1
|
Liu M, Fang K, Wang XR, Wang K, Zhang LH, He MY, Xu YY, Wu Y, Ge JF. Serum exosomal hsa-miR-142-5p, hsa-miR-1908-5p, and hsa-miR-450b-5p as candidate biomarkers for recurrent depressive disorder diagnosis and ECT treatment response: A preliminary investigation. Brain Res Bull 2025; 225:111345. [PMID: 40220964 DOI: 10.1016/j.brainresbull.2025.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
PURPOSE This study investigated the differential expression of serum exosomal miRNAs in female patients with recurrent depressive disorder (RDD) before and after non-convulsive electroconvulsive therapy (ECT), aiming to explore potential diagnostic and therapeutic biomarkers. METHOD Serum samples were collected from three groups: healthy female volunteers aged 30-50, female patients with RDD prior to ECT, and female patients post-ECT who had achieved remission. Exosomes were isolated from serum, identified through transmission electron microscopy, nanoparticle tracking analysis, and Western blot analysis of exosomal markers. Total RNA was extracted from exosomes, and miRNA sequencing was conducted to identify differentially expressed miRNAs. Gene target prediction, Gene Ontology, and KEGG pathway enrichment analyses were also performed. RESULTS miRNA sequencing revealed significant differences in exosomal miRNA profiles among the three groups. Compared to controls, 69 miRNAs were upregulated and 98 downregulated in the model group, while the recovery group showed 41 upregulated and 51 downregulated miRNAs compared to the model group. Furthermore, the recovery group exhibited 35 upregulated and 59 downregulated miRNAs compared to controls. Analysis identified hsa-miR-142-5p, hsa-miR-1908-5p, and hsa-miR-450b-5p as potential biomarkers for RDD diagnosis and ECT treatment response, with functional roles likely related to inflammation, neurotransmission, and synaptic plasticity. CONCLUSION Serum exosomal miRNAs, particularly hsa-miR-142-5p, hsa-miR-1908-5p, and hsa-miR-450b-5p, emerged as promising candidates for further investigation as biomarkers for RDD diagnosis and treatment monitoring. Larger, multi-center studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Meng Liu
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Ke Fang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Xiao-Rui Wang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Kun Wang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Li-Hong Zhang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Man-Yun He
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Yan-Yan Xu
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Yuan Wu
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Luo W, Yi X, Zhang X, Yuan C, Wei W, Li X, Pu D, Yang J, Zheng H. Taxonomic reassessment of genomes from a divergent population of Streptococcus suis by average nucleotide identity analysis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 131:105753. [PMID: 40287079 DOI: 10.1016/j.meegid.2025.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Streptococcus spp., including the emerging zoonotic pathogen S. suis, represent a dominant bacterial population in the porcine nasopharynx. Species identification within the Streptococcus genus remains challenging and frequently ambiguous, resulting in indistinct species boundaries. By employing comparative genomic analyses, a previous study categorized S. suis into a central population and divergent lineages, based on the single nucleotide polymorphisms (SNPs) within core genes and the presence or absence of accessory genes, indicating evolutionary divergence. The divergent lineages were designated as the "out population" in this study for clarity. The 16S rRNA gene sequences of seven putative novel Streptococcus strains isolated from the throats of healthy pigs in China exhibited 100 % similarity to that of the 684_17B strain of S. suis, which clustered in the out population. This study established a threshold average nucleotide identity (ANI) value of 93.17 % for the identification of authentic S. suis. All the 645 genomes from the out population fell below this threshold, indicating that they did not belong to S. suis. Further taxonomic assessment of the 645 genomes from the out population revealed 18 clusters based on pairwise ANI comparisons, using a 92.33 % threshold, determined by pairwise ANI comparisons among the 2422 genomes from the central population of S. suis. These clusters were identified as 12 novel Streptococcus spp. (Streptococcus sp. nov-1-12) and six known Streptococcus spp. by ANI comparisons with type or reference genomes of 98 known Streptococcus spp. The study provides a useful framework for the identification of authentic S. suis and the determination of Streptococcus sp. nov.
Collapse
Affiliation(s)
- Wenbo Luo
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueli Yi
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
| | - Xiyan Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | - Wenfei Wei
- Baise Center for Animal Disease Prevention and Control, Baise, China
| | - Xuezhen Li
- Baise Center for Animal Disease Prevention and Control, Baise, China
| | - Danna Pu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin, China
| | - Jing Yang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Han Zheng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, School of Public Health, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
Ma C, Lin Y, Yin J, Zhu L, Fang J, Zhang D. Phylogenetic Analysis and Expression Patterns of Triterpenoid Saponin Biosynthesis Genes in 19 Araliaceae Plants. Int J Mol Sci 2025; 26:3439. [PMID: 40244384 PMCID: PMC11989764 DOI: 10.3390/ijms26073439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
The Araliaceae family has significant economic and medicinal value. However, the phylogenetic relationships and the expression patterns of key genes of the active triterpenoid substance within this family are still unclear. In this study, we employed comparative transcriptomics to analyze the transcriptomes of 19 species from 11 genera of Araliaceae, aiming to elucidate the evolutionary history of the family and the expression patterns of key genes in the ginsenoside biosynthesis pathway. Our results divide Araliaceae into two subfamilies: Aralioideae and Hydrocotyloideae. Aralioideae is further classified into three groups: the Aralia-Panax group, the Polyscias-Pseudopanax group, and the Asian Palmate group. PhyloNet analysis reveals that the common ancestor of Panax ginseng, Panax quinquefolius, and Panax japonicus was an allopolyploid, likely resulting from hybridization between Panax notoginseng and Panax pseudoginseng. Additionally, all Aralioideae species underwent the pg-β event, which may be critical for ginsenoside biosynthesis. We discovered that Panax species exhibit distinct expression patterns of key enzyme genes (β-AS, DDS, CYP450, UGTs) compared to other Araliaceae species. These enzyme genes show independent evolutionary lineages in gene trees, suggesting unique functional adaptations that enable Panax species to efficiently synthesize ginsenosides. This study provides a theoretical foundation for the conservation and utilization of Araliaceae germplasm resources.
Collapse
Affiliation(s)
| | | | | | | | | | - Dan Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.M.); (Y.L.); (J.Y.); (L.Z.); (J.F.)
| |
Collapse
|
4
|
Chen W, Wang Z, Wang Y, Lin J, Chen S, Chen H, Ma X, Zou X, Li X, Qin Y, Xiong K, Ma X, Liao Q, Qiao Y, Li L. Enhancer RNA Transcriptome-Wide Association Study Reveals a Distinctive Class of Pan-Cancer Susceptibility eRNAs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411974. [PMID: 39950845 PMCID: PMC11967800 DOI: 10.1002/advs.202411974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/10/2025] [Indexed: 04/05/2025]
Abstract
Many cancer risk variants are located within enhancer regions and lack sufficient molecular interpretation. Here, we constructed the first comprehensive atlas of enhancer RNA (eRNA)-mediated genetic effects from 28 033 RNA sequencing samples across 11 606 individuals, identifying 21 073 eRNA quantitative trait loci (eRNA-QTLs) significantly associated with eRNA expression. Mechanistically, eRNA-QTLs frequently altered binding motifs of transcription factors. In addition, 28.48% of cancer risk variants are strongly colocalized with eRNA-QTLs. A pan-cancer eRNA-based transcriptome-wide association study is conducted across 23 major cancer types, identifying 626 significant cancer susceptibility eRNAs predicted to modulate cancer risk via eRNA, from which 54.90% of the eRNA target genes are overlooked by traditional gene expression studies, and most are essential for cancer cell proliferation. As proof of principle validation, the enhancer functionality of two newly identified susceptibility eRNAs, CCND1e and SNAPC1e, is confirmed through CRISPR inhibition and shRNA-mediated knockdown, resulting in a marked decrease in the expression of their respective target genes, consequently suppressing the proliferation of prostate cancer cells. The study underscores the essential role of eRNA in unveiling new cancer susceptibility genes and establishes a strong framework for enhancing our understanding of human cancer etiology.
Collapse
Affiliation(s)
- Wenyan Chen
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518055China
| | - Zeyang Wang
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518055China
| | - Yinuo Wang
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518055China
| | - Jianxiang Lin
- Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
- Shanghai Institute of Precision MedicineShanghai200125China
| | - Shuxin Chen
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518055China
| | - Hui Chen
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518055China
| | - Xuelian Ma
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518055China
| | - Xudong Zou
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518055China
| | - Xing Li
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518055China
| | - Yangmei Qin
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518055China
| | - Kewei Xiong
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518055China
| | - Xixian Ma
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518055China
| | - Qi Liao
- School of Public HealthHealth Science CenterNingbo UniversityNingbo315211China
| | - Yunbo Qiao
- Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
- Shanghai Institute of Precision MedicineShanghai200125China
| | - Lei Li
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518055China
| |
Collapse
|
5
|
Chen S, He Y, Lv L, Liu B, Li C, Deng H, Xu J. Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1084-1101. [PMID: 39825205 DOI: 10.1007/s11427-024-2660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 01/20/2025]
Abstract
Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages. Here we show that transient treatment with a cocktail of small molecule epigenetic modulators imparts trophectoderm lineage potentials to human primed pluripotent stem cells while preserving their embryonic potential. These chemically treated cells can generate trophectoderm-like cells and downstream trophoblast stem cells, diverging into syncytiotrophoblast and extravillous trophoblast lineages. Transcriptomic and CUT&Tag analyses reveal that these induced cells share transcriptional profiles with in vivo trophectoderm and cytotrophoblast, and exhibit reduced H3K27me3 modification at gene loci specific to trophoblast lineages compared with primed pluripotent cells. Mechanistic exploration highlighted the critical roles of epigenetic modulators HDAC2, EZH1/2, and KDM5s in the activation of trophoblast lineage potential. Our findings demonstrate that transient epigenetic resetting activates unrestricted lineage potential in human primed pluripotent stem cells, and offer new mechanistic insights into human trophoblast lineage specification and in vitro models for studying placental development and related disorders.
Collapse
Affiliation(s)
- Shi Chen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Yuanyuan He
- Academy of Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lejun Lv
- BeiCell Therapeutics, Beijing, 100094, China
| | - Bei Liu
- BeiCell Therapeutics, Beijing, 100094, China.
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, 100871, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Jun Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
6
|
Jin Q, Zheng Y, Pan M, Zhang X, Zhang A, Lai S. Enhancing Arthropod Diversity and Sorghum Quality in Northern Jiangsu, China: The Benefits of Green Pest Management Revealed Through Metabarcoding. Int J Mol Sci 2025; 26:2977. [PMID: 40243590 PMCID: PMC11988586 DOI: 10.3390/ijms26072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/07/2025] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
Sorghum is a key global crop with substantial economic importance. Implementing green pest management for sorghum is crucial for promoting ecological balance and reducing reliance on chemical pesticides. This study assesses the impact of green pest management on arthropod biodiversity and sorghum yield and quality. Over two years, using Malaise trapping and DNA metabarcoding, we found that green pest management significantly enhanced arthropod diversity, increasing species richness by 5.63% and shifting species composition, notably increasing the abundance of Hymenoptera. Although sorghum yield metrics were higher in the green group compared to the chemical control group, these differences were not statistically significant. However, the green group exhibited improved quality with lower crude fat (3.63% vs. 4.08% in the chemical control group) and higher levels of crude protein (9.18% vs. 9.13%), starch (73.69% vs. 73.41%), and amylopectin (98.53% vs. 98.34%). These findings underscore the benefits of green pest management in fostering biodiversity and enhancing sorghum quality. Future research should focus on optimizing biodiversity-driven agroecosystem resilience and scaling these strategies across diverse agricultural systems.
Collapse
Affiliation(s)
- Qian Jin
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China; (Q.J.); (M.P.)
| | - Yuxuan Zheng
- College of Life Sciences, Capital Normal University, Beijing 100048, China;
| | - Mingquan Pan
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China; (Q.J.); (M.P.)
| | - Xiaoman Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| | - Aibing Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China;
| | - Shangkun Lai
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China; (Q.J.); (M.P.)
| |
Collapse
|
7
|
Meka AF, Bekele GK, Abas MK, Gemeda MT. Exploring bioactive compound origins: Profiling gene cluster signatures related to biosynthesis in microbiomes of Sof Umer Cave, Ethiopia. PLoS One 2025; 20:e0315536. [PMID: 40048434 PMCID: PMC11884727 DOI: 10.1371/journal.pone.0315536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/26/2024] [Indexed: 03/09/2025] Open
Abstract
Sof Umer Cave is an unexplored extreme environment that hosts novel microbes and potential genetic resources. Microbiomes from caves have been genetically adapted to produce various bioactive metabolites, allowing them to survive and tolerate harsh conditions. However, the biosynthesis-related gene cluster signatures in the microbiomes of Sof Umer Cave have not been explored. Therefore, high-throughput shotgun sequencing was used to explore biosynthesis-related gene clusters (BGCs) in the microbiomes of Sof Umer Cave. The GeneAll DNA Soil Mini Kit was used to extract high-molecular-weight DNA from homogenized samples, and the purified DNA was sequenced using a NovaSeq PE150. According to the Micro-RN database, the most common microbial genera in Sof Umer Cave are Protobacteria, Actinobacteria, Verrucomicrobiota, and Cyanobacteria. The biosynthesis-related gene clusters were annotated and classified, and the BGCs were predicted using antiSMASH and NAPDOS1. A total of 460 putative regions of BGCs encoding a wide range of secondary metabolites were identified, including RiPP (47.82%), terpene (19.57%), NRPS (13.04%), hybrid (2.18%), and other newly annotated (10.87%) compounds. Additionally, the NAPDOS pipeline identified a calcium-dependent antibiotic gene cluster from Streptomyces coelicolor, an actinomycin gene cluster from Streptomyces chrysomallus, and a bleomycin gene cluster from Streptomyces verticillus. These findings highlight the untapped biosynthetic potential of the Sof Umer Cave microbiome, as well as its potential for the discovery of natural products.
