1
|
Kuntic M, Kuntic I, Cleppien D, Pozzer A, Nußbaum D, Oelze M, Junglas T, Strohm L, Ubbens H, Daub S, Bayo Jimenez MT, Danckwardt S, Berkemeier T, Hahad O, Kohl M, Steven S, Stroh A, Lelieveld J, Münzel T, Daiber A. Differential inflammation, oxidative stress and cardiovascular damage markers of nano- and micro-particle exposure in mice: Implications for human disease burden. Redox Biol 2025; 83:103644. [PMID: 40319735 DOI: 10.1016/j.redox.2025.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
Particulate matter (PM) poses a significant risk to human health; however, it remains uncertain which size fraction is especially harmful and what mechanisms are involved. We investigated the varying effects of particle size on specific organ systems using a custom mouse exposure system and synthetic PM (SPM). Whole-body exposure of mice showed that micrometer-sized fine SPM (2-4 μm) accumulated in the lungs, the primary entry organ, while nanometer-sized SPM (<250 nm) did not accumulate, suggesting a transition into circulation. Mice exposed to micro-SPM exhibited inflammation and NADPH oxidase-derived oxidative stress in the lungs. In contrast, nano-SPM-exposed mice did not display oxidative stress in the lungs but rather at the brain, heart, and vascular levels, supporting the hypothesis that they penetrate the lungs and reach the circulation. Sources of reactive oxygen species from micro-SPM in the lung are NOX1 and NOX2, driven by pulmonary inflammation, while oxidative stress from nano-SPM in the heart is mediated by protein kinase C-dependent p47phox phosphorylation, leading to NOX2 activation in infiltrated monocytes. Endothelial dysfunction and increased blood pressure were more pronounced in nano-SPM-exposed mice, also supported by elevated endothelin-1 and reduced endothelial nitric oxide synthase expression, which enhances constriction and diminishes vasodilation. Further, we estimated the cardiovascular disease burden of nano-particles in humans based on global exposure data and hazard ratios from an epidemiological cohort study. These results provide novel insights into the disease burdens of inhaled nano- and micro-particles (corresponding to fine and ultrafine categories), guiding future studies.
Collapse
Affiliation(s)
- Marin Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Ivana Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Dirk Cleppien
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Andrea Pozzer
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - David Nußbaum
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Matthias Oelze
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Tristan Junglas
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Lea Strohm
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Henning Ubbens
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Steffen Daub
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | | | - Sven Danckwardt
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; University Medical Center Ulm, Department of Clinical Chemistry, Ulm, Germany
| | - Thomas Berkemeier
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Omar Hahad
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Matthias Kohl
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Sebastian Steven
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Division of Cardiology, Goethe University Frankfurt, University Hospital, Department of Medicine III, Frankfurt a. M., Germany
| | - Albrecht Stroh
- Leibniz Institute for Resilience Research, Mainz, Germany; University Medical Center Mainz, Institute of Pathophysiology, Mainz, Germany; Institute of Physiology I, University Hospital Muenster, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Thomas Münzel
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
2
|
Formichi C, Caprio S, Nigi L, Dotta F. The impact of environmental pollution on metabolic health and the risk of non-communicable chronic metabolic diseases in humans. Nutr Metab Cardiovasc Dis 2025; 35:103975. [PMID: 40180824 DOI: 10.1016/j.numecd.2025.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
AIMS This review aims to provide a comprehensive overview to understand the role of pollution in the development of noncommunicable diseases (NCDs), with a focus on metabolic diseases. DATA SYNTHESIS In the context of NCDs, the incidence of metabolic diseases such as obesity and diabetes are increasing at an alarming rate. In addition to the well-known role of the so-called "obesogenic" environment, characterized by unhealthy diet and physical inactivity, great attention has been paid in recent years to the effects of pollution. Indeed, progressive urbanization has been associated with increased exposure to pollutants. The harmful effects of some pollutants on the endocrine system have been known for decades, but data on the metabolic impact of pollution are rather recent. Pollution in its various forms promotes a systemic inflammatory state, insulin resistance, and oxidative stress, which appear to be closely associated with increased risk of NCD, particularly obesity and diabetes. CONCLUSIONS In conclusion, urbanization has so far had a predominantly negative impact on collective health, but a better understanding of the mechanisms linking pollution to metabolic health is crucial to implement preventive strategies, including careful urban planning to improve community health, understood not only as the absence of disease but also as psychological and social well-being, overcoming the risks associated with urbanization.
Collapse
Affiliation(s)
- Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 1-16, 53100, Siena, Italy.
| | - Sonia Caprio
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 1-16, 53100, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 1-16, 53100, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 1-16, 53100, Siena, Italy
| |
Collapse
|
3
|
Gomez-Delgado F, Raya-Cruz M, Romero-Cabrera JL, Perez-Martinez P. Environmental pollution and cardiovascular health. Challenges and new perspectives. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2025:500802. [PMID: 40345876 DOI: 10.1016/j.arteri.2025.500802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
Environmental pollution is a key factor in cardiovascular disease (CVD) development. Several evidences support its impact at the pathophysiology of arteriosclerosis, highlighting the role of the "exposome", a concept that encompasses all environmental factors such as air pollution, water pollution, climate change and noise and light pollution. These factors are associated with an increased risk of ischemic heart disease (IHD), stroke, high blood pressure (HBP), heart failure (HF) and atrial fibrillation (AF). Currently, air pollution is the main environmental factor related to CVD. Components such as particulates matter (PM0.1, PM2.5, PM10), sulfur dioxide (SO2), nitrogen oxide and dioxide (NOx), carbon monoxide (CO) and ozone (O3) have a high capacity to penetrate the body and trigger both local and systemic inflammatory processes. These effects promote a proinflammatory, procoagulant state and an increase in oxidative stress. Similarly, aquatic pollution exposes the body to pollutants such as heavy metals, pesticides and microplastics, both through direct contact and via the food chain, thus contributing to the phenomena mentioned above. On the other hand, factors such as noise and light pollution, together with effects caused from climate change (extreme temperatures, wildfires, desertification, among others), have been closely linked to pathophysiological processes that favour the development and progression of atherosclerosis. These mechanisms include sympathetic nervous system (SNS) activation, stress hormones release such as cortisol and catecholamines, as well as chronodisruption. This review analyses the role of factors related to the exposome (air pollution, water pollution, noise and light pollution and phenomena associated with climate change) in atherosclerosis progression, as well as their involvement in the incidence, prevalence and prognosis of CVD. Physicians should promote awareness of environmental pollution impact on cardiovascular health, integrating the assessment of environmental factors into their clinical practice, advocating for sustainable policies to prevent diseases and protect present and future health.
Collapse
Affiliation(s)
- Francisco Gomez-Delgado
- Unidad de Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Jaén, Jaén, España; Grupo CTS-990 del Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI), Universidad de Jaén, Jaén, España
| | - Manuel Raya-Cruz
- Unidad de Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Jaén, Jaén, España; Grupo CTS-990 del Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI), Universidad de Jaén, Jaén, España
| | - Juan L Romero-Cabrera
- Unidad de Lípidos y Arteriosclerosis, Hospital Universitario Reina Sofía/Universidad de Córdoba/IMIBIC, Córdoba, España; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, España
| | - Pablo Perez-Martinez
- Unidad de Lípidos y Arteriosclerosis, Hospital Universitario Reina Sofía/Universidad de Córdoba/IMIBIC, Córdoba, España; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, España.
| |
Collapse
|
4
|
He Y, Zhang Q, Zhou T, Lan Y. Global, Regional, and National Burden of Cardiovascular Diseases Associated with Particulate Matter Pollution: A Systematic Analysis of Deaths and Disability-Adjusted Life Years with Projections to 2030. Rev Cardiovasc Med 2025; 26:27056. [PMID: 40351694 PMCID: PMC12059744 DOI: 10.31083/rcm27056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 05/14/2025] Open
Abstract
Background This research assesses how fine particulate matter (PM2.5) pollution influences cardiovascular diseases (CVDs) globally. Methods Utilizing data from the 2021 Global Burden of Disease (GBD) study, we assessed the impact of PM2.5 pollution on CVDs in individuals aged 25 and older. The health burden was quantified using measures such as disability-adjusted life years (DALYs), age-standardized rates (ASRs), and the effective annual percentage change (EAPC). Joinpoint regression models were used to describe the temporal trends of CVD burdens, while the Bayesian age-period-cohort (BAPC) models were employed to project the CVD burdens through 2030. Frontier analysis was conducted to identify potential areas for improvement and gaps between the development statuses of different countries. Decomposition analysis was applied to assess the impact of population growth, aging, and epidemiological changes on the burden of CVDs. Results Despite a decline in ASRs for both sexes, males continued to bear a disproportionate burden of CVDs. While substantial reductions in ASRs have been noted in Western Europe and High-income North America, smaller decreases in the EAPC have been seen in South Asia, Oceania, and Western Sub-Saharan Africa; however, Oceania faces the highest mortality burden. An inverse relationship between the sociodemographic index (SDI) and ASRs is evident nationally. Meanwhile, Afghanistan and Egypt reported elevated ASRs, and Iceland recorded the lowest rate. Projections suggest a potential reversal in ASRs by 2021. A decomposition analysis revealed that intracerebral hemorrhage poses the greatest burden in middle SDI regions, while ischemic heart disease is notably burdensome in high SDI and high-middle SDI regions. Conclusions This study highlights the disproportionate burden of CVDs associated with PM2.5 pollution, particularly in males and lower SDI regions, with significant regional disparities and projections indicating potential reversals in trends.
Collapse
Affiliation(s)
- Yi He
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, 400038 Chongqing, China
| | - Qiongyue Zhang
- Department of Nephrology, Daping Hospital, Army Medical Center, Third Military Medical University (Army Medical University), 400042 Chongqing, China
| | - Ting Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, 400038 Chongqing, China
| | - Ying Lan
- Department of Critical Care Medicine, Affiliated Hospital of Chengdu University, 610081 Chengdu, Sichuan, China
| |
Collapse
|
5
|
Andreone L. Neuroimmune axis: Linking environmental factors to pancreatic β-cell dysfunction in Diabetes. Brain Behav Immun Health 2025; 43:100926. [PMID: 39810797 PMCID: PMC11732196 DOI: 10.1016/j.bbih.2024.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 11/15/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
Pancreatic β-cells are specialized in secreting insulin in response to circulating nutrients, mainly glucose. Diabetes is one of the most prevalent endocrine-metabolic diseases characterized by an imbalance in glucose homeostasis, which result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and peripheral insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Pancreatic β-cell dysfunction and islet inflammation are common characteristics of both types of the disease. Pancreatic islets are a highly innervated tissue whose function can be influenced by the brain, either directly through the autonomic nervous system or indirectly via neuroendocrine mechanisms. In addition, it is well-established that there is a fine-tuned communication between the immune and neuroendocrine tissues in maintaining endocrine pancreas homeostasis. Various psycho-social, physico-chemical and lifestyle environmental factors have been associated with diabetes risk. In this review, I briefly comment on certain aspects of the psycho-neuro-immune interactions that link environmental factors and the endocrine pancreas, leading to metabolic health or diabetes. Interdisciplinary research, embracing new and broader perspectives, should be conducted to explore strategies for preventing or slowing down the constant increase in diabetes worldwide.
