the prey’s ability to collectively avoid engulfment. Such minimal speeds are important as they generate the most efficient lunges. Sommaire Les rorquals à bosse et rorquals bleus sont des baleines à fanons qui utilisent une technique d’alimentation unique impliquant une approche avec élan pour engouffrer de larges quantités de plancton et bancs de petits poissons, ainsi que la masse d’eau dans laquelle ces proies sont situés. Du point de vue de la dynamique, et durant l’approche et engouffrement de krill, leurs dépenses énergétiques sont estimées jusqu’à 20.0 MJ. À cause de l’abondance de leurs proies et capture en masse, cette technique d’alimentation est effectuée à des rapports d’efficacité énergétique (acquise -versus- dépensée) estimés aux environs de 30 dans le cas des plus grandes baleines (27 m). Nous utilisons les données recueillies par des capteurs de bio-enregistrement ainsi que le théorème reliant l’énergie à l’effort pour démontrer comment les rorquals s’alimentant sur le krill à grandes profondeurs, et à des vitesses variant entre 2 et 5 m/s, maintiennent des taux de dépenses énergétiques entre 10 et 50 fois le taux métabolique basal des mammifères terrestres. À densités de proies égales, ces variations d’énergie utilisée peuvent réduire le rapport d’efficacité énergétique par des facteurs entre 2x et 3x, donc permettant aux petits et plus lents rorquals de chasser avec une efficacité comparable à celle des rorquals les plus grands et rapides. Notre analyse démontre aussi comment des vitesses d’approche plus lentes peuvent être reliées à la biomécanique de leur poche ventrale extensible, et à l’habilitée des proies à éviter d’être engouffrer. Ces minimums de vitesses sont importants car ils permettent une alimentation plus efficace énergétiquement.
Collapse
Affiliation(s)
- J Potvin
- Department of Physics, Saint Louis University, St. Louis, MO 63103, USA
| | - D E Cade
- Institute of Marine Sciences, University of California Santa Cruz, Sant Cruz, CA 95060, USA
| | - A J Werth
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA
| | - R E Shadwick
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - J A Goldbogen
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
27
|
Dominici S, Fornasiero M, Giusberti L. The largest known cowrie and the iterative evolution of giant cypraeid gastropods. Sci Rep 2020; 10:21893. [PMID: 33318588 PMCID: PMC7736312 DOI: 10.1038/s41598-020-78940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/27/2020] [Indexed: 11/09/2022] Open
Abstract
Based on the fossil record, we explore the macroevolutionary relationship between species richness and gigantism in cowries (Cypraeidae), the best-studied family of gastropods, with a global diversity distribution that parallels that of tropical corals, mangroves and seagrasses. We introduce Vicetia bizzottoi sp. nov. based on a Priabonian fossil found in northeastern Italy, the largest documented cowrie found so far and the youngest of a lineage of Eocene Gisortiinae species. The Gisortiinae stratigraphic record in western Europe indicates that species selection favoured large size and armouring of the shell. Palaeoecology and per-stage species richness suggest that gigantism occurred in peripheral habitats with respect to diversity hotspots, where smaller species were favoured. The Eocene–Oligocene boundary was marked by a turnover and the Chattian global warming favoured small-sized species of derived clades. Species selection leading to gigantism is further documented in Miocene lineages of Zoila and Umbilia, in the southern hemisphere, two extant genera distributed at the periphery of modern diversity hotspots, suggesting that the negative relationship between size and diversity is a recurring pattern in the evolutionary history of cowries. This palaeontological evidence is projected onto the existing hypotheses that explain analogous biogeographic patterns in various other taxa. Likewise, body size-species richness negative relationship was possibly driven in cowries by physiological, ecological and life history constraints.
Collapse
Affiliation(s)
- Stefano Dominici
- Museo di Storia Naturale, Università degli Studi di Firenze, Florence, Italy.