Collapse
Affiliation(s)
- Abu Feyisa Meka
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Department of Biology, Bule Hora University, Bule Hora, Ethiopia
| | - Gessesse Kebede Bekele
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Musin Kelel Abas
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Mesfin Tafesse Gemeda
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Chen M, Song L, Zhou Y, Xu T, Sun T, Liu Z, Xu Z, Zhao Y, Du P, Ma Y, Huang L, Chen X, Yang G, Jing J, Shi H. Promotion of triple negative breast cancer immunotherapy by combining bioactive radicals with immune checkpoint blockade. Acta Biomater 2025; 194:305-322. [PMID: 39805523 DOI: 10.1016/j.actbio.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Although immunotherapy has revolutionized clinical cancer treatment, the efficacy is limited due to the lack of tumor-associated antigens (TAAs) and the presence of compensatory immune checkpoints. To overcome the deficiency, a nano-system loaded with ozone and CD47 inhibitor RRx-001 is designed and synthesized. Upon irradiation, reactive oxygen species (ROS) generated from ozone reacts with nitric oxide (NO) metabolized from RRx-001 to form reactive nitrogen species (RNS), which presents a much stronger cell-killing ability than ROS. Molecular mechanism studies further reveal that RNS induce extensive immunogenic cell death (ICD). The released TAAs promote infiltration of cytotoxic T lymphocytes, which provides the basis for immune checkpoint blockade (ICB) therapy. Meanwhile, RRx-001 carried by the nanoparticles and the produced radicals repolarize M2-type tumor-associated macrophages (TAMs) into the anti-tumor M1-type, consequently reversing the immunosuppressive tumor microenvironment (TME). In a xenograft triple-negative breast cancer (TNBC) animal model, O3-001@lipo (liposome enwrapping O3 and RRx-001) plus irradiation shows a significant anti-tumor efficacy by improving cytotoxic lymphocyte infiltration and regulating immunosuppressive TME. In summary, the O3-001@lipo nano-system triggered by irradiation potently improves the efficacy of immunotherapy by introducing strong cytotoxic RNS, which not only enriches the toolbox of ICD inducer but also provides a strategy of treatment for immune deficient tumor. STATEMENT OF SIGNIFICANCE: This study introduces a nano-system that leverages ozone and RRx-001 in the presence of X-ray irradiation to generate reactive nitrogen species, enhancing immunogenic cell death and promoting T-lymphocyte infiltration in triple-negative breast cancer, addressing a significant unmet need in the field. The scientific contribution is the development of a clinically translatable nano-system that not only induces ICD but also reshapes the tumor microenvironment, which is expected to have a profound impact on the readership in pharmaceutics, material science, and nano-bio interaction, particularly for those interested in advanced immune therapy approaches.
Collapse
Affiliation(s)
- Meixu Chen
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Linlin Song
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China; Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yao Zhou
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Tianyue Xu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Ting Sun
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China; Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhihui Liu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Zihan Xu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Yujie Zhao
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Peixin Du
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Yingying Ma
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Liwen Huang
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guang Yang
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Jing
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China.
| | - Hubing Shi
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
9
|
Zhang T, Zhang Y, Ji A, Shi R, Li H, Zeng Q. Peony Seed Oil Inhibited Neuroinflammation by PPAR/RXR Signaling Pathway in D-Gal Induced Mice. Food Sci Nutr 2025; 13:e70000. [PMID: 40018014 PMCID: PMC11866050 DOI: 10.1002/fsn3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/18/2024] [Accepted: 01/01/2025] [Indexed: 03/01/2025] Open
Abstract
Essential fatty acids could regulate inflammation, especially n-3 PUFA (n-3 polyunsaturated fatty acids), which are considered to have a protective effect to inhibit neuroinflammation. Peony seed oil is one of the most abundant n-3 PUFAs in oils. but the mechanism of peony seed oil affecting inflammation in mice brains is still lacking convincing evidence. Sixty male C57BL/6J mice were randomly allocated into four groups: D-gal (D-galactose) induced model group, FO (D-gal + fish oil), PSO (D-gal + peony seed oil). After 10 weeks, the fatty acid composition in liver and brain tissues and potentially related genes were examined. Docosahexaenoic acid (DHA) was significantly higher, while arachidonic acid (AA) was significantly lower in both in the PSO and FO groups than that in the model group in the brain and liver. In the PSO and FO groups, the relative mRNA levels of Fads1/2, Elovl2, and Acaa1a were significantly up-regulated, but Acox1 and Acox3 were significantly down-regulated compared to the model group. In the PSO and FO groups, the relative protein levels of PPARG, RXRA, and IL-10 were significantly up-regulated, and the expressions of AGERs, TNF-α, PLA2, and PGF2α were significantly down-regulated compared to the model group. The phosphorylation-tau of total tau protein ratio was significantly lower in the PSO and FO groups than in the model group. Peony seed oil, rich in n-3 PUFA, inhibited neuroinflammation and rescued the disruption of alternative splicing of the Mapt gene by activating the PPAR/RXR signaling pathway and promoting n-3/n-6 biosynthesis.
Collapse
Affiliation(s)
- Tianyu Zhang
- College of Life SciencesDezhou UniversityDezhouShandongChina
| | - Ying Zhang
- College of Life SciencesDezhou UniversityDezhouShandongChina
| | - Andong Ji
- Institute of Nutrition and Health Qingdao UniversityQingdaoChina
| | - Runjia Shi
- Institute of Nutrition and Health Qingdao UniversityQingdaoChina
| | - Huiying Li
- Department of Public HealthThe Third People's HospitalJinanChina
| | - Qiangcheng Zeng
- College of Life SciencesDezhou UniversityDezhouShandongChina
| |
Collapse
|
10
|
Berkell M, Górska A, Smet M, Bachelet D, Gentilotti E, Guedes M, Franco-Yusti AM, Mazzaferri F, Forero EL, Matheeussen V, Visseaux B, Palacios-Baena ZR, Caroccia N, Florence AM, Charpentier C, van Leer C, Giannella M, Friedrich AW, Rodríguez-Baño J, Ghosn J, Kumar-Singh S, Laouénan C, Tacconelli E, Malhotra-Kumar S. Quasi-species prevalence and clinical impact of evolving SARS-CoV-2 lineages in European COVID-19 cohorts, January 2020 to February 2022. Euro Surveill 2025; 30:2400038. [PMID: 40084424 PMCID: PMC11912139 DOI: 10.2807/1560-7917.es.2025.30.10.2400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/05/2024] [Indexed: 03/16/2025] Open
Abstract
BackgroundEvolution of SARS-CoV-2 is continuous.AimBetween 01/2020 and 02/2022, we studied SARS-CoV-2 variant epidemiology, evolution and association with COVID-19 severity.MethodsIn nasopharyngeal swabs of COVID-19 patients (n = 1,762) from France, Italy, Spain, and the Netherlands, SARS-CoV-2 was investigated by reverse transcription-quantitative PCR and whole-genome sequencing, and the virus variant/lineage (NextStrain/Pangolin) was determined. Patients' demographic and clinical details were recorded. Associations between mild/moderate or severe COVID-19 and SARS-CoV-2 variants and patient characteristics were assessed by logistic regression. Rates and genomic locations of mutations, as well as quasi-species distribution (≥ 2 heterogeneous positions, ≥ 50× coverage) were estimated based on 1,332 high-quality sequences.ResultsOverall, 11 SARS-CoV-2 clades infected 1,762 study patients of median age 59 years (interquartile range (IQR): 45-73), with 52.5% (n = 925) being male. In total, 101 non-synonymous substitutions/insertions correlated with disease prognosis (severe, n = 27; mild-to-moderate, n = 74). Several hotspots (mutation rates ≥ 85%) occurred in Alpha, Delta, and Omicron variants of concern (VOCs) but none in pre-Alpha strains. Four hotspots were retained across all study variants, including spike:D614G. Average number of mutations per open-reading-frame (ORF) increased in the spike gene (average < 5 per genome in January 2020 to > 15 in 2022), but remained stable in ORF1ab, membrane, and nucleocapsid genes. Quasi-species were most prevalent in 20A/EU2 (48.9%), 20E/EU1 (48.6%), 20A (38.8%), and 21K/Omicron (36.1%) infections. Immunocompromised status and age (≥ 60 years), while associated with severe COVID-19 or death irrespective of variant (odds ratio (OR): 1.60-2.25; p ≤ 0.014), did not affect quasi-species' prevalence (p > 0.05).ConclusionSpecific mutations correlate with COVID-19 severity. Quasi-species potentially shaping VOCs' emergence are relevant to consider.
Collapse
Affiliation(s)
- Matilda Berkell
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Shared first author
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Anna Górska
- Shared first author
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Mathias Smet
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Shared first author
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Delphine Bachelet
- Shared first author
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, Paris, France
- AP-HP Nord, Hôpital Bichat, Department of Epidemiology Biostatistics and Clinical Research, Paris, France
| | - Elisa Gentilotti
- Shared second author
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Mariana Guedes
- Shared second author
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anna Maria Franco-Yusti
- Shared second author
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, Paris, France
- Service de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Fulvia Mazzaferri
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Erley Lizarazo Forero
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Veerle Matheeussen
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Benoit Visseaux
- Service de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Zaira R Palacios-Baena
- Infectious Diseases and Microbiology Unit, University Hospital Virgen Macarena, Department of Medicine, University of Seville, Biomedicine Institute of Seville/CSIC, Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Natascia Caroccia
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Aline-Marie Florence
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, Paris, France
- AP-HP Nord, Hôpital Bichat, Department of Epidemiology Biostatistics and Clinical Research, Paris, France
| | - Charlotte Charpentier
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, Paris, France
- Service de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Coretta van Leer
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Maddalena Giannella
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alex W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Jesús Rodríguez-Baño
- Infectious Diseases and Microbiology Unit, University Hospital Virgen Macarena, Department of Medicine, University of Seville, Biomedicine Institute of Seville/CSIC, Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Jade Ghosn
- AP-HP Nord, Hôpital Bichat, Department of Infectious and Tropical Diseases, Paris, France
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, Paris, France
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Cedric Laouénan
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, Paris, France
- AP-HP Nord, Hôpital Bichat, Department of Epidemiology Biostatistics and Clinical Research, Paris, France
| | - Evelina Tacconelli
- Shared senior author
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Shared senior author
| |
Collapse
|
11
|
Di Giovannantonio M, Hartley F, Elshenawy B, Barberis A, Hudson D, Shafique HS, Allott VES, Harris DA, Lord SR, Haider S, Harris AL, Buffa FM, Harris BHL. Defining hypoxia in cancer: A landmark evaluation of hypoxia gene expression signatures. CELL GENOMICS 2025; 5:100764. [PMID: 39892389 PMCID: PMC11872601 DOI: 10.1016/j.xgen.2025.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Tumor hypoxia drives metabolic shifts, cancer progression, and therapeutic resistance. Challenges in quantifying hypoxia have hindered the exploitation of this potential "Achilles' heel." While gene expression signatures have shown promise as surrogate measures of hypoxia, signature usage is heterogeneous and debated. Here, we present a systematic pan-cancer evaluation of 70 hypoxia signatures and 14 summary scores in 104 cell lines and 5,407 tumor samples using 472 million length-matched random gene signatures. Signature and score choice strongly influenced the prediction of hypoxia in vitro and in vivo. In cell lines, the Tardon signature was highly accurate in both bulk and single-cell data (94% accuracy, interquartile mean). In tumors, the Buffa and Ragnum signatures demonstrated superior performance, with Buffa/mean and Ragnum/interquartile mean emerging as the most promising for prospective clinical trials. This work delivers recommendations for experimental hypoxia detection and patient stratification for hypoxia-targeting therapies, alongside a generalizable framework for signature evaluation.
Collapse
Affiliation(s)
- Matteo Di Giovannantonio
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Fiona Hartley
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Badran Elshenawy
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Alessandro Barberis
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Dan Hudson
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK; The Rosalind Franklin Institute, Didcot, UK
| | | | | | | | - Simon R Lord
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Syed Haider
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Adrian L Harris
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Francesca M Buffa
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK; CompBio Lab, Department of Computing Sciences, Bocconi University, Milan, Italy; AI and Systems Biology Lab, IFOM - Istituto Fondazione di Oncologia Molecolare ETS, Milan, Italy.
| | - Benjamin H L Harris
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK; St. Catherine's College, University of Oxford, Oxford, UK; Cutrale Perioperative and Ageing Group, Imperial College London, London, UK.
| |
Collapse
|
12
|
Tiwari A, Nadeem A, Paul D, Siddiqui N, Panda KK, Singh RK, Mahadevan GD, Kumar P. Whole-Genome Insights into the Probiotic Prospects of Blautia producta. Ind Biotechnol (New Rochelle N Y) 2025; 21:81-94. [DOI: 10.1089/ind.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Affiliation(s)
- Akshita Tiwari
- Amity Institute of Biotechnology, Amity University, Noida, India-201310
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Debarati Paul
- Centre for Plant and Environmental Biotech, AmitIy Institute of Biotechnology, Amity University, Noida, India-201310
| | - Nahid Siddiqui
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India-201310
| | - Kusuma Kumari Panda
- Centre for Plant and Environmental Biotech, AmitIy Institute of Biotechnology, Amity University, Noida, India-201310
| | - Ravi Kant Singh
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University, Noida, India-201310
| | - Gurumurthy Dummi Mahadevan
- Centre for Cellular and Molecular Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India-201310
| | - Prabhanshu Kumar
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University, Noida, India-201310
| |
Collapse
|
13
|
Vorderman RHP. Sequali: efficient and comprehensive quality control of short- and long-read sequencing data. BIOINFORMATICS ADVANCES 2025; 5:vbaf010. [PMID: 39927290 PMCID: PMC11802474 DOI: 10.1093/bioadv/vbaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Motivation Quality control of sequencing data is the first step in many sequencing workflows. Short- and long-read sequencing technologies have many commonalities with regard to quality control. Several quality control programs exist; however, none possess a feature set that is adequate for both technologies. Quality control programs aimed at Oxford Nanopore Technologies sequencing lack vital features, such as adapter searching, overrepresented sequence analysis, and duplication analysis. Results Sequali was developed to provide sequencing quality control for both short- and long-read sequencing technologies. It features adapter search, overrepresented sequence analysis, and duplication analysis and supports FASTQ and uBAM inputs. It is significantly faster than comparable sequencing quality control programs for both short- and long-read sequencing technologies. Availability and Implementation Sequali is an open-source Python application using C extensions and is freely available under the AGPL-3.0 license at https://github.com/rhpvorderman/sequali. The source code for each release is archived at zenodo: https://zenodo.org/doi/10.5281/zenodo.10822485.
