1
|
Otero L, del Prado L, Morata A. Innovative Applications of High Hydrostatic Pressure in Winemaking. Compr Rev Food Sci Food Saf 2025; 24:e70204. [PMID: 40421833 PMCID: PMC12108039 DOI: 10.1111/1541-4337.70204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/28/2025]
Abstract
Wine industry faces, today, great challenges, including the production of wines with low SO2 content, the reduction of winemaking times, or the elaboration of wines with own distinctive characteristics, among others. To assess the potential and opportunities that high hydrostatic pressure (HHP) offers to meet these challenges, an exhaustive bibliographical review has been carried out to compile the scientific studies performed so far on this subject. The studies consulted reveal that high-pressure processing could be applied at various stages of the winemaking process with different objectives, including reducing the microbial load, accelerating solid-liquid extraction processes, or enhancing chemical changes in wine composition. This would make it possible to reduce SO2 levels, shorten vinification times by speeding up certain stages such as must maceration or wine aging, and apply new biotechnologies for wine fermentation capable of producing wines with unique organoleptic profiles. However, the potential of HHP for winemaking has not yet been fully explored, and, thus, based on the observed effects of HHP in food matrices other than wine, this review identifies new opportunities with potential interest. Finally, difficulties associated with HHP implementation in the wine industry are also evaluated to give a rough idea of its industrial feasibility. This review should encourage further research to optimize high-pressure-based solutions capable of addressing current challenges of the wine industry.
Collapse
Affiliation(s)
- Laura Otero
- Institute of Food Science, Technology and Nutrition, MALTA‐Consolider TeamSpanish National Research Council (ICTAN‐CSIC)MadridSpain
| | | | - Antonio Morata
- enotecUPM, MALTA‐Consolider Team, ETSIAABUniversidad Politécnica de MadridMadridSpain
| |
Collapse
|
2
|
Dopffel N, Shaker Shiran B, Mayers K, An-Stepec BA, Kedir A, Heydolph B, Hajibeygi H, Djurhuus K. Pressure up to 60 bar has no major effect on the overall hydrogen consumption of the sulfate reducer Oleidesulfovibrio alaskensis. J Appl Microbiol 2025; 136:lxaf077. [PMID: 40159293 DOI: 10.1093/jambio/lxaf077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
AIMS Subsurface environments found in geological aquifers or reservoirs are not sterile, but harbor diverse microbial communities for which hydrogen (H2) is a ubiquitous electron donor, especially for sulfate-reducing bacteria (SRB). Most studies investigating SRB have been conducted through consumption experiments at near-atmospheric pressure. However, pressures are significantly higher in subsurface formations. It remains a crucial question whether high H2 partial pressure influences microbial consumption. Therefore, we tested a relevant SRB under increased H2-pressure to investigate changes in H2-consumption behavior. METHODS AND RESULTS We cultured the H2-consuming SRB Oleidesulfovibrio alaskensis G20 under 1, 30, and 60 bar of H2 overpressure and quantified consumption over time. Data were compared to sterile incubations. After 16 days, the total amount of consumed H2, sulfate, and acetate was similar for all pressure conditions and pH ended over 9, which is beyond the described pH limit. While the maximum H2 consumption rate was found higher at atmospheric pressures (0.20 mmol per day) compared to 30 and 60 bar (0.13 and 0.11 mmol per day), the maximum rate per surface area was comparable (0.02, 0.03, 0.02 mmol per day per cm2). The total rate of H2 consumption per cm2 was higher with increasing pressure, which is probably related to the increased solubility of H2 in the brine phase due to pressure. CONCLUSIONS The data show that pressures up to 60 bar have no significant effect on the overall activity of O. alaskensis. The governing factor for the H2 consumption rate is contact area between brine and gas phase and the concentration of dissolved H2.
Collapse
Affiliation(s)
- Nicole Dopffel
- Norwegian Research Centre AS - NORCE, 5008 Bergen, Norway
| | | | - Kyle Mayers
- Norwegian Research Centre AS - NORCE, 5008 Bergen, Norway
| | | | | | - Ben Heydolph
- Norwegian Research Centre AS - NORCE, 5008 Bergen, Norway
| | - Hadi Hajibeygi
- Technical University of Delft, 2628CN Delft, The Netherlands
| | - Ketil Djurhuus
- Norwegian Research Centre AS - NORCE, 5008 Bergen, Norway
| |
Collapse
|
3
|
Li C, Li S, Song Q, Da LT, Xu J. High hydrostatic pressure promotes gene transcription via a cystathionine-β-synthase domain-containing protein in the hyperthermophilic archaeon Pyrococcus yayanosii. Nucleic Acids Res 2025; 53:gkae1289. [PMID: 39777464 PMCID: PMC11705074 DOI: 10.1093/nar/gkae1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Cystathionine-β-synthase (CBS) domains are ubiquitously prevalent in all kingdoms of life. Remarkably, in archaea, proteins consisting of solely CBS domains are widespread. However, the biological functions of CBS proteins in archaea are still unknown. Here, we identified a high hydrostatic pressure regulator (HhpR) that comprises four CBS domains serving as a transcriptional activator via specifically binding to the UAS (upstream activating sequence) motif situated within the promoter region of an operon in a hyperthermophilic archaeon Pyrococcus yayanosii under high hydrostatic pressure (HHP). By combining molecular dynamics simulations, in vitro and in vivo assays, we revealed the potential binding interfaces between HhpR and its specific DNA binding site. Particularly, one stem-loop region in HhpR (termed as 'Arm') was found to play a critical role in regulating the transcription activity, and the 192 position in the Arm region is an essential site in dictating the conformational changes of HhpR at HHP condition. Our work provides novel insights into the structure-function relationship of CBS-containing proteins that participate in archaeal gene regulation as general transcriptional activators.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Siyuan Li
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Qinghao Song
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Lin-tai Da
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| |
Collapse
|
4
|
Morais S, Vidal E, Cario A, Marre S, Ranchou-Peyruse A. Microfluidics for studying the deep underground biosphere: from applications to fundamentals. FEMS Microbiol Ecol 2024; 100:fiae151. [PMID: 39544108 DOI: 10.1093/femsec/fiae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/20/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
In this review, selected examples are presented to demonstrate how microfluidic approaches can be utilized for investigating microbial life from deep geological environments, both from practical and fundamental perspectives. Beginning with the definition of the deep underground biosphere and the conventional experimental techniques employed for these studies, the use of microfluidic systems for accessing critical parameters of deep life in geological environments at the microscale is subsequently addressed (high pressure, high temperature, low volume). Microfluidics can simulate a range of environmental conditions on a chip, enabling rapid and comprehensive studies of microbial behavior and interactions in subsurface ecosystems, such as simulations of porous systems, interactions among microbes/microbes/minerals, and gradient cultivation. Transparent microreactors allow real-time, noninvasive analysis of microbial activities (microscopy, Raman spectroscopy, FTIR microspectroscopy, etc.), providing detailed insights into biogeochemical processes and facilitating pore-scale analysis. Finally, the current challenges and opportunities to expand the use of microfluidic methodologies for studying and monitoring the deep biosphere in real time under deep underground conditions are discussed.
Collapse
Affiliation(s)
- Sandy Morais
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, F-33600 Pessac Cedex, France
| | - Emeline Vidal
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, F-33600 Pessac Cedex, France
| | - Anaïs Cario
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, F-33600 Pessac Cedex, France
| | - Samuel Marre
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, F-33600 Pessac Cedex, France
| | | |
Collapse
|
5
|
Cossey HL, Kaminsky HAW, Ulrich AC. Effects of pressure on the biogeochemical and geotechnical behavior of treated oil sands tailings in a pit lake scenario. CHEMOSPHERE 2024; 365:143395. [PMID: 39313078 DOI: 10.1016/j.chemosphere.2024.143395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Reclamation options for oil sands fluid fine tailings (FFT) are limited due to its challenging geotechnical properties, which include high water and clay contents and low shear strength. A feasible reclamation option for tailings with these properties is water capped FFT deposits (pit lakes). A relatively new proposal is to deposit FFT that has been treated with alum and polyacrylamide in pit lakes. Though over 65 Mm3 of alum/polyacrylamide treated FFT has been deposited to date, there is limited publicly available information on the biogeochemical and geotechnical behavior of this treated FFT. Further, the effects of pressure from overlying tailings on microbial activity and biogeochemical cycling in oil sands tailings has not been previously investigated. Twelve 5.5 L columns were designed to mimic alum/polyacrylamide treated FFT deposited beneath a water cap. A 2x2 factorial design was used to apply pressure and hydrocarbon amendments to the tailings. Pressure (0.3-5.1 kPa) was applied incrementally and columns were monitored for 360 d. Pressure significantly enhanced consolidation and microbial activity in treated FFT. Columns with pressure generated significantly more CH4(g) and CO2(g) and had significant increases in dissolved organic carbon and chemical oxygen demand in the FFT and water caps. The enhanced microbial activity in columns with pressure indicates that pressure increased the solubility of microbial substrates and metabolites in the tailings, thereby increasing the bioavailability of these compounds. Ammonium generation was significantly higher in columns with pressure, suggesting that microorganisms utilized polyacrylamide and/or N2 fixation as a nitrogen source to meet enhanced nutrient demands. Pressure also impacted microbial community structure, shifting methanogenic communities from hydrogenotrophic methanogens to predominately acetoclastic methanogens. This study also revealed the importance of sulfur cycling in treated FFT. Extensive sulfate reduction occurred in all columns, generating dissolved sulfides and H2S(g), and this was accelerated by hydrocarbon amendments.