Collapse
Affiliation(s)
- Luz Andreone
- Laboratory of Immuno-Endocrinology, Diabetes and Metabolism, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| |
Collapse
|
6
|
Cifuentes M, Verdejo HE, Castro PF, Corvalan AH, Ferreccio C, Quest AFG, Kogan MJ, Lavandero S. Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Physiology (Bethesda) 2025; 40:0. [PMID: 39078396 DOI: 10.1152/physiol.00021.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammation is an important physiological response of the organism to restore homeostasis upon pathogenic or damaging stimuli. However, the persistence of the harmful trigger or a deficient resolution of the process can evolve into a state of low-grade, chronic inflammation. This condition is strongly associated with the development of several increasingly prevalent and serious chronic conditions, such as obesity, cancer, and cardiovascular diseases, elevating overall morbidity and mortality worldwide. The current pandemic of chronic diseases underscores the need to address chronic inflammation, its pathogenic mechanisms, and potential preventive measures to limit its current widespread impact. The present review discusses the current knowledge and research gaps regarding the association between low-grade chronic inflammation and chronic diseases, focusing on obesity, cardiovascular diseases, digestive diseases, and cancer. We examine the state of the art in selected aspects of the topic and propose future directions and approaches for the field.
Collapse
Affiliation(s)
- Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- OMEGA Laboratory, Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Hematology and Oncology, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Public Health, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Department of Pharmacological & Toxicological Chemistry, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
- Department of Biochemistry & Molecular Biology, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
7
|
Caffè A, Scarica V, Animati FM, Manzato M, Bonanni A, Montone RA. Air pollution and coronary atherosclerosis. Future Cardiol 2025; 21:53-66. [PMID: 39786972 PMCID: PMC11812424 DOI: 10.1080/14796678.2025.2451545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025] Open
Abstract
The recently introduced concept of 'exposome' emphasizes the impact of non-traditional threats onto cardiovascular health. Among these, air pollutants - particularly fine particulate matter < 2.5 μm (PM2.5) - have emerged as significant environmental risk factors for cardiovascular disease and mortality. PM2.5 exposure has been shown to induce endothelial dysfunction, chronic low-grade inflammation, and cardiometabolic impairment, contributing to the development and destabilization of atherosclerotic plaques. Both short- and long-term exposure to air pollution considerably increase the incidence of ischemic heart disease (IHD)-related events, with clinical evidence linking pollution to higher mortality and adverse prognosis, especially in vulnerable populations. In this review, we explore the mechanistic pathways through which air pollutants exacerbate atherosclerotic cardiovascular disease (ASCVD) and discuss their clinical impact.Furthermore, special attention will be directed to the outcomes and prognosis of patients with pollution-aggravated coronary atherosclerosis, as well as the potential role of targeted public health interventions.
Collapse
Affiliation(s)
- Andrea Caffè
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Vincenzo Scarica
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Maria Animati
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Matteo Manzato
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Alice Bonanni
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Rocco Antonio Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
8
|
Qin M, Liu X, Wang L, Huang T, Zuo X, Zou Y. Level of elderly-supportive infrastructure, fine particulate matter and cardiovascular disease hospitalisations: a time-stratified case-crossover study in Wuhan. Glob Health Action 2024; 17:2447651. [PMID: 39819469 PMCID: PMC11748890 DOI: 10.1080/16549716.2024.2447651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Amid rapid urbanisation, the health effects of the built-environment have been widely studied, while research on elderly-supportive infrastructure and its interaction with PM2.5 (PM, Particulate Matter) exposure remains limited. OBJECTIVES To examine the effect of PM2.5 on cardiovascular hospitalisation risk among the elderly and the moderating role of elderly-supportive infrastructure in Wuhan, a city undergoing rapid urbanisation. METHODS A time-stratified case-crossover design was adopted in which the K-means cluster analysis was applied to categorize elderly-supportive infrastructure. The correlation of PM2.5 with cardiovascular hospitalisations and the moderating role of elderly-supportive infrastructure were elucidated through the conditional logistic regression and z-test. Nonlinear relationships among variables were determined using restricted cubic splines. RESULTS 173,486 case days and 589,188 control days were included. The cumulative lag effect of PM2.5 increased over time, peaking at 5 days. For every 10 µg/m3 increase in PM2.5, the risk of hospitalisation rose by 1.5% (OR = 1.0150, 95% CI: 1.0113-1.0190). The aforementioned effect of PM2.5 exposure on health did not differ among varying levels of elderly-supportive infrastructure within a 300 m buffer zone. When the buffer zone was extended to 500 and 1000 m, a higher level of elderly-supportive infrastructure mitigated the adverse effects of short-term PM2.5 exposure on cardiovascular hospitalisations (p = 0.013), particularly for stroke (p = 0.017) and ischaemic heart disease (p = 0.026). CONCLUSIONS Our findings suggest that high-level elderly-supportive infrastructure may protect against the adverse effects of PM2.5 on cardiovascular hospitalisation, highlighting the need to optimize elderly-supportive infrastructure for its health benefits in the elderly.
Collapse
Affiliation(s)
- Mengxue Qin
- Center of Health Management, School of Public Health, Wuhan University, Wuhan, China
| | - Xingyuan Liu
- Statistics Department, Wuhan Health Information Center, Wuhan, China
| | - Luyao Wang
- Center of Health Management, School of Public Health, Wuhan University, Wuhan, China
| | - Tengchong Huang
- Center of Health Management, School of Public Health, Wuhan University, Wuhan, China
| | - Xiuran Zuo
- Wuhan Health Information Center, Wuhan, China
| | - Yuliang Zou
- Center of Health Management, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Wang S, Peng R, Chen H, Han D, Wu J, Xu Y, Ying Z. Timing determines programming of energy homeostasis by maternal PM 2.5 exposure in mouse models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125187. [PMID: 39454811 PMCID: PMC11602340 DOI: 10.1016/j.envpol.2024.125187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Maternal exposure to particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) is believed to be a risk factor of developmental origins of health and disease (DOHaD), but its effect on offspring's susceptibility to obesity, a common target disease of DOHaD, remains controversial. To pinpoint the effect of maternal PM2.5 exposure on offspring's energy homeostasis, female C57BL/6J mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CAP) for 12 weeks and mated with normal male mice to produce offspring. After parturition, a cross-fostering strategy was exploited to determine whether prenatal and/or postnatal mothering by CAP-exposed dams program offspring's energy homeostasis and susceptibility to obesity. Moreover, oocytes were collected from FA- or CAP-exposed mice and subjected to in vitro fertilization (IVF) to determine whether maternal pre-conceptional exposure to PM2.5 programs energy homeostasis. Results showed that prenatal mothering by CAP-exposed dams increased suckling's milk intake and weight gain, decreased normal diet (ND)-fed offspring's adulthood food intake and body weight, and did not influence offspring's diet-induced obesity (DIO). Postnatal mothering by CAP-exposed dams did not influence suckling's milk intake and weight gain, increased ND-fed offspring's adulthood food intake and body weight and did not influence offspring's DIO. Prenatal plus postnatal mothering by CAP-exposed dams increased suckling's milk intake and weight gain, increased ND-fed offspring's adulthood food intake and body weight, and aggravated offspring's DIO. IVF study revealed that male offspring derived from CAP-exposed mice versus controls had significantly decreased adulthood food intake and body weight. RNA sequencing showed that CAP exposure influenced oocyte estrogen signaling and histone methylation. This study thus clearly reveals that timing determines programming of energy homeostasis by maternal PM2.5 exposure.
Collapse
Affiliation(s)
- Shan Wang
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Renzhen Peng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Hongxia Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Junfang Wu
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
Ma Y, Miao C, Wei J, Sun B, Li H, Tian Y, Zhu Y. Exposure to PM 2.5 and its constituents in relation to thyroid function of pregnant women: Separate and mixture analyses. CHEMOSPHERE 2024; 367:143610. [PMID: 39447772 DOI: 10.1016/j.chemosphere.2024.143610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/22/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The relationships between exposure to PM2.5 and its constituents and thyroid hormone (TH) levels in pregnant women are still uncertain, particularly regarding the impact of mixed exposure to PM2.5 constituents on thyroid function during pregnancy. This study aimed to investigate the individual and mixed effect of PM2.5 and its constituents on TH levels during pregnancy. Fluorescence and chemiluminescence immunoassays were utilized to measure serum concentrations of free thyroxine (FT4) and thyroid-stimulating hormone (TSH) in pregnant women participating in the Fujian Birth Cohort Study (FJBCS). PM2.5 and its constituents were obtained from the ChinaHighAirPollutants dataset. Generalized linear regression model and mixture analysis were applied to explore the individual and mixed effect of PM2.5 and its constituents on TH levels. 13711 participants from the FJBCS were taken into the final analysis. In the context of separate exposure, an increase of one interquartile range (IQR) in PM2.5 exposure during the 1st trimester, 2nd trimester, and entire pregnancy was associated with a decrease of -0.042 (-0.050, -0.034), -0.017 (-0.026, -0.009), and -0.011 (-0.017, -0.004) in FT4 level, respectively. As well, significant negative associations were observed between FT4 level and PM2.5 constituents. Additionally, PM2.5 and its constituents were in relation to an increased risk of hypothyroxinemia in pregnant women. It is noteworthy that, in the context of mixed exposure, the weighted quantile sum regression (WQS) indices were significantly associated with both FT4 level (1st trimester: -0.031 (-0.036, -0.026); 2nd trimester: -0.026 (-0.030, -0.023); whole pregnancy: -0.024 (-0.028, -0.020)) and hypothyroxinemia risk (1st trimester: 1.552 (1.312, 1.821); 2nd trimester: 1.453 (1.194, 1.691); whole pregnancy: 1.402 (1.152, 1.713)). PM2.5 and its chemical constituents may affect thyroid function in pregnant women individually and in combination, with the effect observed during early gestational exposure being most pronounced.
