1
|
Liu S, Huang J, Luo J, Gao X, Song S, Bian Q, Weng Y, Chen J. LOX-1-Based Assembly Layer on Devices Surface to Promote Endothelial Repair and Reduce Complications for In Situ Interventional Plaque. Adv Healthc Mater 2025; 14:e2403060. [PMID: 39692170 DOI: 10.1002/adhm.202403060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/05/2024] [Indexed: 12/19/2024]
Abstract
Rapid endothelialization and functional recovery are considered as promising methods to extend the long-term effectiveness of cardiovascular implant materials. LOX-1 participates in the initiation and development of atherosclerosis and is highly expressed in a variety of cells involved in atherosclerosis, hence it is feasible to accelerate the recovery of endothelial function and inhibit the development of existing plaques by regulating LOX-1. Herein, the surface is modified with Poly I, a LOX-1 inhibitor, using rich amino dendritic macromolecules (PAMAM) as the linker coating, to against the pathological microenvironment. Poly I modified surface resisted endothelial damage caused by oxidative stress through the LOX-1-NADPH signaling pathway and inhibited endothelial inflammation via the LOX-1-NF-κB signaling pathway. It also promoted endothelial cell migration and inhibited platelet adhesion. Moreover, the Poly I modified surface can inhibit oxLDL-induced macrophage foam cell formation and alleviate inflammation by modulating macrophage phenotypes. Poly I modified surface significantly reduced plaque burden after treatment of atherosclerotic model rats, most importantly, it significantly inhibited post-implantation-induced restenosis and thrombosis. In vivo and in vitro evaluations confirmed its safety and therapeutic efficacy against atherosclerosis. Overall, the multifunctional Poly I with pathological microenvironment regulation exhibits potential application value in the surface engineering of cardiovascular devices.
Collapse
Affiliation(s)
- Sainan Liu
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jinquan Huang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jiayan Luo
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiaowa Gao
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Siqi Song
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qihao Bian
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junying Chen
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
2
|
Haferanke J, Baumgartner L, Willinger L, Oberhoffer-Fritz R, Schulz T. Molecular Mechanisms of Vascular Tone in Exercising Pediatric Populations: A Comprehensive Overview on Endothelial, Antioxidative, Metabolic and Lipoprotein Signaling Molecules. Int J Mol Sci 2025; 26:1027. [PMID: 39940797 PMCID: PMC11817131 DOI: 10.3390/ijms26031027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Vasoactive molecules are central regulators of vascular tone, angiogenesis and inflammation. Key molecular agents include nitric oxide (NO), endothelin-1 (ET-1), prostacyclin, free triiodothyronine (fT3), leptin, low-density lipoprotein (LDL), high-density lipoprotein (HDL), superoxide dismutase (SOD), and glutathione peroxidase (GPX). Dysregulation of these compounds can lead to endothelial dysfunction, an early predictor of atherosclerosis and cardiovascular diseases (CVD). Maintaining endothelial health is thus essential for vascular homeostasis and cardiovascular risk prevention. Regular exercise serves as a vital protective measure against CVD and the risk of cardiovascular conditions. However, young athletes often significantly exceed recommended levels of training load, engaging in highly intensive training that leads to substantial physiological adaptations. Despite this, research on the impact of exercise on vasoactive substances in children and adolescents, particularly young athletes, is limited and inconsistent. Most studies focus on those with pre-existing conditions, like obesity or diabetes mellitus. Existing findings suggest exercise may favorably affect vascular biomarkers in youth, but methodological variations hinder consistent conclusions. This literature review examines 68 studies on the effects of exercise on vascular molecules in children and adolescents, young athletes, and children and adolescents with pre-existing conditions, offering deeper insights into how exercise may influence vascular health at the molecular level.
Collapse
Affiliation(s)
- Jonas Haferanke
- Department Health and Sport Sciences, Institute of Preventive Pediatrics, TUM School of Medicine and Health, Technical University of Munich (TUM), 80992 Munich, Germany
| | | | | | | | - Thorsten Schulz
- Department Health and Sport Sciences, Institute of Preventive Pediatrics, TUM School of Medicine and Health, Technical University of Munich (TUM), 80992 Munich, Germany
| |
Collapse
|
3
|
Hu Y, Li Y, Luo Y, Wang N, Zheng Y. Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 (LOX-1): A Potential Therapeutic Target in Ischemic Stroke. Transl Stroke Res 2024. [DOI: 10.1007/s12975-024-01307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 01/03/2025]
|
4
|
Yu L, Gao F, Li Y, Su D, Han L, Li Y, Zhang X, Feng Z. Role of pattern recognition receptors in the development of MASLD and potential therapeutic applications. Biomed Pharmacother 2024; 175:116724. [PMID: 38761424 DOI: 10.1016/j.biopha.2024.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become one of the most prevalent liver diseases worldwide, and its occurrence is strongly associated with obesity, insulin resistance (IR), genetics, and metabolic stress. Ranging from simple fatty liver to metabolic dysfunction-associated steatohepatitis (MASH), even to severe complications such as liver fibrosis and advanced cirrhosis or hepatocellular carcinoma, the underlying mechanisms of MASLD progression are complex and involve multiple cellular mediators and related signaling pathways. Pattern recognition receptors (PRRs) from the innate immune system, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs), and DNA receptors, have been demonstrated to potentially contribute to the pathogenesis for MASLD. Their signaling pathways can induce inflammation, mediate oxidative stress, and affect the gut microbiota balance, ultimately resulting in hepatic steatosis, inflammatory injury and fibrosis. Here we review the available literature regarding the involvement of PRR-associated signals in the pathogenic and clinical features of MASLD, in vitro and in animal models of MASLD. We also discuss the emerging targets from PRRs for drug developments that involved agent therapies intended to arrest or reverse disease progression, thus enabling the refinement of therapeutic targets that can accelerate drug development.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Feifei Gao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Yaoxin Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Dan Su
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Liping Han
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yueming Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Xuehan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.
| |
Collapse
|
5
|
Fujito H, Fukamachi D, Ohgaku A, Kojima K, Murata N, Yoda S, Saito Y, Yamada A, Koyama Y, Arai R, Ebuchi Y, Monden M, Tamaki T, Kitano D, Okumura Y. Hepatic steatosis evidenced by computed tomography in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. J Cardiol 2023; 82:414-422. [PMID: 37236437 DOI: 10.1016/j.jjcc.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) and acute myocardial infarction (AMI) have common pathological links. This study investigates the prognostic impact of NAFLD assessed as hepatic steatosis (HS) by computed tomography (CT) in AMI patients and explores the mechanistic role of NAFLD in cardiovascular (CV) events using coronary angioscopy (CAS). METHODS We retrospectively examined 342 AMI patients who underwent CT followed by primary percutaneous coronary intervention (PCI) between January 2014 and December 2019. HS was defined as a hepatic to spleen attenuation ratio of <1.0 on CT scans. Major cardiac events (MCE) included cardiac death, non-fatal myocardial infarction, target-vessel revascularization, and target-lesion revascularization. RESULTS HS was identified in 88 patients (26 %). Patients with HS were significantly younger, had a higher body mass index, and higher hemoglobin A1c, triglyceride, and malondialdehyde low-density lipoprotein levels (all p < 0.05). MCE occurred more frequently [27 (30.7 %) vs. 39 (15.4 %), p = 0.001] in the HS group than in the non-HS group. In the multivariate analysis, the presence of HS was an independent predictor of MCE after adjusting for metabolic risk factor and liver function markers. Among the 74 patients who underwent CAS for a median of 15 days after primary PCI, 51 (69 %) had intrastent thrombus, which was strongly associated with the presence of HS [18 (35 %) vs. 1 (4 %), p = 0.005]. CONCLUSIONS AMI patients with NAFLD detected by CT often had CAS-derived intrastent thrombi and were at a high risk for CV events. Therefore, these patients should be carefully monitored.
Collapse
Affiliation(s)
- Hidesato Fujito
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Daisuke Fukamachi
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Akihito Ohgaku
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Keisuke Kojima
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Nobuhiro Murata
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shunichi Yoda
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yuki Saito
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Akimasa Yamada
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yutaka Koyama
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Riku Arai
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasunari Ebuchi
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Masaki Monden
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Takehiro Tamaki
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Daisuke Kitano
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuo Okumura
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Jing J, Zhu C, Gong R, Qi X, Zhang Y, Zhang Z. Research progress on the active ingredients of traditional Chinese medicine in the intervention of atherosclerosis: A promising natural immunotherapeutic adjuvant. Biomed Pharmacother 2023; 159:114201. [PMID: 36610225 DOI: 10.1016/j.biopha.2022.114201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease caused by disorders of lipid metabolism. Abnormal deposition of low-density lipoproteins in the arterial wall stimulates the activation of immune cells, including the adhesion and infiltration of monocytes, the proliferation and differentiation of macrophages and lymphocytes, and the activation of their functions. The complex interplay between immune cells coordinates the balance between pro- and anti-inflammation and plays a key role in the progression of AS. Therefore, targeting immune cell activity may lead to the development of more selective drugs with fewer side effects to treat AS without compromising host defense mechanisms. At present, an increasing number of studies have found that the active ingredients of traditional Chinese medicine (TCM) can regulate the function of immune cells in multiple ways to against AS, showing great potential for the treatment of AS and promising clinical applications. In this paper, we review the mechanisms of immune cell action in AS lesions and the potential targets and/or pathways for immune cell regulation by the active ingredients of TCM to promote the understanding of the immune system interactions of AS and provide a relevant basis for the use of active ingredients of TCM as natural adjuvants for AS immunotherapy.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chaojun Zhu
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Rui Gong
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xue Qi
- Department of General Surgery, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| | - Yue Zhang
- Peripheral Vascular Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhaohui Zhang
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
7
|
Wang A, Tian X, Xu J, Li H, Xu Q, Chen P, Meng X, Wang Y. Soluble lectin-like oxidized low-density Lipoproteinreceptor-1 and recurrent stroke: A nested case-control study. CNS Neurosci Ther 2022; 28:2001-2010. [PMID: 35909324 PMCID: PMC9627350 DOI: 10.1111/cns.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 02/06/2023] Open
Abstract
MAIN PROBLEM The prognostic value of soluble lectin-like oxidized low-density lipoproteinreceptor-1 (sLOX-1) for stroke was unclearly. This study aimed to investigate the association between sLOX-1 and recurrent stroke in patients with acute ischemic stroke (AIS) or transient ischemic attack (TIA). METHODS Data were obtained from the Third China National Stroke Registry. Eligible cases consisted of 400 patients who developed recurrent stroke within 1-year follow-up, 800 controls were selected using age- and sex-matched with a 1:2 case-control ratio. Conditional logistic regressions were used to evaluate the association between sLOX-1 and recurrent stroke. RESULTS Among 1200 patients included in this study, the median (interquartile range) of sLOX-1 was 247.12 (132.81-413.58) ng/L. After adjustment for conventional confounding factors, the odds ratio with 95% confidence interval in the highest tertile versus the lowest tertile was 2.23 (1.61-3.08) for recurrent stroke, 2.31 (1.64-3.24) for ischemic stroke, 2.30 (1.66-3.19) for combined vascular events within 1-year follow-up. Furthermore, the addition of sLOX-1 to a conventional risk model had an incremental effect on predictive value for recurrent stroke (C-statistics 0.76, p < 0.0001; integrated discrimination improvement 13.38%, p < 0.0001; net reclassification improvement 55.39%, p < 0.0001). Similar results were observed when the timepoint was set up as 3 months. Subgroup analysis showed the association between higher sLOX-1 and recurrent stroke was more pronounced in patients with a history of stroke (p for interaction = 0.0062). CONCLUSIONS sLOX-1 was positively associated with the risk of recurrent stroke, which may be a candidate biomarker to improve risk stratification of recurrent stroke.
