1
|
Tants JN, Schlundt A. The role of structure in regulatory RNA elements. Biosci Rep 2024; 44:BSR20240139. [PMID: 39364891 PMCID: PMC11499389 DOI: 10.1042/bsr20240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024] Open
Abstract
Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e., RNA-binding proteins) bind the so-called cis elements and confer functionality to the complex. The specificity during protein-RNA complex (RNP) formation often exploits the structural plasticity of RNA. Functional integrity of cis-trans pairs depends on the availability of properly folded RNA elements, and RNA conformational transitions can cause diseases. Knowledge of RNA structure and the conformational space is needed for understanding complex formation and deducing functional effects. However, structure determination of RNAs under in vivo conditions remains challenging. This review provides an overview of structured eukaryotic and viral RNA cis elements and discusses the effect of RNA structural equilibria on RNP formation. We showcase implications of RNA structural changes for diseases, outline strategies for RNA structure-based drug targeting, and summarize the methodological toolbox for deciphering RNA structures.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
2
|
Das NK, Vogt J, Patel A, Banna HA, Koirala D. Structural basis for a highly conserved RNA-mediated enteroviral genome replication. Nucleic Acids Res 2024; 52:11218-11233. [PMID: 39036953 PMCID: PMC11472160 DOI: 10.1093/nar/gkae627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Enteroviruses contain conserved RNA structures at the extreme 5' end of their genomes that recruit essential proteins 3CD and PCBP2 to promote genome replication. However, the high-resolution structures and mechanisms of these replication-linked RNAs (REPLRs) are limited. Here, we determined the crystal structures of the coxsackievirus B3 and rhinoviruses B14 and C15 REPLRs at 1.54, 2.2 and 2.54 Å resolution, revealing a highly conserved H-type four-way junction fold with co-axially stacked sA-sD and sB-sC helices that are stabilized by a long-range A•C•U base-triple. Such conserved features observed in the crystal structures also allowed us to predict the models of several other enteroviral REPLRs using homology modeling, which generated models almost identical to the experimentally determined structures. Moreover, our structure-guided binding studies with recombinantly purified full-length human PCBP2 showed that two previously proposed binding sites, the sB-loop and 3' spacer, reside proximally and bind a single PCBP2. Additionally, the DNA oligos complementary to the 3' spacer, the high-affinity PCBP2 binding site, abrogated its interactions with enteroviral REPLRs, suggesting the critical roles of this single-stranded region in recruiting PCBP2 for enteroviral genome replication and illuminating the promising prospects of developing therapeutics against enteroviral infections targeting this replication platform.
Collapse
Affiliation(s)
- Naba Krishna Das
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Jeff Vogt
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Alisha Patel
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Hasan Al Banna
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Das NK, Hollmann NM, Vogt J, Sevdalis SE, Banna HA, Ojha M, Koirala D. Crystal structure of a highly conserved enteroviral 5' cloverleaf RNA replication element. Nat Commun 2023; 14:1955. [PMID: 37029118 PMCID: PMC10082201 DOI: 10.1038/s41467-023-37658-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
The extreme 5'-end of the enterovirus RNA genome contains a conserved cloverleaf-like domain that recruits 3CD and PCBP proteins required for initiating genome replication. Here, we report the crystal structure at 1.9 Å resolution of this domain from the CVB3 genome in complex with an antibody chaperone. The RNA folds into an antiparallel H-type four-way junction comprising four subdomains with co-axially stacked sA-sD and sB-sC helices. Long-range interactions between a conserved A40 in the sC-loop and Py-Py helix within the sD subdomain organize near-parallel orientations of the sA-sB and sC-sD helices. Our NMR studies confirm that these long-range interactions occur in solution and without the chaperone. The phylogenetic analyses indicate that our crystal structure represents a conserved architecture of enteroviral cloverleaf-like domains, including the A40 and Py-Py interactions. The protein binding studies further suggest that the H-shape architecture provides a ready-made platform to recruit 3CD and PCBP2 for viral replication.
Collapse
Affiliation(s)
- Naba K Das
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Nele M Hollmann
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
- Howard Hughes Medical Institute, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Jeff Vogt
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Spiridon E Sevdalis
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hasan A Banna
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Manju Ojha
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
4
|
Multiple Viral Protein Genome-Linked Proteins Compensate for Viral Translation in a Positive-Sense Single-Stranded RNA Virus Infection. J Virol 2022; 96:e0069922. [PMID: 35993738 PMCID: PMC9472611 DOI: 10.1128/jvi.00699-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viral protein genome-linked (VPg) protein plays an essential role in protein-primed replication of plus-stranded RNA viruses. VPg is covalently linked to the 5' end of the viral RNA genome via a phosphodiester bond typically at a conserved amino acid. Whereas most viruses have a single VPg, some viruses have multiple VPgs that are proposed to have redundant yet undefined roles in viral replication. Here, we use cricket paralysis virus (CrPV), a dicistrovirus that has four nonidentical copies of VPg, as a model to characterize the role of VPg copies in infection. Dicistroviruses contain two main open reading frames (ORFs) that are driven by distinct internal ribosome entry sites (IRESs). We systematically generated single and combinatorial deletions and mutations of VPg1 to VPg4 within the CrPV infectious clone and monitored viral yield in Drosophila S2 cells. Deletion of one to three VPg copies progressively decreased viral yield and delayed viral replication, suggesting a threshold number of VPgs for productive infection. Mass spectrometry analysis of CrPV VPg-linked RNAs revealed viral RNA linkage to either a serine or threonine in VPg, mutations of which in all VPgs attenuated infection. Mutating serine 4 in a single VPg abolished viral infection, indicating a dominant negative effect. Using viral minigenome reporters that monitor dicistrovirus 5' untranslated (UTR) and IRES translation revealed a relationship between VPg copy number and the ratio of distinct IRES translation activities. We uncovered a novel viral strategy whereby VPg copies in dicistrovirus genomes compensate for the relative IRES translation efficiencies to promote infection. IMPORTANCE Genetic duplication is exceedingly rare in small RNA viral genomes, as there is selective pressure to prevent RNA genomes from expanding. However, some small RNA viruses encode multiple copies of a viral protein, most notably an unusual viral protein that is linked to the viral RNA genome. Here, we investigate a family of viruses that contains multiple viral protein genome-linked proteins and reveal a novel viral strategy whereby viral protein copy number counterbalances differences in viral protein synthesis mechanisms.
Collapse
|
5
|
László Z, Pankovics P, Reuter G, Cságola A, Bálint Á, Albert M, Boros Á. Multiple Types of Novel Enteric Bopiviruses ( Picornaviridae) with the Possibility of Interspecies Transmission Identified from Cloven-Hoofed Domestic Livestock (Ovine, Caprine and Bovine) in Hungary. Viruses 2021; 13:v13010066. [PMID: 33418939 PMCID: PMC7825084 DOI: 10.3390/v13010066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/27/2023] Open
Abstract
Most picornaviruses of the family Picornaviridae are relatively well known, but there are certain “neglected” genera like Bopivirus, containing a single uncharacterised sequence (bopivirus A1, KM589358) with very limited background information. In this study, three novel picornaviruses provisionally called ovipi-, gopi- and bopivirus/Hun (MW298057-MW298059) from enteric samples of asymptomatic ovine, caprine and bovine respectively, were determined using RT-PCR and dye-terminator sequencing techniques. These monophyletic viruses share the same type II-like IRES, NPGP-type 2A, similar genome layout (4-3-4) and cre-localisations. Culture attempts of the study viruses, using six different cell lines, yielded no evidence of viral growth in vitro. Genomic and phylogenetic analyses show that bopivirus/Hun of bovine belongs to the species Bopivirus A, while the closely related ovine-origin ovipi- and caprine-origin gopivirus could belong to a novel species “Bopivirus B” in the genus Bopivirus. Epidemiological investigation of N = 269 faecal samples of livestock (ovine, caprine, bovine, swine and rabbit) from different farms in Hungary showed that bopiviruses were most prevalent among <12-month-old ovine, caprine and bovine, but undetectable in swine and rabbit. VP1 capsid-based phylogenetic analyses revealed the presence of multiple lineages/genotypes, including closely related ovine/caprine strains, suggesting the possibility of ovine–caprine interspecies transmission of certain bopiviruses.
Collapse
Affiliation(s)
- Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.)
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.)
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.)
| | - Attila Cságola
- Ceva Phylaxia Ltd., H-1107 Budapest, Hungary; (A.C.); (M.A.)
| | - Ádám Bálint
- Department of Virology, National Food Chain Safety Office Veterinary Diagnostic Directorate, H-1143 Budapest, Hungary;
| | - Mihály Albert
- Ceva Phylaxia Ltd., H-1107 Budapest, Hungary; (A.C.); (M.A.)
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.)