Collapse
Affiliation(s)
- Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Chong Miao
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Disease Research, Fuzhou, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Bin Sun
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Disease Research, Fuzhou, China
| | - Haibo Li
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Disease Research, Fuzhou, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
| | - Yibing Zhu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Disease Research, Fuzhou, China.
| |
Collapse
|
11
|
Tian X, Cheng Y, Chen S, Liu S, Wang Y, Niu X, Sun J. The Emission Characteristics and Health Risks of Firefighter-Accessed Fire: A Review. TOXICS 2024; 12:739. [PMID: 39453159 PMCID: PMC11511337 DOI: 10.3390/toxics12100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
The exacerbation of wildfires caused by global warming poses a significant threat to human health and environmental integrity. This review examines the particulate matter (PM) and gaseous pollutants resulting from fire incidents and their impacts on individual health, with a specific focus on the occupational hazards faced by firefighters. Of particular concern is the release of carbon-containing gases and fine particulate matter (PM2.5) from forest fires and urban conflagrations, which exceed the recommended limits and pose severe health risks. Firefighters exposed to these pollutants demonstrate an elevated risk of developing pulmonary and cardiovascular diseases and cancer compared to the general population, indicating an urgent need for enhanced protective measures and health management strategies for firefighters. Through a meticulous analysis of the current research findings, this review delineates future research directions, focusing on the composition and properties of these pollutants, the impacts of fire-emitted pollutants on human health, and the development of novel protective technologies.
Collapse
Affiliation(s)
- Xuan Tian
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (X.T.); (S.C.); (S.L.); (Y.W.)
| | - Yan Cheng
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (X.T.); (S.C.); (S.L.); (Y.W.)
| | - Shiting Chen
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (X.T.); (S.C.); (S.L.); (Y.W.)
| | - Song Liu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (X.T.); (S.C.); (S.L.); (Y.W.)
| | - Yanli Wang
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (X.T.); (S.C.); (S.L.); (Y.W.)
| | - Xinyi Niu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710049, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710049, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| |
Collapse
|
12
|
Fang L, Ma Y, Peng Y, Ni J, Ma C, Wang G, Zhao H, Chen Y, Zhang T, Cai G, Wei J, Xiang H, Pan F. Long-term effect of fine particulate matter constituents on reproductive hormones homeostasis in women attending assisted reproductive technologies: A population-based longitudinal study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116915. [PMID: 39178764 DOI: 10.1016/j.ecoenv.2024.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Fine particulate matter (PM2.5) may disrupt women's reproductive hormones, posing potential reproductive risks. However, the exact compositions of PM2.5 responsible for these effects remain unclear. Our investigation explored the long-term impacts of PM2.5 constituents on reproductive hormones, based on a large longitudinal assisted reproductive cohort study in Anhui, China. We included 24,396 reproductive hormone samples from 19,845 women attending assisted reproductive technologies (ART) between 2014 and 2020. Using high-resolution gridded data (1-km resolution), we calculated the residence-specified PM2.5 constituents during the year before the month of hormone testing. Relationships between PM2.5 constituents [organic matter (OM), chloride (Cl-), sulfate (SO42-), ammonium (NH4+), black carbon, and nitrate] and reproductive hormones were investigated using the linear mixed model with subject-specific intercepts. The constituent-proportion model and the constituent-residual model were also constructed. Additionally, cubic spline analysis was used to examine the potential non-linear exposure-response relationship. We found that per interquartile range (IQR) increment in OM was associated with a 5.31 % (3.74 %, 6.89 %) increase in estradiol, and per IQR increment in Cl- and NH4+ were associated with 13.56 % (7.63 %, 19.82 %) and 9.07 % (4.35 %, 14.01 %) increases in luteinizing hormone. Conversely, per IQR increment in OM and Cl- were associated with -7.27 % (-9.34 %, -5.16 %) and -8.52 % (-10.99 %, -5.98 %) decreases in progesterone, and per IQR increment in SO42- was associated with a -9.15 % (-10.31 %, -7.98 %) decrease in testosterone. These associations were held in both proportional and residual models. Moreover, exposure-response curves for estradiol and progesterone with PM2.5 constituents exhibited approximately U-shaped. These results suggested that specific PM2.5 constituents might disrupt reproductive hormone homeostasis in women attending ART, providing new evidence for formulating PM2.5 pollution reduction strategies that could benefit women's reproductive health.
Collapse
Affiliation(s)
- Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yongzhen Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jianping Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Cong Ma
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA; Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Guosheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
13
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
14
|
Bhetraratana M, Orozco LD, Bennett BJ, Luna K, Yang X, Lusis AJ, Araujo JA. Diesel exhaust particle extract elicits an oxPAPC-like transcriptomic profile in macrophages across multiple mouse strains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124415. [PMID: 38908672 DOI: 10.1016/j.envpol.2024.124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Air pollution is a prominent cause of cardiopulmonary illness, but uncertainties remain regarding the mechanisms mediating those effects as well as individual susceptibility. Macrophages are highly responsive to particles, and we hypothesized that their responses would be dependent on their genetic backgrounds. We conducted a genome-wide analysis of peritoneal macrophages harvested from 24 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). Cells were treated with a DEP methanol extract (DEPe) to elucidate potential pathways that mediate acute responses to air pollution exposures. This analysis showed that 1247 genes were upregulated and 1383 genes were downregulated with DEPe treatment across strains. Pathway analysis identified oxidative stress responses among the most prominent upregulated pathways; indeed, many of the upregulated genes included antioxidants such as Hmox1, Txnrd1, Srxn1, and Gclm, with NRF2 (official gene symbol: Nfe2l2) being the most significant driver. DEPe induced a Mox-like transcriptomic profile, a macrophage subtype typically induced by oxidized phospholipids and likely dependent on NRF2 expression. Analysis of individual strains revealed consistency of overall responses to DEPe and yet differences in the degree of Mox-like polarization across the various strains, indicating DEPe × genetic interactions. These results suggest a role for macrophage polarization in the cardiopulmonary toxicity induced by air pollution.
Collapse
Affiliation(s)
- May Bhetraratana
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Luz D Orozco
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Brian J Bennett
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Karla Luna
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Department of Biology, College of Science and Math, California State University-Northridge, 18111 Nordhoff Street, Northridge, CA, 91330, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA, 612 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Institute for Quantitative and Computational Biosciences, UCLA, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Jesus A Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Department of Environmental Health Sciences, Fielding School of Public Health, UCLA, 650 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
Offer S, Di Bucchianico S, Czech H, Pardo M, Pantzke J, Bisig C, Schneider E, Bauer S, Zimmermann EJ, Oeder S, Hartner E, Gröger T, Alsaleh R, Kersch C, Ziehm T, Hohaus T, Rüger CP, Schmitz-Spanke S, Schnelle-Kreis J, Sklorz M, Kiendler-Scharr A, Rudich Y, Zimmermann R. The chemical composition of secondary organic aerosols regulates transcriptomic and metabolomic signaling in an epithelial-endothelial in vitro coculture. Part Fibre Toxicol 2024; 21:38. [PMID: 39300536 DOI: 10.1186/s12989-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The formation of secondary organic aerosols (SOA) by atmospheric oxidation reactions substantially contributes to the burden of fine particulate matter (PM2.5), which has been associated with adverse health effects (e.g., cardiovascular diseases). However, the molecular and cellular effects of atmospheric aging on aerosol toxicity have not been fully elucidated, especially in model systems that enable cell-to-cell signaling. METHODS In this study, we aimed to elucidate the complexity of atmospheric aerosol toxicology by exposing a coculture model system consisting of an alveolar (A549) and an endothelial (EA.hy926) cell line seeded in a 3D orientation at the air‒liquid interface for 4 h to model aerosols. Simulation of atmospheric aging was performed on volatile biogenic (β-pinene) or anthropogenic (naphthalene) precursors of SOA condensing on soot particles. The similar physical properties for both SOA, but distinct differences in chemical composition (e.g., aromatic compounds, oxidation state, unsaturated carbonyls) enabled to determine specifically induced toxic effects of SOA. RESULTS In A549 cells, exposure to naphthalene-derived SOA induced stress-related airway remodeling and an early type I immune response to a greater extent. Transcriptomic analysis of EA.hy926 cells not directly exposed to aerosol and integration with metabolome data indicated generalized systemic effects resulting from the activation of early response genes and the involvement of cardiovascular disease (CVD) -related pathways, such as the intracellular signal transduction pathway (PI3K/AKT) and pathways associated with endothelial dysfunction (iNOS; PDGF). Greater induction following anthropogenic SOA exposure might be causative for the observed secondary genotoxicity. CONCLUSION Our findings revealed that the specific effects of SOA on directly exposed epithelial cells are highly dependent on the chemical identity, whereas non directly exposed endothelial cells exhibit more generalized systemic effects with the activation of early stress response genes and the involvement of CVD-related pathways. However, a greater correlation was made between the exposure to the anthropogenic SOA compared to the biogenic SOA. In summary, our study highlights the importance of chemical aerosol composition and the use of cell systems with cell-to-cell interplay on toxicological outcomes.
Collapse
Affiliation(s)
- Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany.
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Eric Schneider
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Rasha Alsaleh
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Christian Kersch
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| |
Collapse
|
16
|
Adeniyi MJ, Fabunmi OA, Awosika A. Unravelling the interplay between Harmattan wind and baroreflex functions: implications on environmental health and cardiovascular pathophysiology. EXPLORATION OF MEDICINE 2024:584-600. [DOI: 10.37349/emed.2024.00242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/14/2024] [Indexed: 05/14/2025] Open
Abstract
Harmattan is a season characterized by dust, cold, and sub-humid trade winds in Sub-Saharan countries. It’s similar to meteorological phenomena like Asian dust storms, Santa Ana winds, Australian bushfires, and Saharan dust in the Caribbean. It causes profound changes in the cardiorespiratory system in apparently healthy individuals and increases the risk of hospitalization in susceptible individuals. Exposure to these extreme conditions has been associated with alterations in autonomic function and baroreceptor sensitivity thus resulting in dysregulation of blood pressure control mechanisms. Baroreceptors are critical regulators of hemodynamics and cardiovascular function. They play a vital role in the short-term responses to blood pressure perturbation and are essential for acute restoration of blood pressure following cold exposure. Harmattan wind contains a barrage of chemicals, dust, and particulate matters depending on industrialization, natural and human activities. Particulate matter from Harmattan dust can trigger systemic inflammation and oxidative stress, exacerbating endothelial dysfunction and impairing vascular reactivity thus contributing to the pathogenesis of alterations in baroreceptor insensitivity, and cardiovascular diseases, including hypertension and atherosclerosis. Furthermore, fine particulate matter from dust may penetrate deep into the respiratory tract, activating pulmonary sensory receptors and eliciting reflex responses that influence autonomic tone. The presence of rich acrolein smokes and non-essential heavy metals such as cadmium, lead, and mercury in Harmattan wind also reduces baroreflex sensitivity, culminating in a sustained increase in diastolic and systolic blood pressure. This integrated review aims to provide valuable insights into how changes in each of these environmental constituents alter vital pathophysiologic and immunologic mechanisms of the body leading to baroreceptor instability and ultimately hemodynamic imbalance using available primary studies. Understanding this intricate interplay is crucial for implementing targeted interventions and informed public health strategies to mitigate the adverse effects of extreme environmental exposure and ultimately reduce poor health outcomes in the affected regions.