Collapse
Affiliation(s)
- Anxin Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xue Tian
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Department of Epidemiology and Health StatisticsSchool of Public Health, Capital Medical UniversityBeijingChina
| | - Jie Xu
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Hao Li
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Qin Xu
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Pan Chen
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xia Meng
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Yongjun Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
8
|
Pokhrel S, Gudneppanavar R, Teegala LR, Duah E, Thodeti CK, Paruchuri S. Leukotriene D 4 Upregulates Oxidized Low-Density Lipoprotein Receptor 1 and CD36 to Enhance Oxidized LDL Uptake and Phagocytosis in Macrophages Through Cysteinyl Leukotriene Receptor 1. Front Physiol 2021; 12:756450. [PMID: 34867460 PMCID: PMC8637273 DOI: 10.3389/fphys.2021.756450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
Endothelial permeability, leukocyte attachment, and unregulated oxidized LDL (oxLDL) uptake by macrophages leading to the formation of foam cells are all vital in the initiation and progression of atherosclerosis. During inflammation, several inflammatory mediators regulate this process through the expression of distinct oxLDL binding cell surface receptors on macrophages. We have previously shown that Leukotriene D4 (LTD4) promotes endothelial dysfunction, increasing endothelial permeability and enhancing TNFα-mediated attachment of monocytes to endothelium, which hints at its possible role in atherosclerosis. Here we analyzed the effect of LTD4 on macrophage function. Macrophages mainly express CysLT1R and flux calcium in response to LTD4. Further, LTD4 potentiates phagocytosis in macrophages as revealed by the uptake of zymosan particles. Notably, LTD4 augmented macrophage phagocytosis and oxLDL uptake which is sensitive to MK-571 [Montelukast (MK)], a CysLT1R-specific antagonist. Mechanistically, LTD4 upregulated two receptors central to foam cell formation, oxidized low-density lipoprotein receptor-1 (OLR1/LOX-1), and CD36 in a time and dose-dependent manner. Finally, LTD4 enhanced the secretion of chemokines MCP-1 and MIP1β. Our results suggest that LTD4 contributes to atherosclerosis either through driving foam cell formation or recruitment of immune cells or both. CysLT1R antagonists are safely being used in the treatment of asthma, and the findings from the current study suggest that these can be re-purposed for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Sabita Pokhrel
- Department of Chemistry, University of Akron, Akron, OH, United States
| | | | - Lakshminarayan Reddy Teegala
- Department of Chemistry, University of Akron, Akron, OH, United States
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Ernest Duah
- Department of Chemistry, University of Akron, Akron, OH, United States
| | - Charles K. Thodeti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Sailaja Paruchuri
- Department of Chemistry, University of Akron, Akron, OH, United States
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
9
|
Santiago-Fernández C, Martín-Reyes F, Tome M, Gutierrez-Repiso C, Fernandez-Garcia D, Ocaña-Wilhelmi L, Rivas-Becerra J, Tatzber F, Pursch E, Tinahones FJ, García-Fuentes E, Garrido-Sánchez L. Oxidized LDL Increase the Proinflammatory Profile of Human Visceral Adipocytes Produced by Hypoxia. Biomedicines 2021; 9:biomedicines9111715. [PMID: 34829944 PMCID: PMC8615639 DOI: 10.3390/biomedicines9111715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Little is known about the effects of hypoxia on scavenger receptors (SRs) levels in adipocytes. We analyzed the effect of morbid obesity and hypoxia on SRs and inflammation markers in human visceral adipocytes and whether ox-LDL modify the inflammatory profile produced by hypoxia. Methods: We studied in 17 non-obese and 20 subjects with morbid obesity (MO) the mRNA expression of HIF-1α, SRs (LOX-1, MSR1, CL-P1 and CXCL16), IL6 and TNFα in visceral adipocytes and the effect of hypoxia with or without ox-LDL on visceral in vitro-differentiated adipocytes (VDA). Results: HIF-1α, TNFα, IL6, LOX-1, MSR1 and CXCL16 expression in adipocytes was increased in MO when compared with those in non-obese subjects (p < 0.05). The expression of most of the inflammatory markers and SRs gene correlated with HIF-1α. In VDA, hypoxia increased TNFα, IL6, MSR1, CXCL16 and CL-P1 (p < 0.05) in non-obese subjects, and TNFα, IL6, MSR1 and CXCL16 (p < 0.05) in MO. Silencing HIF-1α prevented the increase of TNFα, IL6, LOX-1, MSR1, CL-P1 and CXCL16 expression (p < 0.05). The combination of hypoxia and ox-LDL produced higher TNFα expression (p = 0.041). Conclusions: Morbid obesity and hypoxia increased SRs and inflammatory markers in visceral adipocytes. In a hypoxic state, ox-LDL increased the proinflammatory response of visceral adipocytes to hypoxia.
Collapse
Affiliation(s)
- Concepción Santiago-Fernández
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.S.-F.); (F.M.-R.)
| | - Flores Martín-Reyes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.S.-F.); (F.M.-R.)
| | - Monica Tome
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, 29010 Málaga, Spain;
| | - Carolina Gutierrez-Repiso
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.G.-R.); (D.F.-G.); (L.G.-S.)
| | - Diego Fernandez-Garcia
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.G.-R.); (D.F.-G.); (L.G.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, 29010 Málaga, Spain
| | - Luis Ocaña-Wilhelmi
- Unidad de Gestión Clínica de Cirugía General y Digestiva, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain;
| | - Jose Rivas-Becerra
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario, 29010 Málaga, Spain;
| | - Franz Tatzber
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria;
| | - Edith Pursch
- Institute of Biochemical Engineering, University of Applied Sciences Technikum-Wien, 1200 Vienna, Austria;
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.G.-R.); (D.F.-G.); (L.G.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, 29010 Málaga, Spain
- Correspondence: (F.J.T.); (E.G.-F.)
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.S.-F.); (F.M.-R.)
- CIBER Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Salud Carlos III, 29010 Málaga, Spain
- Correspondence: (F.J.T.); (E.G.-F.)
| | - Lourdes Garrido-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.G.-R.); (D.F.-G.); (L.G.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, 29010 Málaga, Spain
| |
Collapse
|
10
|
Kianmehr A, Qujeq D, Bagheri A, Mahrooz A. Oxidized LDL-regulated microRNAs for evaluating vascular endothelial function: molecular mechanisms and potential biomarker roles in atherosclerosis. Crit Rev Clin Lab Sci 2021; 59:40-53. [PMID: 34523391 DOI: 10.1080/10408363.2021.1974334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As a simple monolayer, vascular endothelial cells can respond to physicochemical stimuli. In addition to promoting the formation of foam cells, oxidized low-density lipoprotein (ox-LDL) contributes to the atherosclerotic process through different mechanisms, including endothelial cell dysfunction. As conserved noncoding RNAs, microRNAs (miRNAs) naturally lie in different genomic positions and post-transcriptionally regulate the expression of many genes. They participate in integrated networks formed under stress to maintain cellular homeostasis, vascular inflammation, and metabolism. These small RNAs constitute therapeutic targets in different diseases, including atherosclerosis, and their role as biomarkers is crucial given their detectability even years before the emergence of diseases. This review was performed to investigate the role of ox-LDL-regulated miRNAs in atherosclerosis, their molecular mechanisms, and their application as biomarkers of vascular endothelial cell dysfunction.
Collapse
Affiliation(s)
- Anvarsadat Kianmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abouzar Bagheri
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Takebayashi K, Suzuki T, Yamauchi M, Hara K, Tsuchiya T, Inukai T, Hashimoto K. Association of circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 with inflammatory markers and urinary albumin excretion in patients with type 2 diabetes. SAGE Open Med 2021; 9:20503121211064468. [PMID: 34992779 PMCID: PMC8724995 DOI: 10.1177/20503121211064468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/16/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES The main purpose of the study was to study the association between circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 levels and various markers, including inflammatory markers such as high-sensitivity C-reactive protein and fibrinogen, serum lipids, and renal function, in patients with poorly controlled type 2 diabetes. METHODS The subjects were 70 patients (men 45, women 25) who were hospitalized for treatment of poor glycemic control. Plasma soluble lectin-like oxidized low-density lipoprotein receptor-1 levels were assayed using a sandwich chemiluminescence enzyme immunoassay. RESULTS Circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 was significantly positively correlated with lectin-like oxidized low-density lipoprotein-1 ligands containing apolipoprotein B, reflecting modified low-density lipoprotein, and with inflammatory markers such as high-sensitivity C-reactive protein and fibrinogen. In addition, there was a significant positive correlation between soluble lectin-like oxidized low-density lipoprotein receptor-1 and urinary albumin excretion. CONCLUSIONS Soluble lectin-like oxidized low-density lipoprotein receptor-1 may serve as a marker reflecting the degrees of inflammation and albuminuria in patients with poorly controlled type 2 diabetes.