Collapse
Affiliation(s)
- Heidi L Cossey
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Heather A W Kaminsky
- Centre for Energy and Environmental Sustainability, Northern Alberta Institute of Technology, Edmonton, Alberta, T5G 0Y2, Canada
| | - Ania C Ulrich
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
6
|
Kato Y, Mioka T, Uemura S, Abe F. Role of a novel endoplasmic reticulum-resident glycoprotein Mtc6/Ehg2 in high-pressure growth: stability of tryptophan permease Tat2 in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2024; 88:1055-1063. [PMID: 38918055 DOI: 10.1093/bbb/zbae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Deep-sea organisms are subjected to extreme conditions; therefore, understanding their adaptive strategies is crucial. We utilize Saccharomyces cerevisiae as a model to investigate pressure-dependent protein regulation and piezo-adaptation. Using yeast deletion library analysis, we identified 6 poorly characterized genes that are crucial for high-pressure growth, forming novel functional modules associated with cell growth. In this study, we aimed to unravel the molecular mechanisms of high-pressure adaptation in S. cerevisiae, focusing on the role of MTC6. MTC6, the gene encoding the novel glycoprotein Mtc6/Ehg2, was found to stabilize tryptophan permease Tat2, ensuring efficient tryptophan uptake and growth under high pressure at 25 MPa. The loss of MTC6 led to promoted vacuolar degradation of Tat2, depending on the Rsp5-Bul1 ubiquitin ligase complex. These findings enhance our understanding of deep-sea adaptations and stress biology, with broad implications for biotechnology, environmental microbiology, and evolutionary insights across species.
Collapse
Affiliation(s)
- Yusuke Kato
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Tetsuo Mioka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Satoshi Uemura
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| |
Collapse
|
7
|
Zhong M, Li Y, Deng L, Fang J, Yu X. Insight into the adaptation mechanisms of high hydrostatic pressure in physiology and metabolism of hadal fungi from the deepest ocean sediment. mSystems 2024; 9:e0108523. [PMID: 38117068 PMCID: PMC10804941 DOI: 10.1128/msystems.01085-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
High hydrostatic pressure (HHP) influences the life processes of organisms living at depth in the oceans. While filamentous fungi are one of the essential members of deep-sea microorganisms, few works have explored their piezotolerance to HHP. Here, we obtained three homogeneous Aspergillus sydowii from terrestrial, shallow, and hadal areas, respectively, to compare their pressure resistance. A set of all-around evaluation methods including determination of growth rate, metabolic activity, and microscopic staining observation was established and indicated that A. sydowii DM1 from the hadal area displayed significant piezotolerance. Global analysis of transcriptome data under elevated HHP revealed that A. sydowii DM1 proactively modulated cell membrane permeability, hyphae morphology, and septal quantities for seeking a better livelihood under mild pressure. Besides, differentially expressed genes were mainly enriched in the biosynthesis of amino acids, carbohydrate metabolism, cell process, etc., implying how the filamentous fungi respond to elevated pressure at the molecular level. We speculated that A. sydowii DM1 could acclimatize itself to HHP by adopting several strategies, including environmental response pathway HOG-MAPK, stress proteins, and cellular metabolisms.IMPORTANCEFungi play an ecological and biological function in marine environments, while the physiology of filamentous fungi under high hydrostatic pressure (HHP) is an unknown territory due to current technologies. As filamentous fungi are found in various niches, Aspergillus sp. from deep-sea inspire us to the physiological trait of eukaryotes under HHP, which can be considered as a prospective research model. Here, the evaluation methods we constructed would be universal for most filamentous fungi to assess their pressure resistance, and we found that Aspergillus sydowii DM1 from the hadal area owned better piezotolerance and the active metabolisms under HHP indicated the existence of undiscovered metabolic strategies for hadal fungi. Since pressure-related research of marine fungi has been unexpectedly neglected, our study provided an enlightening strategy for them under HHP; we believed that understanding their adaptation and ecological function in original niches will be accelerated in the perceivable future.
Collapse
Affiliation(s)
- Maosheng Zhong
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yongqi Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Ludan Deng
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
8
|
Butterworth SJ, Barton F, Lloyd JR. Extremophilic microbial metabolism and radioactive waste disposal. Extremophiles 2023; 27:27. [PMID: 37839067 PMCID: PMC10577106 DOI: 10.1007/s00792-023-01312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Decades of nuclear activities have left a legacy of hazardous radioactive waste, which must be isolated from the biosphere for over 100,000 years. The preferred option for safe waste disposal is a deep subsurface geological disposal facility (GDF). Due to the very long geological timescales required, and the complexity of materials to be disposed of (including a wide range of nutrients and electron donors/acceptors) microbial activity will likely play a pivotal role in the safe operation of these mega-facilities. A GDF environment provides many metabolic challenges to microbes that may inhabit the facility, including high temperature, pressure, radiation, alkalinity, and salinity, depending on the specific disposal concept employed. However, as our understanding of the boundaries of life is continuously challenged and expanded by the discovery of novel extremophiles in Earth's most inhospitable environments, it is becoming clear that microorganisms must be considered in GDF safety cases to ensure accurate predictions of long-term performance. This review explores extremophilic adaptations and how this knowledge can be applied to challenge our current assumptions on microbial activity in GDF environments. We conclude that regardless of concept, a GDF will consist of multiple extremes and it is of high importance to understand the limits of polyextremophiles under realistic environmental conditions.
Collapse
Affiliation(s)
- Sarah Jane Butterworth
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK
| | - Franky Barton
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| | - Jonathan Richard Lloyd
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Lee EJ, Kim SH, Park SH. Effect of high hydrostatic pressure treatment on the inactivation and sublethal injury of foodborne pathogens and quality of apple puree at different pH. Food Microbiol 2023; 114:104302. [PMID: 37290878 DOI: 10.1016/j.fm.2023.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023]
Abstract
The objectives of this study were to evaluate the survival of high hydrostatic pressure (HHP)-treated Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes in apple puree, as well as to determine the levels of HHP-induced cell injury according to the pressure level, holding time, and pH of apple puree. Apple puree was inoculated with three foodborne pathogens and treated at pressures of 300-600 MPa for up to 7 min at 22 °C using HHP equipment. Increasing the pressure level and lowering the pH of apple puree led to larger microbial reductions, and E. coli O157:H7 showed higher resistance compared to S. Typhimurium and L. monocytogenes. Besides, approximately 5-log injured cells of E. coli O157:H7 were induced in apple puree at pH 3.5 and 3.8. HHP treatment at 500 MPa for 2 min effectively achieved complete inactivation of the three pathogens in apple puree at pH 3.5. For apple puree at pH 3.8, more than 2 min treatment of HHP at 600 MPa is seemingly needed to achieve complete inactivation of the three pathogens. Transmission electron microscopy analysis was conducted to identify ultrastructural changes in the injured or dead cells after HHP treatment. Plasmolysis and uneven cavities in the cytoplasm were observed in injured cells, and additional deformations, such as distorted and rough cell envelopes, and cell disruption occurred in dead cells. No changes in solid soluble content (SSC) and color of apple puree were observed after HHP treatment, and no differences were detected between control and HHP-treated samples during 10 d of storage at 5 °C. The results of this study could be useful in determining the acidity of apple purees or the treatment time at specific acidity levels when applying the HHP processing.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam, 32439, Republic of Korea
| | - Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam, 32439, Republic of Korea.
| |
Collapse
|
10
|
Deng L, Zhong M, Li Y, Hu G, Zhang C, Peng Q, Zhang Z, Fang J, Yu X. High hydrostatic pressure harnesses the biosynthesis of secondary metabolites via the regulation of polyketide synthesis genes of hadal sediment-derived fungi. Front Microbiol 2023; 14:1207252. [PMID: 37383634 PMCID: PMC10293889 DOI: 10.3389/fmicb.2023.1207252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Deep-sea fungi have evolved extreme environmental adaptation and possess huge biosynthetic potential of bioactive compounds. However, not much is known about the biosynthesis and regulation of secondary metabolites of deep-sea fungi under extreme environments. Here, we presented the isolation of 15 individual fungal strains from the sediments of the Mariana Trench, which were identified by internal transcribed spacer (ITS) sequence analysis as belonging to 8 different fungal species. High hydrostatic pressure (HHP) assays were performed to identify the piezo-tolerance of the hadal fungi. Among these fungi, Aspergillus sydowii SYX6 was selected as the representative due to the excellent tolerance of HHP and biosynthetic potential of antimicrobial compounds. Vegetative growth and sporulation of A. sydowii SYX6 were affected by HHP. Natural product analysis with different pressure conditions was also performed. Based on bioactivity-guided fractionation, diorcinol was purified and characterized as the bioactive compound, showing significant antimicrobial and antitumor activity. The core functional gene associated with the biosynthetic gene cluster (BGC) of diorcinol was identified in A. sydowii SYX6, named as AspksD. The expression of AspksD was apparently regulated by the HHP treatment, correlated with the regulation of diorcinol production. Based on the effect of the HHP tested here, high pressure affected the fungal development and metabolite production, as well as the expression level of biosynthetic genes which revealed the adaptive relationship between the metabolic pathway and the high-pressure environment at the molecular level.
Collapse
Affiliation(s)
- Ludan Deng
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Maosheng Zhong
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yongqi Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Guangzhao Hu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Changhao Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qingqing Peng
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
11
|
Scepankova H, Galante D, Espinoza-Suaréz E, Pinto CA, Estevinho LM, Saraiva J. High Hydrostatic Pressure in the Modulation of Enzymatic and Organocatalysis and Life under Pressure: A Review. Molecules 2023; 28:molecules28104172. [PMID: 37241913 DOI: 10.3390/molecules28104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The interest in high hydrostatic pressure (HHP) is mostly focused on the inactivation of deleterious enzymes, considering the quality-related issues associated with enzymes in foods. However, more recently, HHP has been increasingly studied for several biotechnological applications, including the possibility of carrying out enzyme-catalyzed reactions under high pressure. This review aims to comprehensively present and discuss the effects of HHP on the kinetic catalytic action of enzymes and the equilibrium of the reaction when enzymatic reactions take place under pressure. Each enzyme can respond differently to high pressure, mainly depending on the pressure range and temperature applied. In some cases, the enzymatic reaction remains significantly active at high pressure and temperature, while at ambient pressure it is already inactivated or possesses minor activity. Furthermore, the effect of temperature and pressure on the enzymatic activity indicated a faster decrease in activity when elevated pressure is applied. For most cases, the product concentration at equilibrium under pressure increased; however, in some cases, hydrolysis was preferred over synthesis when pressure increased. The compiled evidence of the effect of high pressure on enzymatic activity indicates that pressure is an effective reaction parameter and that its application for enzyme catalysis is promising.