| | | | - Luca Giusberti
- Dipartimento di Geoscienze, Università degli Studi di Padova, Padua, Italy
| |
Collapse
|
28
|
Tønnesen P, Oliveira C, Johnson M, Madsen PT. The long-range echo scene of the sperm whale biosonar. Biol Lett 2020; 16:20200134. [PMID: 32750270 DOI: 10.1098/rsbl.2020.0134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sperm whales use their gigantic nose to produce the most powerful sounds in the animal kingdom, presumably to echolocate deep-sea prey at long ranges and possibly to debilitate prey. To test these hypotheses, we deployed sound recording tags (DTAG-4) on the tip of the nose of three sperm whales. One of these recordings yielded over 6000 echo streams from organisms detected up to 144 m ahead of the whale, supporting a long-range prey detection function of the sperm whale biosonar. The whale navigated this complex acoustic scene by maintaining a stable, long-range acoustic gaze suggesting continual resource evaluation. Less than 10% of the echoic organisms recorded by the tag were targeted for capture and only 18% of the buzzes were emitted within the 50 m depth interval of maximum organism encounter rate, demonstrating echo-guided prey selection. Buzzes were initiated more than 20 m from the prey, showing that sperm whales do not debilitate their prey with sound, but trade echo levels for reduced forward masking and rapid updates on prey location in keeping with the lower manoeuvrability of these large predators. We conclude that the powerful biosonar of sperm whales enables long-range echolocation and selection of prey, but not acoustic debilitation.
Collapse
Affiliation(s)
- Pernille Tønnesen
- Zoophysiology, Department of Biiology, Aarhus University, 8000 Aarhus, Denmark
| | - Cláudia Oliveira
- Okeanos R&D Centre and IMAR - Institute of Marine Research, University of the Azores, 9901-862 Horta, Portugal
| | - Mark Johnson
- Zoophysiology, Department of Biiology, Aarhus University, 8000 Aarhus, Denmark.,Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St. Andrews, Fife KY16 8LB, UK
| | | |
Collapse
|
29
|
Goldbogen JA, Cade DE, Wisniewska DM, Potvin J, Segre PS, Savoca MS, Hazen EL, Czapanskiy MF, Kahane-Rapport SR, DeRuiter SL, Gero S, Tønnesen P, Gough WT, Hanson MB, Holt MM, Jensen FH, Simon M, Stimpert AK, Arranz P, Johnston DW, Nowacek DP, Parks SE, Visser F, Friedlaender AS, Tyack PL, Madsen PT, Pyenson ND. Why whales are big but not bigger: Physiological drivers and ecological limits in the age of ocean giants. Science 2020; 366:1367-1372. [PMID: 31831666 DOI: 10.1126/science.aax9044] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/31/2019] [Indexed: 12/27/2022]
Abstract
The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time.
Collapse
Affiliation(s)
- J A Goldbogen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA.
| | - D E Cade
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - D M Wisniewska
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - J Potvin
- Department of Physics, Saint Louis University, St. Louis, MO, USA
| | - P S Segre
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - M S Savoca
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - E L Hazen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA.,Environmental Research Division, National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center, Monterey, CA, USA.,Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - M F Czapanskiy
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - S R Kahane-Rapport
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - S L DeRuiter
- Mathematics and Statistics Department, Calvin University, Grand Rapids, MI, USA
| | - S Gero
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - P Tønnesen
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - W T Gough
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - M B Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - M M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - F H Jensen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - M Simon
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - A K Stimpert
- Moss Landing Marine Laboratories, Moss Landing, CA, USA
| | - P Arranz
- Biodiversity, Marine Ecology and Conservation Group, Department of Animal Biology, University of La Laguna, La Laguna, Spain
| | - D W Johnston
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | - D P Nowacek
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - S E Parks
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - F Visser
- Department of Freshwater and Marine Ecology, IBED, University of Amsterdam, Amsterdam, Netherlands.,Department of Coastal Systems, NIOZ and Utrecht University, Utrecht, Netherlands.,Kelp Marine Research, Hoorn, Netherlands
| | - A S Friedlaender
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - P L Tyack
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - P T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | - N D Pyenson
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA.,Department of Paleontology and Geology, Burke Museum of Natural History and Culture, Seattle, WA, USA
| |
Collapse
|
30
|
Werth AJ, Ito H, Ueda K. Multiaxial movements at the minke whale temporomandibular joint. J Morphol 2020; 281:402-412. [PMID: 32003486 DOI: 10.1002/jmor.21107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 11/10/2022]
Abstract
Mandibular mobility accompanying gape change in Northern and Antarctic minke whales was investigated by manipulating jaws of carcasses, recording jaw movements via digital instruments (inclinometers, accelerometers, and goniometers), and examining osteological and soft tissue movements via computed tomography (CT)-scans. We investigated longitudinal (α) rotation of the mandible and mediolateral displacement at the symphysis (Ω1 ) and temporomandibular joint (Ω2 ) as the mouth opened (Δ). Results indicated three phases of jaw opening. In the first phase, as gape increased from zero to 8°, there was slight (<1°) α and Ω rotation. As gape increased between 20 and 30°, the mandibles rotated slightly laterally (Mean 3°), the posterior condyles were slightly medially displaced (Mean 4°), and the anterior ends at the symphysis were laterally displaced (Mean 3°). In the third phase of jaw opening, from 30° to full (≥90°) gape, these motions reversed: mandibles rotated medially (Mean 29°), condyles were laterally displaced (Mean 14°), and symphyseal ends were medially displaced (Mean 1°). Movements were observed during jaw manipulation and analyzed with CT-images that confirmed quantitative inclinometer/accelerometer data, including the unstable intermediate (Phase 2) position. Together these shifting movements maintain a constant distance for adductor muscles stretched between the skull's temporal fossa and mandible's coronoid process. Mandibular rotation enlarges the buccal cavity's volume as much as 36%, likely to improve prey capture in rorqual lunge feeding; it may strengthen and stabilize jaw opening or closure, perhaps via a simple locking or unlocking mechanism. Rotated lips may brace baleen racks during filtration. Mandibular movements may serve a proprioceptive mechanosensory function, perhaps via the symphyseal organ, to guide prey engulfment and water expulsion for filtration.