Collapse
Affiliation(s)
- Kohzo Takebayashi
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Tatsuhiko Suzuki
- Department of Emergency and Critical Care Medicine, Emergency and Critical Care Center, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Mototaka Yamauchi
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Kenji Hara
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Takafumi Tsuchiya
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Toshihiko Inukai
- Department of Internal Medicine, Seibu General Hospital, Omiya, Japan
| | - Koshi Hashimoto
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| |
Collapse
|
12
|
Host-Parasite Interaction in Sarcoptes scabiei Infestation in Porcine Model with a Preliminary Note on Its Genetic Lineage from India. Animals (Basel) 2020; 10:ani10122312. [PMID: 33297315 PMCID: PMC7762329 DOI: 10.3390/ani10122312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Scabies or mange caused by Sarcoptess cabiei is the latest addition of WHO’s list oftropical neglected diseases. It causes severe itching to the host. It has a wide host range including humans, farm animals, companion animals, and wild animals. It is anemerging/re-emerging disease with high prevalence in underdeveloped and developing countries. The disease has zoonotic importance and is of significant public health concern as cross-transmission or species jumping is very common. To date, fifteen Sarcoptes varieties have been reported as per host origin. Differential diagnosis at variety level is very crucial for epidemiological study and scratching future eradication program of the disease. As morphotaxonomy fails to differentiate varieties, use of molecular markers is crucial. Moreover, it is very important to understand the host-parasite interaction at the systemic level for a better understanding on the pathogenicity of the disease. Here, we report the genetic characterization of S. scabiei from India and host-parasite interaction in a porcine model. Abstract The burrowing mite Sarcoptes scabiei causes scabies in humans or mange in animals. It infests a wide range of mammalian species including livestock, companion animals, wild animals, and humans. Differential diagnosis of Sarcoptes varieties is key for epidemiological studies and for formulation of an eradication program. Host-parasite interaction at the systemic level is very important to understand the pathogenicity of the mite. This communication deals with the preliminary report on the genetic characterization of S. scabiei from India. Moreover, the effect of S. scabiei infestation on host physiology with special emphasis on serum biochemical parameters, lipid profile, oxidant/antioxidant balance, stress parameters, and immune responses were evaluated in a porcine model. Cytochrome C oxidase 1 and voltage-sensitive sodium channel based phylogenetic study could distinguish human and animals isolates but could not distinguish host or geographical specific isolates belonging to animal origin. An absence of host-specific cluster among animal isolates argues against the hypothesis of delineating S. scabiei as per host origin. Elevated levels of markers of liver function such as albumin, AST, ALT, ALP, and LDH in infested animals indicated impaired liver function in infested animals. S. scabiei infestation induced atherogenic dyslipidemia indicated by elevated levels of total cholesterol, low-density lipoprotein cholesterol and triglycerides, and a decreased level of high-density lipoprotein cholesterol. Oxidative stress in infested animals was indicated by a high level of nitric oxide and serum MDA as oxidative stress markers and low antioxidant capacity. S. scabiei triggered stress response and elevated levels of serum cortisol and heat shock proteins were recorded in infested animals. S. scabiei infestation increased the serum concentration of immunoglobulins and was associated with up-regulation of IL-2, IFN-γ, IL-1β, and IL-4 indicating both Th1 and Th2 response. The results of the study will be helpful for a better understanding of host-parasite interaction at the systemic level in crusted scabies in pigs.
Collapse
|
13
|
Meng J, Zhang W, Wang C, Xiong S, Wang Q, Li H, Liu G, Hao Z. The dipeptidyl peptidase (DPP)-4 inhibitor trelagliptin inhibits IL-1β-induced endothelial inflammation and monocytes attachment. Int Immunopharmacol 2020; 89:106996. [DOI: 10.1016/j.intimp.2020.106996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022]
|
14
|
Zhong M, Zhang X, Shi X, Zheng C. Halofuginone inhibits LPS-induced attachment of monocytes to HUVECs. Int Immunopharmacol 2020; 87:106753. [DOI: 10.1016/j.intimp.2020.106753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 01/20/2023]
|
15
|
Bagchi AK, Surendran A, Malik A, Jassal DS, Ravandi A, Singal PK. IL-10 attenuates OxPCs-mediated lipid metabolic responses in ischemia reperfusion injury. Sci Rep 2020; 10:12120. [PMID: 32694752 PMCID: PMC7374703 DOI: 10.1038/s41598-020-68995-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidized phospholipids (OxPLs) promote inflammation as well as low density lipoprotein (LDL) uptake in a variety of physiological and pathological states. Given the anti-inflammatory role of the cytokine IL-10, we investigated its modulatory effect on the production of oxidized phosphatidylcholines (OxPCs) as well as lipid metabolic responses in global myocardial ischemia/reperfusion (I/R) injury. Increased OxPCs levels, by 1-Palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine (POVPC), promoted oxidative stress (OS) and cell death. OxPCs-mediated-OS, resulted in oxidized low-density lipoprotein receptor 1 (LOX-1) activation and upregulated the expression of toll-like receptor 2 (TLR2). IL-10-induced increase in proprotein convertase subtilisin/kexin type 9 (PCSK9) negatively regulated LOX-1 as well as TLR2 inflammatory responses. Under stress conditions, phosphorylation of sterol regulatory element binding protein 1c (SREBP 1c) was prevented by IL-10. The latter also prevented the generation of OxPCs and reduced their ratio (OxPCs/PCs) during injury. LOX-1 activation also promoted SREBP1c-mediated TGF-βRII expression which was inhibited by IL-10. Both fragmented and non-fragmented OxPCs were elevated during I/R and this effect was attenuated by IL-10. The largest impact (two–threefold change at log2) was on PAzPC, (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine)—a fragmented OxPC. Thus it appears that among different OxPCs, IL-10 significantly reduces a single molecule (PAzPC)-mediated lipid metabolic responses in cardiomyocytes thereby mitigating inflammation and cell death.
Collapse
Affiliation(s)
- Ashim K Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada
| | - Arun Surendran
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada
| | - Akshi Malik
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada
| | - Davinder S Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Section of Cardiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Section of Cardiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
16
|
Pandey E, Nour AS, Harris EN. Prominent Receptors of Liver Sinusoidal Endothelial Cells in Liver Homeostasis and Disease. Front Physiol 2020; 11:873. [PMID: 32848838 PMCID: PMC7396565 DOI: 10.3389/fphys.2020.00873] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are the most abundant non-parenchymal cells lining the sinusoidal capillaries of the hepatic system. LSECs are characterized with numerous fenestrae and lack basement membrane as well as a diaphragm. These unique morphological characteristics of LSECs makes them the most permeable endothelial cells of the mammalian vasculature and aid in regulating flow of macromolecules and small lipid-based structures between sinusoidal blood and parenchymal cells. LSECs have a very high endocytic capacity aided by scavenger receptors (SR), such as SR-A, SR-B (SR-B1 and CD-36), SR-E (Lox-1 and mannose receptors), and SR-H (Stabilins). Other high-affinity receptors for mediating endocytosis include the FcγRIIb, which assist in the antibody-mediated removal of immune complexes. Complemented with intense lysosomal activity, LSECs play a vital role in the uptake and degradation of many blood borne waste macromolecules and small (<280 nm) colloids. Currently, seven Toll-like receptors have been investigated in LSECs, which are involved in the recognition and clearance of pathogen-associated molecular pattern (PAMPs) as well as damage associated molecular pattern (DAMP). Along with other SRs, LSECs play an essential role in maintaining lipid homeostasis with the low-density lipoprotein receptor-related protein-1 (LRP-1), in juxtaposition with hepatocytes. LSECs co-express two surface lectins called L-Specific Intercellular adhesion molecule-3 Grabbing Non-integrin Receptor (L-SIGN) and liver sinusoidal endothelial cell lectin (LSECtin). LSECs also express several adhesion molecules which are involved in the recruitment of leukocytes at the site of inflammation. Here, we review these cell surface receptors as well as other components expressed by LSECs and their functions in the maintenance of liver homeostasis. We further discuss receptor expression and activity and dysregulation associated with the initiation and progression of many liver diseases, such as hepatocellular carcinoma, liver fibrosis, and cirrhosis, alcoholic and non-alcoholic fatty liver diseases and pseudocapillarization with aging.
Collapse
Affiliation(s)
- Ekta Pandey
- Department of Biochemistry, Universityof Nebraska, Lincoln, NE, United States
| | - Aiah S Nour
- Department of Biochemistry, Universityof Nebraska, Lincoln, NE, United States
| | - Edward N Harris
- Department of Biochemistry, Universityof Nebraska, Lincoln, NE, United States
| |
Collapse
|
17
|
Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM. Melatonin inhibits high glucose-induced ox-LDL/LDL expression and apoptosis in human umbilical endothelial cells. Horm Mol Biol Clin Investig 2020; 41:/j/hmbci.ahead-of-print/hmbci-2020-0009/hmbci-2020-0009.xml. [PMID: 32598308 DOI: 10.1515/hmbci-2020-0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cardiovascular disease (CVD) is one of the major cause of mortality in diabetic patients. Evidence suggests that hyperglycemia in diabetic patients contributes to increased risk of CVD. This study is to investigate the therapeutic effects of melatonin on glucose-treated human umbilical vein endothelial cells (HUVEC) and provide insights on the underlying mechanisms. MATERIALS AND METHODS Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Reactive oxygen species (ROS) and membrane potential was detected using 2',7'-dichlorofluorescein diacetate and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1) dye staining, respectively. While, cell apoptosis was determined by Annexin-V staining and protein expression was measured using Western blot. RESULTS Our results suggested that melatonin inhibited glucose-induced ROS elevation, mitochondria dysfunction and apoptosis on HUVEC. Melatonin inhibited glucose-induced HUVEC apoptosis via PI3K/Akt signaling pathway. Activation of Akt further activated BcL-2 pathway through upregulation of Mcl-1 expression and downregulation Bax expression in order to inhibit glucose-induced HUVEC apoptosis. Besides that, melatonin promoted downregulation of oxLDL/LOX-1 in order to inhibit glucose-induced HUVEC apoptosis. CONCLUSIONS In conclusion, our results suggested that melatonin exerted vasculoprotective effects against glucose-induced apoptosis in HUVEC through PI3K/Akt, Bcl-2 and oxLDL/LOX-1 signaling pathways.