Collapse
Affiliation(s)
- Hana Scepankova
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CIMO, Mountain Research Center Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal
| | - Diogo Galante
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Letícia M Estevinho
- CIMO, Mountain Research Center Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal
| | - Jorge Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Li J, Xiao X, Zhou M, Zhang Y. Strategy for the Adaptation to Stressful Conditions of the Novel Isolated Conditional Piezophilic Strain Halomonas titanicae ANRCS81. Appl Environ Microbiol 2023; 89:e0130422. [PMID: 36912687 PMCID: PMC10057041 DOI: 10.1128/aem.01304-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
Microorganisms have successfully predominated deep-sea ecosystems, while we know little about their adaptation strategy to multiple environmental stresses therein, including high hydrostatic pressure (HHP). Here, we focused on the genus Halomonas, one of the most widely distributed halophilic bacterial genera in marine ecosystems and isolated a piezophilic strain Halomonas titanicae ANRCS81 from Antarctic deep-sea sediment. The strain grew under a broad range of temperatures (2 to 45°C), pressures (0.1 to 55 MPa), salinities (NaCl, 0.5 to 17.5%, wt/vol), and chaotropic agent (Mg2+, 0 to 0.9 M) with either oxygen or nitrate as an electron acceptor. Genome annotation revealed that strain ANRCS81 expressed potential antioxidant genes/proteins and possessed versatile energy generation pathways. Based on the transcriptomic analysis, when the strain was incubated at 40 MPa, genes related to antioxidant defenses, anaerobic respiration, and fermentation were upregulated, indicating that HHP induced intracellular oxidative stress. Under HHP, superoxide dismutase (SOD) activity increased, glucose consumption increased with less CO2 generation, and nitrate/nitrite consumption increased with more ammonium generation. The cellular response to HHP represents the common adaptation developed by Halomonas to inhabit and drive geochemical cycling in deep-sea environments. IMPORTANCE Microbial growth and metabolic responses to environmental changes are core aspects of adaptation strategies developed during evolution. In particular, high hydrostatic pressure (HHP) is the most common but least examined environmental factor driving microbial adaptation in the deep sea. According to recent studies, microorganisms developed a common adaptation strategy to multiple stresses, including HHP, with antioxidant defenses and energy regulation as key components, but experimental data are lacking. Meanwhile, cellular SOD activity is elevated under HHP. The significance of this research lies in identifying the HHP adaptation strategy of a Halomonas strain at the genomic, transcriptomic, and metabolic activity levels, which will allow researchers to bridge environmental factors with the ecological function of marine microorganisms.
Collapse
Affiliation(s)
- Jiakang Li
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Meng Zhou
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhang
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Pérez-Rodríguez I, Sievert SM, Fogel ML, Foustoukos DI. Physiological and metabolic responses of chemolithoautotrophic NO 3 - reducers to high hydrostatic pressure. GEOBIOLOGY 2022; 20:857-869. [PMID: 36081384 DOI: 10.1111/gbi.12522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
We investigated the impact of pressure on thermophilic, chemolithoautotrophic NO 3 - reducing bacteria of the phyla Campylobacterota and Aquificota isolated from deep-sea hydrothermal vents. Batch incubations at 5 and 20 MPa resulted in decreased NO 3 - consumption, lower cell concentrations, and overall slower growth in Caminibacter mediatlanticus (Campylobacterota) and Thermovibrio ammonificans (Aquificota), relative to batch incubations near standard pressure (0.2 MPa) conditions. Nitrogen isotope fractionation effects from chemolithoautotrophic NO 3 - reduction by both microorganisms were, on the contrary, maintained under all pressure conditions. Comparable chemolithoautotrophic NO 3 - reducing activities between previously reported natural hydrothermal vent fluid microbial communities dominated by Campylobacterota at 25 MPa and Campylobacterota laboratory isolates at 0.2 MPa, suggest robust similarities in cell-specific NO 3 - reduction rates and doubling times between microbial populations and communities growing maximally under similar temperature conditions. Physiological and metabolic comparisons of our results with other studies of pressure effects on anaerobic chemolithoautotrophic processes (i.e., microbial S0 -oxidation coupled to Fe(III) reduction and hydrogenotrophic methanogenesis) suggest that anaerobic chemolithoautotrophs relying on oxidation-reduction (redox) reactions that yield higher Gibbs energies experience larger shifts in cell-specific respiration rates and doubling times at increased pressures. Overall, our results advance understanding of the role of pressure, its relationship with temperature and redox conditions, and their effects on seafloor chemolithoautotrophic NO 3 - reduction and other anaerobic chemolithoautotrophic processes.
Collapse
Affiliation(s)
- Ileana Pérez-Rodríguez
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, District of Columbia, USA
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Marilyn L Fogel
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, District of Columbia, USA
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Dionysis I Foustoukos
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, District of Columbia, USA
| |
Collapse
|
14
|
Barbato M, Palma E, Marzocchi U, Cruz Viggi C, Rossetti S, Aulenta F, Scoma A. Snorkels enhance alkanes respiration at ambient and increased hydrostatic pressure (10 MPa) by either supporting the TCA cycle or limiting alternative routes for acetyl-CoA metabolism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115244. [PMID: 35598451 DOI: 10.1016/j.jenvman.2022.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The impact of piezosensitive microorganisms is generally underestimated in the ecology of underwater environments exposed to increasing hydrostatic pressure (HP), including the biodegradation of crude oil components. Yet, no isolated pressure-loving (piezophile) microorganism grows optimally on hydrocarbons, and no isolated piezophile at all has a HP optimum <10 MPa (e.g. 1000 m below sea water level). Piezosensitive heterotrophs are thus largely accountable for oil clean up < 10 MPa, however, they are affected by such a mild HP increase in ways which are not completely clear. In a first study, the application of a bioelectrochemical system (called "oil-spill snorkel") enhanced the alkane oxidation capacity in sediments collected at surface water but tested up to 10 MPa. Here, the fingerprint left on transcript abundance was studied to explore which metabolic routes are 1) supported by snorkels application and 2) negatively impacted by HP increase. Transcript abundance was comparable for beta-oxidation across all treatments (also at a taxonomical level), while the metabolism of acetyl-CoA was highly impacted: at either 0.1 or 10 MPa, snorkels supported acetyl-CoA oxidation within the TCA cycle, while in negative controls using non-conductive rods several alternative routes for acetyl-CoA were stimulated (including those leading to internal carbon reserves e.g. 2,3 butanediol and dihydroxyacetone). In general, increased HP had opposite effects as compared to snorkels, thus indicating that snorkels could enhance hydrocarbons oxidation by alleviating in part the stressing effects imposed by increased HP on the anaerobic, respiratory electron transport chain. 16S rRNA gene analysis of sediments and biofilms on snorkels suggest a crosstalk between oil-degrading, sulfate-reducing microorganisms and sulfur oxidizers. In fact, no sulfur was deposited on snorkels, however, iron, aluminum and phosphorous were found to preferentially deposit on snorkels at 10 MPa. This data indicates that a passive BES such as the oil-spill snorkel can mitigate the stress imposed by increased HP on piezosensitive microorganisms (up to 10 MPa) without being subjected to passivation. An improved setup applying these principles can further support this deep-sea bioremediation strategy.
Collapse
Affiliation(s)
- Marta Barbato
- Engineered Microbial Systems (EMS) Lab, Industrial Biotechnology Section, Department of Biological and Chemical Engineering (BCE), Aarhus University, Aarhus, Denmark; Microbiology Section, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Enza Palma
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy
| | - Ugo Marzocchi
- Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark; Center for Water Technology WATEC, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy.
| | - Alberto Scoma
- Engineered Microbial Systems (EMS) Lab, Industrial Biotechnology Section, Department of Biological and Chemical Engineering (BCE), Aarhus University, Aarhus, Denmark; Microbiology Section, Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
15
|
A microbiological perspective of raw milk preserved at room temperature using hyperbaric storage compared to refrigerated storage. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Pandiselvam R, Kaavya R, Khanashyam AC, Divya V, Abdullah SK, Aurum FS, Dakshyani R, Kothakota A, Ramesh SV, Mousavi Khaneghah A. Research trends and emerging physical processing technologies in mitigation of pesticide residues on various food products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45131-45149. [PMID: 35474428 DOI: 10.1007/s11356-022-20338-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The application of pesticides enhances food production vastly, and it cannot be prevented; longer fresh produce is contaminated with health-threatening pesticides even though traditional processing methods can remove these pesticides from food surfaces to a certain extent; novel emerging technologies such as cold plasma, ultrasound, electrolyzed water, and pulsed electric field could more effectively dissipate the pesticide content in food without the release of toxic residual on the food surface. The present review focuses on applying emerging technologies to degrade pesticide residues in great utility in the food processing industries. This review also discusses the pesticide removal efficacy and its mechanism involved in these technologies. The oxidation principle in cold plasma is recently gaining more importance for the degradation of pesticide residue in the food processing industries. Analysis of the emerging physical processing methods indicated greater efficacy in eradicating pesticide residues during agriculture processing. Even though the technologies such as EO (99% reduction in dimethoate), ultrasound (98.96% for chlorpyrifos), and irradiation (99.8% for pesticide in aqueous solution) can achieve promising results in pesticide degradation level, the rate and inactivation highly depend on the type of equipment and processing parameters involved in different techniques, surface characteristics of produce, treatment conditions, and nature of the pesticide. Therefore, to effectively remove these health-threatening pesticides from food surfaces, it is necessary to know the process parameters and efficacy of the applied technology on various pesticides.