- Correspondence: ; Tel.: +36-72-536-251
| |
Collapse
|
6
|
Boros Á, László Z, Pankovics P, Marosi A, Albert M, Cságola A, Bíró H, Fahsbender E, Delwart E, Reuter G. High prevalence, genetic diversity and a potentially novel genotype of Sapelovirus A ( Picornaviridae) in enteric and respiratory samples in Hungarian swine farms. J Gen Virol 2020; 101:609-621. [PMID: 32255421 DOI: 10.1099/jgv.0.001410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
All of the known porcine sapeloviruses (PSVs) currently belong to a single genotype in the genus Sapelovirus (family Picornaviridae). Here, the complete genome of a second, possibly recombinant, genotype of PSV strain SZ1M-F/PSV/HUN2013 (MN807752) from a faecal sample of a paraplegic pig in Hungary was characterized using viral metagenomics and RT-PCR. This sapelovirus strain showed only 64 % nucleotide identity in the VP1 region to its closest PSV-1 relative. Complete VP1 sequence-based epidemiological investigations of PSVs circulating in Hungary showed the presence of diverse strains found in high prevalence in enteric and respiratory samples collected from both asymptomatic and paraplegic pigs from 12 swine farms. Virus isolation attempts using PK-15 cell cultures were successful in 3/8 cases for the classic but not the novel PSV genotype. Sequence comparisons of faeces and isolate strains derived VP1 showed that cultured PSV strains not always represent the dominant PSVs found in vivo.
Collapse
Affiliation(s)
- Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - András Marosi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | | | | | | | | | - Eric Delwart
- University of California, San Francisco, CA, USA.,Vitalant Research Institute, San Francisco, CA, USA
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
7
|
Sadeuh-Mba SA, Joffret ML, Mazitchi A, Endegue-Zanga MC, Njouom R, Delpeyroux F, Gouandjika-Vasilache I, Bessaud M. Genetic and phenotypic characterization of recently discovered enterovirus D type 111. PLoS Negl Trop Dis 2019; 13:e0007797. [PMID: 31622358 PMCID: PMC6818792 DOI: 10.1371/journal.pntd.0007797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/29/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
Members of the species Enterovirus D (EV-D) remain poorly studied. The two first EV-D types (EV-D68 and EV-D70) have regularly caused outbreaks in humans since their discovery five decades ago but have been neglected until the recent occurrence of severe respiratory diseases due to EV-D68. The three other known EV-D types (EV-D94, EV-D111 and EV-D120) were discovered in the 2000s-2010s in Africa and have never been observed elsewhere. One strain of EV-D111 and all known EV-D120s were detected in stool samples of wild non-human primates, suggesting that these viruses could be zoonotic viruses. To date, EV-D111s are only known through partial genetic sequences of the few strains that have been identified so far. In an attempt to bring new pieces to the puzzle, we genetically characterized four EV-D111 strains (among the seven that have been reported until now). We observed that the EV-D111 strains from human samples and the unique simian EV-D111 strain were not phylogenetically distinct, thus suggesting a recent zoonotic transmission. We also discovered evidences of probable intertypic genetic recombination events between EV-D111s and EV-D94s. As recombination can only happen in co-infected cells, this suggests that EV-D94s and EV-D111s share common replication sites in the infected hosts. These sites could be located in the gut since the phenotypic analysis we performed showed that, contrary to EV-D68s and like EV-D94s, EV-D111s are resistant to acid pHs. We also found that EV-D111s induce strong cytopathic effects on L20B cells, a cell line routinely used to specifically detect polioviruses. An active circulation of EV-D111s among humans could then induce a high number of false-positive detection of polioviruses, which could be particularly problematic in Central Africa, where EV-D111 circulates and which is a key region for poliovirus eradication.
Collapse
Affiliation(s)
| | - Marie-Line Joffret
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| | - Arthur Mazitchi
- Enteric Viruses and Measles Laboratory—Institut Pasteur de Bangui—Bangui, Central African Republic
| | | | - Richard Njouom
- Virology Service—Centre Pasteur of Cameroon–Yaounde, Cameroon
| | - Francis Delpeyroux
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| | | | - Maël Bessaud
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| |
Collapse
|
8
|
Sunaga F, Masuda T, Ito M, Akagami M, Naoi Y, Sano K, Katayama Y, Omatsu T, Oba M, Sakaguchi S, Furuya T, Yamasato H, Ouchi Y, Shirai J, Mizutani T, Nagai M. Complete genomic analysis and molecular characterization of Japanese porcine sapeloviruses. Virus Genes 2019; 55:198-208. [PMID: 30712153 DOI: 10.1007/s11262-019-01640-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/21/2019] [Indexed: 01/08/2023]
Abstract
The Porcine Sapelovirus (PSV) is an enteric virus of pigs that can cause various disorders. However, there are few reports that describe the molecular characteristics of the PSV genome. In this study, almost the entire genomes of 23 PSVs detected in Japanese pigs were analyzed using bioinformatics. Analysis of the cis-active RNA elements showed that the predicted secondary structures of the internal ribosome entry site in the 5' untranslated region (UTR) and a cis-replication element in the 2C coding region were conserved among PSVs. In contrast, those at the 3' UTR were different for different PSVs; however, tertiary structures between domains were conserved across all PSVs. Phylogenetic analysis of nucleotide sequences of the complete VP1 region showed that PSVs exhibited sequence diversity; however, they could not be grouped into genotypes due to the low bootstrap support of clusters. The insertion and/or deletion patterns in the C-terminal VP1 region were not related to the topology of the VP1 tree. The 3CD phylogenetic tree was topologically different from the VP1 tree, and PSVs from the same country were clustered independently. Recombination analysis revealed that recombination events were found upstream of the P2 region and some recombination breakpoints involved insertions and/or deletions in the C-terminal VP1 region. These findings demonstrate that PSVs show genetic diversity and frequent recombination events, particularly in the region upstream of the P2 region; however, PSVs could currently not be classified into genotypes and conserved genetic structural features of the cis-active RNA elements are observed across all PSVs.
Collapse
Affiliation(s)
- Fujiko Sunaga
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori, 683-0017, Japan
| | - Mika Ito
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa, 920-3101, Japan
| | - Masataka Akagami
- Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki, 310-0002, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Kaori Sano
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Shoichi Sakaguchi
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan.,Department of Microbiology and Infection Control, Osaka Medical College, Osaka, 569-8686, Japan
| | - Tetsuya Furuya
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Hiroshi Yamasato
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori, 683-0017, Japan
| | - Yoshinao Ouchi
- Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki, 310-0002, Japan
| | - Junsuke Shirai
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan.,Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Makoto Nagai
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan. .,Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
9
|
Potaczek DP, Unger SD, Zhang N, Taka S, Michel S, Akdağ N, Lan F, Helfer M, Hudemann C, Eickmann M, Skevaki C, Megremis S, Sadewasser A, Alashkar Alhamwe B, Alhamdan F, Akdis M, Edwards MR, Johnston SL, Akdis CA, Becker S, Bachert C, Papadopoulos NG, Garn H, Renz H. Development and characterization of DNAzyme candidates demonstrating significant efficiency against human rhinoviruses. J Allergy Clin Immunol 2018; 143:1403-1415. [PMID: 30114391 DOI: 10.1016/j.jaci.2018.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Infections with human rhinoviruses (RVs) are responsible for millions of common cold episodes and the majority of asthma exacerbations, especially in childhood. No drugs specifically targeting RVs are available. OBJECTIVE We sought to identify specific anti-RV molecules based on DNAzyme technology as candidates to a clinical study. METHODS A total of 226 candidate DNAzymes were designed against 2 regions of RV RNA genome identified to be sufficiently highly conserved between virus strains (ie, the 5'-untranslated region and cis-acting replication element) by using 3 test strains: RVA1, RVA16, and RVA29. All DNAzymes were screened for their cleavage efficiency against in vitro-expressed viral RNA. Those showing any catalytic activity were subjected to bioinformatic analysis of their reverse complementarity to 322 published RV genomic sequences. Further molecular optimization was conducted for the most promising candidates. Cytotoxic and off-target effects were excluded in HEK293 cell-based systems. Antiviral efficiency was analyzed in infected human bronchial BEAS-2B cells and ex vivo-cultured human sinonasal tissue. RESULTS Screening phase-generated DNAzymes characterized by either good catalytic activity or by high RV strain coverage but no single molecule represented a satisfactory combination of those 2 features. Modifications in length of the binding domains of 2 lead candidates, Dua-01(-L12R9) and Dua-02(-L10R11), improved their cleavage efficiency to an excellent level, with no loss in eminent strain coverage (about 98%). Both DNAzymes showed highly favorable cytotoxic/off-target profiles. Subsequent testing of Dua-01-L12R9 in BEAS-2B cells and sinonasal tissue demonstrated its significant antiviral efficiency. CONCLUSIONS Effective and specific management of RV infections with Dua-01-L12R9 might be useful in preventing asthma exacerbations, which should be verified by clinical trials.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium; John Paul II Hospital, Krakow, Poland
| | - Sebastian D Unger
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Nan Zhang
- PreDicta Consortium; Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Styliani Taka
- PreDicta Consortium; Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Sven Michel
- Secarna Pharmaceuticals GmbH, Planegg, Germany
| | - Nesibe Akdağ
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Feng Lan
- PreDicta Consortium; Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | | | - Christoph Hudemann
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Markus Eickmann
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Spyridon Megremis
- PreDicta Consortium; Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, London, United Kingdom
| | | | - Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Fahd Alhamdan
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Mübeccel Akdis
- PreDicta Consortium; Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Michael R Edwards
- PreDicta Consortium; Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom; Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Sebastian L Johnston
- PreDicta Consortium; Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom; Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Cezmi A Akdis
- PreDicta Consortium; Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Claus Bachert
- PreDicta Consortium; Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Nikolaos G Papadopoulos
- PreDicta Consortium; Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece; Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, London, United Kingdom
| | - Holger Garn
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Harald Renz
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium.
| |
Collapse
|
10
|
Abstract
Infected cells can undergo apoptosis as a protective response to viral infection, thereby limiting viral infection. As viruses require a viable cell for replication, the death of the cell limits cellular functions that are required for virus replication and propagation. Picornaviruses are single-stranded RNA viruses that modify the host cell apoptotic response, probably in order to promote viral replication, largely as a function of the viral proteases 2A, 3C, and 3CD. These proteases are essential for viral polyprotein processing and also cleave cellular proteins. Picornavirus proteases cleave proapoptotic adaptor proteins, resulting in downregulation of apoptosis. Picornavirus proteases also cleave nucleoporins, disrupting the orchestrated manner in which signaling pathways use active nucleocytoplasmic trafficking, including those involved in apoptosis. In addition to viral proteases, the transmembrane 2B protein alters intracellular ion signaling, which may also modulate apoptosis. Overall, picornaviruses, via the action of virally encoded proteins, exercise intricate control over and subvert cell death pathways, specifically apoptosis, thereby allowing viral replication to continue.
