1
|
Nicholas CA, Tensun FA, Evans SA, Toole KP, Prendergast JE, Broncucia H, Hesselberth JR, Gottlieb PA, Wells KL, Smith MJ. Activated polyreactive B cells are clonally expanded in autoantibody positive and patients with recent-onset type 1 diabetes. Cell Rep 2025; 44:115425. [PMID: 40117290 PMCID: PMC12068228 DOI: 10.1016/j.celrep.2025.115425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/21/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Autoreactive B cells play an important but ill-defined role in autoimmune type 1 diabetes (T1D). We isolated pancreatic islet antigen-reactive B cells from the peripheral blood of non-diabetic autoantibody-negative first-degree relatives, autoantibody-positive, and recent-onset T1D donors. Single-cell RNA sequencing analysis revealed that islet antigen-reactive B cells from autoantibody-positive and T1D donors had altered gene expression in pathways associated with B cell signaling and inflammation. Additionally, BCR sequencing uncovered a similar shift in islet antigen-reactive B cell repertoires among autoantibody-positive and T1D donors where greater clonal expansion was also observed. Notably, a substantial fraction of islet antigen-reactive B cells in autoantibody-positive and T1D donors appeared to be polyreactive, which was corroborated by analysis of recombinant monoclonal antibodies. These results expand our understanding of autoreactive B cell phenotypes during T1D and identify unique BCR repertoire changes that may serve as biomarkers for increased disease risk.
Collapse
Affiliation(s)
- Catherine A Nicholas
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Fatima A Tensun
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Spencer A Evans
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin P Toole
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jessica E Prendergast
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hali Broncucia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Peter A Gottlieb
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Mia J Smith
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Fang C, Zhang X, Yang L, Sun L, Lu Y, Liu Y, Guo J, Wang M, Tan Y, Zhang J, Gao X, Zhu L, Liu G, Ren M, Xiao J, Zhang F, Ma S, Zhao R, Mei X, Qi D. Transcriptomic and morphologic vascular aberrations underlying FCDIIb etiology. Nat Commun 2025; 16:3320. [PMID: 40199880 PMCID: PMC11978774 DOI: 10.1038/s41467-025-58535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
Focal cortical dysplasia type II (FCDII) is a major cause of drug-resistant epilepsy, but genetic factors explain only some cases, suggesting other mechanisms. In this study, we conduct a molecular analysis of brain lesions and adjacent areas in FCDIIb patients. By analyzing over 217,506 single-nucleus transcriptional profiles from 15 individuals, we find significant changes in smooth muscle cells (SMCs) and astrocytes. We identify abnormal vascular malformations and a unique type of SMC that we call "Firework cells", which migrate from blood vessels into the brain parenchyma and associate with VIM+ cells. These abnormalities create localized ischemic-hypoxic (I/H) microenvironments, as confirmed by clinical data, further impairing astrocyte function, activating the HIF-1α/mTOR/S6 pathway, and causing neuronal loss. Using zebrafish models, we demonstrate that vascular abnormalities resulting in I/H environments promote seizures. Our results highlight vascular malformations as a factor in FCDIIb pathogenesis, suggesting potential therapeutic avenues.
Collapse
Affiliation(s)
- Chuantao Fang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xiaodan Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Lin Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Licheng Sun
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yujia Lu
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Liu
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Vigo, Spain
| | - Jingjing Guo
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yanfeng Tan
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Jinsen Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Li Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoping Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Vigo, Spain
| | - Fayong Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Shaojie Ma
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Zhao
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China.
- Department of Neurosurgery, Children's Hospital of Shanghai, Shanghai, China.
- Department of Neurosurgery, Hainan Women and Children's Medical Center, Haikou, China.
| | - Xinyu Mei
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Dashi Qi
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Braun T, Rade M, Merz M, Klepzig H, Große F, Fandrei D, Pham NN, Kreuz M, Kuhn CK, Kuschel F, Löffler D, Meinel J, Heger E, Schweinsberg V, Pflug N, Platzbecker U, Hallek M, Holtick U, Köhl U, Scheid C, Reiche K, Herling M, Richardson T. Multiomic profiling of T cell lymphoma after therapy with anti-BCMA CAR T cells and GPRC5D-directed bispecific antibody. Nat Med 2025; 31:1145-1153. [PMID: 39984633 DOI: 10.1038/s41591-025-03499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025]
Abstract
Chimeric antigen receptor (CAR) T cells and bispecific T cell engagers have become integral components in the treatment of relapsed/refractory multiple myeloma. We report a 63-year-old male who received ciltacabtagene autoleucel CAR T cells and the GPRC5D × CD3 bispecific talquetamab for early relapse of his multiple myeloma. Nine months after CAR T therapy, he developed a symptomatic leukemic peripheral T cell lymphoma with cutaneous and intestinal involvement. Longitudinal single-cell RNA and T cell receptor sequencing of peripheral blood and bone marrow revealed two hyperexpanded CAR-carrying T cell clones. These expanded clones exhibited an exhausted effector-memory T cell transcriptional signature, and the neoplasm itself was sensitive to dexamethasone treatment. The immunophenotypic and transcriptional alterations of these abnormal T cells resembled those of T-large granular lymphocytic leukemia. Spatial transcriptomes of skin lesions confirmed the aberrant CAR-expressing T cells. Whole-genome sequencing revealed three distinct integration sites, within the introns of ZGPAT, KPNA4 and polycomb-associated noncoding RNAs. Before and after CAR T whole-genome analyses implicated clonal outgrowth of a TET2-mutated precursor propelled by additional subclone-specific loss of heterozygosity and other secondary mechanisms. This case highlights the evolution of a CAR-carrying peripheral T cell lymphoma following CAR T cell and bispecific T cell engager therapy, offering critical insights into the clonal evolution from a predisposed hematopoietic precursor to a mature neoplasm.
Collapse
MESH Headings
- Humans
- Male
- Middle Aged
- Antibodies, Bispecific/therapeutic use
- Antibodies, Bispecific/immunology
- Receptors, G-Protein-Coupled/immunology
- Receptors, G-Protein-Coupled/genetics
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Multiple Myeloma/therapy
- Multiple Myeloma/immunology
- Multiple Myeloma/genetics
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/therapy
- Lymphoma, T-Cell/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University Hospital Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Michael Rade
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Maximilian Merz
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.
- Department of Hematology, Cellular Therapy, Hemostaseology, Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany.
- Cancer Center Central Germany (CCCG) Leipzig-Jena, University Hospital of Leipzig, Leipzig, Germany.
| | - Hanna Klepzig
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Große
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
| | - David Fandrei
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Department of Hematology, Cellular Therapy, Hemostaseology, Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
- Cancer Center Central Germany (CCCG) Leipzig-Jena, University Hospital of Leipzig, Leipzig, Germany
| | - Nhu-Nguyen Pham
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Markus Kreuz
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | | | - Florian Kuschel
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dennis Löffler
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Jörn Meinel
- Institute of Pathology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Viola Schweinsberg
- Department of Dermatology and Venereology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natali Pflug
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy, Hemostaseology, Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
- Cancer Center Central Germany (CCCG) Leipzig-Jena, University Hospital of Leipzig, Leipzig, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Udo Holtick
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Cancer Center Central Germany (CCCG) Leipzig-Jena, University Hospital of Leipzig, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
| | - Christof Scheid
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Cancer Center Central Germany (CCCG) Leipzig-Jena, University Hospital of Leipzig, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
| | - Marco Herling
- Department of Hematology, Cellular Therapy, Hemostaseology, Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
- Cancer Center Central Germany (CCCG) Leipzig-Jena, University Hospital of Leipzig, Leipzig, Germany
| | - Tim Richardson
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Engelbrecht E, Stamp BF, Chew L, Sarkar OS, Harter P, Waigel SJ, Rouchka EC, Chariker J, Smolenkov A, Chesney J, McMasters K, Watson CT, Yaddanapudi K. Single-cell transcriptomics of melanoma sentinel lymph nodes identifies immune cell signatures associated with metastasis. JCI Insight 2025; 10:e183080. [PMID: 40048259 PMCID: PMC11981627 DOI: 10.1172/jci.insight.183080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
The sentinel lymph node (SLN) is the first lymph node encountered by a metastatic cancer cell and serves as a predictor of poor prognosis, as cases with clinically occult SLN metastases are classified as stage III with elevated rates of recurrence and diminished overall survival. However, the dynamics of immune infiltrates in SLNs remain poorly characterized. Here, using an unbiased cellular indexing of transcriptomes and epitopes by sequencing technique, we profiled 97,777 cells from SLN tissues obtained from patients with stages I/II and III cutaneous melanoma. We described the transcriptional programs of a multitude of T, B, and myeloid cell subtypes in SLNs. Based on the proportions of cell types, we determined that SLN subtypes stratified along a naive → activated axis; patients with a "high activated" signature score appeared to be undergoing a robust melanoma antigen-driven adaptive immune response and, thus, could be responsive to immunotherapy. Additionally, we identified transcriptomic signatures of SLN-infiltrating dendritic cell subsets that compromise antitumor immune responses. Our analyses provide valuable insights into tumor-driven immune changes in the SLN tissue, offering a powerful tool for the informed design of immune therapies for patients with high-risk melanoma.
Collapse
Affiliation(s)
| | | | - Lewis Chew
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- Department of Microbiology/Immunology
| | - Omar Sadi Sarkar
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- Department of Microbiology/Immunology
| | - Phillip Harter
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- Department of Microbiology/Immunology
| | | | - Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics
- Department of Computer Science and Engineering
| | | | | | - Jason Chesney
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- UofL-Health Brown Cancer Center
| | | | | | - Kavitha Yaddanapudi
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- Department of Microbiology/Immunology
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
5
|
Rotti PG, Yi Y, Gasser G, Yuan F, Sun X, Apak-Evans I, Wu P, Liu G, Choi S, Reeves R, Scioneaux AE, Zhang Y, Winter M, Liang B, Cunicelli N, Uc A, Norris AW, Sussel L, Wells KL, Engelhardt JF. CFTR represses a PDX1 axis to govern pancreatic ductal cell fate. iScience 2024; 27:111393. [PMID: 39687022 PMCID: PMC11647141 DOI: 10.1016/j.isci.2024.111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation, acinar atrophy, and ductal hyperplasia drive pancreatic remodeling in newborn cystic fibrosis (CF) ferrets lacking a functional cystic fibrosis conductance regulator (CFTR) channel. These changes are associated with a transient phase of glucose intolerance that involves islet destruction and subsequent regeneration near hyperplastic ducts. The phenotypic changes in CF ductal epithelium and their impact on islet function are unknown. Using bulk RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq), and assay for transposase-accessible chromatin using sequencing (ATAC-seq) on CF ferret models, we demonstrate that ductal CFTR protein constrains PDX1 expression by maintaining PTEN and GSK3β activation. In the absence of CFTR protein, centroacinar cells adopted a bipotent progenitor-like state associated with enhanced WNT/β-Catenin, transforming growth factor β (TGF-β), and AKT signaling. We show that the level of CFTR protein, not its channel function, regulates PDX1 expression. Thus, this study has discovered a cell-autonomous CFTR-dependent mechanism by which CFTR mutations that produced little to no protein could impact pancreatic exocrine/endocrine remodeling in people with CF.