Collapse
Affiliation(s)
- Yee Lian Tiong
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Rhun Yian Koh
- School of Health Science, Division of Biomedical Science and Biotechnology, International Medical University, 57000 Kuala Lumpur, Malaysia
| | | | - Soi Moi Chye
- School of Health Science, Division of Biomedical Science and Biotechnology, International Medical University, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Ko YS, Jin H, Park SW, Kim HJ. Salvianolic acid B protects against oxLDL-induced endothelial dysfunction under high-glucose conditions by downregulating ROCK1-mediated mitophagy and apoptosis. Biochem Pharmacol 2020; 174:113815. [DOI: 10.1016/j.bcp.2020.113815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/15/2020] [Indexed: 01/28/2023]
|
19
|
Sun S, Duan X, Wu Q, He Y, Bu X, Ming X, Yan F, Zhu H. ERK1/2-PPARγ pathway is involved in Chlamydia pneumonia-induced human umbilical vein endothelial cell apoptosis through increased LOX-1 expression. J Recept Signal Transduct Res 2020; 40:126-132. [PMID: 32003295 DOI: 10.1080/10799893.2020.1719416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chlamydia pneumonia (C.pn) is a common respiratory pathogen that is involved in human cardiovascular diseases and promotes the development of atherosclerosis in hyperlipidemic animal models. C.pn reportedly up-regulated lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in endothelial cells. Recently, the anti-atherosclerotic activity of peroxisome proliferator-activated receptor γ (PPARγ) has been documented. In the present study, we investigated the effect of C.pn on LOX-1 expression in human umbilical vein endothelial cells (HUVECs) and identified the involvement of the PPARγ signaling pathway therein. The results showed that C.pn increased the expression of LOX-1 in HUVECs in a dose- and time-dependent manner. C.pn-induced up-regulation of LOX-1 was mediated by ERK1/2, whereas p38 MAPK and JNK had no effect on this process. C.pn induced apoptosis, inhibited cell proliferation, and decreased the expression PPARγ in HUVECs. Additionally, LOX-1 activity and cell injury caused by C.pn through activation of ERK1/2 was completely inhibited by rosiglitazone, a PPARγ agonist. In conclusion, we inferred that activation of PPARγ in HUVECs suppressed C.pn-induced LOX-1 expression and cell damage by inhibiting ERK1/2 signaling.
Collapse
Affiliation(s)
- Shan Sun
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Duan
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinqin Wu
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingxia He
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofen Bu
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyan Ming
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengqin Yan
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Zhu
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Hofmann A, Brunssen C, Wolk S, Reeps C, Morawietz H. Soluble LOX-1: A Novel Biomarker in Patients With Coronary Artery Disease, Stroke, and Acute Aortic Dissection? J Am Heart Assoc 2020; 9:e013803. [PMID: 31902328 PMCID: PMC6988168 DOI: 10.1161/jaha.119.013803] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anja Hofmann
- Division of Vascular Endothelium and Microcirculation Department of Medicine III Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany.,Division of Vascular and Endovascular Surgery Department for Visceral-, Thoracic and Vascular Surgery Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation Department of Medicine III Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Steffen Wolk
- Division of Vascular and Endovascular Surgery Department for Visceral-, Thoracic and Vascular Surgery Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery Department for Visceral-, Thoracic and Vascular Surgery Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation Department of Medicine III Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| |
Collapse
|
21
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
22
|
Lu S, Luo Y, Zhou P, Yang K, Sun G, Sun X. Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-κB, p38, and JNK MAPK pathways. J Ginseng Res 2019; 43:95-104. [PMID: 30662298 PMCID: PMC6323235 DOI: 10.1016/j.jgr.2017.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/24/2017] [Accepted: 09/04/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Oxidized low-density lipoprotein (ox-LDL) causes vascular endothelial cell inflammatory response and apoptosis and plays an important role in the development and progression of atherosclerosis. Ginsenoside compound K (CK), a metabolite produced by the hydrolysis of ginsenoside Rb1, possesses strong anti-inflammatory effects. However, whether or not CK protects ox-LDL-damaged endothelial cells and the potential mechanisms have not been elucidated. METHODS In our study, cell viability was tested using a 3-(4, 5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) assay. Expression levels of interleukin-6, monocyte chemoattractant protein-1, tumor necrosis factor-α, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 were determined by enzyme-linked immunosorbent assay and Western blotting. Mitochondrial membrane potential (ΔΨm) was detected using JC-1. The cell apoptotic percentage was measured by the Annexin V/ propidium iodide (PI) assay, lactate dehydrogenase, and caspase-3 expression. Apoptosis-related proteins, nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPK) signaling pathways protein expression were quantified by Western blotting. RESULTS Our results demonstrated that CK could ameliorate ox-LDL-induced human umbilical vein endothelial cells (HUVECs) inflammation and apoptosis, NF-κB nuclear translocation, and the phosphorylation of p38 and c-Jun N-terminal kinase (JNK). Moreover, anisomycin, an activator of p38 and JNK, significantly abolished the anti-apoptotic effects of CK. CONCLUSION These results demonstrate that CK prevents ox-LDL-induced HUVECs inflammation and apoptosis through inhibiting the NF-κB, p38, and JNK MAPK signaling pathways. Thus, CK is a candidate drug for atherosclerosis treatment.
Collapse
Affiliation(s)
- Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Ping Zhou
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Ke Yang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Cipolla MJ, Liebeskind DS, Chan SL. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab 2018; 38:2129-2149. [PMID: 30198826 PMCID: PMC6282213 DOI: 10.1177/0271678x18800589] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Comorbidities are a hallmark of stroke that both increase the incidence of stroke and worsen outcome. Hypertension is prevalent in the stroke population and the most important modifiable risk factor for stroke. Hypertensive disorders promote stroke through increased shear stress, endothelial dysfunction, and large artery stiffness that transmits pulsatile flow to the cerebral microcirculation. Hypertension also promotes cerebral small vessel disease through several mechanisms, including hypoperfusion, diminished autoregulatory capacity and localized increase in blood-brain barrier permeability. Preeclampsia, a hypertensive disorder of pregnancy, also increases the risk of stroke 4-5-fold compared to normal pregnancy that predisposes women to early-onset cognitive impairment. In this review, we highlight how comorbidities and concomitant disorders are not only risk factors for ischemic stroke, but alter the response to acute ischemia. We focus on hypertension as a comorbidity and its effects on the cerebral circulation that alters the pathophysiology of ischemic stroke and should be considered in guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- 1 Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - David S Liebeskind
- 2 Neurovascular Imaging Research Core and Stroke Center, Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Siu-Lung Chan
- 1 Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
24
|
Tian K, Ogura S, Little PJ, Xu SW, Sawamura T. Targeting LOX-1 in atherosclerosis and vasculopathy: current knowledge and future perspectives. Ann N Y Acad Sci 2018; 1443:34-53. [PMID: 30381837 DOI: 10.1111/nyas.13984] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
Abstract
LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1; also known as OLR1) is the dominant receptor that recognizes and internalizes oxidized low-density lipoproteins (ox-LDLs) in endothelial cells. Several genetic variants of LOX-1 are associated with the risk and severity of coronary artery disease. The LOX-1-ox-LDL interaction induces endothelial dysfunction, leukocyte adhesion, macrophage-derived foam cell formation, smooth muscle cell proliferation and migration, and platelet activation. LOX-1 activation eventually leads to the rupture of atherosclerotic plaques and acute cardiovascular events. In addition, LOX-1 can be cleaved to generate soluble LOX-1 (sLOX-1), which is a useful diagnostic and prognostic marker for atherosclerosis-related diseases in human patients. Of therapeutic relevance, several natural products and clinically used drugs have emerged as LOX-1 inhibitors that have antiatherosclerotic actions. We hereby provide an updated overview of role of LOX-1 in atherosclerosis and associated vascular diseases, with an aim to highlighting the potential of LOX-1 as a novel theranostic tool for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Kunming Tian
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sayoko Ogura
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, Queensland, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Suo-Wen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York
| | - Tatsuya Sawamura
- Department of Physiology, School of Medicine, Shinshu University, Nagano, Japan.,Research Center for Next Generation Medicine, Shinshu University, Nagano, Japan
| |
Collapse
|
25
|
Willson C, Watanabe M, Tsuji-Hosokawa A, Makino A. Pulmonary vascular dysfunction in metabolic syndrome. J Physiol 2018; 597:1121-1141. [PMID: 30125956 DOI: 10.1113/jp275856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a critically important precursor to the onset of many diseases, such as cardiovascular disease, and cardiovascular disease is the leading cause of death worldwide. The primary risk factors of metabolic syndrome include hyperglycaemia, abdominal obesity, dyslipidaemia, and high blood pressure. It has been well documented that metabolic syndrome alters vascular endothelial and smooth muscle cell functions in the heart, brain, kidney and peripheral vessels. However, there is less information available regarding how metabolic syndrome can affect pulmonary vascular function and ultimately increase an individual's risk of developing various pulmonary vascular diseases, such as pulmonary hypertension. Here, we review in detail how metabolic syndrome affects pulmonary vascular function.
Collapse
Affiliation(s)
- Conor Willson
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | | - Ayako Makino
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
26
|
Johnson AC, Cipolla MJ. Impaired function of cerebral parenchymal arterioles in experimental preeclampsia. Microvasc Res 2018; 119:64-72. [PMID: 29705580 PMCID: PMC6005767 DOI: 10.1016/j.mvr.2018.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 01/17/2023]
Abstract
Preeclampsia (PE), a dangerous hypertensive complication of pregnancy, is associated with widespread maternal vascular dysfunction. However, the effect of PE on the cerebral vasculature that can lead to stroke and cognitive decline is not well understood. We hypothesized that function of cortical parenchymal arterioles (PAs) would be impaired during PE. Using a high cholesterol diet to induce experimental PE in rats (ePE), we studied the function and structure of isolated and pressurized PAs supplying frontoparietal white matter (WM) tracts and cortex and compared to normal pregnant (Preg) and nonpregnant (Nonpreg) Sprague Dawley rats (n = 8/group). Myogenic reactivity and tone were similar between groups; however, constriction to intermediate-conductance calcium-activated potassium (IK) channel inhibition was diminished and dilation to inward-rectifying K+ (KIR) channel activation was impaired in PAs from ePE rats, suggesting altered ion channel function. Conducted vasodilation was significantly delayed in response to 12 mM KCl, but not 10 μM adenosine, in PAs from ePE rats versus Preg and Nonpreg rats (940 ± 300 ms vs. 70 ± 50 ms and 370 ± 90 ms; p < 0.05). Overall, dysfunction of PAs supplying frontoparietal WM and gray matter was present in ePE. If persistent these changes could potentiate neuronal injury that over time could contribute to WM lesions and early-onset cognitive decline.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA.
| | - Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA; Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| |
Collapse
|
27
|
Davis G, Lucero J, Fellers C, McDonald JD, Lund AK. The effects of subacute inhaled multi-walled carbon nanotube exposure on signaling pathways associated with cholesterol transport and inflammatory markers in the vasculature of wild-type mice. Toxicol Lett 2018; 296:48-62. [PMID: 30081225 DOI: 10.1016/j.toxlet.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Abstract
Exposure to multi-walled carbon nanotubes (MWCNTs) has been associated with detrimental cardiovascular outcomes; however, underlying mechanisms have not yet been fully elucidated. Thus, we investigated alterations in proatherogenic and proinflammatory signaling pathways in C57Bl6/ mice exposed to MWCNTs (1 mg/m3) or filtered air (FA-Controls), via inhalation, for 6 h/day, 14d. Expression of mediators of cholesterol transport, namely the lectin-like oxidized low-density lipoprotein receptor (LOX)-1 and ATP-binding cassette transporter (ABCA)-1, inflammatory markers tumor necrosis factor (TNF)-α and interleukin (IL)-1β/IL-6, nuclear-factor kappa-light-chain-enhancer of activated B cells (NF-κB), intracellular/vascular adhesion molecule(s) (VCAM-1, ICAM-1), and miRNAs (miR-221/-21/-1), associated with cardiovascular disease (CVD), were analyzed in cardiac tissue and coronary vasculature. Cardiac fibrotic deposition, matrix-metalloproteinases (MMP)-2/9, and reactive oxygen species (ROS) were also assessed. MWCNT-exposure resulted in increased coronary ROS production with concurrent increases in expression of LOX-1, VCAM-1, TNF-α, and MMP-2/9 activity; while ABCA-1 expression was downregulated, compared to FA-Controls. Additionally, trends in fibrotic deposition and induction of cardiac TNF-α, MMP-9, IκB Kinase (IKK)-α/β, and miR-221 mRNA expression were observed. Analysis using inhibitors for nitric oxide synthase or NADPH oxidase resulted in attenuated coronary ROS production. These findings suggest that subacute inhalation MWCNT-exposure alters expression of cholesterol transporter/receptors, and induces signaling pathways associated with inflammation, oxidative stress, and CVD in wild-type mice.
Collapse
Affiliation(s)
- Griffith Davis
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA.
| | - JoAnn Lucero
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA.
| | - Caitlin Fellers
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA.
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87108, USA.
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA.
| |
Collapse
|
28
|
OLR1 scavenger receptor knockdown affects mitotic gene expression but is dispensable for oxidized phospholipid- mediated stress signaling in SZ 95 sebocytes. Mech Ageing Dev 2018; 172:35-44. [DOI: 10.1016/j.mad.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/20/2017] [Accepted: 11/01/2017] [Indexed: 12/19/2022]
|
29
|
Liu J, Liu Y, Jia K, Huo Z, Huo Q, Liu Z, Li Y, Han X, Wang R. Clinical analysis of lectin-like oxidized low-density lipoprotein receptor-1 in patients with in-stent restenosis after percutaneous coronary intervention. Medicine (Baltimore) 2018; 97:e0366. [PMID: 29702981 PMCID: PMC5944531 DOI: 10.1097/md.0000000000010366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In-stent restenosis (ISR) is the most common complication associated with percutaneous coronary intervention (PCI). Although some studies have reported an association between lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and ISR, not enough clinical validation data are available to support this link. Here, we report our cross-sectional study aimed at exploring the feasibility of LOX-1 as a biomarker for the prognostic diagnosis of patients undergoing PCI.Three groups were included: ISR group, including 99 patients with ISR diagnosed with coronary arteriography (CAG) after PCI; lesion group, comprising 87 patients with coronary artery stenosis (<50%) diagnosed with CAG after PCI; and control group, consisting of 96 volunteers with no coronary artery disease. The levels of LOX-1 were measured in each patient by using an enzyme-linked immunosorbent assay, and their general information as well as laboratory parameters were recorded and followed up during a period of 2 years.LOX-1 levels gradually increased after PCI along with the progression of the lesion in the 3 groups. The levels of LOX-1 were significantly higher in the ISR group than in the other 2 groups (P < .001). LOX-1 levels were correlated with the levels of uric acid (UA) (r = 0.289, P = .007), creatinine (CREA) (r = .316, P = .003), and high-density lipoprotein cholesterol (HDL-C) (r = -0.271, P = .012), whereas no statistically significant correlation was detected with the Gensini score (r = 0.157, P = .141). The sensitivity and specificity of LOX-1 were 81.5% and 55.7%, respectively, with the most optimal threshold (5.04 μg/L). The area under curve (AUC) of the receiver operator characteristic (ROC) curve of LOX-1 was 0.720, and LOX-1 had the highest AUC compared with CREA, UA, and HDL-C, both individually and in combination.A high level of LOX-1 in the early period after PCI has a certain predictive power and diagnostic value for ISR. However, the level of LOX-1 is not related to the Gensini score of coronary artery after PCI, and CREA and UA, which are weakly related to LOX-1, have no obvious synergy in the diagnosis of ISR with LOX-1.
Collapse
Affiliation(s)
- Junfeng Liu
- Department of Clinical Laboratory, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Science and Beijing Union Medical College
| | - Yunde Liu
- School of Laboratory Medicine, Tianjin Medical University
| | - Kegang Jia
- Department of Clinical Laboratory, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Science and Beijing Union Medical College
| | - Zhixiao Huo
- The Second People's Hospital of Tianjin, Tianjin, China
| | - Qianyu Huo
- School of Laboratory Medicine, Tianjin Medical University
| | - Zhili Liu
- School of Laboratory Medicine, Tianjin Medical University
| | - Yongshu Li
- Department of Clinical Laboratory, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Science and Beijing Union Medical College
| | - Xuejing Han
- Department of Clinical Laboratory, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Science and Beijing Union Medical College
| | - Rong Wang
- School of Laboratory Medicine, Tianjin Medical University
| |
Collapse
|
30
|
Genetic analysis of early onset familial coronary artery diseases. ACTA ACUST UNITED AC 2018; 4:e1-e6. [PMID: 30863800 PMCID: PMC6412034 DOI: 10.5114/amsad.2019.83149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Abstract
Introduction Coronary artery diseases (CAD) are the most common causes of death. Myocardial infarction (MI) is a complex multifactorial and the most severe type of CAD. Early onset MI in a first-degree relative could be defined as an independent risk factor for CAD. This study was performed to investigate the genetic cause of early onset familial CAD. Material and methods In this study, the genetic cause of familial CAD was investigated in patients with a family history of CAD who underwent angiography before the age of 50 years. The patients did not have any diagnostic criteria for familial hypercholesterolemia, diabetes, or obesity, and also they were not opium or alcohol users. Whole exome sequencing in probands was performed and mutation was confirmed by PCR and Sanger sequencing. Results In our studied population, the c.501G>C (p.K167N) mutation in the OLR1 gene was identified in a family. Mutation was confirmed by PCR and Sanger sequencing in the homozygous state (GG) in patients. Healthy individuals in this family were heterozygous (GC) and homozygous (CC). Conclusions This finding suggests that the OLR1 gene could be a possible cause of early onset familial MI. Considering that parents of all affected individuals had a consanguineous marriage, it is important to perform carrier screening and genetic counseling in this family and their close relatives as a prevention strategy in populations at risk.
Collapse
|
31
|
Suwannasual U, Lucero J, McDonald JD, Lund AK. Exposure to traffic-generated air pollutants mediates alterations in brain microvascular integrity in wildtype mice on a high-fat diet. ENVIRONMENTAL RESEARCH 2018; 160:449-461. [PMID: 29073573 PMCID: PMC5705467 DOI: 10.1016/j.envres.2017.10.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 05/03/2023]
Abstract
Air pollution-exposure is associated with detrimental outcomes in the central nervous system (CNS) such as cerebrovascular disorders, including stroke, and neurodegenerative diseases. While the mechanisms of these CNS-related outcomes involved have not been fully elucidated, exposure to traffic-generated air pollutants has been associated with altered blood brain barrier (BBB) integrity and permeability. The current study investigated whether inhalation exposure to mixed vehicle emissions (MVE) alters cerebral microvascular integrity in healthy 3 mo old C57BL/6 mice, as well as whether exposure-mediated effects were exacerbated by a high-fat (HF) vs. low-fat (LF) diet. Mice on each diet were randomly assigned to be exposed to either filtered air (FA) or MVE [100PM/m3 vehicle emissions mixture: 30µg PM/m3 gasoline engine + 70µg PM/m3 diesel engine emissions; median size ~ 60nm; particle mass size distribution median of ~ 1µm (range: < 0.5-20µm)] for 6h/d, 7d/wk, for 30d. Using sodium fluorescein as a tracer, we observed a significant increase in BBB permeability in both HF + MVE exposed and HF + FA animals, compared to LF + FA controls. Exposure to HF + MVE also led to a significant increase plasma ox-LDL and ox-LDL scavenger receptors (LOX-1 and CD-36) expression in the cerebral vasculature. Histological analysis revealed decreased expression of TJ protein, claudin-5, associated with increased matrix metalloproteinase (MMP)-9 activity and oxidative stress in the cerebral vasculature of HF + MVE mice, compared to LF + MVE. Such findings indicate that inhalation exposure to traffic-generated pollutants, coupled with a HF diet, results in altered BBB integrity and increased ox-LDL signaling in the cerebral vasculature in a wildtype animal model.
Collapse
Affiliation(s)
- Usa Suwannasual
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - JoAnn Lucero
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87108, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA.
| |
Collapse
|
32
|
Zhang W, Zhu T, Wu W, Ge X, Xiong X, Zhang Z, Hu C. LOX-1 mediated phenotypic switching of pulmonary arterial smooth muscle cells contributes to hypoxic pulmonary hypertension. Eur J Pharmacol 2017; 818:84-95. [PMID: 29069578 DOI: 10.1016/j.ejphar.2017.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
In pulmonary hypertension (PH), pulmonary arterial smooth muscle cells (PASMCs) are dedifferentiated, undergoing a contractile-to-synthetic phenotypic switching. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays diverse roles in the cardiovascular system, but its contribution to PH remains to be fully defined. The present study was undertaken to explore the role of LOX-1 in PASMCs dedifferentiation in hypoxia-induced pulmonary vascular remodeling and PH. In a rat model of hypoxic PH, pulmonary vascular remodeling was accompanied by increased expression of LOX-1 in pulmonary arteries. In primary rat PASMCs, hypoxia-induced PASMCs dedifferentiation occurred concomitantly with LOX-1 upregulation. Inhibition of LOX-1 by either siRNA knockdown or neutralizing antibody significantly ameliorated PASMCs dedifferentiation. Mechanistically, LOX-1 promotes PASMCs dedifferentiation under hypoxic conditions via ERK1/2-Elk-1/MRTF-A/SRF signaling pathway. In conclusion, our data uncovers an important role of LOX-1 in the maintenance of PASMCs phenotype. Therapeutic targeting of LOX-1/ERK1/2-Elk-1/MRTF-A/SRF signaling axis would be exploited to treat hypoxic PH.