Collapse
Affiliation(s)
- Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, 671 124, Kerala, India
| | - Rathnakumar Kaavya
- Department of Food Engineering and Bioprocess Technology, Asian Institute of Technology, Pathumthani, 12120, Bangkok, Thailand
- Department of Food Technology, College of Food and Dairy Technology, TANUVAS, Chennai, 600052, Tamil Nadu, India
| | - Anandu Chandra Khanashyam
- Department of Food Science and Technology, Kasetsart University, 50 Ngamwongwan Road, Ladyao, 10900, Chatuchak, Bangkok, Thailand
| | - Valarivan Divya
- School of BioSciences and Technology, VIT University, Vellore, 632014, India
| | - Sajeeb Khan Abdullah
- Department of Food Process Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Fawzan Sigma Aurum
- Indonesian Agency for Agricultural Research and Development (IAARD), Ministry of Agriculture Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian, Jakarta, Indonesia, 80222
- United Graduate School for Agricultural Science, Gifu University, Gifu, 500-8570, Japan
| | - Rajendran Dakshyani
- Department of Food Processing and Quality Control, Thassim Beevi Abdul Kader College for Women, KilakaraiRamanathapuram, Tamil Nadu, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - Shunmugiah Veluchamy Ramesh
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, 671 124, Kerala, India
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
17
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes - How This Pathogen Survives in Food-Production Environments? Front Microbiol 2022; 13:866462. [PMID: 35558128 PMCID: PMC9087598 DOI: 10.3389/fmicb.2022.866462] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is the causative agent of human listeriosis, a severe disease, especially dangerous for the elderly, pregnant women, and newborns. Although this infection is comparatively rare, it is often associated with a significant mortality rate of 20-30% worldwide. Therefore, this microorganism has an important impact on food safety. L. monocytogenes can adapt, survive and even grow over a wide range of food production environmental stress conditions such as temperatures, low and high pH, high salt concentration, ultraviolet lights, presence of biocides and heavy metals. Furthermore, this bacterium is also able to form biofilm structures on a variety of surfaces in food production environments which makes it difficult to remove and allows it to persist for a long time. This increases the risk of contamination of food production facilities and finally foods. The present review focuses on the key issues related to the molecular mechanisms of the pathogen survival and adaptation to adverse environmental conditions. Knowledge and understanding of the L. monocytogenes adaptation approaches to environmental stress factors will have a significant influence on the development of new, efficient, and cost-effective methods of the pathogen control in the food industry, which is critical to ensure food production safety.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Puławy, Poland
| | | | | |
Collapse
|
18
|
Sidirokastritis ND, Tsiantoulas I, Tananaki C, Vareltzis P. The effect of high hydrostatic pressure on tetracycline hydrochloride and sulfathiazole residues in various food matrices - comparison with ultrasound and heat treatment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:687-698. [PMID: 35302918 DOI: 10.1080/19440049.2022.2036820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Antibiotic residues in food pose serious direct and indirect risks for consumers. The aim of this study was to investigate the effect of High Hydrostatic Pressure (HHP) on tetracycline hydrochloride (TCH) and sulfathiazole (STZ) residues in honey, milk, and water. Three different pressures were tested for their efficiency and treatment at 580 MPa for 6 min was finally selected. Qualitative and quantitative determination of antibiotics were performed with HPLC and LC-MS. HHP treatment was compared to ultrasound and heat treatment. HHP treatment was found to be more effective than the other two methods for both antibiotics in water and milk. The reduction of STZ in honey was over 90%, while no reduction was observed for TCH. The highest TCH reduction was recorded after HHP treatment in water (76.4%) and the highest STZ reduction after ultrasound treatment in honey (94.3%). Reduction of the two antibiotics in different matrices did not follow a similar pattern. For the HHP treatment, the effect of the initial concentration of the two antibiotics was studied under two different storage conditions (refrigerated and frozen storage). The effectiveness of the method was found to be affected by the initial concentration, in both storage conditions for STZ, while for TCH significant differences were observed only for refrigerated storage.
Collapse
Affiliation(s)
| | - Ioannis Tsiantoulas
- Chemical Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysoula Tananaki
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Patroklos Vareltzis
- Chemical Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
19
|
Ceron-Chafla P, García-Timermans C, de Vrieze J, Ganigué R, Boon N, Rabaey K, van Lier JB, Lindeboom REF. Pre-incubation conditions determine the fermentation pattern and microbial community structure in fermenters at mild hydrostatic pressure. Biotechnol Bioeng 2022; 119:1792-1807. [PMID: 35312065 PMCID: PMC9325544 DOI: 10.1002/bit.28085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 11/11/2022]
Abstract
Fermentation at elevated hydrostatic pressure is a novel strategy targeting product selectivity. However, the role of inoculum history and cross-resistance, that is, acquired tolerance from incubation under distinctive environmental stress, remains unclear in high-pressure operation. In our here presented work, we studied fermentation and microbial community responses of halotolerant marine sediment inoculum (MSI) and anaerobic digester inoculum (ADI), pre-incubated in serum bottles at different temperatures and subsequently exposed to mild hydrostatic pressure (MHP; < 10 MPa) in stainless steel reactors. Results showed that MHP effects on microbial growth, activity, and community structure were strongly temperature-dependent. At moderate temperature (20°C), biomass yield and fermentation were not limited by MHP; suggesting a cross-resistance effect from incubation temperature and halotolerance. Low temperatures (10°C) and MHP imposed kinetic and bioenergetic limitations, constraining growth and product formation. Fermentation remained favorable in MSI at 28°C and ADI at 37°C, despite reduced biomass yield resulting from maintenance and decay proportionally increasing with temperature. Microbial community structure was modified by temperature during the enrichment, and slight differences observed after MHP-exposure did not compromise functionality. Results showed that the relation incubation temperature-halotolerance proved to be a modifier of microbial responses to MHP and could be potentially exploited in fermentations to modulate product/biomass ratio.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| | - Cristina García-Timermans
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Jo de Vrieze
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium.,Bio- and Chemical Systems Technology, Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Ramon Ganigué
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Korneel Rabaey
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Center for Advanced Process Technology for Urban Resource Recovery, Ghent, Belgium
| | - Jules B van Lier
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| | - Ralph E F Lindeboom
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
20
|
Funada C, Tanino N, Fukaya M, Mikajiri Y, Nishiguchi M, Otake M, Nakasuji H, Kawahito R, Abe F. SOD1 mutations cause hypersensitivity to high-pressure-induced oxidative stress in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130049. [PMID: 34728328 DOI: 10.1016/j.bbagen.2021.130049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022]
Abstract
Living organisms are subject to various mechanical stressors, such as high hydrostatic pressure. Empirical evidence shows that under high pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. Here, we demonstrate that superoxide dismutase 1 (Sod1) plays a role in resisting high pressure for cell growth. Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. When these mutant cells were cultured under 25 MPa, their intracellular O2•- levels increased while sod1∆ mutant genome stability was unaffected. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. The sod1∆ mutant is known to exhibit methionine and lysine auxotrophy. However, excess methionine addition or overexpression of the lysine permease gene LYP1 did not counteract high-pressure sensitivity in the sod1 mutants, suggesting that their amino acid availability might be intact under 25 MPa. Interestingly, an exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria appeared to partially restore the high-pressure growth ability in the sod1 mutants. Taken these results together, we suggest that high pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. BACKGROUND Empirical evidence shows that under high hydrostatic pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. In the current study, we aimed to explore the role of superoxide dismutase 1 (Sod1) in yeast able to grow under high pressure. METHODS Wild type and sod1 mutant cells were cultured in high-pressure chambers under 25 MPa (~250 kg/cm2). The SOD activity in whole cell extracts and 6His-tagged Sod1 recombinant proteins was analyzed using an SOD assay kit. The O2•- generation in cells was estimated by fluorescence staining. RESULTS Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. Exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria partially restored the high-pressure growth ability in the sod1 mutants. CONCLUSIONS High pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. GENERAL SIGNIFICANCE Unlike external free radical-generating compounds, high-pressure treatment appeared to increase endogenous O2•- levels in yeast cells. Our experimental system offers a unique approach to investigating the physiological responses to mechanical and oxidative stresses in human body.
Collapse
Affiliation(s)
- Chisako Funada
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Nanami Tanino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Miina Fukaya
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yu Mikajiri
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masayoshi Nishiguchi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masato Otake
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Hiroko Nakasuji
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Reika Kawahito
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
21
|
Molecular Responses to High Hydrostatic Pressure in Eukaryotes: Genetic Insights from Studies on Saccharomyces cerevisiae. BIOLOGY 2021; 10:biology10121305. [PMID: 34943220 PMCID: PMC8698847 DOI: 10.3390/biology10121305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023]
Abstract
Simple Summary High hydrostatic pressure generally has an adverse effect on the biological systems of organisms inhabiting lands or shallow sea regions. Deep-sea piezophiles that prefer high hydrostatic pressure for growth have garnered considerable scientific attention. However, the underlying molecular mechanisms of their adaptation to high pressure remains unclear owing to the challenges of culturing and manipulating the genome of piezophiles. Humans also experience high hydrostatic pressure during exercise. A long-term stay in space can cause muscle weakness in astronauts. Thus, the human body indubitably senses mechanical stresses such as hydrostatic pressure and gravity. Nonetheless, the mechanisms underlying biological responses to high pressures are not clearly understood. This review summarizes the occurrence and significance of high-pressure effects in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Abstract High hydrostatic pressure is common mechanical stress in nature and is also experienced by the human body. Organisms in the Challenger Deep of the Mariana Trench are habitually exposed to pressures up to 110 MPa. Human joints are intermittently exposed to hydrostatic pressures of 3–10 MPa. Pressures less than 50 MPa do not deform or kill the cells. However, high pressure can have various effects on the cell’s biological processes. Although Saccharomyces cerevisiae is not a deep-sea piezophile, it can be used to elucidate the molecular mechanism underlying the cell’s responses to high pressures by applying basic knowledge of the effects of pressure on industrial processes involving microorganisms. We have explored the genes associated with the growth of S. cerevisiae under high pressure by employing functional genomic strategies and transcriptomics analysis and indicated a strong association between high-pressure signaling and the cell’s response to nutrient availability. This review summarizes the occurrence and significance of high-pressure effects on complex metabolic and genetic networks in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Mechanosensation in humans has also been discussed.