Collapse
|
11
|
Guo J, Han J, Lin J, Finer J, Dorrance A, Qu F. Functionally interchangeable cis-acting RNA elements in both genome segments of a picorna-like plant virus. Sci Rep 2017; 7:1017. [PMID: 28432346 PMCID: PMC5430698 DOI: 10.1038/s41598-017-01243-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/23/2017] [Indexed: 11/09/2022] Open
Abstract
Cis-acting RNA structures in the genomes of RNA viruses play critical roles in viral infection, yet their importance in the bipartite genomes of the picorna-like, plant-infecting comoviruses has not been carefully investigated. We previously characterized SLC, a stem-loop structure in the 5' untranslated region (UTR) of the bean pod mottle comovirus (BPMV) RNA2, and found it to be essential for RNA2 accumulation in infected cells. Here we report the identification of SL1, a similar cis-acting element in the other BPMV genome segment - RNA1. SL1 encompasses a portion of RNA1 5' UTR but extends into the coding sequence for nine nucleotides, thus was missed in the previous study. While the stems of SL1 and SLC share little sequence similarity, their end loops are of the same size and identical for 11 of 15 nucleotides. Importantly, SL1 and SLC are functionally interchangeable, and separate exchanges of the stem and loop portions were likewise well tolerated. By contrast, the conserved loop sequence tolerated minimal perturbations. Finally, stem-loop structures with similar configurations were identified in two other comoviruses. Therefore, SL1 and SLC are likely essential comoviral RNA structures that play a conserved function in viral infection cycles.
Collapse
Affiliation(s)
- Jiangbo Guo
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA.,School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Junping Han
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA
| | - Junyan Lin
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA.,Joint Genome Institute, Department of Energy, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - John Finer
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA
| | - Anne Dorrance
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA.
| |
Collapse
|
12
|
Bessaud M, Sadeuh-Mba SA, Joffret ML, Razafindratsimandresy R, Polston P, Volle R, Rakoto-Andrianarivelo M, Blondel B, Njouom R, Delpeyroux F. Whole Genome Sequencing of Enterovirus species C Isolates by High-Throughput Sequencing: Development of Generic Primers. Front Microbiol 2016; 7:1294. [PMID: 27617004 PMCID: PMC4999429 DOI: 10.3389/fmicb.2016.01294] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/05/2016] [Indexed: 01/07/2023] Open
Abstract
Enteroviruses are among the most common viruses infecting humans and can cause diverse clinical syndromes ranging from minor febrile illness to severe and potentially fatal diseases. Enterovirus species C (EV-C) consists of more than 20 types, among which the three serotypes of polioviruses, the etiological agents of poliomyelitis, are included. Biodiversity and evolution of EV-C genomes are shaped by frequent recombination events. Therefore, identification and characterization of circulating EV-C strains require the sequencing of different genomic regions. A simple method was developed to quickly sequence the entire genome of EV-C isolates. Four overlapping fragments were produced separately by RT-PCR performed with generic primers. The four amplicons were then pooled and purified prior to being sequenced by a high-throughput technique. The method was assessed on a panel of EV-Cs belonging to a wide-range of types. It can be used to determine full-length genome sequences through de novo assembly of thousands of reads. It was also able to discriminate reads from closely related viruses in mixtures. By decreasing the workload compared to classical Sanger-based techniques, this method will serve as a precious tool for sequencing large panels of EV-Cs isolated in cell cultures during environmental surveillance or from patients, including vaccine-derived polioviruses.
Collapse
Affiliation(s)
- Maël Bessaud
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France; WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut PasteurParis, France
| | | | - Marie-Line Joffret
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France; WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut PasteurParis, France
| | | | - Patsy Polston
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France
| | - Romain Volle
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France
| | | | - Bruno Blondel
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France
| | - Richard Njouom
- Centre Pasteur du Cameroun, Service de Virologie Yaoundé, Cameroon
| | - Francis Delpeyroux
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France; WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut PasteurParis, France
| |
Collapse
|
13
|
Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication. J Virol 2016; 90:6864-6883. [PMID: 27194768 PMCID: PMC4944275 DOI: 10.1128/jvi.00469-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/11/2016] [Indexed: 11/20/2022] Open
Abstract
The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. IMPORTANCE Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen.
Collapse
|
14
|
Mutational Disruption of cis-Acting Replication Element 2C in Coxsackievirus B3 Leads to 5'-Terminal Genomic Deletions. J Virol 2015; 89:11761-72. [PMID: 26355088 PMCID: PMC4645312 DOI: 10.1128/jvi.01308-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Following natural human or experimental murine infections and in cell culture, coxsackievirus B (CVB) RNA can persist for weeks in the absence of a cytopathic effect, yet viral RNA remains detectable. Our earlier studies demonstrated that this persistence produced viral RNA with up to 49 nucleotide deletions at the genomic 5' terminus which partially degraded the cloverleaf (or domain I), an RNA structure required for efficient viral replication. A cis-acting replication element (CRE) in the 2C protein-coding region [CRE(2C)] templates the addition of two uridine residues to the virus genome-encoded RNA replication primer VPg prior to positive-strand synthesis. Because our previous work also demonstrated that the genomes of CVB with a 5'-terminal deletion (CVB-TD) have VPg covalently linked, even though they rarely terminate in the canonical UU donated by CRE(2C)-mediated uridylylation of VPg, we hypothesized that a functional (uridylylating) CRE(2C) would be unnecessary for CVB-TD replication. Using the same 16 mutations in the CVB3 CRE(2C) structure that were considered lethal for this virus by others, we demonstrate here both in infected cell cultures and in mice that wild-type (wt) and CVB3-TD strains carrying these mutations with a nonuridylylating CRE(2C) are viable. While the wt genome with the mutated CRE(2C) displays suppressed replication levels similar to those observed in a CVB3-TD strain, mutation of the CRE(2C) function in a CVB3-TD strain does not further decrease replication. Finally, we show that replication of the parental CVB3 strain containing the mutated CRE(2C) drives the de novo generation of genomic deletions at the 5' terminus. IMPORTANCE In this report, we demonstrate that while CVB can replicate without a uridylylating CRE(2C), the replication rate suffers significantly. Further, deletions at the 5' terminus of the genome are generated in this virus population, with this virus population supplanting the wild-type population. This demonstrates that VPg can prime without being specifically uridylylated and that this priming is error prone, resulting in the loss of sequence information from the 5' terminus. These findings have significance when considering the replication of human enteroviruses, and we believe that these data are unattainable in a cell-free system due to the poor replication of these CRE-deficient viruses.
Collapse
|
15
|
Chimeric rhinoviruses obtained via genetic engineering or artificially induced recombination are viable only if the polyprotein coding sequence derives from the same species. J Virol 2015; 89:4470-80. [PMID: 25653446 DOI: 10.1128/jvi.03668-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Recombination is a widespread phenomenon that ensures both the stability and variation of RNA viruses. This phenomenon occurs with different frequencies within species of the Enterovirus genus. Intraspecies recombination is described frequently among non-rhinovirus enteroviruses but appears to be sporadic in rhinoviruses. Interspecies recombination is even rarer for rhinoviruses and mostly is related to ancient events which contributed to the speciation of these viruses. We reported that artificially engineered 5' untranslated region (UTR) interspecies rhinovirus/rhinovirus or rhinovirus/non-rhinovirus enterovirus recombinants are fully viable. Using a similar approach, we demonstrated in this study that exchanges of the P1-2A polyprotein region between members of the same rhinovirus species, but not between members of different species, give rise to competent chimeras. To further assess the rhinovirus intra- and interspecies recombination potential, we used artificially induced recombination by cotransfection of 5'-end-deleted and 3'-end-deleted and replication-deficient genomes. In this system, intraspecies recombination also resulted in viable viruses with high frequency, whereas no interspecies rhinovirus recombinants could be recovered. Mapping intraspecies recombination sites within the polyprotein highlighted recombinant hotspots in nonstructural genes and at gene boundaries. Notably, all recombinants occurring at gene junctions presented in-frame sequence duplications, whereas most intragenic recombinants were homologous. Taken together, our results suggest that only intraspecies recombination gives rise to viable rhinovirus chimeras in the polyprotein coding region and that recombination hotspots map to nonstructural genes with in-frame duplications at gene boundaries. These data provide new insights regarding the mechanism and limitations of rhinovirus recombination. IMPORTANCE Recombination represents a means to ensure both the stability and the variation of RNA viruses. While intraspecies recombination is described frequently among non-rhinovirus enteroviruses, it seems to occur more rarely in rhinoviruses. Interspecies recombination is even rarer in this virus group and is mostly related to ancient events, which contributed to its speciation. We used engineered chimeric genomes and artificially induced RNA recombination to study experimentally the recombination potential of rhinoviruses and analyze recombination sites. Our results suggest that only intraspecies recombination gives rise to viable chimeras in the polyprotein coding region. Furthermore, characterization of intraspecies chimeras provides new insight into putative recombination hotspots within the polyprotein. In summary, we applied two powerful and complementary experimental approaches to improve current knowledge on rhinovirus recombination.