Collapse
Affiliation(s)
| | - Yaling Yi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Grace Gasser
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Idil Apak-Evans
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Peipei Wu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Guangming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Soon Choi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rosie Reeves
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Attilina E. Scioneaux
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael Winter
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bo Liang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan Cunicelli
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Aliye Uc
- Stead Family Department of Pediatrics, Carver College of Medicine, Iowa City, IA, USA
| | - Andrew W. Norris
- Center for Gene Therapy, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lori Sussel
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - Kristen L. Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Tamburini B, Sheridan R, Doan T, Lucas C, Forward T, Fleming I, Uecker-Martin A, Morrison T, Hesselberth J. A specific gene expression program underlies antigen archiving by lymphatic endothelial cells in mammalian lymph nodes. RESEARCH SQUARE 2024:rs.3.rs-5493746. [PMID: 39711554 PMCID: PMC11661310 DOI: 10.21203/rs.3.rs-5493746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Lymph node (LN) lymphatic endothelial cells (LEC) actively acquire and archive foreign antigens. Here, we address questions of how LECs achieve durable antigen archiving and whether LECs with high levels of antigen express unique transcriptional programs. We used single cell sequencing in dissociated LN tissue and spatial transcriptomics to quantify antigen levels in LEC subsets and dendritic cell populations at multiple time points after immunization and determined that ceiling and floor LECs archive antigen for the longest duration. We identify, using spatial transcriptomics, antigen positive LEC-dendritic cell interactions. Using a prime-boost strategy we find increased antigen levels within LECs after a second immunization demonstrating that LEC antigen acquisition and archiving capacity can be improved over multiple exposures. Using machine learning we defined a unique transcriptional program within archiving LECs that predicted LEC archiving capacity in mouse and human independent data sets. We validated this modeling, showing we could predict lower levels of LEC antigen archiving in chikungunya virus-infected mice and demonstrated in vivo the accuracy of our prediction. Collectively, our findings establish unique properties of LECs and a defining transcriptional program for antigen archiving that can predict antigen archiving capacity in different disease states and organisms.
Collapse
Affiliation(s)
| | | | - Thu Doan
- University of Colorado Anschutz Medical Campus
| | | | | | | | | | | | | |
Collapse
|
7
|
Hu Y, Hu Q, Ansari M, Riemondy K, Pineda R, Sembrat J, Leme AS, Ngo K, Morgenthaler O, Ha K, Gao B, Janssen WJ, Basil MC, Kliment CR, Morrisey E, Lehmann M, Evans CM, Schiller HB, Königshoff M. Airway-derived emphysema-specific alveolar type II cells exhibit impaired regenerative potential in COPD. Eur Respir J 2024; 64:2302071. [PMID: 39147413 PMCID: PMC11618816 DOI: 10.1183/13993003.02071-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
Emphysema, the progressive destruction of gas exchange surfaces in the lungs, is a hallmark of COPD that is presently incurable. This therapeutic gap is largely due to a poor understanding of potential drivers of impaired tissue regeneration, such as abnormal lung epithelial progenitor cells, including alveolar type II (ATII) and airway club cells. We discovered an emphysema-specific subpopulation of ATII cells located in enlarged distal alveolar sacs, termed asATII cells. Single-cell RNA sequencing and in situ localisation revealed that asATII cells co-express the alveolar marker surfactant protein C and the club cell marker secretaglobin-3A2 (SCGB3A2). A similar ATII subpopulation derived from club cells was also identified in mouse COPD models using lineage labelling. Human and mouse ATII subpopulations formed 80-90% fewer alveolar organoids than healthy controls, indicating reduced progenitor function. Targeting asATII cells or their progenitor club cells could reveal novel COPD treatment strategies.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Qianjiang Hu
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ricardo Pineda
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Sembrat
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adriana S Leme
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenny Ngo
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Olivia Morgenthaler
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kellie Ha
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Bifeng Gao
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Corrine R Kliment
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mareike Lehmann
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute for Lung Research, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Christopher M Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Co-senior authors
| | - Herbert B Schiller
- Research Unit Precision Regenerative Medicine (PRM), Helmholtz Munich, Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), Munich, Germany
- Co-senior authors
| | - Melanie Königshoff
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center (GRECC) at the VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Co-senior authors
| |
Collapse
|
8
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Hong R, Tong Y, Tang H, Zeng T, Liu R. eMCI: An Explainable Multimodal Correlation Integration Model for Unveiling Spatial Transcriptomics and Intercellular Signaling. RESEARCH (WASHINGTON, D.C.) 2024; 7:0522. [PMID: 39494219 PMCID: PMC11528068 DOI: 10.34133/research.0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Current integration methods for single-cell RNA sequencing (scRNA-seq) data and spatial transcriptomics (ST) data are typically designed for specific tasks, such as deconvolution of cell types or spatial distribution prediction of RNA transcripts. These methods usually only offer a partial analysis of ST data, neglecting the complex relationship between spatial expression patterns underlying cell-type specificity and intercellular cross-talk. Here, we present eMCI, an explainable multimodal correlation integration model based on deep neural network framework. eMCI leverages the fusion of scRNA-seq and ST data using different spot-cell correlations to integrate multiple synthetic analysis tasks of ST data at cellular level. First, eMCI can achieve better or comparable accuracy in cell-type classification and deconvolution according to wide evaluations and comparisons with state-of-the-art methods on both simulated and real ST datasets. Second, eMCI can identify key components across spatial domains responsible for different cell types and elucidate the spatial expression patterns underlying cell-type specificity and intercellular communication, by employing an attribution algorithm to dissect the visual input. Especially, eMCI has been applied to 3 cross-species datasets, including zebrafish melanomas, soybean nodule maturation, and human embryonic lung, which accurately and efficiently estimate per-spot cell composition and infer proximal and distal cellular interactions within the spatial and temporal context. In summary, eMCI serves as an integrative analytical framework to better resolve the spatial transcriptome based on existing single-cell datasets and elucidate proximal and distal intercellular signal transduction mechanisms over spatial domains without requirement of biological prior reference. This approach is expected to facilitate the discovery of spatial expression patterns of potential biomolecules with cell type and cell-cell communication specificity.
Collapse
Affiliation(s)
- Renhao Hong
- School of Mathematics,
South China University of Technology, Guangzhou 510640, China
| | - Yuyan Tong
- School of Mathematics,
South China University of Technology, Guangzhou 510640, China
| | - Hui Tang
- School of Mathematics and Big Data,
Foshan University, Foshan 528000, China
| | - Tao Zeng
- Guangzhou National Laboratory, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Rui Liu
- School of Mathematics,
South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Ye L, Xing H, Wang Y, Ma W. Genetic association between epilepsy and gliomas: Insights from Mendelian randomization and single-cell transcriptomic analyses. Epilepsy Behav 2024; 161:110114. [PMID: 39488096 DOI: 10.1016/j.yebeh.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Seizures are prevalent in glioma patients, especially in those with low-grade gliomas. The interaction between gliomas and epilepsy involves complex biological mechanisms that are not fully understood. METHODS We collected Genome-Wide Association Study data for epilepsy and gliomas, performed differential expression analysis, and conducted Gene Ontology (GO) enrichment analysis on the identified genes. Single-cell RNA sequencing data (scRNA-seq) from GSE221534 dataset in Gene Expression Omnibus (GEO) were used to analyze cell-cell interactions within glioma samples from patients with and without epilepsy. RESULTS Mendelian Randomization (MR) analysis revealed significant associations between genetic variants related to epilepsy and glioma risk, suggesting a potential causal relationship, especially in astrocytomas. Differential expression analysis identified epilepsy-related genes that were significantly upregulated in astrocytoma tissues compared to normal brain tissues. GO enrichment analysis indicated that these genes are involved in critical biological processes such as neurogenesis and cellular signaling. The scRNA-seq analysis showed, compared to non-epileptic samples, glioma stem cells, microglia, and NK cells are increased in the core regions of astrocytomas in epileptic patients. Additionally, intercellular communication between tumor cells and other non-tumor cells is markedly enhanced in astrocytoma samples from epileptic patients. CONCLUSION This study provides evidence of a genetic association between epilepsy and gliomas and elucidates the biological mechanisms through which epilepsy may influence glioma progression.
Collapse
Affiliation(s)
- Liguo Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Sharma R, Berendzen KM, Everitt A, Wang B, Williams G, Wang S, Quine K, Larios RD, Long KLP, Hoglen N, Sulaman BA, Heath MC, Sherman M, Klinkel R, Cai A, Galo D, Caamal LC, Goodwin NL, Beery A, Bales KL, Pollard KS, Willsey AJ, Manoli DS. Oxytocin receptor controls distinct components of pair bonding and development in prairie voles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.613753. [PMID: 39399774 PMCID: PMC11468833 DOI: 10.1101/2024.09.25.613753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Oxytocin receptor (Oxtr) signaling influences complex social behaviors in diverse species, including social monogamy in prairie voles. How Oxtr regulates specific components of social attachment behaviors and the neural mechanisms mediating them remains unknown. Here, we examine prairie voles lacking Oxtr and demonstrate that pair bonding comprises distinct behavioral modules: the preference for a bonded partner, and the rejection of novel potential mates. Our longitudinal study of social attachment shows that Oxtr sex-specifically influences early interactions between novel partners facilitating the formation of partner preference. Additionally, Oxtr suppresses promiscuity towards novel potential mates following pair bonding, contributing to rejection. Oxtr function regulates coordinated patterns of gene expression in regions implicated in attachment behaviors and regulates the expression of oxytocin in the paraventricular nucleus of the hypothalamus, a principal source of oxytocin. Thus, Oxtr controls genetically separable components of pair bonding behaviors and coordinates development of the neural substrates of attachment.
Collapse
|
12
|
Zhang H, Hasegawa Y, Suzuki M, Zhang T, Leitner DR, Jackson RP, Waldor MK. Mouse enteric neurons control intestinal plasmacytoid dendritic cell function via serotonin-HTR7 signaling. Nat Commun 2024; 15:9237. [PMID: 39455564 PMCID: PMC11511829 DOI: 10.1038/s41467-024-53545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Serotonergic neurons in the central nervous system control behavior and mood, but knowledge of the roles of serotonergic circuits in the regulation of immune homeostasis is limited. Here, we employ mouse genetics to investigate the functions of enteric serotonergic neurons in the control of immune responses and find that these circuits regulate IgA induction and boost host defense against oral, but not systemic Salmonella Typhimurium infection. Enteric serotonergic neurons promote gut-homing, retention and activation of intestinal plasmacytoid dendritic cells (pDC). Mechanistically, this neuro-immune crosstalk is achieved through a serotonin-5-HT receptor 7 (HTR7) signaling axis that ultimately facilitates the pDC-mediated differentiation of IgA+ B cells from IgD+ precursors in the gut. Single-cell RNA-seq data further reveal novel patterns of bidirectional communication between specific subsets of enteric neurons and lamina propria DC. Our findings thus reveal a close interplay between enteric serotonergic neurons and gut immune homeostasis that enhances mucosal defense.