Collapse
|
22
|
Alinovi M, Bancalari E, Martelli F, Cirlini M, Rinaldi M. Stabilization of
Arthrospira platensis
with high‐pressure processing and thermal treatments: Effect on physico‐chemical and microbiological quality. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Waletzko-Hellwig J, Pohl C, Riese J, Schlosser M, Dau M, Engel N, Springer A, Bader R. Effect of High Hydrostatic Pressure on Human Trabecular Bone Regarding Cell Death and Matrix Integrity. Front Bioeng Biotechnol 2021; 9:730266. [PMID: 34458245 PMCID: PMC8387795 DOI: 10.3389/fbioe.2021.730266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
The reconstruction of critical size bone defects is still clinically challenging. Even though the transplantation of autologous bone is used as gold standard, this therapy is accompanied by donor site morbidities as well as tissue limitations. The alternatively used allografts, which are devitalized due to thermal, chemical or physical processing, often lose their matrix integrity and have diminished biomechanical properties. High Hydrostatic Pressure (HHP) may represent a gentle alternative to already existing methods since HHP treated human osteoblasts undergo cell death and HHP treated bone cylinders maintain their mechanical properties. The aim of this study was to determine the biological effects caused by HHP treatment regarding protein/matrix integrity and type of cell death in trabecular bone cylinders. Therefore, different pressure protocols (250 and 300 MPa for 10, 20 and 30 min) and end point analysis such as quantification of DNA-fragmentation, gene expression, SDS-PAGE, FESEM analysis and histological staining were performed. While both protein and matrix integrity was preserved, molecular biological methods showed an apoptotic differentiation of cell death for lower pressures and shorter applications (250 MPa for 10 and 20 min) and necrotic differentiation for higher pressures and longer applications (300 MPa for 30 min). This study serves as a basis for further investigation as it shows that HHP successfully devitalizes trabecular bone cylinders.
Collapse
Affiliation(s)
- Janine Waletzko-Hellwig
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Christopher Pohl
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Janik Riese
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Michael Schlosser
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Michael Dau
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Nadja Engel
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
24
|
Heidelman M, Dhakal B, Gikunda M, Silva KPT, Risal L, Rodriguez AI, Abe F, Urayama P. Cellular NADH and NADPH Conformation as a Real-Time Fluorescence-Based Metabolic Indicator under Pressurized Conditions. Molecules 2021; 26:5020. [PMID: 34443607 PMCID: PMC8402201 DOI: 10.3390/molecules26165020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
Cellular conformation of reduced pyridine nucleotides NADH and NADPH sensed using autofluorescence spectroscopy is presented as a real-time metabolic indicator under pressurized conditions. The approach provides information on the role of pressure in energy metabolism and antioxidant defense with applications in agriculture and food technologies. Here, we use spectral phasor analysis on UV-excited autofluorescence from Saccharomyces cerevisiae (baker's yeast) to assess the involvement of one or multiple NADH- or NADPH-linked pathways based on the presence of two-component spectral behavior during a metabolic response. To demonstrate metabolic monitoring under pressure, we first present the autofluorescence response to cyanide (a respiratory inhibitor) at 32 MPa. Although ambient and high-pressure responses remain similar, pressure itself also induces a response that is consistent with a change in cellular redox state and ROS production. Next, as an example of an autofluorescence response altered by pressurization, we investigate the response to ethanol at ambient, 12 MPa, and 30 MPa pressure. Ethanol (another respiratory inhibitor) and cyanide induce similar responses at ambient pressure. The onset of non-two-component spectral behavior upon pressurization suggests a change in the mechanism of ethanol action. Overall, results point to new avenues of investigation in piezophysiology by providing a way of visualizing metabolism and mitochondrial function under pressurized conditions.
Collapse
Affiliation(s)
- Martin Heidelman
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Bibek Dhakal
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Millicent Gikunda
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Kalinga Pavan Thushara Silva
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Laxmi Risal
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Andrew I. Rodriguez
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan;
| | - Paul Urayama
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| |
Collapse
|
25
|
Asaithambi N, Singh SK, Singha P. Current status of non-thermal processing of probiotic foods: A review. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Glutamate optimizes enzymatic activity under high hydrostatic pressure in Desulfovibrio species: effects on the ubiquitous thioredoxin system. Extremophiles 2021; 25:385-392. [PMID: 34196828 DOI: 10.1007/s00792-021-01236-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
In piezophilic microorganisms, enzymes are optimized to perform under high hydrostatic pressure. The two major reported mechanisms responsible for such adaptation in bacterial species are changes in amino acids in the protein structure, favoring their activity and stability under high-pressure conditions, and the possible accumulation of micromolecular co-solutes in the cytoplasm. Recently, the accumulation of glutamate in the cytoplasm of piezophilic Desulfovibrio species has been reported under high-pressure growth conditions. In this study, analysis of the effect of glutamate on the enzymatic activity of the thioredoxin reductase/thioredoxin enzymatic complex of either a piezosensitive or a piezophilic microorganism confirms its role as a protective co-solute. Analysis of the thioredoxin structures suggests an adaptation both to the presence of glutamate and to high hydrostatic pressure in the enzyme from the piezophilic strain. Indeed, the presence of large surface pockets could counterbalance the overall compression that occurs at high hydrostatic pressure to maintain enzymatic activity. A lower isoelectric point and a greater dipolar moment than that of thioredoxin from the piezosensitive strain would allow the protein from the piezophilic strain to compensate for the presence of the charged amino acid glutamate to interact with its partner.
Collapse
|
27
|
Machine Assisted Experimentation of Extrusion-Based Bioprinting Systems. MICROMACHINES 2021; 12:mi12070780. [PMID: 34209404 PMCID: PMC8305959 DOI: 10.3390/mi12070780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Optimization of extrusion-based bioprinting (EBB) parameters have been systematically conducted through experimentation. However, the process is time- and resource-intensive and not easily translatable to other laboratories. This study approaches EBB parameter optimization through machine learning (ML) models trained using data collected from the published literature. We investigated regression-based and classification-based ML models and their abilities to predict printing outcomes of cell viability and filament diameter for cell-containing alginate and gelatin composite bioinks. In addition, we interrogated if regression-based models can predict suitable extrusion pressure given the desired cell viability when keeping other experimental parameters constant. We also compared models trained across data from general literature to models trained across data from one literature source that utilized alginate and gelatin bioinks. The results indicate that models trained on large amounts of data can impart physical trends on cell viability, filament diameter, and extrusion pressure seen in past literature. Regression models trained on the larger dataset also predict cell viability closer to experimental values for material concentration combinations not seen in training data of the single-paper-based regression models. While the best performing classification models for cell viability can achieve an average prediction accuracy of 70%, the cell viability predictions remained constant despite altering input parameter combinations. Our trained models on bioprinting literature data show the potential usage of applying ML models to bioprinting experimental design.
Collapse
|
28
|
Jaichakan P, Nakphaichit M, Rungchang S, Weerawatanakorn M, Phongthai S, Klangpetch W. Two-stage processing for xylooligosaccharide recovery from rice by-products and evaluation of products: Promotion of lactic acid-producing bacterial growth and food application in a high-pressure process. Food Res Int 2021; 147:110529. [PMID: 34399507 DOI: 10.1016/j.foodres.2021.110529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/03/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
In this study, we attempted to maximize arabinoxylan conversion into xylooligosaccharide (XOS) from rice husk and rice straw using two saccharification processes and evaluate the promotion of lactic acid-producing bacterial growth, including an investigation of the role of prebiotics in protecting probiotic bacteria in rice drink products in a high-pressure process (HPP). Hydrothermal treatment followed by enzymatic hydrolysis was designed for XOS recovery from rice husk arabinoxylan (RH-AX) and rice straw arabinoxylan (RS-AX). The hydrothermal treatment performed at 170 °C for 20 min and 180 °C for 10 min was the optimal condition to produce XOS liquor from rice husk and rice straw, respectively. Pentopan mono BG successfully recovered XOS from rice husk and rice straw residues at 50 °C, pH 5.5, an enzyme concentration of 50 U and 100 U/g substrate for 24 h. This design converted 92.17 and 88.34% (w/w) of initial RH-AX and RS-AX into saccharides, which comprised 64.01 and 59.52% of the XOS content, respectively. Rice husk xylooligosaccharide (RH-XOS) and rice straw xylooligosaccharide (RS-XOS) had degrees of polymerization ranging from 2 to 6 with some arabino-xylooligosaccharides. RH-XOS and RS-XOS were used to examine the promotion of the growth of lactic acid-producing bacteria strains in the presence of other prebiotics. RH-XOS and RS-XOS strongly promoted the growth of Lactobacillus sakei and Lactobacillus brevis, while other species showed weak to moderate growth. This study represents the first report of the powerful effect of Lactococcus lactis KA-FF1-4 on altering the utilization of XOS but not xylose. Furthermore, for the first time, we reported the capability of XOS to protect probiotics in rice drinks under high-pressure conditions. RH-XOS and RS-XOS resulted in the highest viability of approximately 11 log cfu/mL and exhibited no significant difference compared with the non-HPP treatment. Hence, rice husk and rice straw can be utilized as alternative prebiotic sources that provide biological activity and food applications in the HPP industry.