Collapse
|
16
|
Paul AV, Wimmer E. Initiation of protein-primed picornavirus RNA synthesis. Virus Res 2015; 206:12-26. [PMID: 25592245 DOI: 10.1016/j.virusres.2014.12.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022]
Abstract
Plus strand RNA viruses use different mechanisms to initiate the synthesis of their RNA chains. The Picornaviridae family constitutes a large group of plus strand RNA viruses that possess a small terminal protein (VPg) covalently linked to the 5'-end of their genomes. The RNA polymerases of these viruses use VPg as primer for both minus and plus strand RNA synthesis. In the first step of the initiation reaction the RNA polymerase links a UMP to the hydroxyl group of a tyrosine in VPg using as template a cis-replicating element (cre) positioned in different regions of the viral genome. In this review we will summarize what is known about the initiation reaction of protein-primed RNA synthesis by the RNA polymerases of the Picornaviridae. As an example we will use the RNA polymerase of poliovirus, the prototype of Picornaviridae. We will also discuss models of how these nucleotidylylated protein primers might be used, together with viral and cellular replication proteins and other cis-replicating RNA elements, during minus and plus strand RNA synthesis.
Collapse
Affiliation(s)
- Aniko V Paul
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States.
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States
| |
Collapse
|
17
|
Kempf BJ, Barton DJ. Picornavirus RNA polyadenylation by 3D(pol), the viral RNA-dependent RNA polymerase. Virus Res 2015; 206:3-11. [PMID: 25559071 PMCID: PMC4801031 DOI: 10.1016/j.virusres.2014.12.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/24/2014] [Indexed: 11/06/2022]
Abstract
Picornaviral RdRPs are responsible for the polyadenylation of viral RNA. Reiterative transcription mechanisms occur during replication of poly(A) tails. Conserved RdRP structures influence the size of poly(A) tails. Common features of picornavirus RdRPs and telomerase reverse transcriptase. Poly(A) tails are a telomere of picornavirus RNA genomes.
Poly(A) tails are functionally important features of all picornavirus RNA genomes. Some viruses have genomes with relatively short poly(A) tails (encephalomyocarditis virus) whereas others have genomes with longer poly(A) tails (polioviruses and rhinoviruses). Here we review the polyadenylation of picornavirus RNA as it relates to the structure and function of 3Dpol. Poliovirus 3Dpol uses template-dependent reiterative transcription mechanisms as it replicates the poly(A) tails of viral RNA (Steil et al., 2010). These mechanisms are analogous to those involved in the polyadenylation of vesicular stomatitis virus and influenza virus mRNAs. 3Dpol residues intimately associated with viral RNA templates and products regulate the size of poly(A) tails in viral RNA (Kempf et al., 2013). Consistent with their ancient evolutionary origins, picornavirus 3Dpol and telomerase reverse transcriptase (TERT) share structural and functional features. Structurally, both 3Dpol and TERT assume a “right-hand” conformation with thumb, palm and fingers domains encircling templates and products. Functionally, both 3Dpol and TERT use template-dependent reiterative transcription mechanisms to synthesize repetitive sequences: poly(A) tails in the case of picornavirus RNA genomes and DNA telomeres in the case of eukaryotic chromosomes. Thus, picornaviruses and their eukaryotic hosts (humans and animals) maintain the 3′ ends of their respective genomes via evolutionarily related mechanisms.
Collapse
Affiliation(s)
- Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|
18
|
Abstract
The historical classification of human rhinoviruses (RV) by serotyping has been replaced by a logical system of comparative sequencing. Given that strains must diverge within their capsid sequenced by a reasonable degree (>12-13 % pairwise base identities) before becoming immunologically distinct, the new nomenclature system makes allowances for the addition of new, future types, without compromising historical designations. Currently, three species, the RV-A, RV-B, and RV-C, are recognized. Of these, the RV-C, discovered in 2006, are the most unusual in terms of capsid structure, receptor use, and association with severe disease in children.
Collapse
Affiliation(s)
- Ann C Palmenberg
- Institute for Molecular Virology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA,
| | | |
Collapse
|
19
|
Sun Y, Guo Y, Lou Z. Formation and working mechanism of the picornavirus VPg uridylylation complex. Curr Opin Virol 2014; 9:24-30. [PMID: 25240314 DOI: 10.1016/j.coviro.2014.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 02/05/2023]
Abstract
The initiation of picornavirus replication is featured by the uridylylation of viral protein genome-linked (VPg). In this process, viral RNA-dependent RNA polymerase (RdRp) catalyzes two uridine monophosphate (UMP) molecules to the hydroxyl group of the third tyrosine residue of VPg. Subsequently, the uridylylated VPg (VPg-pUpU) functions as the protein primer to initiate the replication of the viral genome. Although a large body of functional and structural works has been performed to define individual snapshots for particular stages of the VPg uridylylation process, the formation, dynamics and mechanism of the whole VPg uridylylation complex still requires further elucidation. We would like to provide an overview of the current knowledge of the picornaviral VPg uridylylation complex in this paper.
Collapse
Affiliation(s)
- Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China; School of Medicine and MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Guo
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zhiyong Lou
- School of Medicine and MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Son KY, Kim DS, Kwon J, Choi JS, Kang MI, Belsham GJ, Cho KO. Full-length genomic analysis of Korean porcine Sapelovirus strains. PLoS One 2014; 9:e107860. [PMID: 25229940 PMCID: PMC4168140 DOI: 10.1371/journal.pone.0107860] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/07/2014] [Indexed: 12/17/2022] Open
Abstract
Porcine sapelovirus (PSV), a species of the genus Sapelovirus within the family Picornaviridae, is associated with diarrhea, pneumonia, severe neurological disorders, and reproductive failure in pigs. However, the structural features of the complete PSV genome remain largely unknown. To analyze the structural features of PSV genomes, the full-length nucleotide sequences of three Korean PSV strains were determined and analyzed using bioinformatic techniques in comparison with other known PSV strains. The Korean PSV genomes ranged from 7,542 to 7,566 nucleotides excluding the 3′ poly(A) tail, and showed the typical picornavirus genome organization; 5′untranslated region (UTR)-L-VP4-VP2-VP3-VP1-2A-2B-2C-3A-3B-3C-3D-3′UTR. Three distinct cis-active RNA elements, the internal ribosome entry site (IRES) in the 5′UTR, a cis-replication element (CRE) in the 2C coding region and 3′UTR were identified and their structures were predicted. Interestingly, the structural features of the CRE and 3′UTR were different between PSV strains. The availability of these first complete genome sequences for PSV strains will facilitate future investigations of the molecular pathogenesis and evolutionary characteristics of PSV.
Collapse
Affiliation(s)
- Kyu-Yeol Son
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Deok-Song Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Joseph Kwon
- Division of Life Science, Korea Basic Science Institute, Yuseong-gu, Daejeon, Republic of Korea
| | - Jong-Soon Choi
- Division of Life Science, Korea Basic Science Institute, Yuseong-gu, Daejeon, Republic of Korea
| | - Mun-Il Kang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Graham J. Belsham
- National Veterinary Institute, Technical University of Denmark, Kalvehave, Denmark
- * E-mail: (GJB); (KOC)
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
- * E-mail: (GJB); (KOC)
| |
Collapse
|
21
|
Multiple classes of antiviral agents exhibit in vitro activity against human rhinovirus type C. Antimicrob Agents Chemother 2013; 58:1546-55. [PMID: 24366736 DOI: 10.1128/aac.01746-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human rhinovirus type C (HRV-C) is a newly discovered enterovirus species frequently associated with exacerbation of asthma and other acute respiratory conditions. Until recently, HRV-C could not be propagated in vitro, hampering in-depth characterization of the virus replication cycle and preventing efficient testing of antiviral agents. Herein we describe several subgenomic RNA replicon systems and a cell culture infectious model for HRV-C that can be used for antiviral screening. The replicon constructs consist of genome sequences from HRVc15, HRVc11, HRVc24, and HRVc25 strains, with the P1 capsid region replaced by a Renilla luciferase coding sequence. Following transfection of the replicon RNA into HeLa cells, the constructs produced time-dependent increases in luciferase signal that can be inhibited in a dose-dependent manner by known inhibitors of HRV replication, including the 3C protease inhibitor rupintrivir, the nucleoside analog inhibitor MK-0608, and the phosphatidylinositol 4-kinase IIIβ (PI4K-IIIβ) kinase inhibitor PIK93. Furthermore, with the exception of pleconaril and pirodavir, the other tested classes of HRV inhibitors blocked the replication of full-length HRVc15 and HRVc11 in human airway epithelial cells (HAEs) that were differentiated in the air-liquid interface, exhibiting antiviral activities similar to those observed with HRV-16. In summary, this study is the first comprehensive profiling of multiple classes of antivirals against HRV-C, and the set of newly developed quantitative HRV-C antiviral assays represent indispensable tools for the identification and evaluation of novel panserotype HRV inhibitors.