Collapse
Affiliation(s)
- Alexander J Werth
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, Virginia, USA
| | - Haruka Ito
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Keiichi Ueda
- Zoological Laboratory, Okinawa Churashima Research Center & Animal Health Management, Okinawa, Japan
| |
Collapse
|
31
|
Burns MD, Bloom DD. Migratory lineages rapidly evolve larger body sizes than non-migratory relatives in ray-finned fishes. Proc Biol Sci 2020; 287:20192615. [PMID: 31937226 DOI: 10.1098/rspb.2019.2615] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Migratory animals respond to environmental heterogeneity by predictably moving long distances in their lifetime. Migration has evolved repeatedly in animals, and many adaptations are found across the tree of life that increase migration efficiency. Life-history theory predicts that migratory species should evolve a larger body size than non-migratory species, and some empirical studies have shown this pattern. A recent study analysed the evolution of body size between diadromous and non-diadromous shads, herrings, anchovies and allies, finding that species evolved larger body sizes when adapting to a diadromous lifestyle. It remains unknown whether different fish clades adapt to migration similarly. We used an adaptive landscape framework to explore body size evolution for over 4500 migratory and non-migratory species of ray-finned fishes. By fitting models of macroevolution, we show that migratory species are evolving towards a body size that is larger than non-migratory species. Furthermore, we find that migratory lineages evolve towards their optimal body size more rapidly than non-migratory lineages, indicating body size is a key adaption for migratory fishes. Our results show, for the first time, that the largest vertebrate radiation on the planet exhibited strong evolutionary determinism when adapting to a migratory lifestyle.
Collapse
Affiliation(s)
- Michael D Burns
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA.,Cornell Lab of Ornithology, Cornell University Museum of Vertebrates, Ithaca, NY, USA
| | - Devin D Bloom
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA.,Institute of the Environment and Sustainability, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
32
|
Abstract
We present a major advancement in our ability to bring the physiological laboratory to the open ocean through the noninvasive use of a suction cup-attached tag equipped with surface electrodes. Our study provides heart rate data of a large, free-diving whale (blue whale) without prior capture or restraint. We recorded a wide range of heart rates from the tag, reaching only several beats per minute during deep foraging dives (bradycardia) and nearly 40 beats per minute at the sea surface (tachycardia) as the whale recovered from its oxygen debt. The latter likely represents maximal heart rate given the measured duration of the heart beat itself, thereby demonstrating the greatest dynamic range in cardiac activity at this scale. The biology of the blue whale has long fascinated physiologists because of the animal’s extreme size. Despite high energetic demands from a large body, low mass-specific metabolic rates are likely powered by low heart rates. Diving bradycardia should slow blood oxygen depletion and enhance dive time available for foraging at depth. However, blue whales exhibit a high-cost feeding mechanism, lunge feeding, whereby large volumes of prey-laden water are intermittently engulfed and filtered during dives. This paradox of such a large, slowly beating heart and the high cost of lunge feeding represents a unique test of our understanding of cardiac function, hemodynamics, and physiological limits to body size. Here, we used an electrocardiogram (ECG)-depth recorder tag to measure blue whale heart rates during foraging dives as deep as 184 m and as long as 16.5 min. Heart rates during dives were typically 4 to 8 beats min−1 (bpm) and as low as 2 bpm, while after-dive surface heart rates were 25 to 37 bpm, near the estimated maximum heart rate possible. Despite extreme bradycardia, we recorded a 2.5-fold increase above diving heart rate minima during the powered ascent phase of feeding lunges followed by a gradual decrease of heart rate during the prolonged glide as engulfed water is filtered. These heart rate dynamics explain the unique hemodynamic design in rorqual whales consisting of a large-diameter, highly compliant, elastic aortic arch that allows the aorta to accommodate blood ejected by the heart and maintain blood flow during the long and variable pauses between heartbeats.