Collapse
Affiliation(s)
- Pannapapol Jaichakan
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Saowaluk Rungchang
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Monthana Weerawatanakorn
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Suphat Phongthai
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai 50100, Thailand; Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wannaporn Klangpetch
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai 50100, Thailand; Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
29
|
Alshammari J, Dhowlaghar N, Xie Y, Xu J, Tang J, Sablani S, Zhu MJ. Survival of Salmonella and Enterococcus faecium in high fructose corn syrup and honey at room temperature (22 °C). Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Osman JR, Cardon H, Montagnac G, Picard A, Daniel I. Pressure effects on sulfur-oxidizing activity of Thiobacillus thioparus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:169-175. [PMID: 33421329 PMCID: PMC7986089 DOI: 10.1111/1758-2229.12922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Carbon capture and storage technologies are crucial for reducing carbon emission from power plants as a response to global climate change. The CarbFix project (Iceland) aims at examining the geochemical response of injected CO2 into subsurface reservoirs. The potential role of the subsurface biosphere has been little investigated up to now. Here, we used Thiobacillus thioparus that became abundant at the CarbFix1 pilot site after injection of CO2 and purified geothermal gases in basaltic aquifer at 400-800 m depth (4-8 MPa). The capacity of T. thioparus to produce sulfate, through oxidation of thiosulfate, was measured by Raman spectroscopy as a function of pressure up to 10 MPa. The results show that the growth and metabolic activity of T. thioparus are influenced by the initial concentration of the electron donor thiosulfate. It grows best at low initial concentration of thiosulfate (here 5 g.l-1 or 31.6 mM) and best oxidizes thiosulfate into sulfate at 0.1 MPa with a yield of 14.7 ± 0.5%. Sulfur oxidation stops at 4.3 ± 0.1 MPa (43 bar). This autotrophic specie can thereby react to CO2 and H2 S injection down to 430 m depth and may contribute to induced biogeochemical cycles during subsurface energy operations.
Collapse
Affiliation(s)
- Jorge R. Osman
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
| | - Hervé Cardon
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
| | - Gilles Montagnac
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
| | - Aude Picard
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
- School of Life SciencesUniversity of Nevada, Las Vegas, 4505 S. Maryland ParkwayLas VegasNV89154‐4004USA
| | - Isabelle Daniel
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
| |
Collapse
|
31
|
Role of extremophiles and their extremozymes in biorefinery process of lignocellulose degradation. Extremophiles 2021; 25:203-219. [PMID: 33768388 DOI: 10.1007/s00792-021-01225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Technological advances in the field of life sciences have led to discovery of organisms that live in harsh environmental conditions referred to as extremophiles. These organisms have adapted themselves to thrive in extreme habitat giving these organisms an advantage over conventional mesophilic organisms in various industrial applications. Extremozymes produced by these extremophiles have high tolerance to inhospitable environmental conditions making them an ideal enzyme system for various industrial processes. A notable application of these extremophiles and extremozymes is their use in the degradation of recalcitrant lignocellulosic biomass and application in biorefineries. For maximum utilization of the trapped carbon source from this obstinate biomass, pretreatment is a necessary step that requires various physiochemical and enzymatic treatments. From search for novel extremophiles and extremozymes to development of various genetic and protein engineering techniques, investigation on extremozymes with enhanced stability and efficiency is been done. Since extremozymes are easily calibrated to work under such conditions, they have become an emerging topic in the research field of biofuel production. The review discusses the various extremozymes that play an important role in lignocellulose degradation along with recent studies on their molecular and genetic evolution for industrial application and production of biofuels and various value-added products.
Collapse
|
32
|
Yan S, Liu K, Mu L, Liu J, Tang W, Liu B. Research and application of hydrostatic high pressure in tumor vaccines (Review). Oncol Rep 2021; 45:75. [PMID: 33760193 PMCID: PMC8020208 DOI: 10.3892/or.2021.8026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
It is well known that hydrostatic pressure (HP) is a physical parameter that is now regarded as an important variable for life. High hydrostatic pressure (HHP) technology has influenced biological systems for more than 100 years. Food and bioscience researchers have shown great interest in HHP technology over the past few decades. The development of knowledge related to this area can better facilitate the application of HHP in the life sciences. Furthermore, new applications for HHP may come from these current studies, particularly in tumor vaccines. Currently, cancer recurrence and metastasis continue to pose a serious threat to human health. The limited efficacy of conventional treatments has led to the need for breakthroughs in immunotherapy and other related areas. Research into tumor vaccines is providing new insights for cancer treatment. The purpose of this review is to present the main findings reported thus far in the relevant scientific literature, focusing on knowledge related to HHP technology and tumor vaccines, and to demonstrate the potential of applying HHP technology to tumor vaccine development.
Collapse
Affiliation(s)
- Shuai Yan
- Department of Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kai Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lin Mu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jianfeng Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wan Tang
- Department of Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
33
|
Mechanical Characterization of Human Trabecular and Formed Granulate Bone Cylinders Processed by High Hydrostatic Pressure. MATERIALS 2021; 14:ma14051069. [PMID: 33668996 PMCID: PMC7956279 DOI: 10.3390/ma14051069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022]
Abstract
One main disadvantage of commercially available allogenic bone substitute materials is the altered mechanical behavior due to applied material processing, including sterilization methods like thermal processing or gamma irradiation. The use of high hydrostatic pressure (HHP) might be a gentle alternative to avoid mechanical alteration. Therefore, we compressed ground trabecular human bone to granules and, afterwards, treated them with 250 and 300 MPa for 20 and 30 min respectively. We characterized the formed bone granule cylinders (BGC) with respect to their biomechanical properties by evaluating stiffness and stress at 15% strain. Furthermore, the stiffness and yield strength of HHP-treated and native human trabecular bone cylinders (TBC) as control were evaluated. The mechanical properties of native vs. HHP-treated TBCs as well as HHP-treated vs. untreated BGCs did not differ, independent of the applied HHP magnitude and duration. Our study suggests HHP treatment as a suitable alternative to current processing techniques for allogenic bone substitutes since no negative effects on mechanical properties occurred.
Collapse
|
34
|
Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. High pressure processing combined with selected hurdles: Enhancement in the inactivation of vegetative microorganisms. Compr Rev Food Sci Food Saf 2021; 20:1800-1828. [PMID: 33594773 DOI: 10.1111/1541-4337.12724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
High pressure processing (HPP) as a nonthermal processing (NTP) technology can ensure microbial safety to some extent without compromising food quality. However, for vegetative microorganisms, the existence of pressure-resistant subpopulations, the revival of sublethal injury (SLI) state cells, and the resuscitation of viable but nonculturable (VBNC) state cells may constitute potential food safety risks and pose challenges for the further development of HPP application. HPP combined with selected hurdles, such as moderately elevated or low temperature, low pH, natural antimicrobials (bacteriocin, lactate, reuterin, endolysin, lactoferrin, lactoperoxidase system, chitosan, essential oils), or other NTP (CO2 , UV-TiO2 photocatalysis, ultrasound, pulsed electric field, ultrafiltration), have been highlighted as feasible alternatives to enhance microbial inactivation (synergistic or additive effect). These combinations can effectively eliminate the pressure-resistant subpopulation, reduce the population of SLI or VBNC state cells and inhibit their revival or resuscitation. This review provides an updated overview of the microbial inactivation by the combination of HPP and selected hurdles and restructures the possible inactivation mechanisms.
Collapse
Affiliation(s)
- Peiqing Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
35
|
Sehrawat R, Kaur BP, Nema PK, Tewari S, Kumar L. Microbial inactivation by high pressure processing: principle, mechanism and factors responsible. Food Sci Biotechnol 2021; 30:19-35. [PMID: 33552614 DOI: 10.1007/s10068-020-00831-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
High-pressure processing (HPP) is a novel technology for the production of minimally processed food products with better retention of the natural aroma, fresh-like taste, additive-free, stable, convenient to use. In this regard safety of products by microbial inactivation is likely to become an important focus for food technologists from the research and industrial field. High pressure induces conformational changes in the cell membranes, cell morphology. It perturbs biochemical reactions, as well as the genetic mechanism of the microorganisms, thus ensures the reduction in the microbial count. Keeping in view the commercial demand of HPP products, the scientific literature available on the mechanism of inactivation by high pressure and intrinsic and extrinsic factors affecting the efficiency of HPP are systematically and critically analyzed in this review to develop a clear understanding of these issues. Modeling applied to study the microbial inactivation kinetics by HPP is also discussed for the benefit of interested readers.