Collapse
|
22
|
Moss WN, Steitz JA. Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA. BMC Genomics 2013; 14:543. [PMID: 23937650 PMCID: PMC3751371 DOI: 10.1186/1471-2164-14-543] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/07/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a human herpesvirus implicated in cancer and autoimmune disorders. Little is known concerning the roles of RNA structure in this important human pathogen. This study provides the first comprehensive genome-wide survey of RNA and RNA structure in EBV. RESULTS Novel EBV RNAs and RNA structures were identified by computational modeling and RNA-Seq analyses of EBV. Scans of the genomic sequences of four EBV strains (EBV-1, EBV-2, GD1, and GD2) and of the closely related Macacine herpesvirus 4 using the RNAz program discovered 265 regions with high probability of forming conserved RNA structures. Secondary structure models are proposed for these regions based on a combination of free energy minimization and comparative sequence analysis. The analysis of RNA-Seq data uncovered the first observation of a stable intronic sequence RNA (sisRNA) in EBV. The abundance of this sisRNA rivals that of the well-known and highly expressed EBV-encoded non-coding RNAs (EBERs). CONCLUSION This work identifies regions of the EBV genome likely to generate functional RNAs and RNA structures, provides structural models for these regions, and discusses potential functions suggested by the modeled structures. Enhanced understanding of the EBV transcriptome will guide future experimental analyses of the discovered RNAs and RNA structures.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
23
|
Gingras R, Mekhssian K, Fenwick C, White PW, Thibeault D. Human rhinovirus VPg uridylylation AlphaScreen for high-throughput screening. ACTA ACUST UNITED AC 2013; 19:259-69. [PMID: 23813021 DOI: 10.1177/1087057113494805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As an obligate step for picornaviruses to replicate their genome, the small viral peptide VPg must first be specifically conjugated with uridine nucleotides at a conserved tyrosine hydroxyl group. The resulting VPg-pUpU serves as the primer for genome replication. The uridylylation reaction requires the coordinated activity of many components, including the viral polymerase, a conserved internal RNA stem loop structure, and additional viral proteins. Formation of this complex and the resulting conjugation reaction catalyzed by the polymerase, offers a number of biochemical targets for inhibition of an essential process in the viral life cycle. Therefore, an assay recapitulating uridylylation would provide multiple opportunities for discovering potential antiviral agents. Our goal was to identify inhibitors of human rhinovirus (HRV) VPg uridylylation, which might ultimately be useful to reduce or prevent HRV-induced lower airway immunologic inflammatory responses, a major cause of asthma and chronic obstructive pulmonary disease exacerbations. We have reconstituted the complex uridylylation reaction in an AlphaScreen suitable for high-throughput screening, in which a rabbit polyclonal antiserum specific for uridylylated VPg serves as a key reagent. Assay results were validated by quantitative mass spectrometric detection of uridylylation.
Collapse
Affiliation(s)
- Rock Gingras
- 1Biological Sciences Department, Boehringer Ingelheim (Canada) Ltd., Laval, QC, Canada
| | | | | | | | | |
Collapse
|
24
|
Crystal structure of enterovirus 71 RNA-dependent RNA polymerase complexed with its protein primer VPg: implication for a trans mechanism of VPg uridylylation. J Virol 2013; 87:5755-68. [PMID: 23487447 PMCID: PMC3648134 DOI: 10.1128/jvi.02733-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Picornavirus RNA replication is initiated by VPg uridylylation, during which the hydroxyl group of the third tyrosine residue of the virally encoded protein VPg is covalently linked to two UMP molecules by RNA-dependent RNA polymerase (RdRp; also known as 3D(pol)). We previously identified site 311, located at the base of the palm domain of the enterovirus 71 (EV71) RdRp, to be the site for EV71 VPg binding and uridylylation. Here we report the crystal structure of EV71 3D(pol) complexed with VPg. VPg was anchored at the bottom of the palm domain of the 3D(pol) molecule and exhibited an extended V-shape conformation. The corresponding interface on 3D(pol) was mainly formed by residues within site 311 and other residues in the palm and finger domains. Mutations of the amino acids of 3D(pol) involved in the VPg interaction (3DL319A, 3DD320A, and 3DY335A) significantly disrupted VPg binding to 3D(pol), resulting in defective VPg uridylylation. In contrast, these mutations did not affect the RNA elongation activity of 3D(pol). In the context of viral genomic RNA, mutations that abolished VPg uridylylation activity were lethal for EV71 replication. Further in vitro analysis showed that the uridylylation activity was restored by mixing VPg-binding-defective and catalysis-defective mutants, indicating a trans mechanism for EV71 VPg uridylylation. Our results, together with previous results of other studies, demonstrate that different picornaviruses use distinct binding sites for VPg uridylylation.
Collapse
|
25
|
Functional analysis of the murine coronavirus genomic RNA packaging signal. J Virol 2013; 87:5182-92. [PMID: 23449786 DOI: 10.1128/jvi.00100-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coronaviruses selectively package genomic RNA into assembled virions, despite the great molar excess of subgenomic RNA species that is present in infected cells. The genomic packaging signal (PS) for the coronavirus mouse hepatitis virus (MHV) was originally identified as an element that conferred packaging capability to defective interfering RNAs. The MHV PS is an RNA structure that maps to the region of the replicase gene encoding the nonstructural protein 15 subunit of the viral replicase-transcriptase complex. To begin to understand the role and mechanism of action of the MHV PS in its native genomic locus, we constructed viral mutants in which this cis-acting element was altered, deleted, or transposed. Our results demonstrated that the PS is pivotal in the selection of viral genomic RNA for incorporation into virions. Mutants in which PS RNA secondary structure was disrupted or entirely ablated packaged large quantities of subgenomic RNAs, in addition to genomic RNA. Moreover, the PS retained its function when displaced to an ectopic site in the genome. Surprisingly, the PS was not essential for MHV viability, nor did its elimination have a severe effect on viral growth. However, the PS was found to provide a distinct selective advantage to MHV. Viruses containing the PS readily outcompeted their otherwise isogenic counterparts lacking the PS.
Collapse
|
26
|
Tapparel C, Siegrist F, Petty TJ, Kaiser L. Picornavirus and enterovirus diversity with associated human diseases. INFECTION GENETICS AND EVOLUTION 2012. [PMID: 23201849 DOI: 10.1016/j.meegid.2012.10.016] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Members of the Picornaviridae family are non-enveloped, positive-stranded RNA viruses with a 30nm icosahedral capsid. This virus family exhibits a considerable amount of genetic variability driven both by mutation and recombination. Recently, three previously unknown human picornaviruses, namely the human Saffold cardiovirus, cosavirus and salivirus, have been identified in stools or respiratory samples from subjects presenting symptoms ranging from gastroenteritis to acute flaccid paralysis. However, these viruses were also frequently detected in asymptomatic subjects and their clinical relevance remains to be elucidated. The Enterovirus genus is a prototype example of the Picornaviridae heterogeneity at both genetic and phenotypic levels. This genus is divided into 10 species, seven of which contain human viruses, including three Rhinovirus species. Both human rhino- and enteroviruses are also characterized by high levels of genetic variability, as exemplified by the existence of over 250 different serotypes and the recent discovery of new enterovirus genotypes and the Rhinovirus C species. Despite their common genomic features, rhinoviruses are restricted to the respiratory tract, whereas the vast majority of enteroviruses infect the gastrointestinal tract and can spread to other organs, such as the heart or the central nervous system. Understanding the genetic determinants of such phenotypic diversity is an important challenge and a field for future investigation. Better characterization of these ubiquitous human pathogens may help to develop vaccines or antiviral treatments and to monitor the emergence of new strains.
Collapse
Affiliation(s)
- Caroline Tapparel
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland.
| | | | | | | |
Collapse
|
27
|
Abstract
VPg uridylylation is essential for picornavirus RNA replication. The VPg uridylylation reaction consists of the binding of VPg to 3D polymerase (3D(pol)) and the transfer of UMP by 3D(pol) to the hydroxyl group of the third amino acid Tyr of VPg. Previous studies suggested that different picornaviruses employ distinct mechanisms during VPg binding and uridylylation. Here, we report a novel site (Site-311, located at the base of the palm domain of EV71 3D(pol)) that is essential for EV71 VPg uridylylation as well as viral replication. Ala substitution of amino acids (T313, F314, and I317) at Site-311 reduced the VPg uridylylation activity of 3D(pol) by >90%. None of the Site-311 mutations affected the RNA elongation activity of 3D(pol), which indicates that Site-311 does not directly participate in RNA polymerization. However, mutations that abrogated VPg uridylylation significantly reduced the VPg binding ability of 3D(pol), which suggests that Site-311 is a potential VPg binding site on enterovirus 71 (EV71) 3D(pol). Mutation of a polymerase active site in 3D(pol) and Site-311 in 3D(pol) remarkably enables trans complementation to restore VPg uridylylation. In contrast, two distinct Site-311 mutants do not cause trans complementation in vitro. These results indicate that Site-311 is a VPg binding site that stabilizes the VPg molecule during the VPg uridylylation process and suggest a two-molecule model for 3D(pol) during EV71 VPg uridylylation, such that one 3D(pol) presents the hydroxyl group of Tyr3 of VPg to the polymerase active site of another 3D(pol), which in turn catalyzes VPg→VPg-pU conversion. For genome-length RNA, the Site-311 mutations that reduced VPg uridylylation were lethal for EV71 replication, which indicates that Site-311 is a potential antiviral target.