Collapse
|
33
|
Friedlaender AS, Bowers MT, Cade D, Hazen EL, Stimpert AK, Allen AN, Calambokidis J, Fahlbusch J, Segre P, Visser F, Southall BL, Goldbogen JA. The advantages of diving deep: Fin whales quadruple their energy intake when targeting deep krill patches. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ari S. Friedlaender
- Department of Ocean Sciences and Ecology and Evolutionary Biology Institute for Marine Sciences University of California Santa Cruz Santa Cruz CA USA
- Southall Environmental Associates Aptos CA USA
| | - Matthew T. Bowers
- Southall Environmental Associates Aptos CA USA
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins CO USA
| | - David Cade
- Hopkins Marine Station Stanford University Pacific Grove CA USA
| | - Elliott L. Hazen
- Department of Ocean Sciences and Ecology and Evolutionary Biology Institute for Marine Sciences University of California Santa Cruz Santa Cruz CA USA
- NOAA Southwest Fisheries Science Center Monterey CA USA
| | | | - Ann N. Allen
- NOAA Pacific Islands Fisheries Science Center Honolulu HI USA
| | | | - James Fahlbusch
- Hopkins Marine Station Stanford University Pacific Grove CA USA
- Cascadia Research Collective Cascadia WA USA
| | - Paolo Segre
- Hopkins Marine Station Stanford University Pacific Grove CA USA
| | | | | | | |
Collapse
|
34
|
Deep-diving pilot whales make cheap, but powerful, echolocation clicks with 50 µL of air. Sci Rep 2019; 9:15720. [PMID: 31673021 PMCID: PMC6823382 DOI: 10.1038/s41598-019-51619-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 09/02/2019] [Indexed: 11/10/2022] Open
Abstract
Echolocating toothed whales produce powerful clicks pneumatically to detect prey in the deep sea where this long-range sensory channel makes them formidable top predators. However, air supplies for sound production compress with depth following Boyle’s law suggesting that deep-diving whales must use very small air volumes per echolocation click to facilitate continuous sensory flow in foraging dives. Here we test this hypothesis by analysing click-induced acoustic resonances in the nasal air sacs, recorded by biologging tags. Using 27000 clicks from 102 dives of 23 tagged pilot whales (Globicephala macrorhynchus), we show that click production requires only 50 µL of air/click at 500 m depth increasing gradually to 100 µL at 1000 m. With such small air volumes, the metabolic cost of sound production is on the order of 40 J per dive which is a negligible fraction of the field metabolic rate. Nonetheless, whales must make frequent pauses in echolocation to recycle air between nasal sacs. Thus, frugal use of air and periodic recycling of very limited air volumes enable pilot whales, and likely other toothed whales, to echolocate cheaply and almost continuously throughout foraging dives, providing them with a strong sensory advantage in diverse aquatic habitats.