Collapse
Affiliation(s)
- Hailong Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Yuko Hasegawa
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Masataka Suzuki
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Ting Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Deborah R Leitner
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Ruaidhrí P Jackson
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Juráková V, Széky B, Zapletalová M, Fehér A, Zana M, Pandey S, Kučera R, Šerý O, Hudeček J, Dinnyés A, Lochman J. Assessment and Evaluation of Contemporary Approaches for Astrocyte Differentiation from hiPSCs: A Modeling Paradigm for Alzheimer's Disease. Biol Proced Online 2024; 26:30. [PMID: 39342077 PMCID: PMC11437813 DOI: 10.1186/s12575-024-00257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Astrocytes have recently gained attention as key players in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Numerous differentiation protocols have been developed to study human astrocytes in vitro. However, the properties of the resulting glia are inconsistent, making it difficult to select an appropriate method for a given research question. Therefore, we compared three approaches for the generation of iPSC-derived astrocytes. We performed a detailed analysis using a widely used long serum-free (LSFP) and short serum-free (SSFP) protocol, as well as a TUSP protocol using serum for a limited time of differentiation. RESULTS We used RNA sequencing and immunochemistry to characterize the cultures. Astrocytes generated by the LSFP and SSFP methods differed significantly in their characteristics from those generated by the TUSP method using serum. The TUSP astrocytes had a less neuronal pattern, showed a higher degree of extracellular matrix formation, and were more mature. The short-term presence of FBS in the medium facilitated the induction of astroglia characteristics but did not result in reactive astrocytes. Data from cell-type deconvolution analysis applied to bulk transcriptomes from the cultures assessed their similarity to primary and fetal human astrocytes. CONCLUSIONS Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol for solving specific research tasks or drug discovery studies with iPSC-derived astrocytes.
Collapse
Affiliation(s)
- Veronika Juráková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martina Zapletalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | | - Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Radek Kučera
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Omar Šerý
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, The Czech Academy of Science, Veveří 97, 60200, Brno, Czech Republic
| | - Jiří Hudeček
- Psychiatric Clinic, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - András Dinnyés
- BioTalentum Ltd, Godollo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, The Czech Academy of Science, Veveří 97, 60200, Brno, Czech Republic.
| |
Collapse
|
14
|
Peretz CAC, Kennedy VE, Walia A, Delley CL, Koh A, Tran E, Clark IC, Hayford CE, D'Amato C, Xue Y, Fontanez KM, May-Zhang AA, Smithers T, Agam Y, Wang Q, Dai HP, Roy R, Logan AC, Perl AE, Abate A, Olshen A, Smith CC. Multiomic single cell sequencing identifies stemlike nature of mixed phenotype acute leukemia. Nat Commun 2024; 15:8191. [PMID: 39294124 PMCID: PMC11411136 DOI: 10.1038/s41467-024-52317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Despite recent work linking mixed phenotype acute leukemia (MPAL) to certain genetic lesions, specific driver mutations remain undefined for a significant proportion of patients and no genetic subtype is predictive of clinical outcomes. Moreover, therapeutic strategy for MPAL remains unclear, and prognosis is overall poor. We performed multiomic single cell profiling of 14 newly diagnosed adult MPAL patients to characterize the inter- and intra-tumoral transcriptional, immunophenotypic, and genetic landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. Despite this, we find that MPAL blasts express a shared stem cell-like transcriptional profile indicative of high differentiation potential. Patients with the highest differentiation potential demonstrate inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in the most stem-like MPAL cells, is applicable to bulk RNA sequencing data and is predictive of survival in an independent patient cohort, suggesting a potential strategy for clinical risk stratification.
Collapse
Affiliation(s)
- Cheryl A C Peretz
- Division of Hematology and Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Vanessa E Kennedy
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Anushka Walia
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cyrille L Delley
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Andrew Koh
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Elaine Tran
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Iain C Clark
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | | | - Yi Xue
- Fluent Biosciences Inc., Watertown, MA, USA
| | | | | | | | - Yigal Agam
- Fluent Biosciences Inc., Watertown, MA, USA
| | - Qian Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Aaron C Logan
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alexander E Perl
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Adam Olshen
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Catherine C Smith
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Wang Y, Peng Y, Yang C, Xiong D, Wang Z, Peng H, Wu X, Xiao X, Liu J. Single-cell sequencing analysis of multiple myeloma heterogeneity and identification of new theranostic targets. Cell Death Dis 2024; 15:672. [PMID: 39271659 PMCID: PMC11399131 DOI: 10.1038/s41419-024-07027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Multiple myeloma (MM) is a heterogeneous and incurable tumor characterized by the malignant proliferation of plasma cells. It is necessary to clarify the heterogeneity of MM and identify new theranostic targets. We constructed a single-cell transcriptome profile of 48,293 bone marrow cells from MM patients and health donors (HDs) annotated with 7 continuous B lymphocyte lineages. Through CellChat, we discovered that the communication among B lymphocyte lineages between MM and HDs was disrupted, and unique signaling molecules were observed. Through pseudotime analysis, it was found that the differences between MM and HDs were mainly reflected in plasma cells. These differences are primarily related to various biological processes involving mitochondria. Then, we identified the key subpopulation associated with the malignant proliferation of plasma cells. This group of cells exhibited strong proliferation ability, high CNV scores, high expression of frequently mutated genes, and strong glucose metabolic activity. Furthermore, we demonstrated the therapeutic potential of WNK1 as a target. Our study provides new insights into the development of B cells and the heterogeneity of plasma cells in MM and suggests that WNK1 is a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Yanpeng Wang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Central South University, Changsha, 410011, China
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China
- Department of Clinical Laboratory, the Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, China
| | - Yuanliang Peng
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Central South University, Changsha, 410011, China
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China
| | - Chaoying Yang
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China
| | - Dehui Xiong
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China
| | - Zeyuan Wang
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Central South University, Changsha, 410011, China.
| | - Xusheng Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, 518028, China.
| | - Xiaojuan Xiao
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China.
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Central South University, Changsha, 410011, China.
- Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, 410011, China.
| |
Collapse
|
16
|
Swann JW, Zhang R, Verovskaya EV, Calero-Nieto FJ, Wang X, Proven MA, Shyu PT, Guo XE, Göttgens B, Passegué E. Inflammation perturbs hematopoiesis by remodeling specific compartments of the bone marrow niche. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612751. [PMID: 39314376 PMCID: PMC11419052 DOI: 10.1101/2024.09.12.612751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPC) are regulated by interactions with stromal cells in the bone marrow (BM) cavity, which can be segregated into two spatially defined central marrow (CM) and endosteal (Endo) compartments. However, the importance of this spatial compartmentalization for BM responses to inflammation and neoplasia remains largely unknown. Here, we extensively validate a combination of scRNA-seq profiling and matching flow cytometry isolation that reproducibly identifies 7 key CM and Endo populations across mouse strains and accurately surveys both niche locations. We demonstrate that different perturbations exert specific effects on different compartments, with type I interferon responses causing CM mesenchymal stromal cells to adopt an inflammatory phenotype associated with overproduction of chemokines modulating local monocyte dynamics in the surrounding microenvironment. Our results provide a comprehensive method for molecular and functional stromal characterization and highlight the importance of altered stomal cell activity in regulating hematopoietic responses to inflammatory challenges.
Collapse
|
17
|
Trapnell C. Revealing gene function with statistical inference at single-cell resolution. Nat Rev Genet 2024; 25:623-638. [PMID: 38951690 DOI: 10.1038/s41576-024-00750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/03/2024]
Abstract
Single-cell and spatial molecular profiling assays have shown large gains in sensitivity, resolution and throughput. Applying these technologies to specimens from human and model organisms promises to comprehensively catalogue cell types, reveal their lineage origins in development and discern their contributions to disease pathogenesis. Moreover, rapidly dropping costs have made well-controlled perturbation experiments and cohort studies widely accessible, illuminating mechanisms that give rise to phenotypes at the scale of the cell, the tissue and the whole organism. Interpreting the coming flood of single-cell data, much of which will be spatially resolved, will place a tremendous burden on existing computational pipelines. However, statistical concepts, models, tools and algorithms can be repurposed to solve problems now arising in genetic and molecular biology studies of development and disease. Here, I review how the questions that recent technological innovations promise to answer can be addressed by the major classes of statistical tools.
Collapse
Affiliation(s)
- Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| |
Collapse
|
18
|
Rade M, Grieb N, Weiss R, Sia J, Fischer L, Born P, Boldt A, Fricke S, Franz P, Scolnick J, Venkatraman L, Xu S, Kloetzer C, Heyn S, Kubasch AS, Baber R, Wang SY, Bach E, Hoffmann S, Ussmann J, Schetschorke B, Hell S, Schwind S, Metzeler KH, Herling M, Jentzsch M, Franke GN, Sack U, Köhl U, Platzbecker U, Reiche K, Vucinic V, Merz M. Single-cell multiomic dissection of response and resistance to chimeric antigen receptor T cells against BCMA in relapsed multiple myeloma. NATURE CANCER 2024; 5:1318-1333. [PMID: 38641734 DOI: 10.1038/s43018-024-00763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Markers that predict response and resistance to chimeric antigen receptor (CAR) T cells in relapsed/refractory multiple myeloma are currently missing. We subjected mononuclear cells isolated from peripheral blood and bone marrow before and after the application of approved B cell maturation antigen-directed CAR T cells to single-cell multiomic analyses to identify markers associated with resistance and early relapse. Differences between responders and nonresponders were identified at the time of leukapheresis. Nonresponders showed an immunosuppressive microenvironment characterized by increased numbers of monocytes expressing the immune checkpoint molecule CD39 and suppressed CD8+ T cell and natural killer cell function. Analysis of CAR T cells showed cytotoxic and exhausted phenotypes in hyperexpanded clones compared to low/intermediate expanded clones. We identified potential immunotherapy targets on CAR T cells, like PD1, to improve their functionality and durability. Our work provides evidence that an immunosuppressive microenvironment causes resistance to CAR T cell therapies in multiple myeloma.
Collapse
Affiliation(s)
- Michael Rade
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Nora Grieb
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
- Innovation Center Computer Assisted Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Ronald Weiss
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
| | - Jaren Sia
- Singleron Biotechnologies, Cologne, Germany
| | - Luise Fischer
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Patrick Born
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Andreas Boldt
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
| | - Stephan Fricke
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
| | - Paul Franz
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
| | | | | | - Stacy Xu
- Singleron Biotechnologies, Cologne, Germany
| | - Christina Kloetzer
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Simone Heyn
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Anne Sophie Kubasch
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Ronny Baber
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Leipzig Medical Biobank, University Leipzig, Leipzig, Germany
| | - Song Yau Wang
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Enrica Bach
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Sandra Hoffmann
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Jule Ussmann
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Birthe Schetschorke
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Saskia Hell
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Sebastian Schwind
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Klaus H Metzeler
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Marco Herling
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Madlen Jentzsch
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Georg-Nikolaus Franke
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Ulrich Sack
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden, Leipzig, Germany
| | - Vladan Vucinic
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany
| | - Maximilian Merz
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.
| |
Collapse
|
19
|
Reiner BC, Chehimi SN, Merkel R, Toikumo S, Berrettini WH, Kranzler HR, Sanchez-Roige S, Kember RL, Schmidt HD, Crist RC. A single-nucleus transcriptomic atlas of medium spiny neurons in the rat nucleus accumbens. Sci Rep 2024; 14:18258. [PMID: 39107568 PMCID: PMC11303397 DOI: 10.1038/s41598-024-69255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.