Collapse
|
28
|
Cordey S, Petty TJ, Schibler M, Martinez Y, Gerlach D, van Belle S, Turin L, Zdobnov E, Kaiser L, Tapparel C. Identification of site-specific adaptations conferring increased neural cell tropism during human enterovirus 71 infection. PLoS Pathog 2012; 8:e1002826. [PMID: 22910880 PMCID: PMC3406088 DOI: 10.1371/journal.ppat.1002826] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/16/2012] [Indexed: 01/04/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the most virulent enteroviruses, but the specific molecular features that enhance its ability to disseminate in humans remain unknown. We analyzed the genomic features of EV71 in an immunocompromised host with disseminated disease according to the different sites of infection. Comparison of five full-length genomes sequenced directly from respiratory, gastrointestinal, nervous system, and blood specimens revealed three nucleotide changes that occurred within a five-day period: a non-conservative amino acid change in VP1 located within the BC loop (L97R), a region considered as an immunogenic site and possibly important in poliovirus host adaptation; a conservative amino acid substitution in protein 2B (A38V); and a silent mutation in protein 3D (L175). Infectious clones were constructed using both BrCr (lineage A) and the clinical strain (lineage C) backgrounds containing either one or both non-synonymous mutations. In vitro cell tropism and competition assays revealed that the VP1₉₇ Leu to Arg substitution within the BC loop conferred a replicative advantage in SH-SY5Y cells of neuroblastoma origin. Interestingly, this mutation was frequently associated in vitro with a second non-conservative mutation (E167G or E167A) in the VP1 EF loop in neuroblastoma cells. Comparative models of these EV71 VP1 variants were built to determine how the substitutions might affect VP1 structure and/or interactions with host cells and suggest that, while no significant structural changes were observed, the substitutions may alter interactions with host cell receptors. Taken together, our results show that the VP1 BC loop region of EV71 plays a critical role in cell tropism independent of EV71 lineage and, thus, may have contributed to dissemination and neurotropism in the immunocompromised patient.
Collapse
Affiliation(s)
- Samuel Cordey
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Toward genetics-based virus taxonomy: comparative analysis of a genetics-based classification and the taxonomy of picornaviruses. J Virol 2012; 86:3905-15. [PMID: 22278238 DOI: 10.1128/jvi.07174-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Virus taxonomy has received little attention from the research community despite its broad relevance. In an accompanying paper (C. Lauber and A. E. Gorbalenya, J. Virol. 86:3890-3904, 2012), we have introduced a quantitative approach to hierarchically classify viruses of a family using pairwise evolutionary distances (PEDs) as a measure of genetic divergence. When applied to the six most conserved proteins of the Picornaviridae, it clustered 1,234 genome sequences in groups at three hierarchical levels (to which we refer as the "GENETIC classification"). In this study, we compare the GENETIC classification with the expert-based picornavirus taxonomy and outline differences in the underlying frameworks regarding the relation of virus groups and genetic diversity that represent, respectively, the structure and content of a classification. To facilitate the analysis, we introduce two novel diagrams. The first connects the genetic diversity of taxa to both the PED distribution and the phylogeny of picornaviruses. The second depicts a classification and the accommodated genetic diversity in a standardized manner. Generally, we found striking agreement between the two classifications on species and genus taxa. A few disagreements concern the species Human rhinovirus A and Human rhinovirus C and the genus Aphthovirus, which were split in the GENETIC classification. Furthermore, we propose a new supergenus level and universal, level-specific PED thresholds, not reached yet by many taxa. Since the species threshold is approached mostly by taxa with large sampling sizes and those infecting multiple hosts, it may represent an upper limit on divergence, beyond which homologous recombination in the six most conserved genes between two picornaviruses might not give viable progeny.
Collapse
|
30
|
Bochkov YA, Gern JE. Clinical and molecular features of human rhinovirus C. Microbes Infect 2012; 14:485-94. [PMID: 22285901 DOI: 10.1016/j.micinf.2011.12.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/23/2011] [Accepted: 12/26/2011] [Indexed: 02/06/2023]
Abstract
A newly discovered group of human rhinoviruses (HRVs) has been classified as the HRV-C species based on distinct genomic features. HRV-Cs circulate worldwide, and are important causes of upper and lower respiratory illnesses. Methods to culture and produce these viruses have recently been developed, and should enable identification of unique features of HRV-C replication and biology.
Collapse
Affiliation(s)
- Yury A Bochkov
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53792, USA.
| | | |
Collapse
|
31
|
Schibler M, Gerlach D, Martinez Y, Van Belle S, Turin L, Kaiser L, Tapparel C. Experimental human rhinovirus and enterovirus interspecies recombination. J Gen Virol 2011; 93:93-101. [PMID: 21940413 DOI: 10.1099/vir.0.035808-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human rhinoviruses (HRVs) and enteroviruses (HEVs), two important human pathogens, are non-enveloped, positive-sense RNA viruses of the genus Enterovirus within the family Picornaviridae. Intraspecies recombination is known as a driving force for enterovirus and, to a lesser extent, rhinovirus evolution. Interspecies recombination is much less frequent among circulating strains, and supporting evidence for such recombination is limited to ancestral events, as shown by recent phylogenetic analyses reporting ancient HRV-A/HRV-C, HEV-A/HEV-C and HEV-A/HEV-D recombination mainly at the 5'-untranslated region (5' UTR)-polyprotein junction. In this study, chimeric genomes were artificially generated using the 5' UTR from two different clinical HRV-C strains (HRV-Ca and HRV-Cc), an HRV-B strain (HRV-B37) and an HEV-A strain (HEV-A71), and the remaining part of the genome from an HRV-A strain (HRV-A16). Whilst the chimeric viruses were easily propagated in cell culture, the wild-type HRV-A16 retained a replication advantage, both individually and in competition experiments. Assessment of protein synthesis ability did not show a correlation between translation and replication efficiencies. These results reflect the interchangeability of the 5' UTR, including its functional RNA structural elements implicated in both genome translation and replication among different enterovirus species. The 5' UTR-polyprotein junction therefore represents a theoretic interspecies recombination breakpoint. This recombination potential is probably restricted by the need for co-infection opportunities and the requirement for the progeny chimera to outcompete the parental genomes' fitness, explaining the rare occurrence of such events in vivo.
Collapse
Affiliation(s)
- Manuel Schibler
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland
| | - Daniel Gerlach
- Research Institute of Molecular Pathology (IMP), Dr Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Yannick Martinez
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandra Van Belle
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland
| | - Lara Turin
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland
| | - Laurent Kaiser
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland
| | - Caroline Tapparel
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland
| |
Collapse
|
32
|
Broberg E, Niemelä J, Lahti E, Hyypiä T, Ruuskanen O, Waris M. Human rhinovirus C--associated severe pneumonia in a neonate. J Clin Virol 2011; 51:79-82. [PMID: 21342784 PMCID: PMC7172304 DOI: 10.1016/j.jcv.2011.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/30/2010] [Accepted: 01/20/2011] [Indexed: 11/26/2022]
Abstract
We present a case of severe pneumonia, associated with a prolonged infection by a species C rhinovirus (HRV) in a 3-week old neonate. HRV RNA was identified in nasal and nasopharyngeal secretions, bronchoalveolar lavage and bronchial specimens, stool and urine, collected from the patient during a one-month period. No other viral or bacterial agents were detected. Sequence analysis of two regions of the viral genome, amplified directly from the clinical specimens revealed a novel HRV-C variant. These observations highlight the occurrence of severe neonatal infections caused by HRVs and the need of rapid viral diagnostics for their detection.
Collapse
Affiliation(s)
- Eeva Broberg
- Department of Virology, University of Turku, Kiinamyllynkatu 13, FI-20520 Turku, Finland
| | - Jussi Niemelä
- Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Elina Lahti
- Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Timo Hyypiä
- Department of Virology, University of Turku, Kiinamyllynkatu 13, FI-20520 Turku, Finland
| | - Olli Ruuskanen
- Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Matti Waris
- Department of Virology, University of Turku, Kiinamyllynkatu 13, FI-20520 Turku, Finland
| |
Collapse
|
33
|
Phylogenetic patterns of human respiratory picornavirus species, including the newly identified group C rhinoviruses, during a 1-year surveillance of a hospitalized patient population in Italy. J Clin Microbiol 2010; 49:373-6. [PMID: 21068279 DOI: 10.1128/jcm.01814-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human rhinovirus species C (HRV-C) was the second most common HRV species detected in hospitalized patients in Italy with acute respiratory disease during a 1-year surveillance period. Sequencing of the picornavirus VP4/VP2 region allowed molecular typing of HRV-A and HRV-B and provisional typing of HRV-C.