Collapse
Affiliation(s)
- Mayowa Jeremiah Adeniyi
- Departments of Physiology, Federal University of Health Sciences Otukpo, Benue 972261, Nigeria
| | - Oyesanmi A. Fabunmi
- Health-awareness, Exercise and Cardio-immunologic Research Unit (HECIRU), Department of Physiology, College of Medicine, Ekiti State University, Ado-Ekiti 5363, Nigeria
| | - Ayoola Awosika
- College of Medicine, University of Illinois, Peoria, IL 61606, USA
| |
Collapse
|
17
|
Chen Z, Huo X, Huang Y, Cheng Z, Xu X, Li Z. Elevated plasma solMER concentrations link ambient PM 2.5 and PAHs to myocardial injury and reduced left ventricular systolic function in children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124151. [PMID: 38740242 DOI: 10.1016/j.envpol.2024.124151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Exposure to fine particulate matter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) is known to be associated with the polarization of pro-inflammatory macrophages and the development of various cardiovascular diseases. The pro-inflammatory polarization of resident cardiac macrophages (cMacs) enhances the cleavage of membrane-bound myeloid-epithelial-reproductive receptor tyrosine kinase (MerTK) and promotes the formation of soluble MerTK (solMER). This process influences the involvement of cMacs in cardiac repair, thus leading to an imbalance in cardiac homeostasis, myocardial injury, and reduced cardiac function. However, the relative impacts of PM2.5 and PAHs on human cMacs have yet to be elucidated. In this study, we aimed to investigate the effects of PM2.5 and PAH exposure on solMER in terms of myocardial injury and left ventricular (LV) systolic function in healthy children. A total of 258 children (aged three to six years) were recruited from Guiyu (an area exposed to e-waste) and Haojiang (a reference area). Mean daily PM2.5 concentration data were collected to calculate the individual chronic daily intake (CDI) of PM2.5. We determined concentrations of solMER and creatine kinase MB (CKMB) in plasma, and hydroxylated PAHs (OH-PAHs) in urine. LV systolic function was evaluated by stroke volume (SV). Higher CDI values and OH-PAH concentrations were detected in the exposed group. Plasma solMER and CKMB were higher in the exposed group and were associated with a reduced SV. Elevated CDI and 1-hydroxynaphthalene (1-OHNa) were associated with a higher solMER. Furthermore, increased solMER concentrations were associated with a lower SV and higher CKMB. CDI and 1-OHNa were positively associated with CKMB and mediated by solMER. In conclusion, exposure to PM2.5 and PAHs may lead to the pro-inflammatory polarization of cMacs and increase the risk of myocardial injury and systolic function impairment in children. Furthermore, the pro-inflammatory polarization of cMacs may mediate cardiotoxicity caused by PM2.5 and PAHs.
Collapse
Affiliation(s)
- Zihan Chen
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China; Shantou University Medical College, Shantou, 15041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Yu Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhi Li
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China.
| |
Collapse
|
18
|
Zhu A, Cao Y, Li C, Yu J, Liu M, Xu K, Ruan Y. Effects of major air pollutants on angina hospitalizations: a correlation study. BMC Public Health 2024; 24:1877. [PMID: 39004712 PMCID: PMC11247793 DOI: 10.1186/s12889-024-19380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Angina is a crucial risk signal for cardiovascular disease. However, few studies have evaluated the effects of ambient air pollution exposure on angina. OBJECTIVE We aimed to explore the short-term effects of air pollution on hospitalization for angina and its lag effects. METHODS We collected data on air pollutant concentrations and angina hospitalizations from 2013 to 2020. Distributed lag nonlinear model (DLNM) was used to evaluate the short-term effects of air pollutants on angina hospitalization under different lag structures. Stratified analysis by sex, age and season was obtained. RESULTS A total of 39,110 cases of angina hospitalization were included in the study. The results showed a significant positive correlation between PM2.5, SO2, NO2, and CO and angina hospitalization. Their maximum harmful effects were observed at lag0-7 (RR = 1.042; 95% CI: 1.017, 1.068), lag0-3 (RR = 1.067; 95% CI: 1.005, 1.133), lag0-6 (RR = 1.078; 95% CI: 1.041, 1.117), and lag0-6 (RR = 1.244; 95% CI: 1.109, 1.397), respectively. PM10 did not have an overall risk effect on angina hospitalization, but it did have a risk effect on women and the elderly. O3 was significantly negatively correlated with angina hospitalization, with the most pronounced effect observed at lag0-6 (RR = 0.960; 95% CI: 0.940, 0.982). Stratified analysis results showed that women and the elderly were more susceptible to pollutants, and the adverse effects of pollutants were stronger in the cold season. CONCLUSION Short-term exposure to PM2.5, SO2, NO2, and CO increases the risk of hospitalization for angina.
Collapse
Affiliation(s)
- Anning Zhu
- School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Yongqin Cao
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730000, PR China
| | - Chunlan Li
- Third People's Hospital of Gansu Province, Lanzhou, 730000, PR China
| | - Jingze Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Miaoxin Liu
- School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Ke Xu
- School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
19
|
Hu A, Li R, Chen G, Chen S. Impact of Respiratory Dust on Health: A Comparison Based on the Toxicity of PM2.5, Silica, and Nanosilica. Int J Mol Sci 2024; 25:7654. [PMID: 39062897 PMCID: PMC11277548 DOI: 10.3390/ijms25147654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory dust of different particle sizes in the environment causes diverse health effects when entering the human body and makes acute or chronic damage through multiple systems and organs. However, the precise toxic effects and potential mechanisms induced by dust of different particle sizes have not been systematically summarized. In this study, we described the sources and characteristics of three different particle sizes of dust: PM2.5 (<2.5 μm), silica (<5 μm), and nanosilica (<100 nm). Based on their respective characteristics, we further explored the main toxicity induced by silica, PM2.5, and nanosilica in vivo and in vitro. Furthermore, we evaluated the health implications of respiratory dust on the human body, and especially proposed potential synergistic effects, considering current studies. In summary, this review summarized the health hazards and toxic mechanisms associated with respiratory dust of different particle sizes. It could provide new insights for investigating the synergistic effects of co-exposure to respiratory dust of different particle sizes in mixed environments.
Collapse
Affiliation(s)
| | | | | | - Shi Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China; (A.H.); (R.L.); (G.C.)
| |
Collapse
|
20
|
Liu C, Yang J, Guan L, Jing L, Xiao S, Sun L, Xu B, Zhao H. Intersection of Aging and Particulate Matter 2.5 Exposure in Real World: Effects on Inflammation and Endocrine Axis Activities in Rats. Int J Endocrinol 2024; 2024:8501696. [PMID: 38966821 PMCID: PMC11223905 DOI: 10.1155/2024/8501696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Exposure to particulate matter 2.5 (PM2.5) is detrimental to multiple organ systems. Given the factor that aging also alters the cellularity and response of immune system and dysfunction of hypothalamic-pituitary-adrenal, -gonad and -thyroid axes, it is imperative to investigate whether chronic exposure to PM2.5 interacts with aging in these aspects. In this study, two-months-old Sprague-Dawley rats were exposed to real world PM2.5 for 16 months. PM2.5 exposure diminished the relative numbers of CD4+ T cells and CD8+ T cells and increased the relative number of B cells in the peripheral blood of male rats. Conversely, only reduced relative number of CD4+ T cells was seen in the blood of female rats. These shifts resulted in elevated levels of proinflammatory factors interleukin-6 and tumor necrosis factor-α in the circulatory systems of both sex, with females also evidencing a rise in interleukin-1β levels. Moreover, heightened interleukin-6 was solely discernible in the hippocampus of female subjects, while increased tumor necrosis factor-α concentrations were widespread in female brain regions but confined to the male hypothalamus. Notable hormonal decreases were observed following PM2.5 exposure in both sex. These comprised declines in biomolecules such as corticotrophin-releasing hormone and cortisol, generated by the hypothalamic-pituitary-adrenal axis, and thyroid-releasing hormone and triiodothyronine, produced by the hypothalamic-pituitary-thyroid axis. Hormonal elements such as gonadotropin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone, derived from the hypothalamic-pituitary-gonad axis, were also diminished. Exclusive to male rats was a reduction in adrenocorticotropic hormone levels, whereas a fall in thyroid-stimulating hormone was unique to female rats. Decreases in sex-specific hormones, including testosterone, estradiol, and progesterone, were also noted. These findings significantly enrich our comprehension of the potential long-term health repercussions associated with PM2.5 interaction particularly among the aging populace.
Collapse
Affiliation(s)
- Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liwei Jing
- School of Nursing, Capital Medical University, Beijing, China
| | - Shuqin Xiao
- School of Nursing, Capital Medical University, Beijing, China
| | - Liu Sun
- School of Nursing, Capital Medical University, Beijing, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Campolim CM, Schimenes BC, Veras MM, Kim YB, Prada PO. Air pollution accelerates the development of obesity and Alzheimer's disease: the role of leptin and inflammation - a mini-review. Front Immunol 2024; 15:1401800. [PMID: 38933275 PMCID: PMC11199417 DOI: 10.3389/fimmu.2024.1401800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Air pollution is an urgent concern linked to numerous health problems in low- and middle-income countries, where 92% of air pollution-related deaths occur. Particulate matter 2.5 (PM2.5) is the most harmful component of air pollutants, increasing inflammation and changing gut microbiota, favoring obesity, type 2 diabetes, and Alzheimer's Disease (AD). PM2.5 contains lipopolysaccharides (LPS), which can activate the Toll-like receptor 4 (TLR4) signaling pathway. This pathway can lead to the release of pro-inflammatory markers, including interleukins, and suppressor of cytokine signaling-3 (SOCS3), which inhibits leptin action, a hormone that keeps the energy homeostasis. Leptin plays a role in preventing amyloid plaque deposition and hyperphosphorylation of tau-protein (p-tau), mechanisms involved in the neurodegeneration in AD. Approximately 50 million people worldwide are affected by dementia, with a significant proportion living in low-and middle-income countries. This number is expected to triple by 2050. This mini-review focuses on the potential impact of PM2.5 exposure on the TLR4 signaling pathway, its contribution to leptin resistance, and dysbiosis that exacerbates the link between obesity and AD.