Collapse
Affiliation(s)
- Ruben H P Vorderman
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden 2300RC, Netherlands
| |
Collapse
|
14
|
Cao X, Song Z, He P, Li X, Lei N, Sun Q, Wang X, Xing R, Zhao B, Yang X, Zhang Z, Zhao Y. Clinical and Mycobacterium tuberculosis strain characteristics of tuberculosis patients with diabetes mellitus in Changping District, Beijing, China. BMC Infect Dis 2025; 25:101. [PMID: 39844060 PMCID: PMC11753084 DOI: 10.1186/s12879-025-10470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a major risk factor for tuberculosis (TB), However, limited research exists on their clinical and strain characteristics. This study aims to investigate the correlation between these factors in TB-DM patients in Changping District. METHODS: Whole genome sequencing (WGS) and drug susceptibility tests (DST) were performed on culture-positive strains. Spearman correlation analysis was used to examine risk factors and the correlation between lineage, cavities, and hemoptysis in the TB-DM population. The specificity, sensitivity, and confidence intervals for predicting phenotypic drug resistance based on genotypic resistance were calculated. RESULTS Among the 3924 TB patients, 292 had DM, showing a doubling in the proportion of TB patients with DM over seven years. Among the 144 etiologically positive TB-DM cases treated at the Changping Institute for Tuberculosis Prevention and Treatment, 75% (108/144) of the patients exhibited tuberculosis lesions that formed cavities and 12.5% (18/144) with hemoptysis. A statistically significant difference in cavity formation across different age groups was observed (r = -0.198, P < 0.05). Out of the 144 etiologically positive patients, WGS successfully revived 73 MTB strains, with Lineage 2 being predominant. No statistical difference was found between lineages and the presence of cavities or hemoptysis. The DST results showed the highest resistance rates to isoniazid and streptomycin, both at 8.2% (6/73), with approximately one-quarter of the strains resistant to at least one anti-TB drug, and about half (47.1%, 8/17) resistant to first-line drugs. The study demonstrated good specificity but suboptimal sensitivity in predicting phenotypic drug resistance based on genotypic resistance. CONCLUSIONS The rising incidence of diabetes in tuberculosis patients within Changping District has intensified the spread of TB, with these patients demonstrating severe illness and high drug resistance. This study aims to develop targeted prevention and management strategies, offering crucial guidance for treating co-infections of TB and DM and controlling disease spread.
Collapse
Affiliation(s)
- Xiaolong Cao
- Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
- Beijing Changping Institute for Tuberculosis Prevention and Treatment, No. 4 He Ping Street, Changping District, Beijing, 102200, People's Republic of China
| | - Zexuan Song
- Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
- Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Ping He
- Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
- Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Xinyue Li
- Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
- Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Nan Lei
- Beijing Changping Institute for Tuberculosis Prevention and Treatment, No. 4 He Ping Street, Changping District, Beijing, 102200, People's Republic of China
| | - Qian Sun
- Beijing Changping Institute for Tuberculosis Prevention and Treatment, No. 4 He Ping Street, Changping District, Beijing, 102200, People's Republic of China
| | - Xue Wang
- Beijing Changping Institute for Tuberculosis Prevention and Treatment, No. 4 He Ping Street, Changping District, Beijing, 102200, People's Republic of China
| | - Ruida Xing
- Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Bing Zhao
- Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Xinyu Yang
- Beijing Center for Disease Prevention and Control, Beijing, 100035, China
| | - Zhiguo Zhang
- Beijing Changping Institute for Tuberculosis Prevention and Treatment, No. 4 He Ping Street, Changping District, Beijing, 102200, People's Republic of China.
| | - Yanlin Zhao
- Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China.
| |
Collapse
|
15
|
Jin J, Li Y, Liu X, Yan C, Cheng Z, Wu Y, Wang Z, Zhang D. Alternative Splicing Events and Differently Expressed Genes During Peak Mortality in Large Yellow Croaker (Larimichthys crocea) Infected with Scuticociliate. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:33. [PMID: 39833483 DOI: 10.1007/s10126-025-10413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Large yellow croaker (Larimichthys crocea) is facing various threats from bacterial, viral, and parasitic diseases, especially scuticociliate. Scuticociliate is a facultative parasite causing high mortality in various marine fishes. In this study, an artificial scuticociliate infection model was successfully established for large yellow croaker. Comparative transcriptome analysis was performed on gill tissues collected from control fish and fish at the peak of mortality following exposure to the parasite to investigate the underlying molecular mechanisms of host-parasite interactions. A total of 400, 427, and 311 differential alternative splicing (DAS) events were identified at 7 d/0 h, 8 d/0 h, and 9 d/0 h, respectively. Meanwhile, 761 differentially expressed genes (DEGs) were found, with 154 simultaneously at three time points. GO and KEGG enrichment analysis showed that DAS genes and DEGs were mainly focused on self-respire, immune, and metabolic-related pathways. The DEGs related to blood coagulation included fga, fgb, fgg, and lectin domain genes. Lectin domain genes were also involved in reducing parasite burden. Cytokines, Caspase-1, trim13, trim16, and trim39 co-participated in immune response. Notably, the complement component gene c3 was both a DEG and underwent DAS. Using STRING software, interaction regulatory networks were constructed to visualize potential hub genes, revealing 22 DEGs shared across at least two time points. These findings provide valuable insights into the immune and metabolic responses of large yellow croaker to scuticociliate infection, offering a foundational reference for identifying resistant genes and understanding fish-parasite interactions.
Collapse
Affiliation(s)
- Jian Jin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Yang Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Xiande Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Chunmei Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Zhiqiang Cheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Yannian Wu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dongling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China.
| |
Collapse
|
16
|
Lin Z, Wang Z, Zhang Y, Tan S, Masangano M, Kang M, Cao X, Huang P, Gao Y, Pei X, Ren X, He K, Liang Y, Ji G, Tian Z, Wang X, Ma X. Gene expression modules during the emergence stage of upland cotton under low-temperature stress and identification of the GhSPX9 cold-tolerance gene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109320. [PMID: 39579718 DOI: 10.1016/j.plaphy.2024.109320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Cotton originates from tropical and subtropical regions, and low temperatures are one of the main stress factors restricting its growth, particularly during the seedling stage. However, the mechanism of cold resistance is complex, and the research on gene expression modules under low temperatures during the seedling emergence stage of cotton remains unexplored, and identified vital cold-tolerant genes remain scarce. Here, we revealed the dynamic changes of differentially expressed genes during seed germination under cold stress through transcriptome analysis, with 5140 genes stably differentiating across more than five time points, among which 2826 genes are up-regulated, and 2314 genes are down-regulated. The weighted gene co-expression network analysis (WGCNA) of transcriptome profiles revealed three major cold-responsive modules and identified 98 essential node genes potentially involved in cold response. Genome-wide association analysis further confirmed that the hub gene GhSPX9 is crucial for cold tolerance. Virus-induced gene silencing in cotton demonstrated that GhSPX9 is a positive regulator of cold tolerance in cotton, with interference in its expression significantly enhancing sensitivity to cold stress in germination and seedlings. These results can be applied to identify cold tolerance loci and genes in cotton, promoting research into cold tolerance mechanisms.
Collapse
Affiliation(s)
- Ziwei Lin
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhenyu Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuzhi Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Songjuan Tan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Mayamiko Masangano
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Meng Kang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyu Cao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Peijun Huang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yu Gao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiang Ren
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yu Liang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Gaoxiang Ji
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zunzhe Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
17
|
Yu J, Zhao N, Wang Y, Ding N, Guo Z, He Z, Zhang Q, Zhang J, Yang X, Zhang M, Du X, Zhang K, Chen L. DCP1A, a MEK substrate, regulates the self-renewal and differentiation of mouse embryonic stem cells. Cell Rep 2024; 43:115058. [PMID: 39671288 DOI: 10.1016/j.celrep.2024.115058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
Mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors are widely applied to maintain pluripotency, while prolonged MEK inhibition compromises the developmental potential of mouse embryonic stem cells (ESCs). To understand the mechanism of MEK in pluripotency maintenance, we first demonstrated that MEK regulates gene expression at post-transcriptional steps. Consistently, many of the 66 MEK substrates identified by quantitative phosphoproteomics analysis are involved in RNA processing. We further confirmed that MEK1 phosphorylates S563 of DCP1A, an mRNA decapping cofactor and processing body (P body) component. DCP1A, as well as two other P body components, EDC4 and DCP2, are required for the self-renewal and differentiation of ESCs, indicating the role of P bodies in ESCs. Dephosphorylation of DCP1A S563 facilitates both self-renewal and differentiation of ESCs through promoting P body formation and RNA storage. In summary, our study identified 66 MEK substrates supporting the extracellular signal-regulated kinase (ERK)-independent function of MEK and revealed that DCP1A, phosphorylated by MEK, regulates ESC self-renewal and differentiation through modulating P body formation.
Collapse
Affiliation(s)
- Jiayu Yu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nannan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuying Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nan Ding
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhenchang Guo
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300203, China
| | - Zichan He
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qingye Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingai Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoqiong Yang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ming Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoling Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300203, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
Wang T, Tian Z, Yu M, Zhang S, Zhang M, Zhai X, Shen W, Wang J. Whole-Transcriptome Analysis Reveals the Regulatory Network of Immune Response in Dapulian Pig. Animals (Basel) 2024; 14:3546. [PMID: 39682511 DOI: 10.3390/ani14233546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
There is a consensus that indigenous pigs in China are more resistant than modern commercial pigs in terms of disease resistance. Generally, the immune response is an important part of anti-disease capability; however, the related mechanism in pigs is largely puzzling. Here, the public transcriptome data of peripheral blood mononuclear cells (PBMCs) from Dapulian (Chinese local breed) and Landrace (Commercial breed) pigs after stimulation with polyinosinic-polycytidylic acid (poly I:C, a conventional reagent used for simulation of the viral infection) were reanalyzed, and the immune response mechanism in different pig breeds was investigated from a transcriptomic perspective. Of note, through comparative analyses of Dapulian and Landrace pigs, the candidate genes involved in swine broad-spectrum resistance were identified, such as TIMD4, RNF128 and VCAM1. In addition, after differential gene expression, target gene identification and functional enrichment analyses, a potential regulatory network of miRNA genes associated with immune response was obtained in Dapulian pigs, including five miRNAs and 12 genes (such as ssc-miR-181a, ssc-miR-486, IL1R1 and NFKB2). This work provides new insights into the immune response regulation of antiviral responses in indigenous and modern commercial pigs.
Collapse
Affiliation(s)
- Tao Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhe Tian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Mubin Yu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuer Zhang
- General Station of Animal Husbandry of Shandong Province, Jinan 250100, China
- Protection of Animal Genetic Resources and Biological Breeding Engineering Research Center of Shandong Province, Jinan 250300, China
| | - Min Zhang
- General Station of Animal Husbandry of Shandong Province, Jinan 250100, China
- Protection of Animal Genetic Resources and Biological Breeding Engineering Research Center of Shandong Province, Jinan 250300, China
| | - Xiangwei Zhai
- General Station of Animal Husbandry of Shandong Province, Jinan 250100, China
- Protection of Animal Genetic Resources and Biological Breeding Engineering Research Center of Shandong Province, Jinan 250300, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
19
|
Nouruzi S, Namekawa T, Tabrizian N, Kobelev M, Sivak O, Scurll JM, Cui CJ, Ganguli D, Zoubeidi A. ASCL1 regulates and cooperates with FOXA2 to drive terminal neuroendocrine phenotype in prostate cancer. JCI Insight 2024; 9:e185952. [PMID: 39470735 PMCID: PMC11623946 DOI: 10.1172/jci.insight.185952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024] Open
Abstract
Lineage plasticity mediates resistance to androgen receptor pathway inhibitors (ARPIs) and progression from adenocarcinoma to neuroendocrine prostate cancer (NEPC), a highly aggressive and poorly understood subtype. Neuronal transcription factor ASCL1 has emerged as a central regulator of the lineage plasticity driving neuroendocrine differentiation. Here, we showed that ASCL1 was reprogrammed in ARPI-induced transition to terminal NEPC and identified that the ASCL1 binding pattern tailored the expression of lineage-determinant transcription factor combinations that underlie discrete terminal NEPC identity. Notably, we identified FOXA2 as a major cofactor of ASCL1 in terminal NEPC, which is highly expressed in ASCL1-driven NEPC. Mechanistically, FOXA2 and ASCL1 interacted and worked in concert to orchestrate terminal neuronal differentiation. We identified that prospero homeobox 1 was a target of ASCL1 and FOXA2. Targeting prospero homeobox 1 abrogated neuroendocrine characteristics and led to a decrease in cell proliferation in vitro and tumor growth in vivo. Our findings provide insights into the molecular conduit underlying the interplay between different lineage-determinant transcription factors to support the neuroendocrine identity and nominate prospero homeobox 1 as a potential target in ASCL1-high NEPC.