Collapse
|
35
|
Christiansen F, Sironi M, Moore MJ, Di Martino M, Ricciardi M, Warick HA, Irschick DJ, Gutierrez R, Uhart MM. Estimating body mass of free‐living whales using aerial photogrammetry and 3D volumetrics. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13298] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fredrik Christiansen
- Aarhus Institute of Advanced Studies Aarhus C Denmark
- Zoophysiology Department of Bioscience Aarhus University Aarhus C Denmark
- Harry Butler Institute Murdoch University Murdoch WA Australia
| | - Mariano Sironi
- Southern Right Whale Health Monitoring Program Puerto Madryn Argentina
- Instituto de Conservación de Ballenas Buenos Aires Argentina
- Diversidad Animal II Universidad Nacional de Córdoba Córdoba Argentina
| | - Michael J. Moore
- Biology Department Woods Hole Oceanographic Institution Wood Hole MA USA
| | - Matías Di Martino
- Southern Right Whale Health Monitoring Program Puerto Madryn Argentina
| | - Marcos Ricciardi
- Southern Right Whale Health Monitoring Program Puerto Madryn Argentina
| | | | | | | | - Marcela M. Uhart
- Southern Right Whale Health Monitoring Program Puerto Madryn Argentina
- School of Veterinary Medicine University of California Davis Davis CA USA
| |
Collapse
|
36
|
Irvine LM, Palacios DM, Lagerquist BA, Mate BR. Scales of Blue and Fin Whale Feeding Behavior off California, USA, With Implications for Prey Patchiness. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
37
|
Lanzetti A. Prenatal developmental sequence of the skull of minke whales and its implications for the evolution of mysticetes and the teeth-to-baleen transition. J Anat 2019; 235:725-748. [PMID: 31216066 DOI: 10.1111/joa.13029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Baleen whales (Mysticeti) have an extraordinary fossil record documenting the transition from toothed raptorial taxa to modern species that bear baleen plates, keratinous bristles employed in filter-feeding. Remnants of their toothed ancestry can be found in their ontogeny, as they still develop tooth germs in utero. Understanding the developmental transition from teeth to baleen and the associated skull modifications in prenatal specimens of extant species can enhance our understanding of the evolutionary history of this lineage by using ontogeny as a relative proxy of the evolutionary changes observed in the fossil record. Although at present very little information is available on prenatal development of baleen whales, especially regarding tooth resorption and baleen formation, due to a lack of specimens. Here I present the first detailed description of prenatal specimens of minke whales (Balaenoptera acutorostrata and Balaenoptera bonaerensis), focusing on the skull anatomy and tooth germ development, resorption, and baleen growth. The ontogenetic sequence described consists of 10 specimens of both minke whale species, from the earliest fetal stages to full term. The internal skull anatomy of the specimens was visualized using traditional and iodine-enhanced computed tomography scanning. These high-quality data allow detailed description of skull development both qualitatively and quantitatively using three-dimensional landmark analysis. I report distinctive external anatomical changes and the presence of a denser tissue medial to the tooth germs in specimens from the final portion of gestation, which can be interpreted as the first signs of baleen formation (baleen rudiments). Tooth germs are only completely resorbed just before the eruption of the baleen from the gums, and they are still present for a brief period with baleen rudiments. Skull shape development is characterized by progressive elongation of the rostrum relative to the braincase and by the relative anterior movement of the supraoccipital shield, contributing to a defining feature of cetaceans, telescoping. These data aid the interpretation of fossil morphologies, especially of those extinct taxa where there is no direct evidence of presence of baleen, even if caution is needed when comparing prenatal extant specimens with adult fossils. The ontogeny of other mysticete species needs to be analyzed before drawing definitive conclusions about the influence of development on the evolution of this group. Nonetheless, this work is the first step towards a deeper understanding of the most distinctive patterns in prenatal skull development of baleen whales, and of the anatomical changes that accompany the transition from tooth germs to baleen. It also presents comprehensive hypotheses to explain the influence of developmental processes on the evolution of skull morphology and feeding adaptations of mysticetes.
Collapse
Affiliation(s)
- Agnese Lanzetti
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
38
|
Pirotta E, Mangel M, Costa DP, Goldbogen J, Harwood J, Hin V, Irvine LM, Mate BR, McHuron EA, Palacios DM, Schwarz LK, New L. Anthropogenic disturbance in a changing environment: modelling lifetime reproductive success to predict the consequences of multiple stressors on a migratory population. OIKOS 2019. [DOI: 10.1111/oik.06146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Enrico Pirotta
- Dept of Mathematics and Statistics, Washington State Univ. Vancouver WA USA
- School of Biological, Earth and Environmental Sciences, Univ. College Cork Cork Ireland
| | - Marc Mangel
- Dept of Biology, Univ. of Bergen Bergen Norway
- Dept of Applied Mathematics, Univ. of California Santa Cruz CA USA
| | - Daniel P. Costa