Collapse
Affiliation(s)
- Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samar N Chehimi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Merkel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wade H Berrettini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry R Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Genomic Medicine, University of California San Diego, San Diego, CA, USA
| | - Rachel L Kember
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Room 2207, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Xia Y, Liu Y, Li T, He S, Chang H, Wang Y, Zhang Y, Ge W. Assessing parameter efficient methods for pre-trained language model in annotating scRNA-seq data. Methods 2024; 228:12-21. [PMID: 38759908 DOI: 10.1016/j.ymeth.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
Annotating cell types of single-cell RNA sequencing (scRNA-seq) data is crucial for studying cellular heterogeneity in the tumor microenvironment. Recently, large-scale pre-trained language models (PLMs) have achieved significant progress in cell-type annotation of scRNA-seq data. This approach effectively addresses previous methods' shortcomings in performance and generalization. However, fine-tuning PLMs for different downstream tasks demands considerable computational resources, rendering it impractical. Hence, a new research branch introduces parameter-efficient fine-tuning (PEFT). This involves optimizing a few parameters while leaving the majority unchanged, leading to substantial reductions in computational expenses. Here, we utilize scBERT, a large-scale pre-trained model, to explore the capabilities of three PEFT methods in scRNA-seq cell type annotation. Extensive benchmark studies across several datasets demonstrate the superior applicability of PEFT methods. Furthermore, downstream analysis using models obtained through PEFT showcases their utility in novel cell type discovery and model interpretability for potential marker genes. Our findings underscore the considerable potential of PEFT in PLM-based cell type annotation, presenting novel perspectives for the analysis of scRNA-seq data.
Collapse
Affiliation(s)
- Yucheng Xia
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
| | - Yuhang Liu
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Tianhao Li
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Sihan He
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Hong Chang
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Yaqing Wang
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Wenyi Ge
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China.
| |
Collapse
|
21
|
Nicholas CA, Tensun FA, Evans SA, Toole KP, Broncucia H, Hesselberth JR, Gottlieb PA, Wells KL, Smith MJ. Islet-antigen reactive B cells display a unique phenotype and BCR repertoire in autoantibody positive and recent-onset type 1 diabetes patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599914. [PMID: 38979376 PMCID: PMC11230262 DOI: 10.1101/2024.06.20.599914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Autoreactive B cells play an important but ill-defined role in autoimmune type 1 diabetes (T1D). To better understand their contribution, we performed single cell gene and BCR-seq analysis on pancreatic islet antigen-reactive (IAR) B cells from the peripheral blood of nondiabetic (ND), autoantibody positive prediabetic (AAB), and recent-onset T1D individuals. We found that the frequency of IAR B cells was increased in AAB and T1D. IAR B cells from these donors had altered expression of B cell signaling, pro-inflammatory, infection, and antigen processing and presentation genes. Both AAB and T1D donors demonstrated a significant increase in certain heavy and light chain V genes, and these V genes were enriched in islet-reactivity. Public clones of IAR B cells were restricted almost entirely to AAB and T1D donors. IAR B cells were clonally expanded in the autoimmune donors, particularly the AAB group. Notably, a substantial fraction of IAR B cells in AAB and T1D donors appeared to be polyreactive, which was corroborated by analysis of recombinant monoclonal antibodies. These results expand our understanding of autoreactive B cell activation during T1D and identify unique BCR repertoire changes that may serve as biomarkers for increased disease risk.
Collapse
Affiliation(s)
- Catherine A. Nicholas
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Fatima A. Tensun
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Spencer A. Evans
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin P. Toole
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hali Broncucia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Peter A. Gottlieb
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristen L. Wells
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mia J. Smith
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Reiner BC, Chehimi SN, Merkel R, Toikumo S, Berrettini WH, Kranzler HR, Sanchez-Roige S, Kember RL, Schmidt HD, Crist RC. A single-nucleus transcriptomic atlas of medium spiny neurons in the rat nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595949. [PMID: 38826289 PMCID: PMC11142250 DOI: 10.1101/2024.05.26.595949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.
Collapse
|
23
|
Tian J, Bai X, Quek C. Single-Cell Informatics for Tumor Microenvironment and Immunotherapy. Int J Mol Sci 2024; 25:4485. [PMID: 38674070 PMCID: PMC11050520 DOI: 10.3390/ijms25084485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer comprises malignant cells surrounded by the tumor microenvironment (TME), a dynamic ecosystem composed of heterogeneous cell populations that exert unique influences on tumor development. The immune community within the TME plays a substantial role in tumorigenesis and tumor evolution. The innate and adaptive immune cells "talk" to the tumor through ligand-receptor interactions and signaling molecules, forming a complex communication network to influence the cellular and molecular basis of cancer. Such intricate intratumoral immune composition and interactions foster the application of immunotherapies, which empower the immune system against cancer to elicit durable long-term responses in cancer patients. Single-cell technologies have allowed for the dissection and characterization of the TME to an unprecedented level, while recent advancements in bioinformatics tools have expanded the horizon and depth of high-dimensional single-cell data analysis. This review will unravel the intertwined networks between malignancy and immunity, explore the utilization of computational tools for a deeper understanding of tumor-immune communications, and discuss the application of these approaches to aid in diagnosis or treatment decision making in the clinical setting, as well as the current challenges faced by the researchers with their potential future improvements.
Collapse
Affiliation(s)
| | | | - Camelia Quek
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (X.B.)
| |
Collapse
|
24
|
Sheridan RM, Doan TA, Lucas C, Forward TS, Uecker-Martin A, Morrison TE, Hesselberth JR, Tamburini BAJ. A specific and portable gene expression program underlies antigen archiving by lymphatic endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587647. [PMID: 38617225 PMCID: PMC11014631 DOI: 10.1101/2024.04.01.587647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Antigens from protein subunit vaccination traffic from the tissue to the draining lymph node, either passively via the lymph or carried by dendritic cells at the local injection site. Lymph node (LN) lymphatic endothelial cells (LEC) actively acquire and archive foreign antigens, and archived antigen can be released during subsequent inflammatory stimulus to improve immune responses. Here, we answer questions about how LECs achieve durable antigen archiving and whether there are transcriptional signatures associated with LECs containing high levels of antigen. We used single cell sequencing in dissociated LN tissue to quantify antigen levels in LEC and dendritic cell populations at multiple timepoints after immunization, and used machine learning to define a unique transcriptional program within archiving LECs that can predict LEC archiving capacity in independent data sets. Finally, we validated this modeling, showing we could predict antigen archiving from a transcriptional dataset of CHIKV infected mice and demonstrated in vivo the accuracy of our prediction. Collectively, our findings establish a unique transcriptional program in LECs that promotes antigen archiving that can be translated to other systems.
Collapse
Affiliation(s)
- Ryan M. Sheridan
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine
| | - Thu A. Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine
- Immunology Graduate Program, University of Colorado School of Medicine
| | - Cormac Lucas
- Department of Immunology and Microbiology, Aurora, CO, USA
| | - Tadg S. Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine
| | - Aspen Uecker-Martin
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine
| | | | - Jay R. Hesselberth
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine
| | - Beth A. Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine
- Immunology Graduate Program, University of Colorado School of Medicine
- Department of Immunology and Microbiology, Aurora, CO, USA
| |
Collapse
|
25
|
Mahmood M, Liu EM, Shergold AL, Tolla E, Tait-Mulder J, Huerta-Uribe A, Shokry E, Young AL, Lilla S, Kim M, Park T, Boscenco S, Manchon JL, Rodríguez-Antona C, Walters RC, Springett RJ, Blaza JN, Mitchell L, Blyth K, Zanivan S, Sumpton D, Roberts EW, Reznik E, Gammage PA. Mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade response in melanoma. NATURE CANCER 2024; 5:659-672. [PMID: 38286828 PMCID: PMC11056318 DOI: 10.1038/s43018-023-00721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
The mitochondrial genome (mtDNA) encodes essential machinery for oxidative phosphorylation and metabolic homeostasis. Tumor mtDNA is among the most somatically mutated regions of the cancer genome, but whether these mutations impact tumor biology is debated. We engineered truncating mutations of the mtDNA-encoded complex I gene, Mt-Nd5, into several murine models of melanoma. These mutations promoted a Warburg-like metabolic shift that reshaped tumor microenvironments in both mice and humans, consistently eliciting an anti-tumor immune response characterized by loss of resident neutrophils. Tumors bearing mtDNA mutations were sensitized to checkpoint blockade in a neutrophil-dependent manner, with induction of redox imbalance being sufficient to induce this effect in mtDNA wild-type tumors. Patient lesions bearing >50% mtDNA mutation heteroplasmy demonstrated a response rate to checkpoint blockade that was improved by ~2.5-fold over mtDNA wild-type cancer. These data nominate mtDNA mutations as functional regulators of cancer metabolism and tumor biology, with potential for therapeutic exploitation and treatment stratification.
Collapse
Affiliation(s)
| | - Eric Minwei Liu
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Engy Shokry
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Alex L Young
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Minsoo Kim
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tricia Park
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonia Boscenco
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Javier L Manchon
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Crístina Rodríguez-Antona
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER, Madrid, Spain
| | - Rowan C Walters
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | - Roger J Springett
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | - James N Blaza
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | | | - Karen Blyth
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Edward W Roberts
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Payam A Gammage
- Cancer Research UK Scotland Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
26
|
Kaur H, Jha P, Ochatt SJ, Kumar V. Single-cell transcriptomics is revolutionizing the improvement of plant biotechnology research: recent advances and future opportunities. Crit Rev Biotechnol 2024; 44:202-217. [PMID: 36775666 DOI: 10.1080/07388551.2023.2165900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 02/14/2023]
Abstract
Single-cell approaches are a promising way to obtain high-resolution transcriptomics data and have the potential to revolutionize the study of plant growth and development. Recent years have seen the advent of unprecedented technological advances in the field of plant biology to study the transcriptional information of individual cells by single-cell RNA sequencing (scRNA-seq). This review focuses on the modern advancements of single-cell transcriptomics in plants over the past few years. In addition, it also offers a new insight of how these emerging methods will expedite advance research in plant biotechnology in the near future. Lastly, the various technological hurdles and inherent limitations of single-cell technology that need to be conquered to develop such outstanding possible knowledge gain is critically analyzed and discussed.