Collapse
Affiliation(s)
- Weifang Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Department of Pharmacy, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Tiantian Zhu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Weihua Wu
- School of pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Xiaoyue Ge
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiaoming Xiong
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| | - Changping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
33
|
Hofmann A, Brunssen C, Morawietz H. Contribution of lectin-like oxidized low-density lipoprotein receptor-1 and LOX-1 modulating compounds to vascular diseases. Vascul Pharmacol 2017; 107:S1537-1891(17)30171-4. [PMID: 29056472 DOI: 10.1016/j.vph.2017.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022]
Abstract
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for binding and uptake of oxidized low-density lipoprotein (oxLDL) in endothelial cells. LOX-1 is also expressed in macrophages, smooth muscle cells and platelets. Following internalization of oxLDL, LOX-1 initiates a vicious cycle from activation of pro-inflammatory signaling pathways, thus promoting an increased reactive oxygen species formation and secretion of pro-inflammatory cytokines. LOX-1 plays a pivotal role in the development of endothelial dysfunction, foam cell and advanced lesions formation as well as in myocardial ischemia. Furthermore, it is known that LOX-1 plays a pivotal role in mitochondrial DNA damage, vascular cell apoptosis, and autophagy. A large number of studies provide evidence of a LOX-1's role in endothelial dysfunction, hypertension, diabetes, and obesity. In addition, novel insights into LOX-1 ligands and the activated signaling pathways have been gained. Recent studies have shown an interaction of LOX-1 with microRNA's, thus providing novel tools to regulate LOX-1 function. Because LOX-1 is increased in atherosclerotic plaques and contributes to endothelial dysfunction, several compounds were tested in vivo and in vitro to modulate the LOX-1 expression in therapeutic approaches.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
34
|
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl) 2017; 95:1153-1165. [DOI: 10.1007/s00109-017-1575-8] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
|
35
|
Morton JS, Care AS, Kirschenman R, Cooke CL, Davidge ST. Advanced Maternal Age Worsens Postpartum Vascular Function. Front Physiol 2017; 8:465. [PMID: 28713290 PMCID: PMC5491844 DOI: 10.3389/fphys.2017.00465] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
The age at which women experience their first pregnancy has increased throughout the decades. Pregnancy has an important influence on maternal short- and long-term cardiovascular outcomes. Pregnancy at an advanced maternal age increases maternal risk of gestational diabetes, preeclampsia, placenta previa and caesarian delivery; complications which predict worsened cardiovascular health in later years. Aging also independently increases the risk of cardiovascular disease; therefore, combined risk in women of advanced maternal age may lead to detrimental cardiovascular outcomes later in life. We hypothesized that pregnancy at an advanced maternal age would lead to postpartum vascular dysfunction. We used a reproductively aged rat model to investigate vascular function in never pregnant (virgin), previously pregnant (postpartum) and previously mated but never delivered (nulliparous) rats at approximately 13.5 months of age (3 months postpartum or equivalent). Nulliparous rats, in which pregnancy was spontaneously lost, demonstrated significantly reduced aortic relaxation responses (methylcholine [MCh] Emax: 54.2 ± 12.6%) vs. virgin and postpartum rats (MCh Emax: 84.8 ± 3.5% and 84.7 ± 3.2% respectively); suggesting pregnancy loss causes a worsened vascular pathology. Oxidized LDL reduced relaxation to MCh in aorta from virgin and postpartum, but not nulliparous rats, with an increased contribution of the LOX-1 receptor in the postpartum group. Further, in mesenteric arteries from postpartum rats, endothelium-derived hyperpolarization (EDH)-mediated vasodilation was reduced and a constrictive prostaglandin effect was apparent. In conclusion, aged postpartum rats exhibited vascular dysfunction, while rats which had pregnancy loss demonstrated a distinct vascular pathology. These data demonstrate mechanisms which may lead to worsened outcomes at an advanced maternal age; including early pregnancy loss and later life cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jude S. Morton
- Department of Obstetrics and Gynaecology, University of AlbertaEdmonton, AB, Canada
- Women and Children's Health Research InstituteEdmonton, AB, Canada
| | - Alison S. Care
- Department of Obstetrics and Gynaecology, University of AlbertaEdmonton, AB, Canada
- Women and Children's Health Research InstituteEdmonton, AB, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynaecology, University of AlbertaEdmonton, AB, Canada
- Women and Children's Health Research InstituteEdmonton, AB, Canada
| | - Christy-Lynn Cooke
- Department of Obstetrics and Gynaecology, University of AlbertaEdmonton, AB, Canada
- Women and Children's Health Research InstituteEdmonton, AB, Canada
| | - Sandra T. Davidge
- Department of Obstetrics and Gynaecology, University of AlbertaEdmonton, AB, Canada
- Women and Children's Health Research InstituteEdmonton, AB, Canada
- Department of Physiology, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
36
|
Elucidation of the Role of Lectin-Like oxLDL Receptor-1 in the Metabolic Responses of Macrophages to Human oxLDL. J Lipids 2017. [PMID: 28642826 PMCID: PMC5470018 DOI: 10.1155/2017/8479482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Atherogenesis is the narrowing of arteries due to plaque build-up that results in cardiovascular disease that can lead to death. The macrophage lectin-like oxidized LDL receptor-1 (LOX-1), also called the oxidized low-density lipoprotein receptor 1 (OLR1), is currently thought to aid in atherosclerotic disease progression; therefore metabolic studies have potential to both provide mechanistic validation for the role of LOX-1 in disease progression and provide valuable information regarding biomarker strategies and clinical imaging. One such mechanistic study is the upregulation of LOX-1 by methylated bacterial DNA and deoxy-cytidylate-phosphate-deoxy-guanylate-DNA (CpG)-DNA exposure. CpG-DNA is known to promote oxidative burst responses in macrophages, due to its direct binding to toll-like receptor 9 (TLR9) leading to the initiation of an NF-κB mediated immune response. In addition to the upregulation of macrophage LOX-1 expression, these studies have also examined the macrophage metabolic response to murine LOX-1/OLR1 antibody exposure. Our data suggests the antibody exposure effectively blocks LOX-1 dependent oxLDL metabolic activation of the macrophage, which was quantified using the multianalyte microphysiometer (MAMP). Using the MAMP to examine metabolic fluctuations during various types of oxLDL exposure, LOX-1 upregulation and inhibition provide valuable information regarding the role of LOX-1 in macrophage activation of oxidative burst.
Collapse
|
37
|
Zhu TT, Zhang WF, Luo P, Qian ZX, Li F, Zhang Z, Hu CP. LOX-1 promotes right ventricular hypertrophy in hypoxia-exposed rats. Life Sci 2017; 174:35-42. [DOI: 10.1016/j.lfs.2017.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/19/2017] [Accepted: 02/28/2017] [Indexed: 12/12/2022]
|
38
|
Chistiakov DA, Melnichenko AA, Orekhov AN, Bobryshev YV. How do macrophages sense modified low-density lipoproteins? Int J Cardiol 2017; 230:232-240. [DOI: 10.1016/j.ijcard.2016.12.164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/19/2016] [Accepted: 12/25/2016] [Indexed: 01/18/2023]
|
39
|
Zhang WF, Zhu TT, Xiong YW, Xiong AZ, Ge XY, Hu CP, Zhang Z. Negative feedback regulation between microRNA let-7g and LOX-1 mediated hypoxia-induced PASMCs proliferation. Biochem Biophys Res Commun 2017; 488:655-663. [PMID: 28108289 DOI: 10.1016/j.bbrc.2017.01.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a proliferative disorder associated with enhanced proliferation and suppressed apoptosis of pulmonary artery smooth muscle cells (PASMCs). Our lately study demonstrated that let-7g inhibited hypoxia-induced proliferation of PASMCs via repressing c-myc-Bmi-1-p16 signaling pathway. However, the upstream of let-7g has not yet been fully defined. Previous studies have shown that LOX-1, a target of let-7g, could also regulate the expression of let-7g in human aortic endothelial cells. In this present study, we aimed to investigate whether there is a negative feedback regulation between microRNA let-7g and LOX-1 in hypoxia-induced proliferation of PASMCs. METHODS SD Rats were exposed to hypoxia (10% O2, 3 weeks) to induce PH. HE staining was used to evaluate pulmonary artery remodeling. in situ hybridization and immunohistochemistry were performed to assess the expression and distribution of let-7g and LOX-1, respectively. MTS, EDU and flow cytometry were performed to evaluate PASMCs proliferation. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were conducted to assess the expression of let-7g, LOX-1, calpain-1,-2,-4, and OCT-1. RESULTS The expression of let-7g was significantly down-regulated in pulmonary arteries of hypoxia-induced PH rats accompanied by pulmonary vascular remodeling, whereas let-7g mimic inhibited hypoxia-induced proliferation of PASMCs and up-regulation of LOX-1 expression. LOX-1 blocking reversed hypoxia-induced down-regulation of let-7g expression. Calpains, protein kinase C and OCT-1 were involved in negative feedback regulation between let-7g and LOX-1. CONCLUSION Negative feedback regulation between let-7g and LOX-1 mediated hypoxia-induced proliferation of in PASMCs.
Collapse
Affiliation(s)
- Wei-Fang Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Tian-Tian Zhu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan, 410078, China
| | - You-Wen Xiong
- Jiangxi Center of Medical Device Testing, Nanchang, 330029, China
| | - Ai-Zhen Xiong
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiao-Yue Ge
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan, 410078, China
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan, 410078, China.