- Dept of Ecology and Evolutionary Biology, Univ. of California Santa Cruz CA USA
| | - Jeremy Goldbogen
- Dept of Biology, Hopkins Marine Station, Stanford Univ. Pacific Grove CA USA
| | - John Harwood
- Centre for Research into Ecological and Environmental Modelling, Univ. of St Andrews St Andrews UK
| | - Vincent Hin
- Inst. for Biodiversity and Ecosystem Dynamics, Univ. of Amsterdam Amsterdam the Netherlands
| | - Ladd M. Irvine
- Marine Mammal Inst. and Dept of Fisheries and Wildlife, Oregon State Univ. Newport OR USA
| | - Bruce R. Mate
- Marine Mammal Inst. and Dept of Fisheries and Wildlife, Oregon State Univ. Newport OR USA
| | - Elizabeth A. McHuron
- Inst. of Marine Sciences, Univ. of California Santa Cruz CA USA
- Joint Inst. for the Study of the Atmosphere and Ocean, Univ. of Washington Seattle WA USA
| | - Daniel M. Palacios
- Marine Mammal Inst. and Dept of Fisheries and Wildlife, Oregon State Univ. Newport OR USA
| | - Lisa K. Schwarz
- Inst. of Marine Sciences, Univ. of California Santa Cruz CA USA
| | - Leslie New
- Dept of Mathematics and Statistics, Washington State Univ. Vancouver WA USA
| |
Collapse
|
39
|
Gough WT, Segre PS, Bierlich KC, Cade DE, Potvin J, Fish FE, Dale J, di Clemente J, Friedlaender AS, Johnston DW, Kahane-Rapport SR, Kennedy J, Long JH, Oudejans M, Penry G, Savoca MS, Simon M, Videsen SKA, Visser F, Wiley DN, Goldbogen JA. Scaling of swimming performance in baleen whales. J Exp Biol 2019; 222:jeb.204172. [DOI: 10.1242/jeb.204172] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
The scale-dependence of locomotor factors have long been studied in comparative biomechanics, but remain poorly understood for animals at the upper extremes of body size. Rorqual baleen whales include the largest animals, but we lack basic kinematic data about their movements and behavior below the ocean surface. Here we combined morphometrics from aerial drone photogrammetry, whale-borne inertial sensing tag data, and hydrodynamic modeling to study the locomotion of five rorqual species. We quantified changes in tail oscillatory frequency and cruising speed for individual whales spanning a threefold variation in body length, corresponding to an order of magnitude variation in estimated body mass. Our results showed that oscillatory frequency decreases with body length (∝ length−0.53) while cruising speed remains roughly invariant (∝ length0.08) at 2 m s−1. We compared these measured results for oscillatory frequency against simplified models of an oscillating cantilever beam (∝ length−1) and an optimized oscillating Strouhal vortex generator (∝ length−1). The difference between our length-scaling exponent and the simplified models suggests that animals are often swimming non-optimally in order to feed or perform other routine behaviors. Cruising speed aligned more closely with an estimate of the optimal speed required to minimize the energetic cost of swimming (∝ length0.07). Our results are among the first to elucidate the relationships between both oscillatory frequency and cruising speed and body size for free-swimming animals at the largest scale.
Collapse
Affiliation(s)
- William T. Gough
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Paolo S. Segre
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - K. C. Bierlich
- Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| | - David E. Cade
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Jean Potvin
- Department of Physics, Saint Louis University, St. Louis, MO 633103, USA
| | - Frank E. Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Julian Dale
- Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| | | | - Ari S. Friedlaender
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - David W. Johnston
- Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| | | | - John Kennedy
- Department of Physics, Saint Louis University, St. Louis, MO 633103, USA
| | - John H. Long
- Departments of Biology and Cognitive Science, Vassar College, Poughkeepsie, NY 12604, USA
| | | | - Gwenith Penry
- Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| | - Matthew S. Savoca
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Malene Simon
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, 3900 Nuuk, Greenland
| | - Simone K. A. Videsen
- Zoophysiology, Department of Bioscience, Faculty of Science and Technology, Aarhus University, Aarhus 8000, Denmark
| | - Fleur Visser
- Kelp Marine Research, Hoorn, the Netherlands
- Institute for Biodiversity and Ecosystem Dynamics – Freshwater and Marine Ecology, University of Amsterdam, the Netherlands
- Royal Netherlands Institute for Sea Research, Texel, the Netherlands
| | - David N. Wiley
- US National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, Stellwagen Bank National Marine Sanctuary, Scituate, MA 02066, USA
| | | |
Collapse
|
40
|
Werth AJ, Potvin J, Shadwick RE, Jensen MM, Cade DE, Goldbogen JA. Filtration area scaling and evolution in mysticetes: trophic niche partitioning and the curious cases of sei and pygmy right whales. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Alexander J Werth
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Jean Potvin
- Department of Physics, Saint Louis University, St. Louis, MO, USA
| | - Robert E Shadwick
- Department of Zoology, University of British Columbia, Vancouver, B.C., Canada
| | - Megan M Jensen
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - David E Cade
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Jeremy A Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|