Collapse
Affiliation(s)
- Harmeet Kaur
- Division of Research and Development, Plant Biotechnology Lab, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Priyanka Jha
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
- Department of Research Facilitation, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Sergio J Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Vijay Kumar
- Division of Research and Development, Plant Biotechnology Lab, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
27
|
Ali M, Yang T, He H, Zhang Y. Plant biotechnology research with single-cell transcriptome: recent advancements and prospects. PLANT CELL REPORTS 2024; 43:75. [PMID: 38381195 DOI: 10.1007/s00299-024-03168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
KEY MESSAGE Single-cell transcriptomic techniques have emerged as powerful tools in plant biology, offering high-resolution insights into gene expression at the individual cell level. This review highlights the rapid expansion of single-cell technologies in plants, their potential in understanding plant development, and their role in advancing plant biotechnology research. Single-cell techniques have emerged as powerful tools to enhance our understanding of biological systems, providing high-resolution transcriptomic analysis at the single-cell level. In plant biology, the adoption of single-cell transcriptomics has seen rapid expansion of available technologies and applications. This review article focuses on the latest advancements in the field of single-cell transcriptomic in plants and discusses the potential role of these approaches in plant development and expediting plant biotechnology research in the near future. Furthermore, inherent challenges and limitations of single-cell technology are critically examined to overcome them and enhance our knowledge and understanding.
Collapse
Affiliation(s)
- Muhammad Ali
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, China
- Peking University-Institute of Advanced Agricultural Sciences, Weifang, China
| | - Tianxia Yang
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Hai He
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yu Zhang
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
28
|
Rade M, Kreuz M, Borkowetz A, Sommer U, Blumert C, Füssel S, Bertram C, Löffler D, Otto DJ, Wöller LA, Schimmelpfennig C, Köhl U, Gottschling AC, Hönscheid P, Baretton GB, Wirth M, Thomas C, Horn F, Reiche K. A reliable transcriptomic risk-score applicable to formalin-fixed paraffin-embedded biopsies improves outcome prediction in localized prostate cancer. Mol Med 2024; 30:19. [PMID: 38302875 PMCID: PMC10835874 DOI: 10.1186/s10020-024-00789-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Clinical manifestation of prostate cancer (PCa) is highly variable. Aggressive tumors require radical treatment while clinically non-significant ones may be suitable for active surveillance. We previously developed the prognostic ProstaTrend RNA signature based on transcriptome-wide microarray and RNA-sequencing (RNA-Seq) analyses, primarily of prostatectomy specimens. An RNA-Seq study of formalin-fixed paraffin-embedded (FFPE) tumor biopsies has now allowed us to use this test as a basis for the development of a novel test that is applicable to FFPE biopsies as a tool for early routine PCa diagnostics. METHODS All patients of the FFPE biopsy cohort were treated by radical prostatectomy and median follow-up for biochemical recurrence (BCR) was 9 years. Based on the transcriptome data of 176 FFPE biopsies, we filtered ProstaTrend for genes susceptible to FFPE-associated degradation via regression analysis. ProstaTrend was additionally restricted to genes with concordant prognostic effects in the RNA-Seq TCGA prostate adenocarcinoma (PRAD) cohort to ensure robust and broad applicability. The prognostic relevance of the refined Transcriptomic Risk Score (TRS) was analyzed by Kaplan-Meier curves and Cox-regression models in our FFPE-biopsy cohort and 9 other public datasets from PCa patients with BCR as primary endpoint. In addition, we developed a prostate single-cell atlas of 41 PCa patients from 5 publicly available studies to analyze gene expression of ProstaTrend genes in different cell compartments. RESULTS Validation of the TRS using the original ProstaTrend signature in the cohort of FFPE biopsies revealed a relevant impact of FFPE-associated degradation on gene expression and consequently no significant association with prognosis (Cox-regression, p-value > 0.05) in FFPE tissue. However, the TRS based on the new version of the ProstaTrend-ffpe signature, which included 204 genes (of originally 1396 genes), was significantly associated with BCR in the FFPE biopsy cohort (Cox-regression p-value < 0.001) and retained prognostic relevance when adjusted for Gleason Grade Groups. We confirmed a significant association with BCR in 9 independent cohorts including 1109 patients. Comparison of the prognostic performance of the TRS with 17 other prognostically relevant PCa panels revealed that ProstaTrend-ffpe was among the best-ranked panels. We generated a PCa cell atlas to associate ProstaTrend genes with cell lineages or cell types. Tumor-specific luminal cells have a significantly higher TRS than normal luminal cells in all analyzed datasets. In addition, TRS of epithelial and luminal cells was correlated with increased Gleason score in 3 studies. CONCLUSIONS We developed a prognostic gene-expression signature for PCa that can be applied to FFPE biopsies and may be suitable to support clinical decision-making.
Collapse
Affiliation(s)
- Michael Rade
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Markus Kreuz
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Angelika Borkowetz
- Department of Urology, Faculty of Medicine, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Sommer
- Institute of Pathology, Faculty of Medicine, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Conny Blumert
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Susanne Füssel
- Department of Urology, Faculty of Medicine, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Catharina Bertram
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Dennis Löffler
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Dominik J Otto
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Basic Science Division, Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Livia A Wöller
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Carolin Schimmelpfennig
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ulrike Köhl
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Ann-Cathrin Gottschling
- Department of Urology, Faculty of Medicine, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Pia Hönscheid
- Institute of Pathology, Faculty of Medicine, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, Faculty of Medicine, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Manfred Wirth
- Department of Urology, Faculty of Medicine, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Friedemann Horn
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), University of Leipzig, 04105, Leipzig, Germany.
| |
Collapse
|
29
|
Rylaarsdam L, Rakotomamonjy J, Pope E, Guemez-Gamboa A. iPSC-derived models of PACS1 syndrome reveal transcriptional and functional deficits in neuron activity. Nat Commun 2024; 15:827. [PMID: 38280846 PMCID: PMC10821916 DOI: 10.1038/s41467-024-44989-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
PACS1 syndrome is a neurodevelopmental disorder characterized by intellectual disability and distinct craniofacial abnormalities resulting from a de novo p.R203W variant in phosphofurin acidic cluster sorting protein 1 (PACS1). PACS1 is known to have functions in the endosomal pathway and nucleus, but how the p.R203W variant affects developing neurons is not fully understood. Here we differentiated stem cells towards neuronal models including cortical organoids to investigate the impact of the PACS1 syndrome-causing variant on neurodevelopment. While few deleterious effects were detected in PACS1(+/R203W) neural precursors, mature PACS1(+/R203W) glutamatergic neurons exhibited impaired expression of genes involved in synaptic signaling processes. Subsequent characterization of neural activity using calcium imaging and multielectrode arrays revealed the p.R203W PACS1 variant leads to a prolonged neuronal network burst duration mediated by an increased interspike interval. These findings demonstrate the impact of the PACS1 p.R203W variant on developing human neural tissue and uncover putative electrophysiological underpinnings of disease.
Collapse
Affiliation(s)
- Lauren Rylaarsdam
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer Rakotomamonjy
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eleanor Pope
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alicia Guemez-Gamboa
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
30
|
Lucas CJ, Sheridan RM, Reynoso GV, Davenport BJ, McCarthy MK, Martin A, Hesselberth JR, Hickman HD, Tamburini BA, Morrison TE. Chikungunya virus infection disrupts lymph node lymphatic endothelial cell composition and function via MARCO. JCI Insight 2024; 9:e176537. [PMID: 38194268 PMCID: PMC11143926 DOI: 10.1172/jci.insight.176537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we found that, during the first 24 hours of infection, CHIKV RNA accumulated in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response - including recruitment of myeloid cells to the LN - was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.
Collapse
Affiliation(s)
- Cormac J. Lucas
- Department of Immunology & Microbiology and
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ryan M. Sheridan
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Glennys V. Reynoso
- Viral Immunity & Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy & Infectious Disease, NIH, Bethesda, Maryland, USA
| | | | | | - Aspen Martin
- Department of Biochemistry & Molecular Genetics and
| | - Jay R. Hesselberth
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry & Molecular Genetics and
| | - Heather D. Hickman
- Viral Immunity & Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy & Infectious Disease, NIH, Bethesda, Maryland, USA
| | - Beth A.J. Tamburini
- Department of Immunology & Microbiology and
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | |
Collapse
|
31
|
Zhang Y, Sun H, Zhang W, Fu T, Huang S, Mou M, Zhang J, Gao J, Ge Y, Yang Q, Zhu F. CellSTAR: a comprehensive resource for single-cell transcriptomic annotation. Nucleic Acids Res 2024; 52:D859-D870. [PMID: 37855686 PMCID: PMC10767908 DOI: 10.1093/nar/gkad874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Large-scale studies of single-cell sequencing and biological experiments have successfully revealed expression patterns that distinguish different cell types in tissues, emphasizing the importance of studying cellular heterogeneity and accurately annotating cell types. Analysis of gene expression profiles in these experiments provides two essential types of data for cell type annotation: annotated references and canonical markers. In this study, the first comprehensive database of single-cell transcriptomic annotation resource (CellSTAR) was thus developed. It is unique in (a) offering the comprehensive expertly annotated reference data for annotating hundreds of cell types for the first time and (b) enabling the collective consideration of reference data and marker genes by incorporating tens of thousands of markers. Given its unique features, CellSTAR is expected to attract broad research interests from the technological innovations in single-cell transcriptomics, the studies of cellular heterogeneity & dynamics, and so on. It is now publicly accessible without any login requirement at: https://idrblab.org/cellstar.
Collapse
Affiliation(s)
- Ying Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yichao Ge
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
32
|
Mullan KA, de Vrij N, Valkiers S, Meysman P. Current annotation strategies for T cell phenotyping of single-cell RNA-seq data. Front Immunol 2023; 14:1306169. [PMID: 38187377 PMCID: PMC10768068 DOI: 10.3389/fimmu.2023.1306169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has become a popular technique for interrogating the diversity and dynamic nature of cellular gene expression and has numerous advantages in immunology. For example, scRNA-seq, in contrast to bulk RNA sequencing, can discern cellular subtypes within a population, which is important for heterogenous populations such as T cells. Moreover, recent advancements in the technology allow the parallel capturing of the highly diverse T-cell receptor (TCR) sequence with the gene expression. However, the field of single-cell RNA sequencing data analysis is still hampered by a lack of gold-standard cell phenotype annotation. This problem is particularly evident in the case of T cells due to the heterogeneity in both their gene expression and their TCR. While current cell phenotype annotation tools can differentiate major cell populations from each other, labelling T-cell subtypes remains problematic. In this review, we identify the common automated strategy for annotating T cells and their subpopulations, and also describe what crucial information is still missing from these tools.