Collapse
|
34
|
Lau SKP, Yip CCY, Woo PCY, Yuen KY. Human rhinovirus C: a newly discovered human rhinovirus species. EMERGING HEALTH THREATS JOURNAL 2010; 3:e2. [PMID: 22460392 PMCID: PMC3167658 DOI: 10.3134/ehtj.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/10/2009] [Accepted: 10/04/2009] [Indexed: 12/11/2022]
Abstract
Although often ignored, human rhinoviruses (HRVs) are the most frequent causes of respiratory tract infections (RTIs). A group of closely related novel rhinoviruses have recently been discovered. Based on their unique phylogenetic position and distinct genomic features, they are classified as a separate species, HRV-C. After their discovery, HRV-C viruses have been detected in patients worldwide, with a reported prevalence of 1.4-30.9% among tested specimens. This suggests that the species contribute to a significant proportion of RTIs that were unrecognized in the past. HRV-C is also the predominant HRV species, often with a higher detection rate than that of the two previously known species, HRV-A and HRV-B. HRV-C infections appear to peak in fall or winter in most temperate or subtropical countries, but may predominate in the rainy season in the tropics. In children, HRV-C is often associated with upper RTIs, with asthma exacerbation and wheezing episodes being common complications. The virus has also been detected in children with bronchitis, bronchiolitis, pneumonia, otitis media, sinusitis and systemic infections complicated by pericarditis. As for adults, HRV-C has been associated with more severe disease such as pneumonia and exacerbation of chronic obstructive pulmonary disease. However, larger clinical studies with asymptomatic controls are required to better define the significance of HRV-C infection in the adult population. On the basis of VP4 sequence analysis, a potential distinct subgroup within HRV-C has also been identified, although more complete genome sequences are needed to better define the genetic diversity of HRV-C.
Collapse
Affiliation(s)
- S K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
35
|
Analysis of genetic diversity and sites of recombination in human rhinovirus species C. J Virol 2010; 84:10297-310. [PMID: 20668080 DOI: 10.1128/jvi.00962-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human rhinoviruses (HRVs) are a highly prevalent and diverse group of respiratory viruses. Although HRV-A and HRV-B are traditionally detected by virus isolation, a series of unculturable HRV variants have recently been described and assigned as a new species (HRV-C) within the picornavirus Enterovirus genus. To investigate their genetic diversity and occurrence of recombination, we have performed comprehensive phylogenetic analysis of sequences from the 5' untranslated region (5' UTR), VP4/VP2, VP1, and 3Dpol regions amplified from 89 HRV-C-positive respiratory samples and available published sequences. Branching orders of VP4/VP2, VP1, and 3Dpol trees were identical, consistent with the absence of intraspecies recombination in the coding regions. However, numerous tree topology changes were apparent in the 5' UTR, where >60% of analyzed HRV-C variants showed recombination with species A sequences. Two recombination hot spots in stem-loop 5 and the polypyrimidine tract in the 5' UTR were mapped using the program GroupingScan. Available HRV-C sequences showed evidence for additional interspecies recombination with HRV-A in the 2A gene, with breakpoints mapping precisely to the boundaries of the C-terminal domain of the encoded proteinase. Pairwise distances between HRV-C variants in VP1 and VP4/VP2 regions fell into two separate distributions, resembling inter- and intraserotype distances of species A and B. These observations suggest that, without serological cross-neutralization data, HRV-C genetic groups may be equivalently classified into types using divergence thresholds derived from distance distributions. The extensive sequence data from multiple genome regions of HRV-C and analyses of recombination in the current study will assist future formulation of consensus criteria for HRV-C type assignment and identification.
Collapse
|
36
|
Arden KE, Mackay IM. Newly identified human rhinoviruses: molecular methods heat up the cold viruses. Rev Med Virol 2010; 20:156-76. [PMID: 20127751 PMCID: PMC7169101 DOI: 10.1002/rmv.644] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human rhinovirus (HRV) infections cause at least 70% of virus‐related wheezing exacerbations and cold and flu‐like illnesses. They are associated with otitis media, sinusitis and pneumonia. Annually, the economic impact of HRV infections costs billions in healthcare and lost productivity. Since 1987, 100 officially recognised HRV serotypes reside in two genetically distinct species; HRV A and HRV B, within the genus Enterovirus, family Picornaviridae. Sequencing of their ∼7kb genomes was finalised in 2009. Since 1999, many globally circulating, molecularly‐defined ‘strains’, perhaps equivalent to novel serotypes, have been discovered but remain uncharacterised. Many of these currently unculturable strains have been assigned to a proposed new species, HRV C although confusion exists over the membership of the species. There has not been sufficient sampling to ensure the identification of all strains and no consensus criteria exist to define whether clinical HRV detections are best described as a distinct strain or a closely related variant of a previously identified strain (or serotype). We cannot yet robustly identify patterns in the circulation of newly identified HRVs (niHRVs) or the full range of associated illnesses and more data are required. Many questions arise from this new found diversity: what drives the development of so many distinct viruses compared to other species of RNA viruses? What role does recombination play in generating this diversity? Are there species‐ or strain‐specific circulation patterns and clinical outcomes? Are divergent strains sensitive to existing capsid‐binding antivirals? This update reviews the findings that trigger these and other questions arising during the current cycle of intense rhinovirus discovery. Copyright © 2010 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Katherine E Arden
- Qpid Laboratory, Sir Albert Sakzewski Virus Research Centre, Queensland Children's Medical Research Institute, Royal Children's Hospital, Queensland, Australia
| | | |
Collapse
|
37
|
Simmonds P, McIntyre C, Savolainen-Kopra C, Tapparel C, Mackay IM, Hovi T. Proposals for the classification of human rhinovirus species C into genotypically assigned types. J Gen Virol 2010; 91:2409-19. [PMID: 20610666 DOI: 10.1099/vir.0.023994-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human rhinoviruses (HRVs) are common respiratory pathogens associated with mild upper respiratory tract infections, but also increasingly recognized in the aetiology of severe lower respiratory tract disease. Wider use of molecular diagnostics has led to a recent reappraisal of HRV genetic diversity, including the discovery of HRV species C (HRV-C), which is refractory to traditional virus isolation procedures. Although it is heterogeneous genetically, there has to date been no attempt to classify HRV-C into types analogous to the multiple serotypes identified for HRV-A and -B and among human enteroviruses. Direct investigation of cross-neutralization properties of HRV-C is precluded by the lack of methods for in vitro culture, but sequences from the capsid genes (VP1 and partial VP4/VP2) show evidence for marked phylogenetic clustering, suggesting the possibility of a genetically based system comparable to that used for the assignment of new enterovirus types. We propose a threshold of 13% divergence for VP1 nucleotide sequences for type assignment, a level that classifies the current dataset of 86 HRV-C VP1 sequences into a total of 33 types. We recognize, however, that most HRV-C sequence data have been collected in the VP4/VP2 region (currently 701 sequences between positions 615 and 1043). We propose a subsidiary classification of variants showing > 10% divergence in VP4/VP2, but lacking VP1 sequences, to 28 provisionally assigned types (subject to confirmation once VP1 sequences are determined). These proposals will assist in future epidemiological and clinical studies of HRV-C conducted by different groups worldwide, and provide the foundation for future exploration of type-associated differences in clinical presentations and biological properties.
Collapse
Affiliation(s)
- Peter Simmonds
- Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Lau S, Yip C, Woo P, Yuen KY. Human rhinovirus C: a newly discovered human rhinovirus species. EMERGING HEALTH THREATS JOURNAL 2010. [DOI: 10.3402/ehtj.v3i0.7106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Susanna Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Center for Infection, The University of Hong Kong, Hong Kong, China; and
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Cyril Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Patrick Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Center for Infection, The University of Hong Kong, Hong Kong, China; and
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Center for Infection, The University of Hong Kong, Hong Kong, China; and
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
39
|
Molecular characterization and distinguishing features of a novel human rhinovirus (HRV) C, HRVC-QCE, detected in children with fever, cough and wheeze during 2003. J Clin Virol 2010; 47:219-23. [PMID: 20106717 PMCID: PMC7108254 DOI: 10.1016/j.jcv.2010.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/30/2009] [Accepted: 01/07/2010] [Indexed: 12/02/2022]
Abstract
Background Human rhinoviruses (HRVs) are associated with more acute respiratory tract infections than any other viral group yet we know little about viral diversity, epidemiology or clinical outcome resulting from infection by strains, in particular the recently identified HRVs. Objectives To determine whether HRVC-QCE was a distinct HRV-C strain, by determining its genome and prevalence, by cataloguing genomic features for strain discrimination and by observing clinical features in positive patients. Study design Novel real-time RT-PCRs and retrospective chart reviews were used to investigate a well-defined population of 1247 specimen extracts to observe the prevalence and the clinical features of each HRV-QCE positive case from an in- and out-patient pediatric, hospital-based population during 2003. An objective illness severity score was determined for each HRVC-QCE positive patient. Results Differences in overall polyprotein and VP1 binding pocket residues and the predicted presence of a cis-acting replication element in 1B defined HRVC-QCE as a novel HRV-C strain. Twelve additional HRVC-QCE detections (1.0% prevalence) occurred among infants and toddlers (1–24 months) suffering mild to moderate illness, including fever and cough, who were often hospitalized. HRVC-QCE was frequently detected in the absence of another virus and was the only virus detected in three (23% of HRVC-QCE positives) children with asthma exacerbation and in two (15%) toddlers with febrile convulsion. Conclusions HRVC-QCE is a newly identified, genetically distinct HRV strain detected in hospitalized children with a range of clinical features. HRV strains should be independently considered to ensure we do not overestimate the HRVs in asymptomatic illness.