Collapse
Affiliation(s)
- Shaghayegh Nouruzi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Takeshi Namekawa
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Nakisa Tabrizian
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Maxim Kobelev
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Olena Sivak
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Joshua M Scurll
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Cassandra Jingjing Cui
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | - Amina Zoubeidi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Xue L, Zhao J, Liu X, Zhao T, Zhang Y, Ye H. MK-801-exposure induces increased translation efficiency and mRNA hyperacetylation of Grin2a in the mouse prefrontal cortex. Epigenetics 2024; 19:2417158. [PMID: 39460980 PMCID: PMC11520555 DOI: 10.1080/15592294.2024.2417158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Acute exposure to MK-801, the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, induces schizophrenia-like behavioural changes in juvenile male mice. However, the effects of acute MK-801 exposure on brain gene expression at the translation level remain unclear. Here, we conducted ribosome profiling analysis on the prefrontal cortex (PFC) of acute MK-801-exposed juvenile male mice. We found 357 differentially translated genes, with the N4-acetylcytidine (ac4C) consensus motif enriched in the transcripts with increased translation efficiency. Acetylated RNA immunoprecipitation sequencing revealed 148 differentially acetylated peaks, of which 121 were hyperacetylated, and 27 were hypoacetylated. Genes harbouring these peaks were enriched in pathways related to axon guidance, Hedgehog signalling pathway, neuron differentiation, and memory. Grin2a encodes an NMDA receptor subunit NMDAR2A, and its human orthologue is a strong susceptibility gene for schizophrenia. Grin2a mRNA was hyperacetylated and exhibited significantly increased translation efficiency. NMDAR2A protein level was increased in MK-801-exposed PFC. Pretreatment of Remodelin, an inhibitor of N-acetyltransferase 10, returned the NMDAR2A protein levels to normal and partially reversed schizophrenia-like behaviours of MK-801-exposed mice, shedding light on the possible role of mRNA acetylation in the aetiology of schizophrenia.
Collapse
Affiliation(s)
- Liting Xue
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jialu Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xu Liu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tian Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Li LF, Yang M, Qi Y, Gao PH, Yang SW, Zhao YT, Guo JW, Wei HY, Liu JN, Zhao JR, Huang FY, Yu L. Chloroplast genome of four Amorphophallus species: genomic features,comparative analysis, and phylogenetic relationships among Amorphophallus species. BMC Genomics 2024; 25:1122. [PMID: 39567899 PMCID: PMC11580329 DOI: 10.1186/s12864-024-11053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The genus Amorphophallus (Araceae) contains approximately 250 species, most of which have high ecological and economic significance. The chloroplast genome data and the comprehensive analysis of the chloroplast genome structure of Amorphophallus is limited. In this study, four chloroplast genomes of Amorphophallus were sequenced and assembled. For the first time, comparative analyses of chloroplast genomes were conducted on the 13 Amorphophallus species in conjunction with nine published sequences. RESULTS The Amorphophallus chloroplast genomes exhibited typical quadripartite structures with lengths ranging from 164,417 to 177,076 bp. These structures consisted of a large single copy (LSC, 90,705 - 98,561 bp), a small single copy (SSC, 14,172 - 21,575 bp), and a pair of inverted repeats (IRs, 26,225 - 35,204 bp). The genomes contain 108 - 113 unique genes, including 76 - 79 protein-coding genes, 28 - 29 tRNA genes, and 4 rRNA genes. The molecular structure, gene order, content, codon usage, long repeats, and simple sequence repeats (SSRs) within Amorphophallus were generally conserved. However, several variations in intron loss and gene expansion on the IR-SSC boundary regions were found among these 13 genomes. Four mutational hotspot regions, including trnM-atpE, atpB, atpB-rbcL and ycf1 were identified. They could identify and phylogeny future species in the genus Amorphophallus. Positive selection was found for rpl36, ccsA, rpl16, rps4, rps8, rps11, rps12, rps14, clpP, rps3, ycf1, rpl20, rps2, rps18, rps19, atpA, atpF, rpl14, rpoA, rpoC1, rpoC2 and rps15 based on the analyses of Ka/Ks ratios. Phylogenetic inferences based on the complete chloroplast genomes revealed a sister relationship between Amorphophallus and Caladieae. All Amorphophallus species formed a monophyletic evolutionary clade and were divided into three groups, including CA-II, SEA, and CA-I. Amorphophallus albus, A. krausei, A. kachinensis and A. konjac were clustered into the CA-II clade, A. paeoniifolius and A. titanum were clustered into the SEA clade, A. muelleri 'zhuyajin1', Amorphophallus sp, A. coaetaneus, A. tonkinensis and A. yunnanensis were clustered into CA- I clade. CONCLUSIONS The genome structure and gene content of Amorphophallus chloroplast genomes are consistent across various species. In this study, the structural variation and comparative genome of chloroplast genomes of Amorphophallus were comprehensively analyzed for the first time. The results provide important genetic information for species classification, identification, molecular breeding, and evolutionary exploration of the genus Amorphophallus.
Collapse
Affiliation(s)
- Li-Fang Li
- Yunnan Key Laboratory of Konjac Biology, College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Min Yang
- Yunnan Key Laboratory of Konjac Biology, College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Ying Qi
- Yunnan Key Laboratory of Konjac Biology, College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Peng-Hua Gao
- Yunnan Key Laboratory of Konjac Biology, College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Shao-Wu Yang
- Yunnan Key Laboratory of Konjac Biology, College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Yong-Teng Zhao
- Yunnan Key Laboratory of Konjac Biology, College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Jian-Wei Guo
- Yunnan Key Laboratory of Konjac Biology, College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Huan-Yu Wei
- Yunnan Key Laboratory of Konjac Biology, College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Jia-Ni Liu
- Yunnan Key Laboratory of Konjac Biology, College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Jian-Rong Zhao
- Yunnan Key Laboratory of Konjac Biology, College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Fei-Yan Huang
- Yunnan Key Laboratory of Konjac Biology, College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China.
| | - Lei Yu
- Yunnan Key Laboratory of Konjac Biology, College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China.
| |
Collapse
|
22
|
Zhang J, Liu H, Xu W, Wan X, Zhu K. Comparative analysis of chloroplast genome of Lonicera japonica cv. Damaohua. Open Life Sci 2024; 19:20220984. [PMID: 39533983 PMCID: PMC11554557 DOI: 10.1515/biol-2022-0984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Lonicera japonica is a well-known medicinal plant, and the Damaohua cultivar is one of the oldest known honeysuckle cultivars in China. The 155,151 bp chloroplast genome of this cultivar was obtained through Illumina sequencing. The genome includes a pair of inverted repeats (IRa and IRb; 23,789 bp each), a large single-copy region (88,924 bp), and a small single-copy (SSC) region (18,649 bp). In total, 127 unique genes were identified: 80 protein-coding, 39 tRNA, and 8 rRNA genes. Only ycf3 contained two introns. Eighty-nine large repetitive sequences and 54 simple sequence repeats were detected. Fifty potential RNA editing sites were predicted. Adaptive evolution analysis revealed that infA, matK, petB, petD, rbcL, rpl16, rpl2, rps3, ycf1, and ycf2 were positively selected, possibly reflecting the specific environmental adaptations of this cultivar. Sequence alignment and analysis revealed several candidate fragments for Lonicera species identification, such as the intergenic regions rpoB-petN, rbcL-accD, and psaA-ycf3. The IR region boundary and phylogenetic analysis revealed that the L. japonica cv. Damaohua chloroplast genome was most closely related to the L. japonica genome, but there were five distinct differences between the two. There are four sites with high variability between L. japonica and L. japonica cv. Damaohua with nucleotide variability (Pi) greater than 0.002, including rps2-rpoC2, atpB-rbcL, ycf1, and ycf1-trnN GUU. The differences between L. japonica and L. japonica cv. Damaohua were further confirmed by the single nucleotide polymorphism sites between these two species. Therefore, this study revealed that the chloroplast genome can serve as a universal super barcode for plant identification, which can identify differences and help distinguish Lonicera japonica from related species. An understanding of Lonicera japonica cv. Damaohua chloroplast genomics and a comparative analysis of Lonicera species will provide a scientific basis for breeding, species identification, systematic evolution analysis, and chloroplast genetic engineering research on medicinal honeysuckle plants.
Collapse
Affiliation(s)
- Jiaqiang Zhang
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Huichun Liu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Wenting Xu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Xiao Wan
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Kaiyuan Zhu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| |
Collapse
|
23
|
Sun Y, Sun Y, He X, Li S, Xu X, Feng Y, Yang J, Xie R, Sun G. Transcriptome-wide methylated RNA immunoprecipitation sequencing profiling reveals m6A modification involved in response to heat stress in Apostichopus japonicus. BMC Genomics 2024; 25:1071. [PMID: 39528936 PMCID: PMC11556200 DOI: 10.1186/s12864-024-10972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Global warming-induced environmental stresses have diverse effects on gene expression and regulation in the life processes of various aquatic organisms. N6 adenylate methylation (m6A) modifications are known to influence mRNA transcription, localization, translation, stability, splicing, and nuclear export, which are pivotal in mediating stress responses. Apostichopus japonicus is a significant species in aquaculture and a representative of benthic organisms in ecosystems, thus there is a growing need for research on its heat stress mechanism. RESULTS In this study, m6A-modified whole transcriptome profiles of the respiratory tree tissues of A. japonicus in the control (T18) and high-temperature stress (T32) groups were obtained using MeRIP-seq technology. The results showed that 7,211 common m6A peaks, and 9,459 genes containing common m6A were identified in three replicates T18 and T32 groups. The m6A peaks were found to be highly enriched in the 3' untranslated region, and the common sequence of the m6A peak was also enriched, which was shown as RRACH (R = G or A; H = A, C, or U). A total of 1,200 peaks were identified as significantly differentially enriched in the T32 group compared with the T18 group. Among them, 245 peaks were upregulated and 955 were downregulated, which indicated that high temperature stress significantly altered the methylation pattern of m6A, and there were more demethylation sites in the T32 group. Conjoint analysis of the m6A methylation modification and the transcript expression level (the MeRIP-seq and RNA-seq data) showed co-differentiated 395 genes were identified, which were subsequently divided into four groups with a predominant pattern that more genes with decreased m6A modification and up-regulated expression, including HSP70IV, EIF2AK1, etc. GO enrichment and KEGG analyses of differential m6A peak related genes and co-differentiated genes showed the genes were significantly associated with transcription process and pathways such as protein processing in the endoplasmic reticulum, Wnt signaling pathway, and mTOR signaling pathway, etc. CONCLUSION: The comparisons of m6A modification patterns and conjoint analyses of m6A modification and gene expression profiles suggest that m6A modification was involved in the regulation of heat stress-responsive genes and important functional pathways in A. japonicus in response to high-temperature stress. The study will contribute to elucidate the regulatory mechanism of m6A modification in the response of A. japonicus to environmental stress, as well as the conservation and utilization of sea cucumber resources in the context of environmental changes.
Collapse
Affiliation(s)
- Yanan Sun
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Youmei Sun
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaohua He
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Siyi Li
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yanwei Feng
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Rubiao Xie
- Shandong Huachun Fishery Co., Ltd, Dongying, 257093, China
| | - Guohua Sun
- School of Fisheries, Ludong University, Yantai, 264025, China.
| |
Collapse
|
24
|
Gao AW, El Alam G, Zhu Y, Li W, Sulc J, Li X, Katsyuba E, Li TY, Overmyer KA, Lalou A, Mouchiroud L, Sleiman MB, Cornaglia M, Morel JD, Houtkooper RH, Coon JJ, Auwerx J. High-content phenotypic analysis of a C. elegans recombinant inbred population identifies genetic and molecular regulators of lifespan. Cell Rep 2024; 43:114836. [PMID: 39368088 PMCID: PMC11996002 DOI: 10.1016/j.celrep.2024.114836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
Lifespan is influenced by complex interactions between genetic and environmental factors. Studying those factors in model organisms of a single genetic background limits their translational value for humans. Here, we mapped lifespan determinants in 85 C. elegans recombinant inbred advanced intercross lines (RIAILs). We assessed molecular profiles-transcriptome, proteome, and lipidome-and life-history traits, including lifespan, development, growth dynamics, and reproduction. RIAILs exhibited large variations in lifespan, which correlated positively with developmental time. We validated three longevity modulators, including rict-1, gfm-1, and mltn-1, among the top candidates obtained from multiomics data integration and quantitative trait locus (QTL) mapping. We translated their relevance to humans using UK Biobank data and showed that variants in GFM1 are associated with an elevated risk of age-related heart failure. We organized our dataset as a resource that allows interactive explorations for new longevity targets.
Collapse
Affiliation(s)
- Arwen W Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.
| | - Gaby El Alam
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Weisha Li
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Nagi Bioscience SA, EPFL Innovation Park, 1025 Saint-Sulpice, Switzerland
| | - Terytty Y Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53515, USA
| | - Amelia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Mouchiroud
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Nagi Bioscience SA, EPFL Innovation Park, 1025 Saint-Sulpice, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Matteo Cornaglia
- Nagi Bioscience SA, EPFL Innovation Park, 1025 Saint-Sulpice, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53515, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
25
|
Mora P, Laisné M, Bourguignon C, Rouault P, Jaspard-Vinassa B, Maître M, Gadeau AP, Renault MA, Horng S, Couffinhal T, Chapouly C. Astrocytic DLL4-NOTCH1 signaling pathway promotes neuroinflammation via the IL-6-STAT3 axis. J Neuroinflammation 2024; 21:258. [PMID: 39390606 PMCID: PMC11468415 DOI: 10.1186/s12974-024-03246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Under neuroinflammatory conditions, astrocytes acquire a reactive phenotype that drives acute inflammatory injury as well as chronic neurodegeneration. We hypothesized that astrocytic Delta-like 4 (DLL4) may interact with its receptor NOTCH1 on neighboring astrocytes to regulate astrocyte reactivity via downstream juxtacrine signaling pathways. Here we investigated the role of astrocytic DLL4 on neurovascular unit homeostasis under neuroinflammatory conditions. We probed for downstream effectors of the DLL4-NOTCH1 axis and targeted these for therapy in two models of CNS inflammatory disease. We first demonstrated that astrocytic DLL4 is upregulated during neuroinflammation, both in mice and humans, driving astrocyte reactivity and subsequent blood-brain barrier permeability and inflammatory infiltration. We then showed that the DLL4-mediated NOTCH1 signaling in astrocytes directly drives IL-6 levels, induces STAT3 phosphorylation promoting upregulation of astrocyte reactivity markers, pro-permeability factor secretion and consequent blood-brain barrier destabilization. Finally we revealed that blocking DLL4 with antibodies improves experimental autoimmune encephalomyelitis symptoms in mice, identifying a potential novel therapeutic strategy for CNS autoimmune demyelinating disease. As a general conclusion, this study demonstrates that DLL4-NOTCH1 signaling is not only a key pathway in vascular development and angiogenesis, but also in the control of astrocyte reactivity during neuroinflammation.