Collapse
Affiliation(s)
- Kerry A. Mullan
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS) Consortium, University of Antwerp, Antwerp, Belgium
| | - Nicky de Vrij
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS) Consortium, University of Antwerp, Antwerp, Belgium
- Clinical Immunology Unit, Department of Clinical Sciences, Institute for Tropical Medicine, Antwerp, Belgium
| | - Sebastiaan Valkiers
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS) Consortium, University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS) Consortium, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
33
|
Paas-Oliveros E, Hernández-Lemus E, de Anda-Jáuregui G. Computational single cell oncology: state of the art. Front Genet 2023; 14:1256991. [PMID: 38028624 PMCID: PMC10663273 DOI: 10.3389/fgene.2023.1256991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Single cell computational analysis has emerged as a powerful tool in the field of oncology, enabling researchers to decipher the complex cellular heterogeneity that characterizes cancer. By leveraging computational algorithms and bioinformatics approaches, this methodology provides insights into the underlying genetic, epigenetic and transcriptomic variations among individual cancer cells. In this paper, we present a comprehensive overview of single cell computational analysis in oncology, discussing the key computational techniques employed for data processing, analysis, and interpretation. We explore the challenges associated with single cell data, including data quality control, normalization, dimensionality reduction, clustering, and trajectory inference. Furthermore, we highlight the applications of single cell computational analysis, including the identification of novel cell states, the characterization of tumor subtypes, the discovery of biomarkers, and the prediction of therapy response. Finally, we address the future directions and potential advancements in the field, including the development of machine learning and deep learning approaches for single cell analysis. Overall, this paper aims to provide a roadmap for researchers interested in leveraging computational methods to unlock the full potential of single cell analysis in understanding cancer biology with the goal of advancing precision oncology. For this purpose, we also include a notebook that instructs on how to apply the recommended tools in the Preprocessing and Quality Control section.
Collapse
Affiliation(s)
- Ernesto Paas-Oliveros
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Investigadores por Mexico, Conahcyt, Mexico City, Mexico
| |
Collapse
|
34
|
Fu R, Walters K, Kaufman ML, Koc K, Baldwin A, Clay MR, Basham KJ, Kiseljak-Vassiliades K, Fishbein L, Mukherjee N. In Situ Spatial Reconstruction of Distinct Normal and Pathological Cell Populations Within the Human Adrenal Gland. J Endocr Soc 2023; 7:bvad131. [PMID: 37953901 PMCID: PMC10638100 DOI: 10.1210/jendso/bvad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 11/14/2023] Open
Abstract
The human adrenal gland consists of concentrically organized, functionally distinct regions responsible for hormone production. Dysregulation of adrenocortical cell differentiation alters the proportion and organization of the functional zones of the adrenal cortex leading to disease. Current models of adrenocortical cell differentiation are based on mouse studies, but there are known organizational and functional differences between human and mouse adrenal glands. This study aimed to investigate the centripetal differentiation model in the human adrenal cortex and characterize aldosterone-producing micronodules (APMs) to better understand adrenal diseases such as primary aldosteronism. We applied spatially resolved in situ transcriptomics to human adrenal tissue sections from 2 individuals and identified distinct cell populations and their positional relationships. The results supported the centripetal differentiation model in humans, with cells progressing from the outer capsule to the zona glomerulosa, zona fasciculata, and zona reticularis. Additionally, we characterized 2 APMs in a 72-year-old woman. Comparison with earlier APM transcriptomes indicated a subset of core genes, but also heterogeneity between APMs. The findings contribute to our understanding of normal and pathological cellular differentiation in the human adrenal cortex.
Collapse
Affiliation(s)
- Rui Fu
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
- Computational Biology, New York Genome Center, New York, NY 10013, USA
| | - Kathryn Walters
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Michael L Kaufman
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Katrina Koc
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Amber Baldwin
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Michael R Clay
- Department of Pathology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
- Research Service Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Lauren Fishbein
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Neelanjan Mukherjee
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| |
Collapse
|
35
|
Baldwin M, Buckley CD, Guilak F, Hulley P, Cribbs AP, Snelling S. A roadmap for delivering a human musculoskeletal cell atlas. Nat Rev Rheumatol 2023; 19:738-752. [PMID: 37798481 DOI: 10.1038/s41584-023-01031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Advances in single-cell technologies have transformed the ability to identify the individual cell types present within tissues and organs. The musculoskeletal bionetwork, part of the wider Human Cell Atlas project, aims to create a detailed map of the healthy musculoskeletal system at a single-cell resolution throughout tissue development and across the human lifespan, with complementary generation of data from diseased tissues. Given the prevalence of musculoskeletal disorders, this detailed reference dataset will be critical to understanding normal musculoskeletal function in growth, homeostasis and ageing. The endeavour will also help to identify the cellular basis for disease and lay the foundations for novel therapeutic approaches to treating diseases of the joints, soft tissues and bone. Here, we present a Roadmap delineating the critical steps required to construct the first draft of a human musculoskeletal cell atlas. We describe the key challenges involved in mapping the extracellular matrix-rich, but cell-poor, tissues of the musculoskeletal system, outline early milestones that have been achieved and describe the vision and directions for a comprehensive musculoskeletal cell atlas. By embracing cutting-edge technologies, integrating diverse datasets and fostering international collaborations, this endeavour has the potential to drive transformative changes in musculoskeletal medicine.
Collapse
Affiliation(s)
- Mathew Baldwin
- The Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Christopher D Buckley
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
| | - Philippa Hulley
- The Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- The Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Sarah Snelling
- The Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK.
| |
Collapse
|
36
|
Shi W, Ye J, Shi Z, Pan C, Zhang Q, Lin Y, Liang D, Liu Y, Lin X, Zheng Y. Single-cell chromatin accessibility and transcriptomic characterization of Behcet's disease. Commun Biol 2023; 6:1048. [PMID: 37848613 PMCID: PMC10582193 DOI: 10.1038/s42003-023-05420-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Behect's disease is a chronic vasculitis characterized by complex multi-organ immune aberrations. However, a comprehensive understanding of the gene-regulatory profile of peripheral autoimmunity and the diverse immune responses across distinct cell types in Behcet's disease (BD) is still lacking. Here, we present a multi-omic single-cell study of 424,817 cells in BD patients and non-BD individuals. This study maps chromatin accessibility and gene expression in the same biological samples, unraveling vast cellular heterogeneity. We identify widespread cell-type-specific, disease-associated active and pro-inflammatory immunity in both transcript and epigenomic aspects. Notably, integrative multi-omic analysis reveals putative TF regulators that might contribute to chromatin accessibility and gene expression in BD. Moreover, we predicted gene-regulatory networks within nominated TF activators, including AP-1, NF-kB, and ETS transcript factor families, which may regulate cellular interaction and govern inflammation. Our study illustrates the epigenetic and transcriptional landscape in BD peripheral blood and expands understanding of potential epigenomic immunopathology in this disease.
Collapse
Affiliation(s)
- Wen Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Caineng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China.
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China.
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China.
| |
Collapse
|
37
|
Lucas CJ, Sheridan RM, Reynoso GV, Davenport BJ, McCarthy MK, Martin A, Hesselberth JR, Hickman HD, Tamburini BAJ, Morrison TE. Chikungunya virus infection disrupts lymph node lymphatic endothelial cell composition and function via MARCO. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561615. [PMID: 37873393 PMCID: PMC10592756 DOI: 10.1101/2023.10.12.561615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we find that during the first 24 h of infection, CHIKV RNA accumulates in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response, including recruitment of myeloid cells to the LN, was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, we find that antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.
Collapse
|
38
|
Pei S, Shelton IT, Gillen AE, Stevens BM, Gasparetto M, Wang Y, Liu L, Liu J, Brunetti TM, Engel K, Staggs S, Showers W, Sheth AI, Amaya ML, Minhajuddin M, Winters A, Patel SB, Tolison H, Krug AE, Young TN, Schowinsky J, McMahon CM, Smith CA, Pollyea DA, Jordan CT. A Novel Type of Monocytic Leukemia Stem Cell Revealed by the Clinical Use of Venetoclax-Based Therapy. Cancer Discov 2023; 13:2032-2049. [PMID: 37358260 PMCID: PMC10527971 DOI: 10.1158/2159-8290.cd-22-1297] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
The BCL2 inhibitor venetoclax has recently emerged as an important component of acute myeloid leukemia (AML) therapy. Notably, use of this agent has revealed a previously unrecognized form of pathogenesis characterized by monocytic disease progression. We demonstrate that this form of disease arises from a fundamentally different type of leukemia stem cell (LSC), which we designate as monocytic LSC (m-LSC), that is developmentally and clinically distinct from the more well-described primitive LSC (p-LSC). The m-LSC is distinguished by a unique immunophenotype (CD34-, CD4+, CD11b-, CD14-, CD36-), unique transcriptional state, reliance on purine metabolism, and selective sensitivity to cladribine. Critically, in some instances, m-LSC and p-LSC subtypes can co-reside in the same patient with AML and simultaneously contribute to overall tumor biology. Thus, our findings demonstrate that LSC heterogeneity has direct clinical significance and highlight the need to distinguish and target m-LSCs as a means to improve clinical outcomes with venetoclax-based regimens. SIGNIFICANCE These studies identify and characterize a new type of human acute myeloid LSC that is responsible for monocytic disease progression in patients with AML treated with venetoclax-based regimens. Our studies describe the phenotype, molecular properties, and drug sensitivities of this unique LSC subclass. This article is featured in Selected Articles from This Issue, p. 1949.
Collapse
Affiliation(s)
- Shanshan Pei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- These authors contributed equally
| | - Ian T Shelton
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
- These authors contributed equally
| | - Austin E Gillen
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Brett M Stevens
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Maura Gasparetto
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Yanan Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lina Liu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jun Liu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Tonya M Brunetti
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Krysta Engel
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sarah Staggs
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - William Showers
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anagha Inguva Sheth
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Maria L Amaya
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Mohammad Minhajuddin
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Amanda Winters
- Center for Cancer and Blood Disorders, Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Sweta B Patel
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hunter Tolison
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anna E Krug
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Tracy N Young
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jeffrey Schowinsky
- Dept of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christine M McMahon
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Clayton A Smith
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Daniel A Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
39
|
Chen L, Pronk E, van Dijk C, Bian Y, Feyen J, van Tienhoven T, Yildirim M, Pisterzi P, de Jong MM, Bastidas A, Hoogenboezem RM, Wevers C, Bindels EM, Löwenberg B, Cupedo T, Sanders MA, Raaijmakers MH. A Single-Cell Taxonomy Predicts Inflammatory Niche Remodeling to Drive Tissue Failure and Outcome in Human AML. Blood Cancer Discov 2023; 4:394-417. [PMID: 37470778 PMCID: PMC10472197 DOI: 10.1158/2643-3230.bcd-23-0043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/09/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer initiation is orchestrated by an interplay between tumor-initiating cells and their stromal/immune environment. Here, by adapted single-cell RNA sequencing, we decipher the predicted signaling between tissue-resident hematopoietic stem/progenitor cells (HSPC) and their neoplastic counterparts with their native niches in the human bone marrow. LEPR+ stromal cells are identified as central regulators of hematopoiesis through predicted interactions with all cells in the marrow. Inflammatory niche remodeling and the resulting deprivation of critical HSPC regulatory factors are predicted to repress high-output hematopoietic stem cell subsets in NPM1-mutated acute myeloid leukemia (AML), with relative resistance of clonal cells. Stromal gene signatures reflective of niche remodeling are associated with reduced relapse rates and favorable outcomes after chemotherapy across all genetic risk categories. Elucidation of the intercellular signaling defining human AML, thus, predicts that inflammatory remodeling of stem cell niches drives tissue repression and clonal selection but may pose a vulnerability for relapse-initiating cells in the context of chemotherapeutic treatment. SIGNIFICANCE Tumor-promoting inflammation is considered an enabling characteristic of tumorigenesis, but mechanisms remain incompletely understood. By deciphering the predicted signaling between tissue-resident stem cells and their neoplastic counterparts with their environment, we identify inflammatory remodeling of stromal niches as a determinant of normal tissue repression and clinical outcomes in human AML. See related commentary by Lisi-Vega and Méndez-Ferrer, p. 349. This article is featured in Selected Articles from This Issue, p. 337.