Collapse
Affiliation(s)
- Clara Machado Campolim
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, United States
| | | | - Mariana Matera Veras
- Laboratory of Environmental and Experimental Pathology LIM05, Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, United States
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
22
|
Zhang L, Xu F, Yang Y, Yang L, Wu Q, Sun H, An Z, Li J, Wu H, Song J, Wu W. PM 2.5 exposure upregulates pro-inflammatory protein expression in human microglial cells via oxidant stress and TLR4/NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116386. [PMID: 38657455 DOI: 10.1016/j.ecoenv.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Exposure to ambient PM2.5 is associated with neurodegenerative disorders, in which microglia activation plays a critical role. Thus far, the underlying mechanisms for PM2.5-induced microglia activation have not been well elucidated. In this study, a human microglial cell line (HMC3) was used as the in vitro model to examine the inflammatory effect (hall marker of microglia activation) of PM2.5 and regulatory pathways. The expression of inflammatory mediators including interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) as well as the brain derived neurotrophic factor (BDNF) were determined by ELISA and/or real-time PCR, respectively. Flow cytometry was used to measure the production of intracellular reactive oxygen species (ROS). Western blot was used to measure protein levels of Toll-like receptor 4 (TLR4), NF-κB inhibitor α (IκBα) and COX-2. It was shown that PM2.5 stimulation increased IL-6 and COX-2 expression but decreased BDNF expression in a dose-dependent manner. Further studies showed that PM2.5 triggered the formation of ROS and pre-treatment with the ROS scavenger acetylcysteine (NAC) significantly suppressed PM2.5-induced IL-6 and COX-2 expression. Moreover, the nuclear factor kappa B (NF-κB) inhibitor BAY11-7085 or the TLR4 neutralizing antibody markedly blocked PM2.5-induced IL-6 and COX-2 expression. However, NAC or BAY11-7085 exhibited minimal effect on PM2.5-induced BDNF down-regulation. In addition, pre-treatment with BAY11-7085 or TLR4 neutralizing antibody reduced ROS production induced by PM2.5, and NAC pre-treatment inhibited TLR4 expression and NF-κB activation induced by PM2.5. Collectively, PM2.5 treatment induced IL-6 and COX-2 but suppressed BDNF expression. PM2.5-induced IL-6 and COX-2 expression was mediated by interactive oxidative stress and TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Ling Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Fei Xu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yishu Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Lin Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Qiong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Han Sun
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
23
|
Shen Z, Zhang F, Guo Z, Qu R, Wei Y, Wang J, Zhang W, Xing X, Zhang Y, Liu J, Tang D. Association between air pollution and male sexual function: A nationwide observational study in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134010. [PMID: 38492404 DOI: 10.1016/j.jhazmat.2024.134010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
This study aimed to explore the associations between air pollution and male sexual function. A total of 5047 male subjects in China were included in this study. The average air pollution exposure (PM2.5, PM10, SO2, CO, NO2, and O3) for the preceding 1, 3, 6, and 12 months before the participants' response was assessed. Male sexual function was evaluated using the International Index of Erectile Function-5 (IIEF-5) and the Premature Ejaculation Diagnostic Tool (PEDT). Generalized linear models were utilized to explore the associations between air pollution and male sexual function. K-prototype algorithm was conducted to identify the association among specific populations. Significant adverse effects on the IIEF-5 score were observed with NO2 exposure during the preceding 1, 3, and 6 months (1 m: β = -5.26E-05; 3 m: β = -4.83E-05; 6 m: β = -4.23E-05, P < 0.05). PM2.5 exposure during the preceding 12 months was found to significantly negatively affect the PEDT after adjusting for confounding variables. Our research indicated negative correlations between air pollutant exposures and male sexual function for the first time. Furthermore, these associations were more pronounced among specific participants who maintain a normal BMI, exhibit extroverted traits, and currently engage in smoking and alcohol consumption.
Collapse
Affiliation(s)
- Ziyuan Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Feng Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Zihan Guo
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xing Xing
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute for Global Health and Development, Peking University, Beijing 100871, China; Ministry of Education, Key Laboratory of Epidemiology of Major Diseases, Peking University, Beijing 100083, China.
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China.
| |
Collapse
|
24
|
Khraishah H, Chen Z, Rajagopalan S. Understanding the Cardiovascular and Metabolic Health Effects of Air Pollution in the Context of Cumulative Exposomic Impacts. Circ Res 2024; 134:1083-1097. [PMID: 38662860 PMCID: PMC11253082 DOI: 10.1161/circresaha.124.323673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poor air quality accounts for more than 9 million deaths a year globally according to recent estimates. A large portion of these deaths are attributable to cardiovascular causes, with evidence indicating that air pollution may also play an important role in the genesis of key cardiometabolic risk factors. Air pollution is not experienced in isolation but is part of a complex system, influenced by a host of other external environmental exposures, and interacting with intrinsic biologic factors and susceptibility to ultimately determine cardiovascular and metabolic outcomes. Given that the same fossil fuel emission sources that cause climate change also result in air pollution, there is a need for robust approaches that can not only limit climate change but also eliminate air pollution health effects, with an emphasis of protecting the most susceptible but also targeting interventions at the most vulnerable populations. In this review, we summarize the current state of epidemiologic and mechanistic evidence underpinning the association of air pollution with cardiometabolic disease and how complex interactions with other exposures and individual characteristics may modify these associations. We identify gaps in the current literature and suggest emerging approaches for policy makers to holistically approach cardiometabolic health risk and impact assessment.
Collapse
Affiliation(s)
- Haitham Khraishah
- Division of Cardiovascular Medicine, University of Maryland Medical Center, Baltimore (H.K.)
| | - Zhuo Chen
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (Z.C., S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (Z.C., S.R.)
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (Z.C., S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (Z.C., S.R.)
| |
Collapse
|
25
|
Blaustein JR, Quisel MJ, Hamburg NM, Wittkopp S. Environmental Impacts on Cardiovascular Health and Biology: An Overview. Circ Res 2024; 134:1048-1060. [PMID: 38662864 PMCID: PMC11058466 DOI: 10.1161/circresaha.123.323613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Environmental stressors associated with human activities (eg, air and noise pollution, light disturbance at night) and climate change (eg, heat, wildfires, extreme weather events) are increasingly recognized as contributing to cardiovascular morbidity and mortality. These harmful exposures have been shown to elicit changes in stress responses, circadian rhythms, immune cell activation, and oxidative stress, as well as traditional cardiovascular risk factors (eg, hypertension, diabetes, obesity) that promote cardiovascular diseases. In this overview, we summarize evidence from human and animal studies of the impacts of environmental exposures and climate change on cardiovascular health. In addition, we discuss strategies to reduce the impact of environmental risk factors on current and future cardiovascular disease burden, including urban planning, personal monitoring, and mitigation measures.
Collapse
Affiliation(s)
- Jacob R. Blaustein
- New York University Grossman School of Medicine, Department of Medicine, Leon H. Charney Division of Cardiology, New York, USA
| | - Matthew J. Quisel
- Department of Medicine, Boston University Chobanian and Avedision School of Medicine
| | - Naomi M. Hamburg
- Section of Vascular Biology, Whitaker Cardiovascular Institute, Chobanian and Avedisian School of Medicine, Boston University, Boston, USA
| | - Sharine Wittkopp
- New York University Grossman School of Medicine, Department of Medicine, Leon H. Charney Division of Cardiology, New York, USA
| |
Collapse
|
26
|
Liu J, He J, Liao Z, Chen X, Ye Y, Pang Q, Fan R. Environmental dose of 16 priority-controlled PAHs induce endothelial dysfunction: An in vivo and in vitro study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170711. [PMID: 38340817 DOI: 10.1016/j.scitotenv.2024.170711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/24/2023] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) exposure is related to the occurrence of cardiovascular diseases (CVDs). Endothelial dysfunction is considered an initial event of CVDs. To confirm the relationship of PAHs exposure with endothelial dysfunction, 8-week-old male SD rats and primary human umbilical vein endothelial cells (HUVECs) were co-treated with environmental doses of 16 priority-controlled PAHs for 90 d and 48 h, respectively. Results showed that 10× PAHs exposure remarkably raised tumor necrosis factor-α and malonaldehyde levels in rat serum (p < 0.05), but had no effects on interleukin-8 levels and superoxide dismutase activity. The expressions of SIRT1 in HUVECs and rat aorta were attenuated after PAHs treatment. Interestingly, PAHs exposure did not activate the expression of total endothelial nitric oxide synthase (eNOS), but 10× PAHs exposure significantly elevated the expression of phosphorylated eNOS (Ser1177) in HUVECs and repressed it in aortas, accompanied with raised nitrite level both in serum and HUVECs by 48.50-253.70 %. PAHs exposure also led to the augment of endothelin-1 (ET-1) levels by 19.76-38.54 %, angiotensin (Ang II) levels by 20.09-39.69 % in HUVECs, but had no effects on ET-1 and Ang II levels in serum. Additionally, PAHs exposure improved endocan levels both in HUVECs and serum by 305.05-620.48 % and stimulated the THP-1 cells adhered to HUVECs (p < 0.05). After PAHs treatment, the smooth muscle alignment was disordered and the vascular smooth muscle locally proliferated in rat aorta. Notably, the systolic blood pressure of rats exposed to 10× PAHs increased significantly compared with the control ones (131.28 ± 5.20 vs 116.75 ± 5.33 mmHg). In summary, environmental chronic PAHs exposure may result in endothelial dysfunction in SD rats and primary HUVECs. Our research can confirm the cardiovascular damage caused by chronic exposure to PAHs and provide ideas for the prevention or intervention of CVDs affected by environmental factors.
Collapse
Affiliation(s)
- Jian Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiaying He
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zengquan Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaolin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yufeng Ye
- Medical Imaging Institute of Panyu, Guangzhou 511486, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
27
|
Rajagopalan S, Brook RD, Salerno PRVO, Bourges-Sevenier B, Landrigan P, Nieuwenhuijsen MJ, Munzel T, Deo SV, Al-Kindi S. Air pollution exposure and cardiometabolic risk. Lancet Diabetes Endocrinol 2024; 12:196-208. [PMID: 38310921 PMCID: PMC11264310 DOI: 10.1016/s2213-8587(23)00361-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 02/06/2024]
Abstract
The Global Burden of Disease assessment estimates that 20% of global type 2 diabetes cases are related to chronic exposure to particulate matter (PM) with a diameter of 2·5 μm or less (PM2·5). With 99% of the global population residing in areas where air pollution levels are above current WHO air quality guidelines, and increasing concern in regard to the common drivers of air pollution and climate change, there is a compelling need to understand the connection between air pollution and cardiometabolic disease, and pathways to address this preventable risk factor. This Review provides an up to date summary of the epidemiological evidence and mechanistic underpinnings linking air pollution with cardiometabolic risk. We also outline approaches to improve awareness, and discuss personal-level, community, governmental, and policy interventions to help mitigate the growing global public health risk of air pollution exposure.