Collapse
Affiliation(s)
- Pierre Mora
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Margaux Laisné
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Célia Bourguignon
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Paul Rouault
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Béatrice Jaspard-Vinassa
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Marlène Maître
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, F-33000, France
| | - Alain-Pierre Gadeau
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Marie-Ange Renault
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Sam Horng
- Department of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Thierry Couffinhal
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Candice Chapouly
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France.
| |
Collapse
|
26
|
Lehle JD, Lin YH, Gomez A, Chavez L, McCarrey JR. An in vitro approach reveals molecular mechanisms underlying endocrine disruptor-induced epimutagenesis. eLife 2024; 13:RP93975. [PMID: 39361026 PMCID: PMC11449486 DOI: 10.7554/elife.93975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Endocrine disrupting chemicals (EDCs) such as bisphenol S (BPS) are xenobiotic compounds that can disrupt endocrine signaling due to steric similarities to endogenous hormones. EDCs have been shown to induce disruptions in normal epigenetic programming (epimutations) and differentially expressed genes (DEGs) that predispose disease states. Most interestingly, the prevalence of epimutations following exposure to many EDCs persists over multiple generations. Many studies have described direct and prolonged effects of EDC exposure in animal models, but many questions remain about molecular mechanisms by which EDC-induced epimutations are introduced or subsequently propagated, whether there are cell type-specific susceptibilities to the same EDC, and whether this correlates with differential expression of relevant hormone receptors. We exposed cultured pluripotent (iPS), somatic (Sertoli and granulosa), and primordial germ cell-like (PGCLC) cells to BPS and found that differential incidences of BPS-induced epimutations and DEGs correlated with differential expression of relevant hormone receptors inducing epimutations near relevant hormone response elements in somatic and pluripotent, but not germ cell types. Most interestingly, we found that when iPS cells were exposed to BPS and then induced to differentiate into PGCLCs, the prevalence of epimutations and DEGs was largely retained, however, >90% of the specific epimutations and DEGs were replaced by novel epimutations and DEGs. These results suggest a unique mechanism by which an EDC-induced epimutated state may be propagated transgenerationally.
Collapse
Affiliation(s)
- Jake D Lehle
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| | - Yu-Huey Lin
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| | - Amanda Gomez
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| | - Laura Chavez
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| |
Collapse
|
27
|
Shi MJ, Yan Y, Liu F, Zhao JX, Hou F, He SC, Zhang RP, Wang H. Identification of biological significance of different stages of varicose vein development based on mRNA sequencing. Sci Rep 2024; 14:22536. [PMID: 39341975 PMCID: PMC11438869 DOI: 10.1038/s41598-024-73691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Normal veins could develop to varicose vein (VV) by some risk factors, and might further progress to shallow vein thrombosis (SVT). However, the molecular mechanism of key genes associated with the progression and regression of VV are still not thorough enough. In this study, the healthy control (HC), VV, and SVT vascular samples were collected for transcriptome sequencing. The differentially expressed genes (DEGs) were screened by "DESeq2", including DEGs1 (HC vs. VV), DEGs2 (HC vs. SVT) and DEGs3 (VV vs. SVT). And their functional enrichment analyses were conducted by "ClusterProfiler". The receiver operating characteristic (ROC) curve was used to obtain the key genes (KGs) of the pathogenesis of VV and SVT. The qRT-PCR assay was performed to validate the expressions of KGs. Immune cell infiltration analyses were conducted based on ssGSEA method. The competitive endogenous RNAs (ceRNAs) regulatory network was constructed. The target drugs of KGs were predicted using DrugBank database. The biofunctions of DACT3 were further investigated through a series of experiments in vitro. All of these DEGs were associated with inflammation and immunity related functions. Immune cell infiltration was significantly different between VV and SVT. Six key genes including PLP2, DACT3, LRRC25, PILRA, MSX1 and APOD that were associated with the progression and regression of VV were screened. The expression of LRRC25 and PILRA was significantly negatively associated with central memory T cell, and significantly positively associated with B cell. Besides, XIST was the critical regulator of multiple KGs. Cimetidine was potential drug for VV and SVT therapy. Overexpression of DACT3 significantly inhibited the proliferation and migration of vascular smooth muscle cells (VSMCs), and affected their cell cycle and phenotypic transition. This study identified six key genes associated with the progression and regression of VV. Among them, DACT3 was proved to hinder VV progression. These findings may help to deepen understanding its underlying mechanisms.
Collapse
Affiliation(s)
- Meng-Jie Shi
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, No.256 Youyi west Road, Xi'an, 710068, Shaanxi, China
| | - Yan Yan
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, No.256 Youyi west Road, Xi'an, 710068, Shaanxi, China
| | - Fei Liu
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, No.256 Youyi west Road, Xi'an, 710068, Shaanxi, China
| | - Jin-Xing Zhao
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, No.256 Youyi west Road, Xi'an, 710068, Shaanxi, China
| | - Feng Hou
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, No.256 Youyi west Road, Xi'an, 710068, Shaanxi, China
| | - Shi-Cai He
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, No.256 Youyi west Road, Xi'an, 710068, Shaanxi, China
| | - Rui-Peng Zhang
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, No.256 Youyi west Road, Xi'an, 710068, Shaanxi, China
| | - Hui Wang
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, No.256 Youyi west Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
28
|
Du C, Zhu La ALT, Gao S, Gao W, Ma L, Bu D, Zhang W. Hepatic Transcriptome Reveals Potential Key Genes Contributing to Differential Milk Production. Genes (Basel) 2024; 15:1229. [PMID: 39336820 PMCID: PMC11431119 DOI: 10.3390/genes15091229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Despite the widespread adoption of TMR or PMR and the formulas designed to sufficiently cover the cows' requirements, individual dairy cows' milk production varies significantly. The liver is one of the most important organs in cow lactation metabolism and plays an essential role in the initiation of lactation. OBJECTIVES This study aimed to investigate the potential key genes in the liver contributing to the different milk production. METHODS We enrolled 64 cows and assigned them to high or low milk yield (MY) groups according to their first 3 weeks of milk production. We performed RNAseq for 35 liver samples with 18 from prepartum and 17 from postpartum cows. RESULTS The continuous milk yield observation showed a persistently higher milk yield in high MY cows than low MY cows in the first 3 weeks. High MY cows showed better feed conversion efficiency. We identified 795 differentially expressed genes (DGEs) in the liver of high MY cows compared with low MY cows, with up-regulated genes linked to morphogenesis and development pathways. Weighted gene co-expression network analysis (WGCNA) revealed four gene modules positively correlating with milk yield, and protein and lactose yield (p < 0.05). Using the intersected genes between the four gene modules and DEGs, we constructed the linear mixed-effects models and identified six hub genes positively associated and two hub genes negatively associated with milk yield (Coefficients > 0.25, p < 0.05). Random forest machine learning model training based on these eight hub genes could efficiently predict the milk yield (p < 0.001, R2 = 0.946). Interestingly, the expression patterns of these eight hub genes remained remarkably similar before and after parturition. CONCLUSIONS The present study indicated the critical role of liver in milk production. Activated processes involved in morphogenesis and development in liver may contribute to the higher milk production. Eight hub genes identified in this study may provide genetic research materials for dairy cow breeding.
Collapse
Affiliation(s)
- Chao Du
- College of Animal Science and Technology, Shihezi University, Shihezi 271018, China;
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - A La Teng Zhu La
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Shengtao Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010018, China; (S.G.); (W.G.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Wenshuo Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010018, China; (S.G.); (W.G.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 271018, China;
| |
Collapse
|
29
|
Almeida-Paes R, Teixeira MDM, Oliveira FAD, Almeida MDA, Almeida-Silva F, Geraldo KM, Nunes EP, Baker BM, Stajich JE, Grinsztejn B, Veloso VG, Freitas AD, Zancopé-Oliveira RM. A Cluster of Diutina catenulata Funguria in Patients with Coronavirus Disease 2019 (COVID-19) Hospitalized in a Tertiary Reference Hospital from Rio de Janeiro, Brazil. Curr Microbiol 2024; 81:338. [PMID: 39223407 DOI: 10.1007/s00284-024-03854-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
During the COVID-19 pandemic, fungal infections, especially pulmonary aspergillosis, mucormycosis, and invasive candidiasis, have emerged as a significant health concern. Beyond Candida albicans, the most common cause of invasive candidiasis, other rare ascomycetous yeast species have been described in tertiary care units, potentially posing a broader health threat. We have isolated, from September 2020 to June 2021, nine Diutina catenulata strains from urine samples of six patients. This was intriguing as this fungus had not been previously identified in our institution, nor after June 2021. Therefore, we decided to outline the clinical features of the patients with this rare pathogen, to describe phenotypic characteristics, including antifungal susceptibility profiles, of this yeast species and to identify the genetic makeup through whole-genome sequencing analysis to evaluate if this was a cluster of genetically similar D. catenulata isolates in our institution. The strains were identified through MALDI-TOF MS analyses and Sanger sequencing of two rDNA regions. All patients yielding D. catenulata from urine samples needed ventilator support and used urinary catheters during hospitalization for treatment of COVID-19. None of them had received COVID-19 vaccines. Morphological and biochemical profiles of the nine strains were largely consistent, although fluconazole susceptibility varied, ranging from 4 to 32 μg/mL. Phylogenomic analysis revealed minimal genetic variation among the isolates, with low intrapopulation variation, supported by the identification of only 84 SNPs across all strains. Therefore, we propose that the yeast strains isolated were part of a cluster of D. catenulata funguria in the context of COVID-19.
Collapse
Affiliation(s)
- Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Fiocruz, Av. Brazil 4365 - Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Marcus de Melo Teixeira
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brazil
| | - Fernanda Alves de Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Fiocruz, Av. Brazil 4365 - Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Marcos de Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Fiocruz, Av. Brazil 4365 - Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Fiocruz, Av. Brazil 4365 - Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Kim Mattos Geraldo
- Laboratório de Pesquisa Clínica em IST e Aids, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Estevão Portela Nunes
- Laboratório de Pesquisa Clínica em IST e Aids, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Bridget M Baker
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| | - Beatriz Grinsztejn
- Laboratório de Pesquisa Clínica em IST e Aids, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Valdilea Gonçalves Veloso
- Laboratório de Pesquisa Clínica em IST e Aids, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Andrea d'Avila Freitas
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Fiocruz, Av. Brazil 4365 - Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Fiocruz, Av. Brazil 4365 - Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil.
| |
Collapse
|
30
|
Wang X, Walker G, Kim KW, Stelzer-Braid S, Scotch M, Rawlinson WD. The resurgence of influenza A/H3N2 virus in Australia after the relaxation of COVID-19 restrictions during the 2022 season. J Med Virol 2024; 96:e29922. [PMID: 39295292 DOI: 10.1002/jmv.29922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
This study retrospectively analyzed the genetic characteristics of influenza A H3N2 (A/H3N2) viruses circulating in New South Wales (NSW), the Australian state with the highest number of influenza cases in 2022, and explored the phylodynamics of A/H3N2 transmission within Australia during this period. Sequencing was performed on 217 archived specimens, and A/H3N2 evolution and spread within Australia were analyzed using phylogenetic and phylodynamic methods. Hemagglutinin genes of all analyzed NSW viruses belonged to subclade 3C.2a1b.2a.2 and clustered together with the 2022 vaccine strain. Complete genome analysis of NSW viruses revealed highly frequent interclade reassortments between subclades 3C.2a1b.2a.2 and 3C.2a1b.1a. The estimated earliest introduction time of the dominant subgroup 3C.2a1b.2a.2a.1 in Australia was February 22, 2022 (95% highest posterior density: December 19, 2021-March 13, 2022), following the easing of Australian travel restrictions, suggesting a possible international source. Phylogeographic analysis revealed that Victoria drove the transmission of A/H3N2 viruses across the country during this season, while NSW did not have a dominant role in viral dissemination to other regions. This study highlights the importance of continuous surveillance and genomic characterization of influenza viruses in the postpandemic era, which can inform public health decision-making and enable early detection of novel strains with pandemic potential.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Gregory Walker
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Ki W Kim
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Sacha Stelzer-Braid
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Phoenix, Arizona, USA
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - William D Rawlinson
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| |
Collapse
|
31
|
Chitneedi PK, Hadlich F, Moreira GCM, Espinosa-Carrasco J, Li C, Plastow G, Fischer D, Charlier C, Rocha D, Chamberlain AJ, Kuehn C. eQTL-Detect: nextflow-based pipeline for eQTL detection in modular format with sharable and parallelizable scripts. NAR Genom Bioinform 2024; 6:lqae122. [PMID: 39318506 PMCID: PMC11420669 DOI: 10.1093/nargab/lqae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Bioinformatic pipelines are becoming increasingly complex with the ever-accumulating amount of Next-generation sequencing (NGS) data. Their orchestration is difficult with a simple Bash script, but bioinformatics workflow managers such as Nextflow provide a framework to overcome respective problems. This study used Nextflow to develop a bioinformatic pipeline for detecting expression quantitative trait loci (eQTL) using a DSL2 Nextflow modular syntax, to enable sharing the huge demand for computing power as well as data access limitation across different partners often associated with eQTL studies. Based on the results from a test run with pilot data by measuring the required runtime and computational resources, the new pipeline should be suitable for eQTL studies in large scale analyses.