Collapse
Affiliation(s)
- Rachna Sehrawat
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028 India.,Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Barjinder Pal Kaur
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028 India
| | - Prabhat K Nema
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028 India
| | - Somya Tewari
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028 India
| | - Lokesh Kumar
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury 7647 New Zealand
| |
Collapse
|
36
|
Andoni E, Ozuni E, Bijo B, Shehu F, Branciari R, Miraglia D, Ranucci D. Efficacy of Non-thermal Processing Methods to Prevent Fish Spoilage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2020.1866131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Egon Andoni
- Veterinary Faculty of Tirana, Department of Public Health, Rr “Pajsi Vodica”, Koder-Kamez, Tirana, Albania
| | - Enkeleda Ozuni
- Veterinary Faculty of Tirana, Department of Public Health, Rr “Pajsi Vodica”, Koder-Kamez, Tirana, Albania
| | - Bizena Bijo
- Veterinary Faculty of Tirana, Department of Public Health, Rr “Pajsi Vodica”, Koder-Kamez, Tirana, Albania
| | - Fatmira Shehu
- Veterinary Faculty of Tirana, Department of Public Health, Rr “Pajsi Vodica”, Koder-Kamez, Tirana, Albania
| | | | - Dino Miraglia
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
37
|
Xiao X, Zhang Y, Wang F. Hydrostatic pressure is the universal key driver of microbial evolution in the deep ocean and beyond. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:68-72. [PMID: 33398931 DOI: 10.1111/1758-2229.12915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Yu Zhang
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, China
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai, 200030, China
| | - Fengping Wang
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai, 200030, China
| |
Collapse
|
38
|
Sabillón L, Stratton J, Rose D, Eskridge K, Bianchini A. Effect of high‐pressure processing on the microbial load and functionality of sugar‐cookie dough. Cereal Chem 2020. [DOI: 10.1002/cche.10377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luis Sabillón
- Department of Food Science and Technology University of Nebraska‐Lincoln Lincoln NE USA
- Department of Family and Consumer Sciences New Mexico State University Las Cruces NM USA
| | - Jayne Stratton
- Department of Food Science and Technology University of Nebraska‐Lincoln Lincoln NE USA
- The Food Processing Center University of Nebraska‐Lincoln Lincoln NE USA
| | - Devin Rose
- Department of Food Science and Technology University of Nebraska‐Lincoln Lincoln NE USA
- Department of Agronomy and Horticulture University of Nebraska‐Lincoln Lincoln NE USA
| | - Kent Eskridge
- Department of Statistics University of Nebraska‐Lincoln Lincoln NE USA
| | - Andréia Bianchini
- Department of Food Science and Technology University of Nebraska‐Lincoln Lincoln NE USA
- The Food Processing Center University of Nebraska‐Lincoln Lincoln NE USA
| |
Collapse
|
39
|
Le TM, Morimoto N, Ly NTM, Mitsui T, Notodihardjo SC, Munisso MC, Kakudo N, Moriyama H, Yamaoka T, Kusumoto K. Hydrostatic pressure can induce apoptosis of the skin. Sci Rep 2020; 10:17594. [PMID: 33077833 PMCID: PMC7572420 DOI: 10.1038/s41598-020-74695-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/05/2020] [Indexed: 01/20/2023] Open
Abstract
We previously showed that high hydrostatic pressure (HHP) treatment at 200 MPa for 10 min induced complete cell death in skin and skin tumors via necrosis. We used this technique to treat a giant congenital melanocytic nevus and reused the inactivated nevus tissue as a dermis autograft. However, skin inactivated by HHP promoted inflammation in a preclinical study using a porcine model. Therefore, in the present study, we explored the pressurization conditions that induce apoptosis of the skin, as apoptotic cells are not believed to promote inflammation, so the engraftment of inactivated skin should be improved. Using a human dermal fibroblast cell line in suspension culture, we found that HHP at 50 MPa for ≥ 36 h completely induced fibroblast cell death via apoptosis based on the morphological changes in transmission electron microscopy, reactive oxygen species elevation, caspase activation and phosphatidylserine membrane translocation. Furthermore, immunohistochemistry with terminal deoxynucleotidyl transferase dUTP nick-end labeling and cleaved caspase-3 showed most cells in the skin inactivated by pressurization to be apoptotic. Consequently, in vivo grafting of apoptosis-induced inactivated skin resulted in successful engraftment and greater dermal cellular density and macrophage infiltration than our existing method. Our finding supports an alternative approach to hydrostatic pressure application.
Collapse
Affiliation(s)
- Tien Minh Le
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Osaka, Japan. .,Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Nhung Thi My Ly
- Department of Dermatology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Toshihito Mitsui
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | | | - Maria Chiara Munisso
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Hiroyuki Moriyama
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-osaka, Osaka, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kenji Kusumoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
40
|
Uemura S, Mochizuki T, Amemiya K, Kurosaka G, Yazawa M, Nakamoto K, Ishikawa Y, Izawa S, Abe F. Amino acid homeostatic control by TORC1 in Saccharomyces cerevisiae under high hydrostatic pressure. J Cell Sci 2020; 133:jcs245555. [PMID: 32801125 DOI: 10.1242/jcs.245555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/05/2020] [Indexed: 12/30/2022] Open
Abstract
Mechanical stresses, including high hydrostatic pressure, elicit diverse physiological effects on organisms. Gtr1, Gtr2, Ego1 (also known as Meh1) and Ego3 (also known as Slm4), central regulators of the TOR complex 1 (TORC1) nutrient signaling pathway, are required for the growth of Saccharomyces cerevisiae cells under high pressure. Here, we showed that a pressure of 25 MPa (∼250 kg/cm2) stimulates TORC1 to promote phosphorylation of Sch9, which depends on the EGO complex (EGOC) and Pib2. Incubation of cells at this pressure aberrantly increased glutamine and alanine levels in the ego1Δ, gtr1Δ, tor1Δ and pib2Δ mutants, whereas the polysome profiles were unaffected. Moreover, we found that glutamine levels were reduced by combined deletions of EGO1, GTR1, TOR1 and PIB2 with GLN3 These results suggest that high pressure leads to the intracellular accumulation of amino acids. Subsequently, Pib2 loaded with glutamine stimulates the EGOC-TORC1 complex to inactivate Gln3, downregulating glutamine synthesis. Our findings illustrate the regulatory circuit that maintains intracellular amino acid homeostasis and suggest critical roles for the EGOC-TORC1 and Pib2-TORC1 complexes in the growth of yeast under high hydrostatic pressure.
Collapse
Affiliation(s)
- Satoshi Uemura
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| | - Takahiro Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Kengo Amemiya
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Goyu Kurosaka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Miho Yazawa
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Keiko Nakamoto
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yu Ishikawa
- Laboratory of Microbial Technology, Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
41
|
Mota MJ, Lopes RP, Pinto CA, Sousa S, Gomes AM, Delgadillo I, Saraiva JA. The use of different fermentative approaches on Paracoccus denitrificans: Effect of high pressure and air availability on growth and metabolism. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Vick SHW, Greenfield P, Willows RD, Tetu SG, Midgley DJ, Paulsen IT. Subsurface Stappia: Success Through Defence, Specialisation and Putative Pressure-Dependent Carbon Fixation. MICROBIAL ECOLOGY 2020; 80:34-46. [PMID: 31828390 DOI: 10.1007/s00248-019-01471-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Diverse microbial communities living in subsurface coal seams are responsible for important geochemical processes including the movement of carbon between the geosphere, biosphere and atmosphere. Microbial conversion of the organic matter in coal to methane involves a complex assemblage of bacteria and archaea working in syntrophic relationships. Despite the importance and value of this microbial process, very few of the microbial taxa have defined metabolic or ecological roles in these environments. Additionally, the genomic features mediating life in this chemically reduced, energy poor, deep subsurface environment are not well characterised. Here we describe the isolation and genomic and catabolic characterisation of three alphaproteobacterial Stappia indica species from three coal basins across Australia. S. indica genomes from coal seams were compared with those from closely related S. indica isolated from diverse surface waters, revealing a coal seam-specific suite of genes associated with life in the subsurface. These genes are linked to processes including viral defence, secondary metabolite production, polyamine metabolism, polypeptide uptake membrane transporters and putative energy neutral pressure-dependent CO2 fixation. This indicates that subsurface Stappia have diverse metabolisms for biomass recycling and pressure-dependent CO2 fixation and require a suite of defensive and competitive strategies relative to their surface-dwelling relatives.
Collapse
Affiliation(s)
- Silas H W Vick
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, Australia.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia.
| | - Paul Greenfield
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
| | - Robert D Willows
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, Australia
| | - Sasha G Tetu
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, Australia
| | - David J Midgley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, Australia
| |
Collapse
|
43
|
Nor Hasni H, Koh PC, Noranizan MA, Megat Mohd Tahir PNF, Mohamad A, Limpot N, Hamid N, Aadil RM. High‐pressure processing treatment for ready‐to‐drink Sabah Snake Grass juice. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hambali Nor Hasni
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Malaysia
| | - Pei Chen Koh
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Malaysia
| | - Mohd Adzahan Noranizan
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Malaysia
| | | | - Azizah Mohamad
- Food Biotechnology Research Centre Agro‐Biotechnology Institute Malaysia Serdang Malaysia
| | - Naransa Limpot
- Plant Biotechnology Research Centre Agro‐Biotechnology Institute Malaysia Serdang Malaysia
| | - Nazimah Hamid
- Faculty of Health and Environmental Science Auckland University of Technology Auckland New Zealand
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
44
|
Rosario DKA, Rodrigues BL, Bernardes PC, Conte-Junior CA. Principles and applications of non-thermal technologies and alternative chemical compounds in meat and fish. Crit Rev Food Sci Nutr 2020; 61:1163-1183. [PMID: 32319303 DOI: 10.1080/10408398.2020.1754755] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods of food preservation have demonstrated several disadvantages and limitations in the efficiency of the microbial load reduction and maintain food quality. Hence, non-thermal preservation technologies (NTPT) and alternative chemical compounds (ACC) have been considered a high promissory replacer to decontamination, increasing the shelf life and promoting low levels of physicochemical, nutritional and sensorial alterations of meat and fish products. The combination of these methods can be a potential alternative to the food industry. This review deals with the most critical aspects of the mechanisms of action under microbial, physicochemical, nutritional and sensorial parameters and the efficiency of the different NTPT (ultrasound, high pressure processing, gamma irradiation and UV-C radiation) and ACC (peracetic acid, bacteriocins, nanoparticles and essential oils) applied in meat and fish products. The NTPT and ACC present a high capacity of microorganisms inactivation, ensuring low alterations level in the matrix and high reduction of environmental impact. However, the application conditions of the different methods as exposition time, energy intensity and concentration thresholds of chemical compounds need to be specifically established and continuously improved for each matrix type to reduce to the maximum the physicochemical, nutritional and sensorial changes. In addition, the combination of the methods (hurdle concept) may be an alternative to enhance the matrix decontamination. In this way, undesirable changes in meat and fish products can be further reduced without a decrease in the efficiency of the decontamination.