Collapse
Affiliation(s)
- Sanjay Rajagopalan
- University Hospitals, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Robert D Brook
- Division of Cardiovascular Diseases, Department of Internal Medicine, Wayne State University, Detroit, MI, USA
| | - Pedro R V O Salerno
- University Hospitals, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Philip Landrigan
- Program for Global Public Health and the Common Good, Boston College, Boston, MA, USA; Centre Scientifique de Monaco, Monaco
| | | | - Thomas Munzel
- Department of Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; German Center of Cardiovascular Research, Partner-Site Rhine-Main, Germany
| | - Salil V Deo
- Louis Stokes Cleveland VA Medical Center, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Sadeer Al-Kindi
- DeBakey Heart and Vascular Center, Houston Methodist, Houston, TX, USA
| |
Collapse
|
28
|
Münzel T, Daiber A, Hahad O. [Air pollution, noise and hypertension : Partners in crime]. Herz 2024; 49:124-133. [PMID: 38321170 DOI: 10.1007/s00059-024-05234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Air pollution and traffic noise are two important environmental risk factors that endanger health in urban societies and often act together as "partners in crime". Although air pollution and noise often co-occur in urban environments, they have typically been studied separately, with numerous studies documenting consistent effects of individual exposure on blood pressure. In the following review article, we examine the epidemiology of air pollution and noise, especially regarding the cardiovascular risk factor arterial hypertension and the underlying pathophysiology. Both environmental stressors have been shown to lead to endothelial dysfunction, oxidative stress, pronounced vascular inflammation, disruption of circadian rhythms and activation of the autonomic nervous system, all of which promote the development of hypertension and cardiovascular diseases. From a societal and political perspective, there is an urgent need to point out the potential dangers of air pollution and traffic noise in the American Heart Association (AHA)/American College of Cardiology (ACC) prevention guidelines and the European Society of Cardiology (ESC) guidelines on prevention. Therefore, an essential goal for the future is to raise awareness of environmental risk factors as important and, in particular, preventable risk factors for cardiovascular diseases.
Collapse
Affiliation(s)
- T Münzel
- Zentrum für Kardiologie, Kardiologie I, Universitätsmedizin, Johannes-Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland.
| | - A Daiber
- Zentrum für Kardiologie, Kardiologie I, Universitätsmedizin, Johannes-Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | - O Hahad
- Zentrum für Kardiologie, Kardiologie I, Universitätsmedizin, Johannes-Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| |
Collapse
|
29
|
Liu CX, Liu YB, Peng Y, Peng J, Ma QL. Causal effect of air pollution on the risk of cardiovascular and metabolic diseases and potential mediation by gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169418. [PMID: 38104813 DOI: 10.1016/j.scitotenv.2023.169418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Epidemiological studies have explored the relationship between air pollution and cardiovascular and metabolic diseases (CVMDs). Accumulating evidence has indicated that gut microbiota deeply affects the risk of CVMDs. However, the findings are controversial and the causality remains uncertain. To evaluate whether there is the causal association of four air pollutants with 19 CVMDs and the potential effect of gut microbiota on these relationships. METHODS Genetic instruments for particulate matter (PM) with aerodynamic diameter < 2.5 μm (PM2.5), <10 μm (PM10), PM2.5 absorbance, nitrogen oxides (NOx) and 211 gut microbiomes were screened. Univariable Mendelian randomization (UVMR) was used to estimate the causal effect of air pollutants on CVMDs in multiple MR methods. Additionally, to account for the phenotypic correlation among pollutant, the adjusted model was constructed using multivariable Mendelian randomization (MVMR) analysis to strength the reliability of the predicted associations. Finally, gut microbiome was assessed for the mediated effect on the associations of identified pollutants with CVMDs. RESULTS Causal relationships between NOx and angina, heart failure and hypercholesterolemia were observed in UVMR. After adjustment for air pollutants in MVMR models, the genetic correlations between PM2.5 and hypertension, type 2 diabetes mellitus (T2DM) and obesity remained significant and robust. In addition, genus-ruminococcaceae-UCG003 mediated 7.8 % of PM2.5-effect on T2DM. CONCLUSIONS This study firstly provided the genetic evidence linking air pollution to CVMDs and gut microbiota may mediate the association of PM2.5 with T2DM. Our findings highlight the significance of air quality in CVMDs risks and suggest the potential of modulating intestinal microbiota as novel therapeutic targets between air pollution and CVMDs.
Collapse
Affiliation(s)
- Chen-Xi Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, Hunan 410008, China
| | - Yu-Bo Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, Hunan 410008, China
| | - Yi Peng
- Department of Rheumatology and Immunology (T.X.), Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, Hunan 410008, China
| | - Jia Peng
- Department of Cardiovascular Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, Hunan 410008, China.
| | - Qi-Lin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, Hunan 410008, China.
| |
Collapse
|
30
|
Yu J, Zhu A, Liu M, Dong J, Chen R, Tian T, Liu T, Ma L, Ruan Y. Association Between Air Pollution and Cardiovascular Disease Hospitalizations in Lanzhou City, 2013-2020: A Time Series Analysis. GEOHEALTH 2024; 8:e2022GH000780. [PMID: 38173697 PMCID: PMC10762694 DOI: 10.1029/2022gh000780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Extensive evidence has shown that air pollution increases the risk of cardiovascular disease (CVD) admissions. We aimed to explore the short-term effect of air pollution on CVD admissions in Lanzhou residents and their lag effects. Meteorological data, air pollution data, and a total of 309,561 daily hospitalizations for CVD among urban residents in Lanzhou were collected from 2013 to 2020. Distributed lag non-linear model was used to analyze the relationship between air pollutants and CVD admissions, stratified by gender, age, and season. PM2.5, NO2, and CO have the strongest harmful effects at lag03, while SO2 at lag3. The relative risks of CVD admissions were 1.0013(95% CI: 1.0003, 1.0023), 1.0032(95% CI: 1.0008, 1.0056), and 1.0040(95% CI: 1.0024, 1.0057) when PM2.5, SO2, and NO2 concentrations were increased by 10 μg/m³, respectively. Each 1 mg/m3 increase in CO concentration was associated with a relative risk of cardiovascular hospitalization of risk was 1.0909(95% CI: 1.0367, 1.1479). We observed a relative risk of 0.9981(95% CI: 0.9972, 0.9991) for each 10 μg/m³ increase in O3 for CVD admissions at lag06. We found a significant lag effects of air pollutants on CVD admissions. NO2 and CO pose a greater risk of hospitalization for women, while PM2.5 and SO2 have a greater impact on men. PM2.5, NO2, and CO have a greater impact on CVD admissions in individuals aged <65 years, whereas SO2 affects those aged ≥65 years. Our research indicates a possible short-term impact of air pollution on CVD. Local public health and environmental policies should take these preliminary findings into account.
Collapse
Affiliation(s)
- Jingze Yu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Anning Zhu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Miaoxin Liu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Jiyuan Dong
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Rentong Chen
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Tian Tian
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Tong Liu
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Li Ma
- School of Public HealthLanzhou UniversityLanzhouPR China
| | - Ye Ruan
- School of Public HealthLanzhou UniversityLanzhouPR China
| |
Collapse
|
31
|
Liu J, Zhao K, Qian T, Li X, Yi W, Pan R, Huang Y, Ji Y, Su H. Association between ambient air pollution and thyroid hormones levels: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166780. [PMID: 37660827 DOI: 10.1016/j.scitotenv.2023.166780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/12/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Growing studies have focused on the effects of ambient air pollution on thyroid hormones (THs), but the results were controversial. Therefore, a systematic review and meta-analysis was conducted by pooling current evidence on this association. METHODS Four databases were searched for studies examining the associations of particulate matter [diameter ≤10 μm (PM10) or ≤2.5 μm (PM2.5)] and gaseous [sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO)] pollutants with THs levels. Random effects models were used to pool the changes in THs levels with increasing air pollutant concentrations. Subgroup analyses were constructed by region, design, sample size, pollutant concentrations, evaluated methods, and potential risk exposure windows. RESULTS A total of 14 studies covering 357,226 participants were included in this meta-analysis. The pooled results showed significant associations of exposure to PM2.5, PM10, NO2, SO2, and CO with decreases in free thyroxine (FT4) with percent changes (PC) ranging from -0.593 % to -3.925 %. PM2.5, NO2, and CO were negatively associated with levels of FT4/FT3 (PC: from -0.604 % to -2.975 %). In addition, results showed significant associations of PM2.5 with hypothyroxinemia and high thyroid-stimulating hormone (TSH). Subgroup analyses indicated that PM2.5 and NO2 were significantly associated with FT4 in studies of Chinese, and similar significant findings were found in studies of PM2.5 and FT4/FT3 in areas with higher concentrations of air pollutants and larger samples. PM2.5 exposure in the first trimester was found to be associated with lower FT4 levels in pregnant women. CONCLUSION Our findings suggest that exposure to air pollution is associated with changes in THs levels. Enhanced management of highly polluted areas, identification of harmful components and sources of PM, and protection from harmful exposures in early pregnancy may be of great public health importance for the population's thyroid function.
Collapse
Affiliation(s)
- Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Kefu Zhao
- Hefei Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Tingting Qian
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yuee Huang
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China
| | - Yifu Ji
- Anhui Mental Health Center, Hefei, Anhui, China.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| |
Collapse
|
32
|
Wang X, Li A, Zhao M, Xu J, Mei Y, Xu Q. Differential effects of PM 2.5 and its carbon components on blood pressure in hypertensive and non-hypertensive populations: a panel study in Beijing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123226-123236. [PMID: 37981604 DOI: 10.1007/s11356-023-30532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/13/2023] [Indexed: 11/21/2023]
Abstract
Published literature considering the association between ambient air pollution and blood pressure is highly inconsistent, which may be explained by the different proportions of susceptible subpopulations. We hypothesized that hypertensive patients are more sensitive to air pollution due to the disruption of neurohumoral system. The study aimed to reveal the association between PM2.5 and its carbon components and blood pressure, and whether this association is modified by hypertension status. We conducted a panel study in Beijing, China. Four repeated measurements were performed from 2016 to 2018. Linear mixed-effects models and generalized additive mixed models were performed to investigate the associations between PM2.5 and its carbon components and blood pressure. Subgroup analyses were performed by hypertension status to reveal potential effect modification. Among hypertensive patients, for every 1 μg/m3 increment of PM2.5, TC, OC, and EC in 1-day to 2-day MA, SBP increased from 0.16 mmHg (95% CI, 0.03 to 0.29) to 6.75 mmHg (95% CI, 2.82 to 10.68), and PP increased from 0.14 mmHg (95% CI, 0.02 to 0.26) to 6.03% (95% CI, 2.46 to 9.59%), but no significant association was observed among non-hypertensive subjects. The p values for the interaction between pollutants and hypertension status in 1-day to 2-day MA were less than 0.05. These findings suggest that hypertensive patients may be more susceptible to the adverse effects of air pollution than non-hypertensive subjects, which might provide guidance to hypertensive patients living in areas with high levels of particle pollution.