Collapse
Affiliation(s)
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Gabriel C M Moreira
- Unit of Animal Genomics, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Jose Espinosa-Carrasco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Changxi Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, T4L 1W1 Lacombe, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Daniel Fischer
- Natural Resources Institute Finland (Luke), Green Technology, Animal and Plant Genomics and Breeding, FI-31600 Jokioinen, Finland
| | - Carole Charlier
- Unit of Animal Genomics, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Dominique Rocha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Amanda J Chamberlain
- Agriculture Victoria Research, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Christa Kuehn
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Faculty of Agricultural and Environmental Science, University Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 17493 Greifswald, Insel Riems, Germany
| |
Collapse
|
32
|
Zheng S, Zhang C, Zhou J, Zhang S, Liu Y, Jin X, Wang Y, Liu B. Daphnia sp. (Branchiopoda: Cladocera) Mitochondrial Genome Gene Rearrangement and Phylogenetic Position Within Branchiopoda. Biochem Genet 2024; 62:3030-3051. [PMID: 38063953 DOI: 10.1007/s10528-023-10594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/08/2023] [Indexed: 07/31/2024]
Abstract
In high-altitude (4500 m) freshwater lakes, Daphnia is the apex species and the dominant zooplankton. It frequently dwells in the same lake as the Gammarid. Branchiopoda, a class of Arthropoda, Crustacea, is a relatively primitive group in the subphylum Crustacea, which originated in the Cambrian period of the Paleozoic. The complete mitogenome sequence of Daphnia sp. (Branchiopoda: Cladocera) was sequenced and annotated in this study and deposited in GenBank. The sequence structure of this species was studied by comparing the original sequences with BLAST. In addition, we have also researched the mechanisms of their mitochondrial gene rearrangement by establishing a model. We have used the Bayesian inference [BI] and maximum likelihood [ML] methods to proceed with phylogenetic analysis inference, which generates identical phylogenetic topology that reveals the phylogenetic state of Daphnia. The complete mitogenome of Daphnia sp. shows that it was 15,254 bp in length and included two control regions (CRs) and 37 genes (13 protein-coding genes, 22 tRNAs and two ribosomal RNAs [16S and 12S]). In addition to tRNA-Ser (GCT), other tRNAs have a typical cloverleaf secondary structure. Meanwhile, the mitogenome of Daphnia sp. was clearly rearranged when compared to the mitogenome of typical Daphnia. In a word, we report a newly sequenced mitogenome of Daphnia sp. with a unique rearrangement phenomenon. These results will be helpful for further phylogenetic research and provide a foundation for future studies on the characteristics of the mitochondrial gene arrangement process in Daphnia.
Collapse
Affiliation(s)
- Sixu Zheng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Chi Zhang
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China.
| | - Jianshe Zhou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, Guangdong, China
| | - Yifan Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Xun Jin
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Yunpeng Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China.
| |
Collapse
|
33
|
Bo D, Feng Y, Bai Y, Li J, Wang Y, You Z, Shen J, Bai Y. Whole-Genome Resequencing Reveals Genetic Diversity and Growth Trait-Related Genes in Pinan Cattle. Animals (Basel) 2024; 14:2163. [PMID: 39123689 PMCID: PMC11310955 DOI: 10.3390/ani14152163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The breeding of high-quality beef cattle breeds is crucial for the development of animal husbandry, and whole-genome resequencing is widely applicated in the field of molecular breeding. Advantages in growth and reproductive traits exist in Pinan cattle compared with other cattle breeds, but there is limited research on its genomic mechanism. Using whole-genome resequencing, the genetic structure and genomic selection signatures in Pinan cattle were investigated in this study. Phylogenetic, cluster, and admixture analysis results indicated that Pinan cattle have a closer genetic relationship with Kholmogory cattle and China north cattle breeds. Through a selective sweep strategy, 207 and 54 candidate genes related to growth and reproduction and immunity, respectively, were identified in the Pinan cattle population. Given the crucial role of the glutamate-cysteine ligase catalytic (GCLC) gene in muscle antioxidative defense, the high frequency of allele T of the GCLC c.429 C>T locus in the Pinan cattle population might partially contribute to the advantages of Pinan cattle in growth performance. This study laid the foundation for the genetic improvement in Chinese local beef cattle and provide background for the studies on the growth and development of Pinan cattle.
Collapse
Affiliation(s)
- Dongdong Bo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yuqing Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yilin Bai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Jing Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yuanyuan Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Zerui You
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Jiameng Shen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yueyu Bai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
- Henan Animal Health Supervision, Zhengzhou 450046, China
| |
Collapse
|
34
|
Tanni AA, Sharmen F, Chakma K, Yasmin F, Akash AS, Akash MAA, Riana SH, Afrin S, Ferdous J, Sultana N, Biswas SK, Islam SMR, Mannan A. Whole-genome sequencing of Klebsiella pneumoniae isolated from clinical specimens in Chattogram, Bangladesh. Microbiol Resour Announc 2024; 13:e0044224. [PMID: 38940528 PMCID: PMC11256831 DOI: 10.1128/mra.00442-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
The emergence of multidrug-resistant Klebsiella pneumoniae (Kpn) is a global concern due to the increasing rate of mortality and hospital cost burden in the affected population. This study reports the whole-genome sequences of nine multidrug-resistant Kpn from a hospital in Chattogram city of Bangladesh.
Collapse
Affiliation(s)
- Afroza Akter Tanni
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Farjana Sharmen
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Kallyan Chakma
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Farhana Yasmin
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Al-Shahriar Akash
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Md. Ashikur Alim Akash
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Sumaiya Hafiz Riana
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Sajia Afrin
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Jannatul Ferdous
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Nahid Sultana
- Department of Microbiology, Chattogram Maa O Shishu Hospital, Agrabad, Chattogram, Bangladesh
| | - Sanjoy Kanti Biswas
- Department of Microbiology, Chattogram Maa O Shishu Hospital, Agrabad, Chattogram, Bangladesh
| | - S. M. Rafiqul Islam
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Adnan Mannan
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
35
|
Yu M, Feng Y, Yan J, Zhang X, Tian Z, Wang T, Wang J, Shen W. Transcriptomic regulatory analysis of skeletal muscle development in landrace pigs. Gene 2024; 915:148407. [PMID: 38531491 DOI: 10.1016/j.gene.2024.148407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
The development of pig skeletal muscle is a complex dynamic regulation process, which mainly includes the formation of primary and secondary muscle fibers, the remodeling of muscle fibers, and the maturation of skeletal muscle; However, the regulatory mechanism of the entire developmental process remains unclear. This study analyzed the whole-transcriptome data of skeletal muscles at 27 developmental nodes (E33-D180) in Landrace pigs, and their key regulatory factors in the development process were identified using the bioinformatics method. Firstly, we constructed a transcriptome expression map of skeletal muscle development from embryo to adulthood in Landrace pig. Subsequently, due to drastic change in gene expression, the perinatal periods including E105, D0 and D9, were focused, and the genes related to the process of muscle fiber remodeling and volume expansion were revealed. Then, though conjoint analysis with miRNA and lncRNA transcripts, a ceRNA network were identified, which consist of 11 key regulatory genes (such as CHAC1, RTN4IP1 and SESN1), 7 miRNAs and 43 lncRNAs, and they potentially play an important role in the process of muscle fiber differentiation, muscle fiber remodeling and volume expansion, intramuscular fat deposition, and other skeletal muscle developmental events. In summary, we reveal candidate genes and underlying molecular regulatory networks associated with perinatal skeletal muscle fiber type remodeling and expansion. These data provide new insights into the molecular regulation of mammalian skeletal muscle development and diversity.
Collapse
Affiliation(s)
- Mubin Yu
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanqin Feng
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiamao Yan
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyuan Zhang
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhe Tian
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Tao Wang
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Wang
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
36
|
Yang J, Xiao S, Lu L, Wang H, Jiang Y. Genomic and molecular characterization of a cyprinid herpesvirus 2 YC-01 strain isolated from gibel carp. Heliyon 2024; 10:e32811. [PMID: 39035518 PMCID: PMC11259805 DOI: 10.1016/j.heliyon.2024.e32811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is the pathogen of herpesviral hematopoietic necrosis (HVHN), causing the severe economic losses in farmed gibel carp (Carassius gibelio). Further exploration of the genome structure and potential molecular pathogenesis of CyHV-2 through complete genome sequencing, comparative genomics, and molecular characterization is required. Herein, the genome of a CyHV-2 YC-01 strain isolated from diseased gibel carp collected in Yancheng, Jiangsu Province, China was sequenced, then we analyzed the genomic structure, genetic properties, and molecular characterization. First, the complete YC-01 genome comprises 275,367 bp without terminal repeat (TR) regions, with 151 potential open reading frames (ORFs). Second, compared with other representative published strains of the genus Cyvirus, several evident variations are found in YC-01, particularly the orientation and position of ORF25 and ORF25B. ORF107 and ORF156 are considered as potential molecular genetic markers for YC-01. ORF55 (encoding thymidine kinase) might be used to distinguish YC-01 and ST-J1 from other CyHV-2 isolates. Third, phylogenetically, YC-01 clusters with the members of the genus Cyvirus (together with the other six CyHV-2 isolates). Fourth, 43 putative proteins are predicted to be functional and are mainly divided into five categories. Several conserved motifs are found in nucleotide, amino acid, and promoter sequences including cis-acting elements identification of YC-01. Finally, the potential virulence factors and linear B cell epitopes of CyHV-2 are predicted to supply possibilities for designing novel vaccines rationally. Our results provide insights for further understanding genomic structure, genetic evolution, and potential molecular mechanisms of CyHV-2.
Collapse
Affiliation(s)
- Jia Yang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Simin Xiao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yousheng Jiang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
37
|
You H, Chang F, Chen H, Wang Y, Han W. Exploring the role of CBLB in acute myocardial infarction: transcriptomic, microbiomic, and metabolomic analyses. J Transl Med 2024; 22:654. [PMID: 39004726 PMCID: PMC11247792 DOI: 10.1186/s12967-024-05425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Specific alterations in gut microbiota and metabolites have been linked to AMI, with CBLB potentially playing an essential role. However, the precise interactions remain understudied, creating a significant gap in our understanding. This study aims to address this by exploring these interactions in CBLB-intervened AMI mice using transcriptome sequencing, 16 S rDNA, and non-targeted metabolite analysis. METHODS To probe the therapeutic potential and mechanistic underpinnings of CBLB overexpression in AMI, we utilized an integrative multi-omics strategy encompassing transcriptomics, metabolomics, and 16s rDNA sequencing. We selected these particular methods as they facilitate a holistic comprehension of the intricate interplay between the host and its microbiota, and the potential effects on the host's metabolic and gene expression profiles. The uniqueness of our investigation stems from utilizing a multi-omics approach to illuminate the role of CBLB in AMI, an approach yet unreported to the best of our knowledge. Our experimental protocol encompassed transfection of CBLB lentivirus-packaged vectors into 293T cells, followed by subsequent intervention in AMI mice. Subsequently, we conducted pathological staining, fecal 16s rDNA sequencing, and serum non-targeted metabolome sequencing. We applied differential expression analysis to discern differentially expressed genes (DEGs), differential metabolites, and differential microbiota. We performed protein-protein interaction analysis to identify core genes, and conducted correlation studies to clarify the relationships amongst these core genes, paramount metabolites, and key microbiota. RESULTS Following the intervention of CBLB in AMI, we observed a significant decrease in inflammatory cell infiltration and collagen fiber formation in the infarcted region of mice hearts. We identified key changes in microbiota, metabolites, and DEGs that were associated with this intervention. The findings revealed that CBLB has a significant correlation with DEGs, differential metabolites and microbiota, respectively. This suggests it could play a pivotal role in the regulation of AMI. CONCLUSION This study confirmed the potential of differentially expressed genes, metabolites, and microbiota in AMI regulation post-CBLB intervention. Our findings lay groundwork for future exploration of CBLB's role in AMI, suggesting potential therapeutic applications and novel research directions in AMI treatment strategies.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Fengjun Chang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Haichao Chen
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Yi Wang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Wenqi Han
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China.
| |
Collapse
|
38
|
Aisha J, Sangeeta K, Yenugu S. Effect of Spag11a gene knockout on the epididymis in mice: A histopathological and molecular analyses. Cell Biochem Funct 2024; 42:e4096. [PMID: 39020527 DOI: 10.1002/cbf.4096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The sperm-associated antigen 11a (Spag11a) gene is exclusively expressed in the caput epididymis. Our previous studies demonstrated that small interfering RNA (siRNA)-mediated ablation of this gene resulted in increased proliferation of epididymal epithelial cells. Further, active immunization-mediated ablation of SPAG11A protein increased the susceptibility of male reproductive tract tissues to diethylnitrosamine (DEN)-induced tumorigenesis. In this study, we report that the caput epididymis of Spag11a knockout mice displayed hyperplasia and inflammation, while the caput epididymis of wild-type mice exhibited normal anatomical structure. Global transcriptome analyses in the caput epididymis of knockout mice indicated differential expression of genes involved in a variety of cellular processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses suggested that the absence of Spag11a may activate microRNAs associated with cancer, chemical carcinogenesis-receptor activation, and chemical carcinogenesis-DNA adducts pathways; which may contribute to the promotion of tumorigenesis in the epididymis. The susceptibility of caput epididymis to chemically induced carcinogenesis in Spag11a knockout mice was analyzed. Histological analyses indicated that while the epididymis of wild-type mice did not show any signs of tumorigenesis, knockout mice displayed hyperplasia, anaplasia, dysplasia, neoplasia, and inflammation in the caput epididymis. Our results provide concrete evidence that deletion of Spag11a induces histopathological and molecular changes that contribute to tumorigenesis. It is possible that the expression of Spag11a gene could be one of the reasons for the rarity of epididymal cancers. The involvement of an epididymal gene in tumorigenesis is being demonstrated for the first time.