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
40
|
Kakino A, Fujita Y, Nakano A, Horiuchi S, Sawamura T. Developmental Endothelial Locus-1 (Del-1) Inhibits Oxidized Low-Density Lipoprotein Activity by Direct Binding, and Its Overexpression Attenuates Atherogenesis in Mice. Circ J 2016; 80:2541-2549. [PMID: 27784857 DOI: 10.1253/circj.cj-16-0808] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
BACKGROUND Modified low-density lipoprotein (LDL) binding to scavenger receptors has been implicated in atherosclerosis. It is hypothesized that a third molecule may affect modified LDL binding, therefore, this study focuses on the soluble endogenous protein, developmental endothelial locus-1 (Del-1), as an inhibitor of oxidized LDL (oxLDL) interactions. METHODS AND RESULTS Del-1 preferentially bound oxLDL over native LDL in a cell-free binding assay. Del-1 also inhibited DiI-labeled oxLDL uptake by scavenger receptors irrespective of the receptor type (LOX-1, SR-AI, CD36, or SR-BI) expressed in COS-7 cells, and independent of cell type (human coronary artery endothelial cells (HCAECs) or THP-1-derived macrophages). Furthermore, Del-1 suppressed oxLDL-inducedMCP-1andICAM-1expression and endothelin-1 secretion in HCAECs. Then, male Del-1 transgenic (Del-1Tg) and wild-type mice (WT) mice were established and fed a Paigen diet for 20 weeks from the age of 24 weeks. While plasma lipid concentrations did not differ between WT and Del-1Tg mice, plasma LOX-1-ligand activity was significantly lower in Del-1Tg than in WT mice. Moreover, lipid accumulation in aortic roots was significantly less in the Del-1Tg mice, evaluated with Oil red-O. Taken together, Del-1 appears to block the activity of oxLDL pharmacologically by direct binding in vitro, and attenuates atherogenesis in vivo, although its role in physiological settings are yet to be resolved. CONCLUSIONS Del-1 intercepted oxLDL before its receptor binding to reduce atherogenesis. (Circ J 2016; 80: 2541-2549).
Collapse
Affiliation(s)
- Akemi Kakino
- Institute for Biomedical Sciences, Shinshu University
| | | | | | | | | |
Collapse
|
41
|
Yang TC, Chang PY, Lu SC. L5-LDL from ST-elevation myocardial infarction patients induces IL-1β production via LOX-1 and NLRP3 inflammasome activation in macrophages. Am J Physiol Heart Circ Physiol 2016; 312:H265-H274. [PMID: 27864235 DOI: 10.1152/ajpheart.00509.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/28/2016] [Accepted: 11/11/2016] [Indexed: 12/24/2022]
Abstract
L5-LDL, the most electronegative LDL associated with major cardiovascular risks, significantly rises in patients with ST-segment elevation myocardial infarction (STEMI). The inflammatory nature of atherosclerotic vascular diseases has prompted us to investigate whether L5-LDL induces the production of inflammatory cytokines, especially vascular ischemia-related interleukin (IL)-1β, in the pathogenesis of STEMI. Clinical data showed that plasma levels of L5-LDL and IL-1β were higher in the STEMI patients than in the controls (P < 0.05). In THP-1-derived human macrophages, L5-LDL significantly increased the levels of both IL-1β and cleaved caspase-1, indicating the activation of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes by L5-LDL. Knockdown of NLRP3 and its adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) resulted in decreased L5-LDL-induced IL-1β. Furthermore, knock down of the lectin-type oxidized LDL receptor (LOX-1) in THP-1 cells attenuated L5-LDL-induced activation of NF-κB and caspase-1, leading to subsequent inhibition of IL-1β in macrophages. Furthermore, blockade LOX-1 with neutralizing antibody also inhibited L5-LDL-induced IL-1β in human peripheral blood mononuclear cell-derived macrophages. In conclusion, L5-LDL induces IL-1β production in macrophages by activation of NF-κB and caspase-1 through the LOX-1-dependent pathway. This study represents the evidence linking L5-LDL and the inflammatory cytokine IL-1β in STEMI, and identifies L5-LDL as a novel therapeutic target in acute myocardial infarction. NEW & NOTEWORTHY This study represents the evidence linking L5-LDL and the inflammatory cytokine IL-1β in ST-segment elevation myocardial infarction (STEMI). We elucidate the molecular mechanism underlying L5-LDL-induced production of IL-1β in macrophages. The results showed that L5-LDL induced activation of caspase-1 and NF-κB through the lectin-type oxidized LDL receptor (LOX-1)-dependent pathway, leading to the production of IL-1β.
Collapse
Affiliation(s)
- Tzu-Ching Yang
- Department of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan; and
| | - Po-Yuan Chang
- Cardiovasccular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shao-Chun Lu
- Department of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan; and
| |
Collapse
|
42
|
Yokoyama C, Aoyama T, Ido T, Kakino A, Shiraki T, Tanaka T, Nishigaki K, Hasegawa A, Fujita Y, Sawamura T, Minatoguchi S. Deletion of LOX-1 Protects against Heart Failure Induced by Doxorubicin. PLoS One 2016; 11:e0154994. [PMID: 27195769 PMCID: PMC4873018 DOI: 10.1371/journal.pone.0154994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 04/22/2016] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress is one of the major factors in doxorubicin (DOX)-induced cardiomyopathy. Lectin-like oxidized low-density lipoprotein (oxLDL) receptor-1 (LOX-1) plays an important role to regulate cardiac remodeling and oxidative stress after ischemia-reperfusion. Therefore, we examined whether or not LOX-1 contributes to the pathogenesis of DOX-induced cardiomyopathy. Cardiomyopathy was induced by a single intraperitoneal injection of DOX into wild-type (WT) mice and LOX-1 knockout (KO) mice. Echocardiography and catheter-based hemodynamic assessment apparently revealed preserved left ventricular (LV) fractional shortening (FS) and cavity size of LOX-1 KO mice compared with those of WT mice after DOX administration. Less production of tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1ß) was observed in LOX-1 KO mice than WT mice after DOX administration. Western blotting analysis also showed lower activation of nuclear factor κB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) in LOX-1 KO mice treated with DOX than WT mice treated with DOX. In fact, NF-κB-dependent gene expressions of LOX-1 and vascular cell adhesion molecule-1 (VCAM-1) were suppressed in LOX-1 KO mice treated with DOX compared with WT mice treated with DOX. Therefore, histological analyses showed attenuation of leukocyte infiltration and cardiac fibrosis in LOX-1 KO mice compared with WT mice. Meanwhile, extracellular signal-regulated kinase MAPK (ERK) inactivation and decreased expression of sarcomeric proteins and related transcription factor GATA-4 in WT mice treated with DOX administration were not seen in LOX-1 KO mice treated with DOX administration and WT and LOX-1 KO mice treated with vehicle. Decreased expression of sarcometric proteins resulted in smaller diameters of cardiomyocytes in WT mice than in LOX-1 KO mice after DOX treatment. The expression of LOX-1 in cardiomyocytes was much more abundant than that in endothelial cells, fibroblasts and inflammatory cells. Endothelial cells, fibroblasts and inflammatory cells treated with DOX showed no elevated LOX-1 expression compared with those treated with vehicle. However, cardiomyocytes treated with DOX showed much more expression of LOX-1 than those treated with vehicle. Immunohistochemistry study also showed that LOX-1 expression was strongly elevated in cardiomyocytes in the heart tissue of mice treated with DOX in vivo. We conclude that LOX-1 in cardiomyocytes plays the most important roles in the pathology of DOX-induced cardiomyopathy. LOX-1 deletion altered the LOX-1-related signaling pathway, which led to improvements in cardiac function, myocardial inflammation, fibrosis and degenerative changes after DOX treatment.
Collapse
Affiliation(s)
- Chiharu Yokoyama
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuma Aoyama
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
- Cardiovascular Center, Kizawa Memorial Hospital, Minokamo, Japan
- * E-mail:
| | - Takahiro Ido
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
- Cardiovascular Center, Kizawa Memorial Hospital, Minokamo, Japan
| | - Akemi Kakino
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeru Shiraki
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiki Tanaka
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiko Nishigaki
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Aiko Hasegawa
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiko Fujita
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tatsuya Sawamura
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shinya Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
43
|
Ishikawa M, Ito H, Furu M, Hashimoto M, Fujii T, Okahata A, Mimori T, Matsuda S. Plasma sLOX-1 is a potent biomarker of clinical remission and disease activity in patients with seropositive RA. Mod Rheumatol 2016; 26:696-701. [DOI: 10.3109/14397595.2015.1128871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Masahiro Ishikawa
- Department of Orthopedic Surgery,
- Department of the Control for Rheumatic Diseases, and
| | | | - Moritoshi Furu
- Department of Orthopedic Surgery,
- Department of the Control for Rheumatic Diseases, and
| | | | - Takao Fujii
- Department of the Control for Rheumatic Diseases, and
| | | | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
44
|
Chang CT, Wang GJ, Kuo CC, Hsieh JY, Lee AS, Chang CM, Wang CC, Shen MY, Huang CC, Sawamura T, Yang CY, Stancel N, Chen CH. Electronegative Low-density Lipoprotein Increases Coronary Artery Disease Risk in Uremia Patients on Maintenance Hemodialysis. Medicine (Baltimore) 2016; 95:e2265. [PMID: 26765403 PMCID: PMC4718229 DOI: 10.1097/md.0000000000002265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Electronegative low-density lipoprotein (LDL) is a recognized factor in the pathogenesis of coronary artery disease (CAD) in the general population, but its role in the development of CAD in uremia patients is unknown. L5 is the most electronegative subfraction of LDL isolated from human plasma. In this study, we examined the distribution of L5 (L5%) and its association with CAD risk in uremia patients.The LDL of 39 uremia patients on maintenance hemodialysis and 21 healthy controls was separated into 5 subfractions, L1-L5, with increasing electronegativity. We compared the distribution and composition of plasma L5 between uremia patients and controls, examined the association between plasma L5% and CAD risk in uremia patients, and studied the effects of L5 from uremia patients on endothelial function.Compared to controls, uremia patients had significantly increased L5% (P < 0.001) and L5 that was rich in apolipoprotein C3 and triglycerides. L5% was significantly higher in uremia patients with CAD (n = 10) than in those without CAD (n = 29) (P < 0.05). Independent of other major CAD risk factors, the adjusted odds ratio for CAD was 1.88 per percent increase in plasma L5% (95% CI, 1.01-3.53), with a near-linear dose-response relationship. Compared with controls, uremia patients had decreased flow-mediated vascular dilatation. In ex vivo studies with preconstricted rat thoracic aortic rings, L5 from uremia patients inhibited acetylcholine-induced relaxation. In cultured human endothelial cells, L5 inhibited endothelial nitric oxide synthase activation and induced endothelial dysfunction.Our findings suggest that elevated plasma L5% may induce endothelial dysfunction and play an important role in the increased risk of CAD in uremia patients.