Collapse
Affiliation(s)
- Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eline Pronk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Claire van Dijk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Yujie Bian
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Jacqueline Feyen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tim van Tienhoven
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Meltem Yildirim
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Paola Pisterzi
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Madelon M.E. de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Alejandro Bastidas
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | - Chiel Wevers
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eric M. Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mathijs A. Sanders
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | |
Collapse
|
40
|
Shukla N, Srivastava N, Gupta R, Srivastava P, Narayan J. COVID Variants, Villain and Victory: A Bioinformatics Perspective. Microorganisms 2023; 11:2039. [PMID: 37630599 PMCID: PMC10459809 DOI: 10.3390/microorganisms11082039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
The SARS-CoV-2 virus, a novel member of the Coronaviridae family, is responsible for the viral infection known as Coronavirus Disease 2019 (COVID-19). In response to the urgent and critical need for rapid detection, diagnosis, analysis, interpretation, and treatment of COVID-19, a wide variety of bioinformatics tools have been developed. Given the virulence of SARS-CoV-2, it is crucial to explore the pathophysiology of the virus. We intend to examine how bioinformatics, in conjunction with next-generation sequencing techniques, can be leveraged to improve current diagnostic tools and streamline vaccine development for emerging SARS-CoV-2 variants. We also emphasize how bioinformatics, in general, can contribute to critical areas of biomedicine, including clinical diagnostics, SARS-CoV-2 genomic surveillance and its evolution, identification of potential drug targets, and development of therapeutic strategies. Currently, state-of-the-art bioinformatics tools have helped overcome technical obstacles with respect to genomic surveillance and have assisted in rapid detection, diagnosis, and delivering precise treatment to individuals on time.
Collapse
Affiliation(s)
- Nityendra Shukla
- CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (N.S.); (R.G.)
| | - Neha Srivastava
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow 226010, India; (N.S.); (P.S.)
| | - Rohit Gupta
- CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (N.S.); (R.G.)
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow 226010, India; (N.S.); (P.S.)
| | - Jitendra Narayan
- CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (N.S.); (R.G.)
| |
Collapse
|
41
|
Stensland ZC, Magera CA, Broncucia H, Gomez BD, Rios-Guzman NM, Wells KL, Nicholas CA, Rihanek M, Hunter MJ, Toole KP, Gottlieb PA, Smith MJ. Identification of an anergic BND cell-derived activated B cell population (BND2) in young-onset type 1 diabetes patients. J Exp Med 2023; 220:e20221604. [PMID: 37184563 PMCID: PMC10192302 DOI: 10.1084/jem.20221604] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/15/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023] Open
Abstract
Recent evidence suggests a role for B cells in the pathogenesis of young-onset type 1 diabetes (T1D), wherein rapid progression occurs. However, little is known regarding the specificity, phenotype, and function of B cells in young-onset T1D. We performed a cross-sectional analysis comparing insulin-reactive to tetanus-reactive B cells in the blood of T1D and controls using mass cytometry. Unsupervised clustering revealed the existence of a highly activated B cell subset we term BND2 that falls within the previously defined anergic BND subset. We found a specific increase in the frequency of insulin-reactive BND2 cells in the blood of young-onset T1D donors, which was further enriched in the pancreatic lymph nodes of T1D donors. The frequency of insulin-binding BND2 cells correlated with anti-insulin autoantibody levels. We demonstrate BND2 cells are pre-plasma cells and can likely act as APCs to T cells. These findings identify an antigen-specific B cell subset that may play a role in the rapid progression of young-onset T1D.
Collapse
Affiliation(s)
- Zachary C. Stensland
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher A. Magera
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hali Broncucia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brittany D. Gomez
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nasha M. Rios-Guzman
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen L. Wells
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Catherine A. Nicholas
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marynette Rihanek
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maya J. Hunter
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kevin P. Toole
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peter A. Gottlieb
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mia J. Smith
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
42
|
Heumos L, Schaar AC, Lance C, Litinetskaya A, Drost F, Zappia L, Lücken MD, Strobl DC, Henao J, Curion F, Schiller HB, Theis FJ. Best practices for single-cell analysis across modalities. Nat Rev Genet 2023; 24:550-572. [PMID: 37002403 PMCID: PMC10066026 DOI: 10.1038/s41576-023-00586-w] [Citation(s) in RCA: 358] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 04/03/2023]
Abstract
Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.
Collapse
Affiliation(s)
- Lukas Heumos
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Anna C Schaar
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Technical University of Munich, Garching, Germany
| | - Christopher Lance
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anastasia Litinetskaya
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Felix Drost
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Luke Zappia
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Malte D Lücken
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Institute of Lung Health and Immunity, Helmholtz Munich, Munich, Germany
| | - Daniel C Strobl
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Juan Henao
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
| | - Fabiola Curion
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Herbert B Schiller
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Munich Center for Machine Learning, Technical University of Munich, Garching, Germany.
| |
Collapse
|
43
|
Hildebrandt F, Mohammed M, Dziedziech A, Bhandage AK, Divne AM, Barrenäs F, Barragan A, Henriksson J, Ankarklev J. scDual-Seq of Toxoplasma gondii-infected mouse BMDCs reveals heterogeneity and differential infection dynamics. Front Immunol 2023; 14:1224591. [PMID: 37575232 PMCID: PMC10415529 DOI: 10.3389/fimmu.2023.1224591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Dendritic cells and macrophages are integral parts of the innate immune system and gatekeepers against infection. The protozoan pathogen, Toxoplasma gondii, is known to hijack host immune cells and modulate their immune response, making it a compelling model to study host-pathogen interactions. Here we utilize single cell Dual RNA-seq to parse out heterogeneous transcription of mouse bone marrow-derived dendritic cells (BMDCs) infected with two distinct genotypes of T. gondii parasites, over multiple time points post infection. We show that the BMDCs elicit differential responses towards T. gondii infection and that the two parasite lineages distinctly manipulate subpopulations of infected BMDCs. Co-expression networks define host and parasite genes, with implications for modulation of host immunity. Integrative analysis validates previously established immune pathways and additionally, suggests novel candidate genes involved in host-pathogen interactions. Altogether, this study provides a comprehensive resource for characterizing host-pathogen interplay at high-resolution.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexis Dziedziech
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Global Health, Institut Pasteur, Paris, France
| | - Amol K. Bhandage
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna-Maria Divne
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| | - Fredrik Barrenäs
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Johan Henriksson
- Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Vokshi BH, Davidson G, Tawanaie Pour Sedehi N, Helleux A, Rippinger M, Haller AR, Gantzer J, Thouvenin J, Baltzinger P, Bouarich R, Manriquez V, Zaidi S, Rao P, Msaouel P, Su X, Lang H, Tricard T, Lindner V, Surdez D, Kurtz JE, Bourdeaut F, Tannir NM, Davidson I, Malouf GG. SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance. Nat Commun 2023; 14:3034. [PMID: 37236926 DOI: 10.1038/s41467-023-38472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Renal medullary carcinoma (RMC) is an aggressive tumour driven by bi-allelic loss of SMARCB1 and tightly associated with sickle cell trait. However, the cell-of-origin and oncogenic mechanism remain poorly understood. Using single-cell sequencing of human RMC, we defined transformation of thick ascending limb (TAL) cells into an epithelial-mesenchymal gradient of RMC cells associated with loss of renal epithelial transcription factors TFCP2L1, HOXB9 and MITF and gain of MYC and NFE2L2-associated oncogenic and ferroptosis resistance programs. We describe the molecular basis for this transcriptional switch that is reversed by SMARCB1 re-expression repressing the oncogenic and ferroptosis resistance programs leading to ferroptotic cell death. Ferroptosis resistance links TAL cell survival with the high extracellular medullar iron concentrations associated with sickle cell trait, an environment propitious to the mutagenic events associated with RMC development. This unique environment may explain why RMC is the only SMARCB1-deficient tumour arising from epithelial cells, differentiating RMC from rhabdoid tumours arising from neural crest cells.
Collapse
Affiliation(s)
- Bujamin H Vokshi
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Guillaume Davidson
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Nassim Tawanaie Pour Sedehi
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Alexandra Helleux
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Marc Rippinger
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Alexandre R Haller
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Justine Gantzer
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France
| | - Jonathan Thouvenin
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France
| | - Philippe Baltzinger
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Rachida Bouarich
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Centre, 75005, Paris, France
| | - Valeria Manriquez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Centre, 75005, Paris, France
| | - Sakina Zaidi
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Centre, 75005, Paris, France
| | - Priya Rao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hervé Lang
- Department of Urology, CHRU Strasbourg, Strasbourg University, 67000, Strasbourg, France
| | - Thibault Tricard
- Department of Urology, CHRU Strasbourg, Strasbourg University, 67000, Strasbourg, France
| | - Véronique Lindner
- Department of Pathology, CHRU Strasbourg, Strasbourg University, 67200, Strasbourg, France
| | - Didier Surdez
- Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- INSERM, U830, Pediatric Translational Research, PSL Research University, SIREDO Oncology Center, Institut Curie, Paris, France
| | - Jean-Emmanuel Kurtz
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France
| | - Franck Bourdeaut
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Centre, 75005, Paris, France
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Irwin Davidson
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France.
- 'Équipe Labellisée' Ligue National contre le Cancer, Paris, France.
| | - Gabriel G Malouf
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France.
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France.
- 'Équipe Labellisée' Ligue National contre le Cancer, Paris, France.
| |
Collapse
|
45
|
Peretz CAC, Kennedy VE, Walia A, Delley CL, Koh A, Tran E, Clark IC, Hayford CE, D'Amato C, Xue Y, Fontanez KM, Roy R, Logan AC, Perl AE, Abate A, Olshen A, Smith CC. Multiomic Single Cell Sequencing Identifies Stemlike Nature of Mixed Phenotype Acute Leukemia and Provides Novel Risk Stratification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540305. [PMID: 37292835 PMCID: PMC10245585 DOI: 10.1101/2023.05.15.540305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed phenotype acute leukemia (MPAL) is a leukemia whose biologic drivers are poorly understood, therapeutic strategy remains unclear, and prognosis is poor. We performed multiomic single cell (SC) profiling of 14 newly diagnosed adult MPAL patients to characterize the immunophenotypic, genetic, and transcriptional landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. However, progressive acquisition of mutations is associated with increased expression of immunophenotypic markers of immaturity. Using SC transcriptional profiling, we find that MPAL blasts express a stem cell-like transcriptional profile distinct from other acute leukemias and indicative of high differentiation potential. Further, patients with the highest differentiation potential demonstrated inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in this cohort, is applicable to bulk RNA sequencing data and was predictive of survival in an independent patient cohort, suggesting utility for clinical risk stratification.