Collapse
Affiliation(s)
- Xue Wang
- Department of Allergy and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Immunologic Diseases, Beijing, 100730, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
33
|
Marchini T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic Biol Med 2023; 209:320-341. [PMID: 37852544 DOI: 10.1016/j.freeradbiomed.2023.10.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air pollution is the largest environmental risk factor for disease and premature death. Among the different components that are present in polluted air, fine particulate matter below 2.5 μm in diameter (PM2.5) has been identified as the main hazardous constituent. PM2.5 mainly arises from fossil fuel combustion during power generation, industrial processes, and transportation. Exposure to PM2.5 correlates with enhanced mortality risk from cardiovascular diseases (CVD), such as myocardial infarction and stroke. Over the last decade, it has been increasingly suggested that PM2.5 affects CVD already at the stage of risk factor development. Among the multiple biological mechanisms that have been described, the interplay between oxidative stress and inflammation has been consistently highlighted as one of the main drivers of pulmonary, systemic, and cardiovascular effects of PM2.5 exposure. In this context, PM2.5 uptake by tissue-resident immune cells in the lung promotes oxidative and inflammatory mediators release that alter tissue homeostasis at remote locations. This pathway is central for PM2.5 pathogenesis and might account for the accelerated development of risk factors for CVD, including obesity and diabetes. However, transmission and end-organ mechanisms that explain PM2.5-induced impaired function in metabolic active organs are not completely understood. In this review, the main features of PM2.5 physicochemical characteristics related to PM2.5 ability to induce oxidative stress and inflammation will be presented. Hallmark and recent epidemiological and interventional studies will be summarized and discussed in the context of current air quality guidelines and legislation, knowledge gaps, and inequities. Lastly, mechanistic studies at the intersection between redox metabolism, inflammation, and function will be discussed, with focus on heart and adipose tissue alterations. By offering an integrated analysis of PM2.5-induced effects on cardiometabolic derangements, this review aims to contribute to a better understanding of the pathogenesis and potential interventions of air pollution-related CVD.
Collapse
Affiliation(s)
- Timoteo Marchini
- Vascular Immunology Laboratory, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), Facultad de Farmacia y Bioquímica, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Mallah MA, Soomro T, Ali M, Noreen S, Khatoon N, Kafle A, Feng F, Wang W, Naveed M, Zhang Q. Cigarette smoking and air pollution exposure and their effects on cardiovascular diseases. Front Public Health 2023; 11:967047. [PMID: 38045957 PMCID: PMC10691265 DOI: 10.3389/fpubh.2023.967047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/26/2023] [Indexed: 12/05/2023] Open
Abstract
Cardiovascular disease (CVD) has no socioeconomic, topographical, or sex limitations as reported by the World Health Organization (WHO). The significant drivers of CVD are cardio-metabolic, behavioral, environmental, and social risk factors. However, some significant risk factors for CVD (e.g., a pitiable diet, tobacco smoking, and a lack of physical activities), have also been linked to an elevated risk of cardiovascular disease. Lifestyles and environmental factors are known key variables in cardiovascular disease. The familiarity with smoke goes along with the contact with the environment: air pollution is considered a source of toxins that contribute to the CVD burden. The incidence of myocardial infarction increases in males and females and may lead to fatal coronary artery disease, as confirmed by epidemiological studies. Lipid modification, inflammation, and vasomotor dysfunction are integral components of atherosclerosis development and advancement. These aspects are essential for the identification of atherosclerosis in clinical investigations. This article aims to show the findings on the influence of CVD on the health of individuals and human populations, as well as possible pathology and their involvement in smoking-related cardiovascular diseases. This review also explains lifestyle and environmental factors that are known to contribute to CVD, with indications suggesting an affiliation between cigarette smoking, air pollution, and CVD.
Collapse
Affiliation(s)
| | - Tahmina Soomro
- Department of Sociology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics Technology, Institute of Pharmacy, University of Innsbruck, Insbruck, Austria
| | - Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Akriti Kafle
- School of Nursing, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Li Z, Su Q, Xu R, Peng J, Wang Z, Zhu X, Wei Y. Effect of acute PM 2.5 exposure on PTGS2 and RNA m6A modification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122264. [PMID: 37499968 DOI: 10.1016/j.envpol.2023.122264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Particulate matter 2.5 (PM2.5) is a prevalent risk factor in many diseases, but its molecular mechanism remains ambiguous and may be diverse. RNA m6A is an important epigenetic modification that regulates gene expression at the post-transcriptional level. Some previous animal exposure studies found that PM2.5 exposure up-regulated m6A RNA methylation in the lung, but there is no research on m6A RNA methylation in humans from PM2.5 exposure now. Here, in the present experiment, we performed a panel study of 65 students at the Chinese research academy of environmental sciences (CRAES) with 3 rounds of follow-up visits from August 2021 to January 2022. We examined m6A RNA modification profiles of peripheral blood mononuclear cells (PBMCs) from subjects after low and high concentrations of ambient PM2.5 exposure. We applied a linear mixed-effect (LME) model to investigate the association between PM2.5 exposure and global m6A RNA methylation and PTGS2 level in peripheral blood. We found that increased levels of global m6A RNA methylation and PTGS2 level were associated with higher PM2.5 exposure. Among the methylated mRNAs, PTGS2 was hyper-methylated after high concentrations of PM2.5 exposure, which coincided with the increased expression of PTGS2 mRNA. In the present study, we determined that PM2.5 exposure promoted RNA m6A modification, and PTGS2 in peripheral blood could serve as a novel regulatory factor of inflammation induced by PM2.5 exposure. Furthermore, RNA m6A modification may contribute to the altered expression of PTGS2 induced by PM2.5 exposure. Our finding provided a new perspective for the prevention and treatment of PM2.5 exposure-induced adverse health effects.
Collapse
Affiliation(s)
- Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Qiaoqiao Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Rongrong Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, China
| | - Jianhao Peng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
36
|
Kim SH, Das D, Sillé FCM, Ramachandran G, Biswal S. Subchronic exposure to ambient PM 2.5 impairs novelty recognition and spatial memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.556582. [PMID: 37745318 PMCID: PMC10515782 DOI: 10.1101/2023.09.07.556582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Air pollution remains a great challenge for public health, with the detrimental effects of air pollution on cardiovascular, rhinosinusitis, and pulmonary health increasingly well understood. Recent epidemiological associations point to the adverse effects of air pollution on cognitive decline and neurodegenerative diseases. Mouse models of subchronic exposure to PM 2.5 (ambient air particulate matter < 2.5 µm) provide an opportunity to demonstrate the causality of target diseases. Here, we subchronically exposed mice to concentrated ambient PM 2.5 for 7 weeks (5 days/week; 8h/day) and assessed its effect on behavior using standard tests measuring cognition or anxiety-like behaviors. Average daily PM 2.5 concentration was 200 µg/m 3 in the PM 2.5 group and 10 µg/m 3 in the filtered air group. The novel object recognition (NOR) test was used to assess the effect of PM 2.5 exposure on recognition memory. The increase in exploration time for a novel object versus a familiarized object was lower for PM 2.5 -exposed mice (42% increase) compared to the filtered air (FA) control group (110% increase). In addition, the calculated discrimination index for novel object recognition was significantly higher in FA mice (67 %) compared to PM 2.5 exposed mice (57.3%). The object location test (OLT) was used to examine the effect of PM 2.5 exposure on spatial memory. In contrast to the FA-exposed control mice, the PM 2.5 exposed mice exhibited no significant increase in their exploration time between novel location versus familiarized location indicating their deficit in spatial memory. Furthermore, the discrimination index for novel location was significantly higher in FA mice (62.6%) compared to PM 2.5 exposed mice (51%). Overall, our results demonstrate that subchronic exposure to higher levels of PM 2.5 in mice causes impairment of novelty recognition and spatial memory.
Collapse
|
37
|
Cimmino G, Natale F, Alfieri R, Cante L, Covino S, Franzese R, Limatola M, Marotta L, Molinari R, Mollo N, Loffredo FS, Golino P. Non-Conventional Risk Factors: "Fact" or "Fake" in Cardiovascular Disease Prevention? Biomedicines 2023; 11:2353. [PMID: 37760794 PMCID: PMC10525401 DOI: 10.3390/biomedicines11092353] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases (CVDs), such as arterial hypertension, myocardial infarction, stroke, heart failure, atrial fibrillation, etc., still represent the main cause of morbidity and mortality worldwide. They significantly modify the patients' quality of life with a tremendous economic impact. It is well established that cardiovascular risk factors increase the probability of fatal and non-fatal cardiac events. These risk factors are classified into modifiable (smoking, arterial hypertension, hypercholesterolemia, low HDL cholesterol, diabetes, excessive alcohol consumption, high-fat and high-calorie diet, reduced physical activity) and non-modifiable (sex, age, family history, of previous cardiovascular disease). Hence, CVD prevention is based on early identification and management of modifiable risk factors whose impact on the CV outcome is now performed by the use of CV risk assessment models, such as the Framingham Risk Score, Pooled Cohort Equations, or the SCORE2. However, in recent years, emerging, non-traditional factors (metabolic and non-metabolic) seem to significantly affect this assessment. In this article, we aim at defining these emerging factors and describe the potential mechanisms by which they might contribute to the development of CVD.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, 80138 Naples, Italy
| | - Francesco Natale
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Roberta Alfieri
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Luigi Cante
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Simona Covino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Rosa Franzese
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Mirella Limatola
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Luigi Marotta
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Riccardo Molinari
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Noemi Mollo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Francesco S Loffredo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| |
Collapse
|
38
|
Kim JM, Kim E, Song DK, Kim YJ, Lee JH, Ha E. Causal relationship between particulate matter 2.5 and diabetes: two sample Mendelian randomization. Front Public Health 2023; 11:1164647. [PMID: 37637811 PMCID: PMC10450337 DOI: 10.3389/fpubh.2023.1164647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023] Open
Abstract
Backgrounds Many studies have shown particulate matter has emerged as one of the major environmental risk factors for diabetes; however, studies on the causal relationship between particulate matter 2.5 (PM2.5) and diabetes based on genetic approaches are scarce. The study estimated the causal relationship between diabetes and PM2.5 using two sample mendelian randomization (TSMR). Methods We collected genetic data from European ancestry publicly available genome wide association studies (GWAS) summary data through the MR-BASE repository. The IEU GWAS information output PM2.5 from the Single nucleotide polymorphisms (SNPs) GWAS pipeline using pheasant-derived variables (Consortium = MRC-IEU, sample size: 423,796). The annual relationship of PM2.5 (2010) were modeled for each address using a Land Use Regression model developed as part of the European Study of Cohorts for Air Pollution Effects. Diabetes GWAS information (Consortium = MRC-IEU, sample size: 461,578) were used, and the genetic variants were used as the instrumental variables (IVs). We performed three representative Mendelian Randomization (MR) methods: Inverse Variance Weighted regression (IVW), Egger, and weighted median for causal relationship using genetic variants. Furthermore, we used a novel method called MR Mixture to identify outlier SNPs. Results From the IVW method, we revealed the causal relationship between PM2.5 and diabetes (Odds ratio [OR]: 1.041, 95% CI: 1.008-1.076, P = 0.016), and the finding was substantiated by the absence of any directional horizontal pleiotropy through MR-Egger regression (β = 0.016, P = 0.687). From the IVW fixed-effect method (i.e., one of the MR machine learning mixture methods), we excluded outlier SNP (rs1537371) and showed the best predictive model (AUC = 0.72) with a causal relationship between PM2.5 and diabetes (OR: 1.028, 95% CI: 1.006-1.049, P = 0.012). Conclusion We identified the hypothesis that there is a causal relationship between PM2.5 and diabetes in the European population, using MR methods.