Collapse
Affiliation(s)
- Chiz-Tzung Chang
- From the L5 Research Center, China Medical University (CMU) Hospital (C-TC, J-YH, A-SL, C-MC, M-YS, C-YY, C-HC); Division of Nephrology, CMU Hospital (C-TC, C-CK, C-CH); College of Medicine, CMU (C-TC, C-CK); Graduate Institute of Clinical Medical Science, CMU (G-JW, C-CW, M-YS); Department of Health and Nutrition Biotechnology, Asia University (G-JW), Taichung, Taiwan; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA (C-CK); Department of Medicine, Mackay Medical College, New Taipei, Taiwan (A-SL); Department of Physiology, Shinshu University School of Medicine, Matsumoto, Nagono, Japan (TS); Vascular and Medicinal Research, Texas Heart Institute, Houston, Texas, USA (NS, C-HC); Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU) (C-HC); Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung (C-HC); New York Heart Research Foundation, Mineola, New York, USA (C-HC); and Lipid and Glycoimmune Research Center, Changhua Christian Hospital, Changhua, Taiwan (C-HC)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xia X, Li Y, Su Q, Huang Z, Shen Y, Li W, Yu C. Inhibitory effects of Mycoepoxydiene on macrophage foam cell formation and atherosclerosis in ApoE-deficient mice. Cell Biosci 2015; 5:23. [PMID: 26045945 PMCID: PMC4455339 DOI: 10.1186/s13578-015-0017-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/20/2015] [Indexed: 02/02/2023] Open
Abstract
Background Mycoepoxydiene (MED) is a polyketide that can be isolated from a marine fungus and is associated with various activities, including antitumor and anti-inflammatory functions. However, its effects on atherosclerosis remain unknown. Macrophage-derived foam cells play crucial roles in the initiation and progression of atherosclerotic plaques. In this study, we investigated the effects of MED on oxidized low-density lipoprotein (ox-LDL)-induced macrophage foam cell formation and activation, and on high fat diet (HFD)-induced atherosclerosis in ApoE-deficient (ApoE−/−) mice. Results Our findings show that MED could significantly inhibit ox-LDL-induced macrophage foam cell formation and suppress the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), which is a receptor for ox-LDL. Additionally, MED could significantly inhibit the secretion of proinflammatory cytokines, such as tumor necrosis factor (TNF-α), interleukin (IL)-6, and IL-1β. Mechanistically, MED inhibited NF-κB activation by blocking IκB-α degradation and reducing NF-κB DNA binding activity. Moreover, MED dramatically reduced the occurrence of HFD-induced atherosclerotic lesions in ApoE−/− mice. Conclusions Our study shows that MED can inhibit macrophage foam cell formation and activation by inhibiting NF-κB activation, thereby protecting ApoE−/− mice from HFD-induced atherosclerosis. Our findings suggest that MED might be a potential lead compound for the development of antiatherosclerotic therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s13578-015-0017-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaochun Xia
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005 China
| | - Yang Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112 China
| | - Qiang Su
- Medical College, Xiamen University, Xiamen, China
| | - Zhengrong Huang
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005 China
| | - Yuemao Shen
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012 China
| | - Weihua Li
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005 China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112 China
| |
Collapse
|
46
|
D-4F, an apolipoprotein A-I mimetic peptide, protects human umbilical vein endothelial cells from oxidized low-density lipoprotein-induced injury by preventing the downregulation of pigment epithelium-derived factor expression. J Cardiovasc Pharmacol 2015; 63:553-61. [PMID: 24709637 DOI: 10.1097/fjc.0000000000000080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM To investigate the protective effects of D-4F, an apolipoprotein A-I mimetic peptide, on oxidized low-density lipoprotein (ox-LDL)-induced injury of vascular endothelial cells and the potential role of pigment epithelium-derived factor (PEDF). METHODS Cytotoxicity was assessed by the apoptotic rate, 3-(4,5-dimethylthiazol-2-y-l)-2,5-diphenyl-2H-tetrazolium bromide assay, and lactate dehydrogenase release. PEDF levels were analyzed with Western blot and quantitative real-time polymerase chain reaction. Redox status was measured by the levels of the reactive oxygen species, malondialdehyde, superoxide dismutase, and nitric oxide. RESULTS Ox-LDL reduced cell viability and induced apoptosis and LDH release from human umbilical vein endothelial cells, but the cytotoxic effects of ox-LDL were significantly inhibited by pretreatment with D-4F. Additionally, D-4F could scavenge intracellular reactive oxygen species, suppress the production of lipid peroxides, and improve endogenous antioxidant activity. Ox-LDL decreased PEDF expression in human umbilical vein endothelial cells in a concentration-dependent manner, and this decrease was markedly attenuated by D-4F. However, silencing PEDF by short interfering RNA blocked the inhibitory effects of D-4F on ox-LDL-induced oxidative stress and cellular injury. CONCLUSIONS D-4F effectively protects vascular endothelial cells against ox-LDL-induced injury by preventing the downregulation of PEDF expression.
Collapse
|
47
|
Wakabayashi I, Shimomura T, Nakanishi M, Uchida K. Elevation of circulating LOX-1 ligand levels in Zucker obese and diabetic rats. Obes Res Clin Pract 2014; 9:26-30. [PMID: 25434992 DOI: 10.1016/j.orcp.2014.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/28/2014] [Accepted: 10/09/2014] [Indexed: 01/06/2023]
Abstract
LOX-1 ligands containing apolipoprotein B (LAB) reflect ligand activity of LOX-1, which is a key molecule for initiation of atherosclerosis. The Zucker rat is a well-known model used for research on obesity and diabetes. Blood levels of LAB were compared among Zucker fatty (ZF), Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats. Log-transformed LAB was significantly higher in ZF and ZDF rats than in control ZL rats, while no significant difference was found in log-transformed LAB of ZF and ZDF rats. This study for the first time demonstrated that circulating LOX-1 ligands were elevated in obesity and diabetes model rats.
Collapse
Affiliation(s)
- Ichiro Wakabayashi
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.
| | - Tomoko Shimomura
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Mamoru Nakanishi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | |
Collapse
|
48
|
Bao MH, Zhang YW, Lou XY, Cheng Y, Zhou HH. Protective effects of let-7a and let-7b on oxidized low-density lipoprotein induced endothelial cell injuries. PLoS One 2014; 9:e106540. [PMID: 25247304 PMCID: PMC4172475 DOI: 10.1371/journal.pone.0106540] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/30/2014] [Indexed: 01/08/2023] Open
Abstract
Lectin-like low-density lipoprotein receptor 1 (LOX-1) is a receptor for oxidized low density lipoprotein (oxLDL) in endothelial cells. The activation of LOX-1 by oxLDL stimulates the apoptosis and dysfunction of endothelial cells, and contributes to atherogenesis. However, the regulatory factors for LOX-1 are still unclear. MicroRNAs are small, endogenous, non-coding RNAs that regulate gene expressions at a post-transcriptional level. The let-7 family is the second microRNA been discovered, which plays important roles in cardiovascular diseases. Let-7a and let-7b were predicted to target LOX-1 3′-UTR and be highly expressed in endothelial cells. The present study demonstrated that LOX-1 was a target of let-7a and let-7b. They inhibited the expression of LOX-1 by targeting the positions of 310-316 in LOX-1 3′-UTR. Over-expression of let-7a and let-7b inhibited the oxLDL-induced endothelial cell apoptosis, NO deficiency, ROS over-production, LOX-1 upregulation and endothelial nitric oxide synthase (eNOS) downregulation. Moreover, we found that oxLDL treatment induced p38MAPK phosphorylation, NF-κB nuclear translocation, IκB degradation and PKB dephosphorylation. Let-7a or let-7b over-expression attenuated these alterations significantly. The present study may provide a new insight into the protective properties of let-7a and let-7b in preventing the endothelial dysfunction associated with cardiovascular disease, such as atherosclerosis.
Collapse
Affiliation(s)
- Mei-hua Bao
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Yi-wen Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Xiao-ya Lou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Yu Cheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Hong-hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
- * E-mail:
| |
Collapse
|
49
|
Zhao W, Ma G, Chen X. Lipopolysaccharide induced LOX-1 expression via TLR4/MyD88/ROS activated p38MAPK-NF-κB pathway. Vascul Pharmacol 2014; 63:162-72. [PMID: 25135647 DOI: 10.1016/j.vph.2014.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/25/2014] [Accepted: 06/26/2014] [Indexed: 12/31/2022]
Abstract
Lectin-like receptor for oxidized low density lipoprotein (LOX-1) plays a key role in endothelial ox-LDL endocytosis, endothelial dysfunction and atherogenesis. In the present study, the effect of lipopolysaccharide (LPS) on LOX-1 expression and the underlying molecular pathways were investigated. Human umbilical vein endothelial cells (HUVECs) were treated with LPS and the protein expressions of LOX-1, TLR4, TLR2, MyD88, Nox4, Nox2, PI3K, p38MAPK, JNK, ERK, Nrf1, Nrf2 and p65 were examined by Western blotting. The intracellular reactive oxygen species (ROS) production was examined by flow cytometry with fluorescence probe DCFH2-DA. The role of TLR4, MyD88 and Nox4 were determined with specific siRNA. The endothelial ox-LDL uptake and the endothelial-monocyte adhesion were evaluated with DiI-ox-LDL and Hoechst 33342 respectively. The effect of LPS on LOX-1 expression in aorta tissue was also studied with male C57/BL6 mice by intraperitoneal injection of LPS. The results showed that LPS induced LOX-1 protein expression in a time- and concentration-dependent manner. The mRNA expression of LOX-1 was also upregulated. The protein expression of LOX-1 and phosphorylated p38MAPK, p65 was significantly enhanced by LPS both in vitro and in vivo. LPS induced LOX-1 expression was blocked by siRNA for TLR4, MyD88, and Nox4 and inhibitors for p38MAPK, NF-κB, cyclooxygenase-2, and NADPH oxidase. Both LPS induced ox-LDL uptake and endothelial-monocyte adhesion were significantly inhibited by anti-LOX-1 antibody. LPS dramatically induced LOX-1 protein expression in aorta tissues. In conclusion, our data suggested that LPS induces LOX-1 expression via TLR4/MyD88/ROS activated p38MAPK/NF-κB pathway in endothelial cells, which provides new regulatory mechanisms for LOX-1 expression.
Collapse
Affiliation(s)
- Wenwen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guixin Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
50
|
|