Collapse
Affiliation(s)
- Jamil Aisha
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| | - Kumari Sangeeta
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
39
|
Guo Y, Garber PA, Yang Y, Wang S, Zhou J. The Conservation Implications of the Gut Microbiome for Protecting the Critically Endangered Gray Snub-Nosed Monkey ( Rhinopithecus brelichi). Animals (Basel) 2024; 14:1917. [PMID: 38998029 PMCID: PMC11240530 DOI: 10.3390/ani14131917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
The gut microbiota plays a crucial role in regulating energy metabolism, facilitating nutrient absorption, and supporting immune function, thereby assisting the host in adapting to seasonal dietary changes. Here, we compare the gut microbiome composition of wild gray snub-nosed monkeys during winter (from October to December) and spring (from January to March) to understand differences in seasonal nutrient intake patterns. Snub-nosed monkeys are foregut fermenters and consume difficult-to-digest carbohydrates and lichen. To examine the digestive adaptations of gray snub-nosed monkeys, we collected 14 fresh fecal samples for DNA analysis during the winter and spring. Based on 16S rRNA sequencing, metagenomic sequencing, and functional metagenomic analyses, we identified that Firmicutes, Actinobacteria, Verrucomicrobia, and Bacteroidetes constitute a keystone bacterial group in the gut microbiota during winter and spring and are responsible for degrading cellulose. Moreover, the transition in dietary composition from winter to spring was accompanied by changes in gut microbiota composition, demonstrating adaptive responses to varying food sources and availability. In winter, the bacterial species of the genera Streptococcus were found in higher abundance. At the functional level, these bacteria are involved in fructose and mannose metabolism and galactose metabolism c-related pathways, which facilitate the breakdown of glycogen, starch, and fiber found in fruits, seeds, and mature leaves. During spring, there was an increased abundance of bacteria species from the Prevotella and Lactobacillus genera, which aid the digestion of protein-rich buds. Combined, these findings reveal how the gut microbiota adjusts to fluctuations in energy balance and nutrient intake across different seasons in this critically endangered species. Moreover, we also identified Pseudomonas in two samples; the presence of potential pathogens within the gut could pose a risk to other troop members. Our findings highlight the necessity of a conservation plan that focuses on protecting vegetation and implementing measures to prevent disease transmission for this critically endangered species.
Collapse
Affiliation(s)
- Yanqing Guo
- College of Life Sciences, Northwest University, Xi'an 710072, China
| | - Paul A Garber
- Program in Ecology, Evolution and Conservation Biology, Department of Anthropology, University of Illinois, Urbana, IL 61801, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671000, China
| | - Yijun Yang
- College of Life Sciences, Northwest University, Xi'an 710072, China
| | - Siwei Wang
- School of Karst Science, Guizhou Normal University, Guiyang 550003, China
| | - Jiang Zhou
- School of Karst Science, Guizhou Normal University, Guiyang 550003, China
| |
Collapse
|
40
|
Chang CH, Liu F, Militi S, Hester S, Nibhani R, Deng S, Dunford J, Rendek A, Soonawalla Z, Fischer R, Oppermann U, Pauklin S. The pRb/RBL2-E2F1/4-GCN5 axis regulates cancer stem cell formation and G0 phase entry/exit by paracrine mechanisms. Nat Commun 2024; 15:3580. [PMID: 38678032 PMCID: PMC11055877 DOI: 10.1038/s41467-024-47680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
The lethality, chemoresistance and metastatic characteristics of cancers are associated with phenotypically plastic cancer stem cells (CSCs). How the non-cell autonomous signalling pathways and cell-autonomous transcriptional machinery orchestrate the stem cell-like characteristics of CSCs is still poorly understood. Here we use a quantitative proteomic approach for identifying secreted proteins of CSCs in pancreatic cancer. We uncover that the cell-autonomous E2F1/4-pRb/RBL2 axis balances non-cell-autonomous signalling in healthy ductal cells but becomes deregulated upon KRAS mutation. E2F1 and E2F4 induce whereas pRb/RBL2 reduce WNT ligand expression (e.g. WNT7A, WNT7B, WNT10A, WNT4) thereby regulating self-renewal, chemoresistance and invasiveness of CSCs in both PDAC and breast cancer, and fibroblast proliferation. Screening for epigenetic enzymes identifies GCN5 as a regulator of CSCs that deposits H3K9ac onto WNT promoters and enhancers. Collectively, paracrine signalling pathways are controlled by the E2F-GCN5-RB axis in diverse cancers and this could be a therapeutic target for eliminating CSCs.
Collapse
Affiliation(s)
- Chao-Hui Chang
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Feng Liu
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Stefania Militi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Svenja Hester
- Target Discovery Institute, Nuffield Department of Medicine, Old Road, University of Oxford, Oxford, OX3 7FZ, UK
| | - Reshma Nibhani
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - James Dunford
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Aniko Rendek
- Department of Histopathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Zahir Soonawalla
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals NHS, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, Old Road, University of Oxford, Oxford, OX3 7FZ, UK
| | - Udo Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK.
| |
Collapse
|
41
|
Zhu B, Gao T, He Y, Qu Y, Zhang X. Population Genomics of Commercial Fish Sebastes schlegelii of the Bohai and Yellow Seas (China) Using a Large SNP Panel from GBS. Genes (Basel) 2024; 15:534. [PMID: 38790163 PMCID: PMC11121270 DOI: 10.3390/genes15050534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Sebastes schlegelii is one of the most commercially important marine fish in the northwestern Pacific. However, little information about the genome-wide genetic characteristics is available for S. schlegelii individuals from the Bohai and Yellow Seas. In this study, a total of 157,778, 174,480, and 188,756 single-nucleotide polymorphisms from Dalian (DL), Yantai (YT), and Qingdao (QD) coastal waters of China were, respectively, identified. Sixty samples (twenty samples per population) were clustered together, indicating shallow structures and close relationships with each other. The observed heterozygosity, expected heterozygosity, polymorphism information content, and nucleotide diversity ranged from 0.14316 to 0.17684, from 0.14035 to 0.17145, from 0.20672 to 0.24678, and from 7.63 × 10-6 to 8.77 × 10-6, respectively, indicating the slight difference in genetic diversity among S. schlegelii populations, and their general genetic diversity was lower compared to other marine fishes. The population divergence showed relatively low levels (from 0.01356 to 0.01678) between S. schlegelii populations. Dispersing along drifting seaweeds, as well as the ocean current that flows along the western and northern coasts of the Yellow Sea and southward along the eastern coast of China might be the major reasons for the weak genetic differentiation. These results form the basis of the population genetic characteristics of S. schlegelii based on GBS (Genotyping by Sequencing). In addition to basic population genetic information, our results provid a theoretical basis for further studies aimed at protecting and utilizing S. schlegelii resources.
Collapse
Affiliation(s)
- Beiyan Zhu
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (B.Z.); (T.G.); (X.Z.)
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (B.Z.); (T.G.); (X.Z.)
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| | - Yinquan Qu
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (B.Z.); (T.G.); (X.Z.)
| | - Xiumei Zhang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (B.Z.); (T.G.); (X.Z.)
| |
Collapse
|
42
|
Vos PD, Gandadireja AP, Rossetti G, Siira SJ, Mantegna JL, Filipovska A, Rackham O. Mutational rescue of the activity of high-fidelity Cas9 enzymes. CELL REPORTS METHODS 2024; 4:100756. [PMID: 38608689 PMCID: PMC11046035 DOI: 10.1016/j.crmeth.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/02/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Programmable DNA endonucleases derived from bacterial genetic defense systems, exemplified by CRISPR-Cas9, have made it significantly easier to perform genomic modifications in living cells. However, unprogrammed, off-target modifications can have serious consequences, as they often disrupt the function or regulation of non-targeted genes and compromise the safety of therapeutic gene editing applications. High-fidelity mutants of Cas9 have been established to enable more accurate gene editing, but these are typically less efficient. Here, we merge the strengths of high-fidelity Cas9 and hyperactive Cas9 variants to provide an enzyme, which we dub HyperDriveCas9, that yields the desirable properties of both parents. HyperDriveCas9 functions efficiently in mammalian cells and introduces insertion and deletion mutations into targeted genomic regions while maintaining a favorable off-target profile. HyperDriveCas9 is a precise and efficient tool for gene editing applications in science and medicine.
Collapse
Affiliation(s)
- Pascal D Vos
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Andrianto P Gandadireja
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Giulia Rossetti
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
| | - Stefan J Siira
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
| | - Jessica L Mantegna
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Aleksandra Filipovska
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
| | - Oliver Rackham
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia.
| |
Collapse
|
43
|
Qing KX, Lo ACY, Lu S, Zhou Y, Yang D, Yang D. Integrated bioinformatics analysis of retinal ischemia/reperfusion injury in rats with potential key genes. BMC Genomics 2024; 25:367. [PMID: 38622534 PMCID: PMC11017533 DOI: 10.1186/s12864-024-10288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
The tissue damage caused by transient ischemic injury is an essential component of the pathogenesis of retinal ischemia, which mainly hinges on the degree and duration of interruption of the blood supply and the subsequent damage caused by tissue reperfusion. Some research indicated that the retinal injury induced by ischemia-reperfusion (I/R) was related to reperfusion time.In this study, we screened the differentially expressed circRNAs, lncRNAs, and mRNAs between the control and model group and at different reperfusion time (24h, 72h, and 7d) with the aid of whole transcriptome sequencing technology, and the trend changes in time-varying mRNA, lncRNA, circRNA were obtained by chronological analysis. Then, candidate circRNAs, lncRNAs, and mRNAs were obtained as the intersection of differentially expression genes and trend change genes. Importance scores of the genes selected the key genes whose expression changed with the increase of reperfusion time. Also, the characteristic differentially expressed genes specific to the reperfusion time were analyzed, key genes specific to reperfusion time were selected to show the change in biological process with the increase of reperfusion time.As a result, 316 candidate mRNAs, 137 candidate lncRNAs, and 31 candidate circRNAs were obtained by the intersection of differentially expressed mRNAs, lncRNAs, and circRNAs with trend mRNAs, trend lncRNAs and trend circRNAs, 5 key genes (Cd74, RT1-Da, RT1-CE5, RT1-Bb, RT1-DOa) were selected by importance scores of the genes. The result of GSEA showed that key genes were found to play vital roles in antigen processing and presentation, regulation of the actin cytoskeleton, and the ribosome. A network included 4 key genes (Cd74, RT1-Da, RT1-Bb, RT1-DOa), 34 miRNAs and 48 lncRNAs, and 81 regulatory relationship axes, and a network included 4 key genes (Cd74, RT1-Da, RT1-Bb, RT1-DOa), 9 miRNAs and 3 circRNAs (circRNA_10572, circRNA_03219, circRNA_11359) and 12 regulatory relationship axes were constructed, the subcellular location, transcription factors, signaling network, targeted drugs and relationship to eye diseases of key genes were predicted. 1370 characteristic differentially expressed mRNAs (spec_24h mRNA), 558 characteristic differentially expressed mRNAs (spec_72h mRNA), and 92 characteristic differentially expressed mRNAs (spec_7d mRNA) were found, and their key genes and regulation networks were analyzed.In summary, we screened the differentially expressed circRNAs, lncRNAs, and mRNAs between the control and model groups and at different reperfusion time (24h, 72h, and 7d). 5 key genes, Cd74, RT1-Da, RT1-CE5, RT1-Bb, RT1-DOa, were selected. Key genes specific to reperfusion time were selected to show the change in biological process with the increased reperfusion time. These results provided theoretical support and a reference basis for the clinical treatment.
Collapse
Affiliation(s)
- Kai-Xiong Qing
- Department of Cardiac & Vascular Surgery, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan Province, China
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Siduo Lu
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan Province, China
| | - You Zhou
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan Province, China
| | - Dan Yang
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan Province, China
| | - Di Yang
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
44
|
Zou M, Lin A, Wang Y, Yang D, Liu X. The chromosome-level genome assembly of the giant dobsonfly Acanthacorydalis orientalis (McLachlan, 1899). Sci Data 2024; 11:351. [PMID: 38589366 PMCID: PMC11001986 DOI: 10.1038/s41597-024-03194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Acanthacorydalis orientalis (McLachlan, 1899) (Megaloptera: Corydalidae) is an important freshwater-benthic invertebrate species that serves as an indicator for water-quality biomonitoring and is valuable for conservation from East Asia. Here, a high-quality reference genome for A. orientalis was constructed using Oxford Nanopore sequencing and High throughput Chromosome Conformation Capture (Hi-C) technology. The final genome size is 547.98 Mb, with the N50 values of contig and scaffold being 7.77 Mb and 50.53 Mb, respectively. The longest contig and scaffold are 20.57 Mb and 62.26 Mb in length, respectively. There are 99.75% contigs anchored onto 13 pseudo-chromosomes. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis showed that the completeness of the genome assembly is 99.01%. There are 10,977 protein-coding genes identified, of which 84.00% are functionally annotated. The genome contains 44.86% repeat sequences. This high-quality genome provides substantial data for future studies on population genetics, aquatic adaptation, and evolution of Megaloptera and other related insect groups.