Collapse
Affiliation(s)
- Cheryl A C Peretz
- Divison of Hematology and Oncology, Department of Pediatrics, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Vanessa E Kennedy
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Anushka Walia
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cyrille L Delley
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Andrew Koh
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Elaine Tran
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Iain C Clark
- Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | | | - Yi Xue
- Fluent Biosciences Inc., Watertown, MA
| | | | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Aaron C Logan
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alexander E Perl
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Abate
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Adam Olshen
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Catherine C Smith
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
46
|
Broughton K, Esquer C, Echeagaray O, Firouzi F, Shain G, Ebeid D, Monsanto M, Yaareb D, Golgolab L, Gude N, Sussman MA. Surface Lin28A expression consistent with cellular stress parallels indicators of senescence. Cardiovasc Res 2023; 119:743-758. [PMID: 35880724 PMCID: PMC10409908 DOI: 10.1093/cvr/cvac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/03/2022] [Accepted: 06/26/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Declining cellular functional capacity resulting from stress or ageing is a primary contributor to impairment of myocardial performance. Molecular pathway regulation of biological processes in cardiac interstitial cells (CICs) is pivotal in stress and ageing responses. Altered localization of the RNA-binding protein Lin28A has been reported in response to environmental stress, but the role of Lin28A in response to stress in CICs has not been explored. Surface Lin28A redistribution is indicative of stress response in CIC associated with ageing and senescence. METHODS AND RESULTS Localization of Lin28A was assessed by multiple experimental analyses and treatment conditions and correlated to oxidative stress, senescence, and ploidy in adult murine CICs. Surface Lin28A expression is present on 5% of fresh CICs and maintained through Passage 2, increasing to 21% in hyperoxic conditions but lowered to 14% in physiologic normoxia. Surface Lin28A is coincident with elevated senescence marker p16 and beta-galactosidase (β-gal) expression in CICs expanded in hyperoxia, and also increases with polyploidization and binucleation of CICs regardless of oxygen culture. Transcriptional profiling of CICs using single-cell RNA-Seq reveals up-regulation of pathways associated with oxidative stress in CICs exhibiting surface Lin28A. Induction of surface Lin28A by oxidative stress is blunted by treatment of cells with the antioxidant Trolox in a dose-dependent manner, with 300 μM Trolox exposure maintaining characteristics of freshly isolated CICs possessing low expression of surface Lin28A and β-gal with predominantly diploid content. CONCLUSION Surface Lin28A is a marker of environmental oxidative stress in CICs and antioxidant treatment antagonizes this phenotype. The biological significance of Lin28 surface expression and consequences for myocardial responses may provide important insights regarding mitigation of cardiac stress and ageing.
Collapse
Affiliation(s)
- Kathleen Broughton
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Carolina Esquer
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Oscar Echeagaray
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Fareheh Firouzi
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Grant Shain
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - David Ebeid
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Megan Monsanto
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Dena Yaareb
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Leila Golgolab
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Natalie Gude
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A Sussman
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
47
|
Lee J, Kim M, Kang K, Yang CS, Yoon S. Hierarchical cell-type identifier accurately distinguishes immune-cell subtypes enabling precise profiling of tissue microenvironment with single-cell RNA-sequencing. Brief Bioinform 2023; 24:bbad006. [PMID: 36681937 PMCID: PMC10025442 DOI: 10.1093/bib/bbad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/23/2023] Open
Abstract
Single-cell RNA-seq enabled in-depth study on tissue micro-environment and immune-profiling, where a crucial step is to annotate cell identity. Immune cells play key roles in many diseases, whereas their activities are hard to track due to their diverse and highly variable nature. Existing cell-type identifiers had limited performance for this purpose. We present HiCAT, a hierarchical, marker-based cell-type identifier utilising gene set analysis for statistical scoring for given markers. It features successive identification of major-type, minor-type and subsets utilising subset markers structured in a three-level taxonomy tree. Comparison with manual annotation and pairwise match test showed HiCAT outperforms others in major- and minor-type identification. For subsets, we qualitatively evaluated the marker expression profile demonstrating that HiCAT provide the clearest immune-cell landscape. HiCAT was also used for immune-cell profiling in ulcerative colitis and discovered distinct features of the disease in macrophage and T-cell subsets that could not be identified previously.
Collapse
Affiliation(s)
- Joongho Lee
- Dept. of Computer Science, College of SW Convergence, Dankook University, Yongin-si, Korea, 16890
| | - Minsoo Kim
- Dept. of Computer Science, College of SW Convergence, Dankook University, Yongin-si, Korea, 16890
| | - Keunsoo Kang
- Dept. of Microbiology, College of Natural Sciences, Dankook University, Cheonan-si, Korea, 31116
| | - Chul-Su Yang
- Dept. of Molecular and Life Science, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Korea, 15588
| | - Seokhyun Yoon
- Dept. of Electronics & Electrical Eng., College of Engineering, Dankook University, Yongin-si Korea, 16890
| |
Collapse
|
48
|
Păun O, Tan YX, Patel H, Strohbuecker S, Ghanate A, Cobolli-Gigli C, Llorian Sopena M, Gerontogianni L, Goldstone R, Ang SL, Guillemot F, Dias C. Pioneer factor ASCL1 cooperates with the mSWI/SNF complex at distal regulatory elements to regulate human neural differentiation. Genes Dev 2023; 37:218-242. [PMID: 36931659 PMCID: PMC10111863 DOI: 10.1101/gad.350269.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Pioneer transcription factors are thought to play pivotal roles in developmental processes by binding nucleosomal DNA to activate gene expression, though mechanisms through which pioneer transcription factors remodel chromatin remain unclear. Here, using single-cell transcriptomics, we show that endogenous expression of neurogenic transcription factor ASCL1, considered a classical pioneer factor, defines a transient population of progenitors in human neural differentiation. Testing ASCL1's pioneer function using a knockout model to define the unbound state, we found that endogenous expression of ASCL1 drives progenitor differentiation by cis-regulation both as a classical pioneer factor and as a nonpioneer remodeler, where ASCL1 binds permissive chromatin to induce chromatin conformation changes. ASCL1 interacts with BAF SWI/SNF chromatin remodeling complexes, primarily at targets where it acts as a nonpioneer factor, and we provide evidence for codependent DNA binding and remodeling at a subset of ASCL1 and SWI/SNF cotargets. Our findings provide new insights into ASCL1 function regulating activation of long-range regulatory elements in human neurogenesis and uncover a novel mechanism of its chromatin remodeling function codependent on partner ATPase activity.
Collapse
Affiliation(s)
- Oana Păun
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Yu Xuan Tan
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Stephanie Strohbuecker
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Avinash Ghanate
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Clementina Cobolli-Gigli
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Miriam Llorian Sopena
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Lina Gerontogianni
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Robert Goldstone
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Siew-Lan Ang
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - François Guillemot
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Cristina Dias
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
- Medical and Molecular Genetics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
49
|
Palmateer CM, Artikis C, Brovero SG, Friedman B, Gresham A, Arbeitman MN. Single-cell transcriptome profiles of Drosophila fruitless-expressing neurons from both sexes. eLife 2023; 12:e78511. [PMID: 36724009 PMCID: PMC9891730 DOI: 10.7554/elife.78511] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/08/2023] [Indexed: 02/02/2023] Open
Abstract
Drosophila melanogaster reproductive behaviors are orchestrated by fruitless neurons. We performed single-cell RNA-sequencing on pupal neurons that produce sex-specifically spliced fru transcripts, the fru P1-expressing neurons. Uniform Manifold Approximation and Projection (UMAP) with clustering generates an atlas containing 113 clusters. While the male and female neurons overlap in UMAP space, more than half the clusters have sex differences in neuron number, and nearly all clusters display sex-differential expression. Based on an examination of enriched marker genes, we annotate clusters as circadian clock neurons, mushroom body Kenyon cell neurons, neurotransmitter- and/or neuropeptide-producing, and those that express doublesex. Marker gene analyses also show that genes that encode members of the immunoglobulin superfamily of cell adhesion molecules, transcription factors, neuropeptides, neuropeptide receptors, and Wnts have unique patterns of enriched expression across the clusters. In vivo spatial gene expression links to the clusters are examined. A functional analysis of fru P1 circadian neurons shows they have dimorphic roles in activity and period length. Given that most clusters are comprised of male and female neurons indicates that the sexes have fru P1 neurons with common gene expression programs. Sex-specific expression is overlaid on this program, to build the potential for vastly different sex-specific behaviors.
Collapse
Affiliation(s)
- Colleen M Palmateer
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Catherina Artikis
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Savannah G Brovero
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Benjamin Friedman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Alexis Gresham
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Michelle N Arbeitman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
- Program of Neuroscience, Florida State UniversityTallahasseeUnited States
| |
Collapse
|
50
|
Cameron D, Mi D, Vinh NN, Webber C, Li M, Marín O, O'Donovan MC, Bray NJ. Single-Nuclei RNA Sequencing of 5 Regions of the Human Prenatal Brain Implicates Developing Neuron Populations in Genetic Risk for Schizophrenia. Biol Psychiatry 2023; 93:157-166. [PMID: 36150908 PMCID: PMC10804933 DOI: 10.1016/j.biopsych.2022.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND While a variety of evidence supports a prenatal component in schizophrenia, there are few data regarding the cell populations involved. We sought to identify cells of the human prenatal brain mediating genetic risk for schizophrenia by integrating cell-specific gene expression measures generated through single-nuclei RNA sequencing with recent large-scale genome-wide association study (GWAS) and exome sequencing data for the condition. METHODS Single-nuclei RNA sequencing was performed on 5 brain regions (frontal cortex, ganglionic eminence, hippocampus, thalamus, and cerebellum) from 3 fetuses from the second trimester of gestation. Enrichment of schizophrenia common variant genetic liability and rare damaging coding variation was assessed in relation to gene expression specificity within each identified cell population. RESULTS Common risk variants were prominently enriched within genes with high expression specificity for developing neuron populations within the frontal cortex, ganglionic eminence, and hippocampus. Enrichments were largely independent of genes expressed in neuronal populations of the adult brain that have been implicated in schizophrenia through the same methods. Genes containing an excess of rare damaging variants in schizophrenia had higher expression specificity for developing glutamatergic neurons of the frontal cortex and hippocampus that were also enriched for common variant liability. CONCLUSIONS We found evidence for a distinct contribution of prenatal neuronal development to genetic risk for schizophrenia, involving specific populations of developing neurons within the second-trimester fetal brain. Our study significantly advances the understanding of the neurodevelopmental origins of schizophrenia and provides a resource with which to investigate the prenatal antecedents of other psychiatric and neurologic disorders.
Collapse
Affiliation(s)
- Darren Cameron
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff, United Kingdom
| | - Da Mi
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ngoc-Nga Vinh
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff, United Kingdom
| | - Caleb Webber
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Meng Li
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff, United Kingdom; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Oscar Marín
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff, United Kingdom
| | - Nicholas J Bray
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff, United Kingdom; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|