Collapse
|
40
|
Liu Y, Wimmer E, Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:495-517. [PMID: 19781674 PMCID: PMC2783963 DOI: 10.1016/j.bbagrm.2009.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/09/2009] [Accepted: 09/13/2009] [Indexed: 02/08/2023]
Abstract
The RNA genomes of plus-strand RNA viruses have the ability to form secondary and higher-order structures that contribute to their stability and to their participation in inter- and intramolecular interactions. Those structures that are functionally important are called cis-acting RNA elements because their functions cannot be complemented in trans. They can be involved not only in RNA/RNA interactions but also in binding of viral and cellular proteins during the complex processes of translation, RNA replication and encapsidation. Most viral cis-acting RNA elements are located in the highly structured 5'- and 3'-nontranslated regions of the genomes but sometimes they also extend into the adjacent coding sequences. In addition, some cis-acting RNA elements are embedded within the coding sequences far away from the genomic ends. Although the functional importance of many of these structures has been confirmed by genetic and biochemical analyses, their precise roles are not yet fully understood. In this review we have summarized what is known about cis-acting RNA elements in nine families of human and animal plus-strand RNA viruses with an emphasis on the most thoroughly characterized virus families, the Picornaviridae and Flaviviridae.
Collapse
Affiliation(s)
- Ying Liu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, USA
| | | | | |
Collapse
|
41
|
Tapparel C, Junier T, Gerlach D, Van-Belle S, Turin L, Cordey S, Mühlemann K, Regamey N, Aubert JD, Soccal PM, Eigenmann P, Zdobnov E, Kaiser L. New respiratory enterovirus and recombinant rhinoviruses among circulating picornaviruses. Emerg Infect Dis 2009; 15:719-26. [PMID: 19402957 PMCID: PMC2687021 DOI: 10.3201/eid1505.081286] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Increased genomic diversity of these viruses is demonstrated. Rhinoviruses and enteroviruses are leading causes of respiratory infections. To evaluate genotypic diversity and identify forces shaping picornavirus evolution, we screened persons with respiratory illnesses by using rhinovirus-specific or generic real-time PCR assays. We then sequenced the 5′ untranslated region, capsid protein VP1, and protease precursor 3CD regions of virus-positive samples. Subsequent phylogenetic analysis identified the large genotypic diversity of rhinoviruses circulating in humans. We identified and completed the genome sequence of a new enterovirus genotype associated with respiratory symptoms and acute otitis media, confirming the close relationship between rhinoviruses and enteroviruses and the need to detect both viruses in respiratory specimens. Finally, we identified recombinants among circulating rhinoviruses and mapped their recombination sites, thereby demonstrating that rhinoviruses can recombine in their natural host. This study clarifies the diversity and explains the reasons for evolution of these viruses.
Collapse
|
42
|
Piralla A, Rovida F, Campanini G, Rognoni V, Marchi A, Locatelli F, Gerna G. Clinical severity and molecular typing of human rhinovirus C strains during a fall outbreak affecting hospitalized patients. J Clin Virol 2009; 45:311-7. [PMID: 19473873 DOI: 10.1016/j.jcv.2009.04.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 04/24/2009] [Indexed: 11/25/2022]
Abstract
BACKGROUND The circulation rate and the clinical severity of infections caused by members of the new human rhinovirus C (HRV-C) species remain to be defined. OBJECTIVES To investigate the epidemiologic and clinical impact of HRV-C strains in a fall outbreak interesting hospitalized patients. STUDY DESIGN HRV species (A-C) were determined by phylogenetic analysis following amplification of two genome regions (5'NCR and VP4/VP2) by RT-PCR. HRV species were correlated with age, respiratory tract involvement, clinical symptoms, and HRV load in respiratory secretions. RESULTS During the first week of the period October-November 2008, single HRV infections were associated with 95% of all respiratory syndromes affecting hospitalized patients. Then, HRV infections (single+coinfections) interested about 90% of positive samples until the end of October, when they declined in frequency until reaching about 30% at the end of November. Overall, 104 HRV strains were detected and, of these, 90 could be classified by phylogenetic analysis, as follows: 45 HRV-A, 12 HRV-B, 28 HRV-C, and 5 human enterovirus D strains. HRV-C identity was confirmed by detection of cis-acting replication elements (cre) in 23/23 strains. As for severity of respiratory syndromes, unlike HRV-A and HRV-B strains, HRV-C strains were responsible for a significantly higher rate (p<0.05) of lower respiratory tract infections in the pediatric as compared to adult patient population. CONCLUSIONS HRV-C strains have been shown to circulate at a rate intermediate between HRV-A and HRV-B strains, showing a greater degree of clinical severity in the pediatric population.
Collapse
Affiliation(s)
- A Piralla
- Servizio di Virologia, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Tapparel C, L'Huillier AG, Rougemont AL, Beghetti M, Barazzone-Argiroffo C, Kaiser L. Pneumonia and pericarditis in a child with HRV-C infection: a case report. J Clin Virol 2009; 45:157-60. [PMID: 19427260 PMCID: PMC7108322 DOI: 10.1016/j.jcv.2009.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 11/27/2022]
Abstract
Human rhinovirus type C is a recently discovered species that has been associated with respiratory tract infections of unusual severity in some cases. However, the precise type of diseases associated with this new human rhinovirus needs to be investigated. In the present report, we used adapted real-time PCR assays to screen different clinical specimens collected from a 14-month-old boy presenting an acute lower respiratory tract disease complicated by a severe pericarditis. RT-PCR identified picornavirus RNA in the bronchoalveolar lavage (BAL) specimen, pericardial fluid, plasma and stools. This supported the existence of a disseminated viral infection that extended to the pericardial space. 5′UTR and VP1 sequence analysis performed directly from the BAL sample allowed genotyping of the virus as a human rhinovirus C. This observation highlights the need for adapted diagnostic tools and the potential for the new rhinovirus species C to cause complications, including pericarditis.
Collapse
Affiliation(s)
- Caroline Tapparel
- Laboratory of Virology, University of Geneva Hospitals, Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
44
|
New molecular detection tools adapted to emerging rhinoviruses and enteroviruses. J Clin Microbiol 2009; 47:1742-9. [PMID: 19339471 DOI: 10.1128/jcm.02339-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human rhinoviruses (HRV), and to a lesser extent human enteroviruses (HEV), are important respiratory pathogens. Like other RNA viruses, these picornaviruses have an intrinsic propensity to variability. This results in a large number of different serotypes as well as the incessant discovery of new genotypes. This large and growing diversity not only complicates the design of real-time PCR assays but also renders immunofluorescence unfeasible for broad HRV and HEV detection or quantification in cells. In this study, we used the 5' untranslated region, the most conserved part of the genome, as a target for the development of both a real-time PCR assay (Panenterhino/Ge/08) and a peptide nucleic acid-based hybridization oligoprobe (Panenterhino/Ge/08 PNA probe) designed to detect all HRV and HEV species members according to publicly available sequences. The reverse transcription-PCR assay has been validated, using not only plasmid and viral stocks but also quantified RNA transcripts and around 1,000 clinical specimens. These new generic detection PCR assays overcame the variability of circulating strains and lowered the risk of missing emerging and divergent HRV and HEV. An additional real-time PCR assay (Entero/Ge/08) was also designed specifically to provide sensitive and targeted detection of HEV in cerebrospinal fluid. In addition to the generic probe, we developed specific probes for the detection of HRV-A and HRV-B in cells. This investigation provides a comprehensive toolbox for accurate molecular identification of the different HEV and HRV circulating in humans.
Collapse
|
45
|
Steil BP, Barton DJ. Cis-active RNA elements (CREs) and picornavirus RNA replication. Virus Res 2008; 139:240-52. [PMID: 18773930 DOI: 10.1016/j.virusres.2008.07.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/25/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
Abstract
Our understanding of picornavirus RNA replication has improved over the past 10 years, due in large part to the discovery of cis-active RNA elements (CREs) within picornavirus RNA genomes. CREs function as templates for the conversion of VPg, the Viral Protein of the genome, into VPgpUpU(OH). These so called CREs are different from the previously recognized cis-active RNA sequences and structures within the 5' and 3' NTRs of picornavirus genomes. Two adenosine residues in the loop of the CRE RNA structures allow the viral RNA-dependent RNA polymerase 3D(Pol) to add two uridine residues to the tyrosine residue of VPg. Because VPg and/or VPgpUpU(OH) prime the initiation of viral RNA replication, the asymmetric replication of viral RNA could not be explained without an understanding of the viral RNA template involved in the conversion of VPg into VPgpUpU(OH) primers. We review the growing body of knowledge regarding picornavirus CREs and discuss how CRE RNAs work coordinately with viral replication proteins and other cis-active RNAs in the 5' and 3' NTRs during RNA replication.
Collapse
Affiliation(s)
- Benjamin P Steil
- Department of Microbiology and Program in Molecular Biology, University of Colorado Denver, School of Medicine, United States
| | | |
Collapse
|