Collapse
Affiliation(s)
- Denes K A Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil
| | - Bruna L Rodrigues
- Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil
| | - Patricia C Bernardes
- Department of Food Engineering, Federal University of Espírito Santo, Alegre, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil.,National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
45
|
Avagyan S, Vasilchuk D, Makhatadze GI. Protein adaptation to high hydrostatic pressure: Computational analysis of the structural proteome. Proteins 2020; 88:584-592. [PMID: 31618488 DOI: 10.1002/prot.25839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/11/2019] [Accepted: 09/21/2019] [Indexed: 11/11/2022]
Abstract
Hydrostatic pressure has a vital role in the biological adaptation of the piezophiles, organisms that live under high hydrostatic pressure. However, the mechanisms by which piezophiles are able to adapt their proteins to high hydrostatic pressure is not well understood. One proposed hypothesis is that the volume changes of unfolding (ΔVTot ) for proteins from piezophiles is distinct from those of nonpiezophilic organisms. Since ΔVTot defines pressure dependence of stability, we performed a comprehensive computational analysis of this property for proteins from piezophilic and nonpiezophilic organisms. In addition, we experimentally measured the ΔVTot of acylphosphatases and thioredoxins belonging to piezophilic and nonpiezophilic organisms. Based on this analysis we concluded that there is no difference in ΔVTot for proteins from piezophilic and nonpiezophilic organisms. Finally, we put forward the hypothesis that increased concentrations of osmolytes can provide a systemic increase in pressure stability of proteins from piezophilic organisms and provide experimental thermodynamic evidence in support of this hypothesis.
Collapse
Affiliation(s)
- Samvel Avagyan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Daniel Vasilchuk
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York
| | - George I Makhatadze
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
46
|
Chuang S, Sheen S, Sommers CH, Zhou S, Sheen LY. Survival Evaluation of Salmonella and Listeria monocytogenes on Selective and Nonselective Media in Ground Chicken Meat Subjected to High Hydrostatic Pressure and Carvacrol. J Food Prot 2020; 83:37-44. [PMID: 31809196 DOI: 10.4315/0362-028x.jfp-19-075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High pressure processing (HPP) and treatment with the essential oil extract carvacrol had synergistic inactivation effects on Salmonella and Listeria monocytogenes in fresh ground chicken meat. Seven days after HPP treatment at 350 MPa for 10 min, Salmonella treated with 0.75% carvacrol was reduced to below the detection limit (1 log CFU/g) at 4°C and was reduced by ca. 6 log CFU at 10°C. L. monocytogenes was more sensitive to these imposed stressors, remaining below the detection limit during storage at both 4 and 10°C after HPP treatment at 350 MPa for 10 min following treatment with 0.45% carvacrol. However, pressure-injured bacterial cells may recover and lead to an overestimation of process lethality when a selective medium is used without proper justification. For HPP-stressed Salmonella, a 1- to 2-log difference was found between viable counts on xylose lysine Tergitol 4 agar and aerobic plate counts, but no significant difference was found for HPP-stressed L. monocytogenes between polymyxin-acriflavine-lithium chloride-ceftazidime-esculin-mannitol (PALCAM) agar and aerobic plate counts. HPP-induced bacterial injury and its recovery have been investigated by comparing selective and nonselective agar plate counts; however, few investigations have addressed this issue in the presence of essential oil extracts, taking into account the effect of high pressure and natural antimicrobial compounds (e.g., carvacrol) on bacterial survival in various growth media. Use of selective media may overestimate the efficacy of bacterial inactivation in food processing evaluation and validation studies, and the effects of various media should be systematically investigated.
Collapse
Affiliation(s)
- Shihyu Chuang
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA.,Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shiowshuh Sheen
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
| | - Christopher H Sommers
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
| | - Siyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
47
|
A novel ER membrane protein Ehg1/May24 plays a critical role in maintaining multiple nutrient permeases in yeast under high-pressure perturbation. Sci Rep 2019; 9:18341. [PMID: 31797992 PMCID: PMC6892922 DOI: 10.1038/s41598-019-54925-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Previously, we isolated 84 deletion mutants in Saccharomyces cerevisiae auxotrophic background that exhibited hypersensitive growth under high hydrostatic pressure and/or low temperature. Here, we observed that 24 deletion mutants were rescued by the introduction of four plasmids (LEU2, HIS3, LYS2, and URA3) together to grow at 25 MPa, thereby suggesting close links between the genes and nutrient uptake. Most of the highly ranked genes were poorly characterized, including MAY24/YPR153W. May24 appeared to be localized in the endoplasmic reticulum (ER) membrane. Therefore, we designated this gene as EHG (ER-associated high-pressure growth gene) 1. Deletion of EHG1 led to reduced nutrient transport rates and decreases in the nutrient permease levels at 25 MPa. These results suggest that Ehg1 is required for the stability and functionality of the permeases under high pressure. Ehg1 physically interacted with nutrient permeases Hip1, Bap2, and Fur4; however, alanine substitutions for Pro17, Phe19, and Pro20, which were highly conserved among Ehg1 homologues in various yeast species, eliminated interactions with the permeases as well as the high-pressure growth ability. By functioning as a novel chaperone that facilitated coping with high-pressure-induced perturbations, Ehg1 could exert a stabilizing effect on nutrient permeases when they are present in the ER.
Collapse
|
48
|
Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances. Food Res Int 2019; 126:108654. [DOI: 10.1016/j.foodres.2019.108654] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022]
|
49
|
Abstract
Hyperbaric storage is an innovative preservation method that consists of storing food under pressure, either at room or at low temperature, for time periods of days, weeks, or months. Recent scientific literature shows that hyperbaric storage at room temperature (HS-RT) could be an efficient method for fruit juice preservation. Depending on the level applied, pressure can inhibit and even inactivate the endogenous microflora of the fresh juice, while properly preserving other organoleptic and quality indicators. Even though the method has not yet been implemented in the food industry, its industrial viability has been evaluated from different points of view (product quality, consumer acceptation, vessel design, economic, or environmental, among others). The results reveal that HS-RT is effective in extending the shelf-life of both acidic and low-acidic fruit juices. Moreover, the energetic costs and the carbon footprint of HS-RT are considerably lower than those of refrigeration, therefore, HS-RT could be a reliable and environmentally friendly alternative to conventional cold storage. However, before industrial implementation, much more research is needed to clarify the effects of the storage conditions on the agents that cause fruit juice deterioration.
Collapse
|
50
|
Scoma A, Garrido-Amador P, Nielsen SD, Røy H, Kjeldsen KU. The Polyextremophilic Bacterium Clostridium paradoxum Attains Piezophilic Traits by Modulating Its Energy Metabolism and Cell Membrane Composition. Appl Environ Microbiol 2019; 85:e00802-19. [PMID: 31126939 PMCID: PMC6643245 DOI: 10.1128/aem.00802-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/13/2019] [Indexed: 11/20/2022] Open
Abstract
In polyextremophiles, i.e., microorganisms growing preferentially under multiple extremes, synergistic effects may allow growth when application of the same extremes alone would not. High hydrostatic pressure (HP) is rarely considered in studies of polyextremophiles, and its role in potentially enhancing tolerance to other extremes remains unclear. Here, we investigated the HP-temperature response in Clostridium paradoxum, a haloalkaliphilic moderately thermophilic endospore-forming bacterium, in the range of 50 to 70°C and 0.1 to 30 MPa. At ambient pressure, growth limits were extended from the previously reported 63°C to 70°C, defining C. paradoxum as an actual thermophile. Concomitant application of high HP and temperature compared to standard conditions (i.e., ambient pressure and 50°C) remarkably enhanced growth, with an optimum growth rate observed at 22 MPa and 60°C. HP distinctively defined C. paradoxum physiology, as at 22 MPa biomass, production increased by 75% and the release of fermentation products per cell decreased by >50% compared to ambient pressure. This metabolic modulation was apparently linked to an energy-preserving mechanism triggered by HP, involving a shift toward pyruvate as the preferred energy and carbon source. High HPs decreased cell damage, as determined by Syto9 and propidium iodide staining, despite no organic solute being accumulated intracellularly. A distinct reduction in carbon chain length of phospholipid fatty acids (PLFAs) and an increase in the amount of branched-chain PLFAs occurred at high HP. Our results describe a multifaceted, cause-and-effect relationship between HP and cell metabolism, stressing the importance of applying HP to define the boundaries for life under polyextreme conditions.IMPORTANCE Hydrostatic pressure (HP) is a fundamental parameter influencing biochemical reactions and cell physiology; however, it is less frequently applied than other factors, such as pH, temperature, and salinity, when studying polyextremophilic microorganisms. In particular, how HP affects microbial tolerance to other and multiple extremes remains unclear. Here, we show that under polyextreme conditions of high pH and temperature, Clostridium paradoxum demonstrates a moderately piezophilic nature as cultures grow to highest cell densities and most efficiently at a specific combination of temperature and HP. Our results highlight the importance of considering HP when exploring microbial physiology under extreme conditions and thus have implications for defining the limits for microbial life in nature and for optimizing industrial bioprocesses occurring under multiple extremes.
Collapse
Affiliation(s)
- Alberto Scoma
- Department of Bioscience, Section of Microbiology, Aarhus University, Aarhus, Denmark
| | - Paloma Garrido-Amador
- Department of Bioscience, Section of Microbiology, Aarhus University, Aarhus, Denmark
| | | | - Hans Røy
- Department of Bioscience, Section of Microbiology, Aarhus University, Aarhus, Denmark
| | - Kasper Urup Kjeldsen
- Department of Bioscience, Section of Microbiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|