Collapse
Affiliation(s)
- Mingming Zou
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Aili Lin
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Yuyu Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China.
| | - Ding Yang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Xingyue Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
45
|
Chen P, Hu T, Zheng Z, E. Garfield R, Yang J. Characteristics of cervicovaginal microflora at different cervical maturity during late pregnancy: A nested case-control study. PLoS One 2024; 19:e0300510. [PMID: 38507418 PMCID: PMC10954133 DOI: 10.1371/journal.pone.0300510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE The mechanism of cervical ripening in late pregnancy is still unclear. The vaginal microbiome has been reported to correlate with the preterm birth and short cervix in pregnant women. However, the associations between the cervical maturity and the vaginal microbiome are still poorly understood. We aim to analyze the cervicovaginal microflora in women with ripe cervix and in those who are unripe when delivering at term. METHODS Cervicovaginal swabs were collected between 40 and 41 weeks of gestation from the following 2 different groups of patients: ripe group (n = 25) and unripe group (n = 25). Samples were tested using 16S ribosomal RNA gene high-throughput sequencing and analyzed by bioinformatics platform. RESULTS This study highlights the relationship between cervical maturity during late pregnancy and the composition of the cervicovaginal microflora. Both α- and β-diversity analyses demonstrated significant differences between women with a ripe cervix and those with an unripe cervix. Notably, the Lactobacillus profile was found to be closely linked to cervical maturity. There was a significant difference in the vaginal community state type, with CST IV being more prevalent in women with an unripe cervix. Furthermore, the association between CST IV and the unripe cervix group, as indicated by the odds ratio of 8.6, underscores its relevance in evaluating cervical maturity, when compared to other Lactobacillus-dominant community state types. Additionally, several bacterial taxa, particularly Lactobacillus, exhibited differential relative abundances between the two groups. CONCLUSION This study provided significant evidence regarding the relationship between the vaginal microbiome and cervical maturity, highlighting the differential diversity, community state types, and specific bacterial taxa, such as Lactobacillus, that are associated with cervical maturation status. These findings contributed to our understanding of the dynamics of the cervicovaginal microflora during late pregnancy and its implications for cervical health.
Collapse
Affiliation(s)
- Ping Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tingting Hu
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zheng Zheng
- Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
| | - Robert E. Garfield
- Department of Obstetrics and Gynecology, University of Arizona College of Medicine Phoenix, Phoenix, AZ, United States of America
| | - Jinying Yang
- Department of Obstetrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| |
Collapse
|
46
|
Lin P, Chen W, Long Z, Yu J, Yang J, Xia Z, Wu Q, Min X, Tang J, Cui Y, Liu F, Wang C, Zheng J, Li W, Rich JN, Li L, Xie Q. RBBP6 maintains glioblastoma stem cells through CPSF3-dependent alternative polyadenylation. Cell Discov 2024; 10:32. [PMID: 38503731 PMCID: PMC10951364 DOI: 10.1038/s41421-024-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/29/2024] [Indexed: 03/21/2024] Open
Abstract
Glioblastoma is one of the most lethal malignant cancers, displaying striking intratumor heterogeneity, with glioblastoma stem cells (GSCs) contributing to tumorigenesis and therapeutic resistance. Pharmacologic modulators of ubiquitin ligases and deubiquitinases are under development for cancer and other diseases. Here, we performed parallel in vitro and in vivo CRISPR/Cas9 knockout screens targeting human ubiquitin E3 ligases and deubiquitinases, revealing the E3 ligase RBBP6 as an essential factor for GSC maintenance. Targeting RBBP6 inhibited GSC proliferation and tumor initiation. Mechanistically, RBBP6 mediated K63-linked ubiquitination of Cleavage and Polyadenylation Specific Factor 3 (CPSF3), which stabilized CPSF3 to regulate alternative polyadenylation events. RBBP6 depletion induced shortening of the 3'UTRs of MYC competing-endogenous RNAs to release miR-590-3p from shortened UTRs, thereby decreasing MYC expression. Targeting CPSF3 with a small molecular inhibitor (JTE-607) reduces GSC viability and inhibits in vivo tumor growth. Collectively, RBBP6 maintains high MYC expression in GSCs through regulation of CPSF3-dependent alternative polyadenylation, providing a potential therapeutic paradigm for glioblastoma.
Collapse
Affiliation(s)
- Peng Lin
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Wenyan Chen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Zhilin Long
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jichuan Yu
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jiayao Yang
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhen Xia
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinyu Min
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Jing Tang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ya Cui
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Lei Li
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Qi Xie
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
47
|
Shen D, Lv X, Zhang H, Fei C, Feng J, Zhou J, Cao L, Ying Y, Li N, Ma X. Association between Clinical Characteristics and Microbiota in Bronchiectasis Patients Based on Metagenomic Next-Generation Sequencing Technology. Pol J Microbiol 2024; 73:59-68. [PMID: 38437464 PMCID: PMC10911701 DOI: 10.33073/pjm-2024-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/15/2024] [Indexed: 03/06/2024] Open
Abstract
This study aimed to investigate the disparities between metagenomic next-generation sequencing (mNGS) and conventional culture results in patients with bronchiectasis. Additionally, we sought to investigate the correlation between the clinical characteristics of patients and their microbiome profiles. The overarching goal was to enhance the effective management and treatment of bronchiectasis patients, providing a theoretical foundation for healthcare professionals. A retrospective survey was conducted on 67 bronchiectasis patients admitted to The First Hospital of Jiaxing from October 2019 to March 2023. Clinical baseline information, inflammatory indicators, and pathogen detection reports, including mNGS, conventional blood culture, bronchoalveolar lavage fluid (BALF) culture, and sputum culture results, were collected. By comparing the results of mNGS and conventional culture, the differences in pathogen detection rate and pathogen types were explored, and the diagnostic performance of mNGS compared to conventional culture was evaluated. Based on the various pathogens detected by mNGS, the association between clinical characteristics of bronchiectasis patients and mNGS microbiota results was analyzed. The number and types of pathogens detected by mNGS were significantly larger than those detected by conventional culture. The diagnostic efficacy of mNGS was significantly superior to conventional culture for all types of pathogens, particularly in viral detection (p < 0.01). Regarding pathogen detection rate, the bacteria with the highest detection rate were Pseudomonas aeruginosa (17/58) and Haemophilus influenzae (11/58); the fungus with the highest detection rate was Aspergillus fumigatus (10/21), and the virus with the highest detection rate was human herpes virus 4 (4/11). Differences were observed between the positive and negative groups for P. aeruginosa in terms of common scoring systems for bronchiectasis and whether the main symptom of bronchiectasis manifested as thick sputum (p < 0.05). Significant distinctions were also noted between the positive and negative groups for A. fumigatus regarding Reiff score, neutrophil percentage, bronchiectasis etiology, and alterations in treatment plans following mNGS results reporting (p < 0.05). Notably, 70% of patients with positive A. fumigatus infection opted to change their treatment plans. The correlation study between clinical characteristics of bronchiectasis patients and mNGS microbiological results revealed that bacteria, such as P. aeruginosa, and fungi, such as A. fumigatus, were associated with specific clinical features of patients. This underscored the significance of mNGS in guiding personalized treatment approaches. mNGS could identify multiple pathogens in different types of bronchiectasis samples and was a rapid and effective diagnostic tool for pathogen identification. Its use was recommended for diagnosing the causes of infections in bronchiectasis patients.
Collapse
Affiliation(s)
- Dongfeng Shen
- The Intensive Care of Unit, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Xiaodong Lv
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Hui Zhang
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Chunyuan Fei
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Jing Feng
- Department of Respiratory, Zhengzhou YIHE Hospital, Zhengzhou, China
| | - Jiaqi Zhou
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Linfeng Cao
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Ying Ying
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Na Li
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Xiaolong Ma
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| |
Collapse
|
48
|
Zhu La ALT, Li D, Cheng Z, Wen Q, Hu D, Jin X, Liu D, Feng Y, Guo Y, Cheng G, Hu Y. Enzymatically prepared neoagarooligosaccharides improve gut health and function through promoting the production of spermidine by Faecalibacterium in chickens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169057. [PMID: 38056640 DOI: 10.1016/j.scitotenv.2023.169057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Maintaining animal gut health through modulating the gut microbiota is a constant need when antibiotics are not used in animal feed during the food animal production process. Prebiotics is regarded as one of the most promising antibiotic alternatives for such purpose. As an attractive prebiotic, the role and mechanisms of neoagarooligosaccharides (NAOS) in promoting animal growth and gut health have not been elucidated. In this study, we first cloned and expressed marine bacterial β-agarase in yeast to optimize the NAOS preparation and then investigated the role and the underlying mechanisms of the prepared NAOS in improving chicken gut health and function. The marine bacterial β-agarase PDE13B was expressed in Pichia pastoris GS115 and generated even-numbered NAOS. Dietary the prepared NAOS promoted chicken growth and improved intestinal morphology, its barrier, and digestion capabilities, and absorption function. Metagenomic analysis indicated that NAOS modulated the chicken gut microbiota structure and function, and microbial interactions, and promoted the growth of spermidine-producing bacteria especially Faecalibacterium. Through integration of gut metagenome, gut content metabolome, and gut tissue transcriptome, we established connections among NAOS, gut microbes, spermidine, and chicken gut gene expression. The spermidine regulation of genes related to autophagy, immunity, and inflammation was further confirmed in chicken embryo intestinal epithelium cells. We also verified that NAOS can be utilized by Faecalibacterium prausnitzii to grow and produce spermidine in in vitro experiments. Collectively, we provide a systematic investigation of the role of NAOS in regulating gut health and demonstrate the microbial spermidine-mediated mechanism involved in prebiotic effects of NAOS, which lays foundation for future use of NAOS as a new antibiotic alternative in animal production.
Collapse
Affiliation(s)
- A La Teng Zhu La
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqian Cheng
- Huzhou Inspection & Quarantine Comprehensive Technology Center, Zhejiang 313000, China
| | - Qiu Wen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Die Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
49
|
Dube F, Delhomme N, Martin F, Hinas A, Åbrink M, Svärd S, Tydén E. Gene co-expression network analysis reveal core responsive genes in Parascaris univalens tissues following ivermectin exposure. PLoS One 2024; 19:e0298039. [PMID: 38359071 PMCID: PMC10868809 DOI: 10.1371/journal.pone.0298039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Anthelmintic resistance in equine parasite Parascaris univalens, compromises ivermectin (IVM) effectiveness and necessitates an in-depth understanding of its resistance mechanisms. Most research, primarily focused on holistic gene expression analyses, may overlook vital tissue-specific responses and often limit the scope of novel genes. This study leveraged gene co-expression network analysis to elucidate tissue-specific transcriptional responses and to identify core genes implicated in the IVM response in P. univalens. Adult worms (n = 28) were exposed to 10-11 M and 10-9 M IVM in vitro for 24 hours. RNA-sequencing examined transcriptional changes in the anterior end and intestine. Differential expression analysis revealed pronounced tissue differences, with the intestine exhibiting substantially more IVM-induced transcriptional activity. Gene co-expression network analysis identified seven modules significantly associated with the response to IVM. Within these, 219 core genes were detected, largely expressed in the intestinal tissue and spanning diverse biological processes with unspecific patterns. After 10-11 M IVM, intestinal tissue core genes showed transcriptional suppression, cell cycle inhibition, and ribosomal alterations. Interestingly, genes PgR028_g047 (sorb-1), PgB01_g200 (gmap-1) and PgR046_g017 (col-37 & col-102) switched from downregulation at 10-11 M to upregulation at 10-9 M IVM. The 10-9 M concentration induced expression of cuticle and membrane integrity core genes in the intestinal tissue. No clear core gene patterns were visible in the anterior end after 10-11 M IVM. However, after 10-9 M IVM, the anterior end mostly displayed downregulation, indicating disrupted transcriptional regulation. One interesting finding was the non-modular calcium-signaling gene, PgR047_g066 (gegf-1), which uniquely connected 71 genes across four modules. These genes were enriched for transmembrane signaling activity, suggesting that PgR047_g066 (gegf-1) could have a key signaling role. By unveiling tissue-specific expression patterns and highlighting biological processes through unbiased core gene detection, this study reveals intricate IVM responses in P. univalens. These findings suggest alternative drug uptake of IVM and can guide functional validations to further IVM resistance mechanism understanding.
Collapse
Affiliation(s)
- Faruk Dube
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Frida Martin
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Andrea Hinas
- Department of Cell and Molecular Biology, Uppsala University, Uppsala Sweden
| | - Magnus Åbrink
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala Sweden
| | - Eva Tydén
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
50
|
Vozenin MC, Alaghband Y, Drayson OGG, Piaget F, Leavitt R, Allen BD, Doan NL, Rostomyan T, Stabilini A, Reggiani D, Hajdas W, Yukihara EG, Norbury JW, Bailat C, Desorgher L, Baulch JE, Limoli CL. More May Not be Better: Enhanced Spacecraft Shielding May Exacerbate Cognitive Decrements by Increasing Pion Exposures during Deep Space Exploration. Radiat Res 2024; 201:93-103. [PMID: 38171489 DOI: 10.1667/rade-23-00241.1.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The pervasiveness of deep space radiation remains a confounding factor for the transit of humans through our solar system. Spacecraft shielding both protects astronauts but also contributes to absorbed dose through galactic cosmic ray interactions that produce secondary particles. The resultant biological effects drop to a minimum for aluminum shielding around 20 g/cm2 but increase with additional shielding. The present work evaluates for the first time, the impact of secondary pions on central nervous system functionality. The fractional pion dose emanating from thicker shielded spacecraft regions could contribute up to 10% of the total absorbed radiation dose. New results from the Paul Scherrer Institute have revealed that low dose exposures to 150 MeV positive and negative pions, akin to a Mars mission, result in significant, long-lasting cognitive impairments. These surprising findings emphasize the need to carefully evaluate shielding configurations to optimize safe exposure limits for astronauts during deep space travel.
Collapse
Affiliation(s)
- Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Yasaman Alaghband
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Filippo Piaget
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Ron Leavitt
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | | | | | | | | | | | | | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| |
Collapse
|