Collapse
Affiliation(s)
- Joyce Mary Kim
- Graduate Program in System Health Science and Engineering, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Department of Environmental Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eunji Kim
- Graduate Program in System Health Science and Engineering, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Department of Environmental Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Do Kyeong Song
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yi-Jun Kim
- Department of Environmental Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ji Hyen Lee
- Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eunhee Ha
- Graduate Program in System Health Science and Engineering, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Department of Environmental Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Department of Medical Science, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Liao M, Braunstein Z, Rao X. Sex differences in particulate air pollution-related cardiovascular diseases: A review of human and animal evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163803. [PMID: 37137360 DOI: 10.1016/j.scitotenv.2023.163803] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality globally. In the past several decades, researchers have raised significant awareness about the sex differences in CVD and the importance of heart disease in women. Besides physiological disparities, many lifestyles and environmental factors such as smoking and diet may affect CVD in a sex-dependent manner. Air pollution is a well-recognized environmental risk factor for CVD. However, the sex differences in air pollution-related CVD have been largely neglected. A majority of the previously completed studies have either evaluated only one sex (generally male) as study subjects or did not compare the sex differences. Some epidemiological and animal studies have shown that there are sex differences in the sensitivity to particulate air pollution as evidenced by the different morbidity and mortality rates of CVD induced by particulate air pollution, although this was not conclusive. In this review, we attempt to evaluate the sex differences in air pollution-related CVD and the underlying mechanisms by reviewing both epidemiological and animal studies. This review may provide a better understanding of the sex differences in environmental health research, enabling improved prevention and therapeutic strategies for human health in the future.
Collapse
Affiliation(s)
- Minyu Liao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zachary Braunstein
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
40
|
Hahad O, Rajagopalan S, Lelieveld J, Sørensen M, Kuntic M, Daiber A, Basner M, Nieuwenhuijsen M, Brook RD, Münzel T. Noise and Air Pollution as Risk Factors for Hypertension: Part II-Pathophysiologic Insight. Hypertension 2023; 80:1384-1392. [PMID: 37073733 PMCID: PMC10330112 DOI: 10.1161/hypertensionaha.123.20617] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Traffic noise and air pollution are environmental stressors found to increase risk for cardiovascular events. The burden of disease attributable to environmental stressors and cardiovascular disease globally is substantial, with a need to better understand the contribution of specific risk factors that may underlie these effects. Epidemiological observations and experimental evidence from animal models and human controlled exposure studies suggest an essential role for common mediating pathways. These include sympathovagal imbalance, endothelial dysfunction, vascular inflammation, increased circulating cytokines, activation of central stress responses, including hypothalamic and limbic pathways, and circadian disruption. Evidence also suggests that cessation of air pollution or noise through directed interventions alleviates increases in blood pressure and intermediate surrogate pathways, supporting a causal link. In the second part of this review, we discuss the current understanding of mechanisms underlying and current gaps in knowledge and opportunities for new research.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals and Case Western Reserve University, Cleveland, OH, USA
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Mette Sørensen
- Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Marin Kuntic
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Mathias Basner
- Department of Psychiatry, Unit for Experimental Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiolog ´ıa y Salud Pu ´blica (CIBERESP), Madrid, Spain
- Center for Urban Research, RMIT University, Melbourne VIC, Australia
| | - Robert D. Brook
- Division of Cardiovascular Diseases, Department of Internal Medicine, Wayne State University, Detroit, MI, USA
| | - Thomas Münzel
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
41
|
Xie Y, Tao S, Pan B, Yang W, Shao W, Fang X, Han D, Li J, Zhang Y, Chen R, Li W, Xu Y, Kan H. Cholinergic anti-inflammatory pathway mediates diesel exhaust PM 2.5-induced pulmonary and systemic inflammation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131951. [PMID: 37392642 DOI: 10.1016/j.jhazmat.2023.131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Previous research has indicated that the cholinergic anti-inflammatory pathway (CAP) can regulate the duration and intensity of inflammatory responses. A wide range of research has demonstrated that PM2.5 exposure may induce various negative health effects via pulmonary and systemic inflammations. To study the potential role of the CAP in mediating PM2.5-induced effects, mice were treated with vagus nerve electrical stimulation (VNS) to activate the CAP before diesel exhaust PM2.5 (DEP) instillation. Analysis of pulmonary and systemic inflammations in mice demonstrated that VNS significantly reduced the inflammatory responses triggered by DEP. Meanwhile, inhibition of the CAP by vagotomy aggravated DEP-induced pulmonary inflammation. The flow cytometry results showed that DEP influenced the CAP by altering the Th cell balance and macrophage polarization in spleen, and in vitro cell co-culture experiments indicated that this DEP-induced change on macrophage polarization may act via the splenic CD4+ T cells. To further confirm the effect of alpha7 nicotinic acetylcholine receptor (α7nAChR) in this pathway, mice were then treated with α7nAChR inhibitor (α-BGT) or agonist (PNU282987). Our results demonstrated that specific activation of α7nAChR with PNU282987 effectively alleviated DEP-induced pulmonary inflammation, while specific inhibition of α7nAChR with α-BGT exacerbated the inflammatory markers. The present study suggests that PM2.5 have an impact on the CAP, and CAP may play a critical function in mediating PM2.5 exposure-induced inflammatory response. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Yuanting Xie
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Shimin Tao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Bin Pan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenhui Yang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenpu Shao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xinyi Fang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Dongyang Han
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jingyu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| |
Collapse
|
42
|
Liang X, Liang F, Liu F, Ren Y, Tong J, Feng W, Qu P, Luo S. The policy implemented by the government and the protection effect of PM2.5 decreasing on blood pressure in adolescents: From a quasi-experimental study. J Glob Health 2023; 13:04050. [PMID: 37232441 PMCID: PMC10214769 DOI: 10.7189/jogh.13.04050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND High particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) exposure levels posed a great risk to human health, but the protection effects of environmental protection on cardiovascular disease have not been systematically evaluated. This study aims to illustrate the effect of the decreased concentration of PM2.5 on blood pressure level in adolescents after enacting the protection measures of environment from a cohort study. METHODS A quasi-experimental study including 2415 children from the Chongqing Children's Health Cohort, aged 7.32 ± 0.60 years with normal blood pressure at baseline, with 53.94% males, were analysed. Both the generalised linear regression model (GLM) and Poisson regression model were used to calculate the impact of the declining exposure level of PM2.5 on blood pressure and the incidence of prehypertension and hypertension. RESULTS The annual mean PM2.5 concentration in 2014 and in 2019 were 65.01 ± 6.46 µgmes per cubic metre (μg / m3), 42.08 ± 2.04 μg / m3 respectively, and the decreased PM2.5 concentration between 2014 and 2019 was 22.92 ± 4.51 μg / m3. The effect of decreased PM2.5 concentration by 1μg / m3 on systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and the difference of blood pressure (BP) indexes between 2014 and 2019 were all significant (P < 0.001). The absolute differences of SBP (-3.598 mmHg; 95% confidence interval (CI) = -4.47,-2.72 mm Hg), DBP (-2.052 mmHg; 95% CI = -2.80,-1.31 mm Hg) and MAP (-2.568 mmHg; 95% CI = -3.27,-1.87 mm Hg) in the group with a decreased level of ≥25.56 μg / m3 were more significant than those in a decreased concentration of PM2.5 for <25.56 μg / m3 (P < 0.001). And the incidence of prehypertension and hypertension for three occasions blood pressure diagnose was 2.21% (95% CI = 1.37%-3.05%, P = 0.001) in children with PM2.5 decreased level ≤25.56 μg / m3 (50%), which was significant higher than its' counterparts 0.89% (95% CI = 0.37%-1.42%, P = 0.001). CONCLUSIONS Our study found the etiological relationship between the declining PM2.5 concentration and the BP values and the incidence of prehypertension and hypertension in children and adolescents, suggesting continuous environmental protection measures in China have achieved remarkable health benefits.
Collapse
Affiliation(s)
- Xiaohua Liang
- Department of Clinical Epidemiology and Biostatistics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanling Ren
- Department of Clinical Epidemiology and Biostatistics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jishuang Tong
- Department of Clinical Epidemiology and Biostatistics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Wei Feng
- Department of Clinical Epidemiology and Biostatistics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ping Qu
- Department of Clinical Epidemiology and Biostatistics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shunqing Luo
- Department of Clinical Epidemiology and Biostatistics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
43
|
Sun T, Wang Z, Lei F, Lin L, Zhang X, Song X, Ji YX, Zhang XJ, Zhang P, She ZG, Cai J, Jia P, Li H. Long-term exposure to air pollution and increased risk of atrial fibrillation prevalence in China. Int J Cardiol 2023; 378:130-137. [PMID: 36841290 DOI: 10.1016/j.ijcard.2023.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common type of treated heart arrhythmia contributing to adverse cardiovascular events. The association between short-term air pollution exposure and AF episodes has been recognized. But the evidence of the association between long-term air pollution exposure and AF was limited, especially in developing countries. METHODS We performed a nationwide cross-sectional study among 1,374,423 individuals aged ≥35 years from 13 health check-up centers. Using logistic regression models, we assessed the association between long-term exposure to single air pollution and AF prevalence, including particulate matter (PM2.5 and PM10), ozone (O3) and PM2.5 compositions, which were estimated by high-resolution and high-quality spatiotemporal datasets of ground-level air pollutants for China. The quantile g-computation model was used to explore the joint effect of all exposures to air pollution and the contribution of an individual component to the mixture. RESULTS In single-pollutant models, an increase of 10 μg/m3 in PM2.5 (OR 1.031[95%CI 1.010,1.053]) and PM10 (OR = 1.021 [95%CI 1.009,1.033]) was positively associated with AF prevalence. The stratified analyses revealed that these associations were significantly stronger in females, people <65 years old, and those with hypertension and diabetes. In the further exploration of the joint effect of PM2.5 compositions (OR 1.060 [95%CI 1.022,1.101]) per quintile increase in all five PM2.5 components), we found that PM2.5 sulfate contributed the most. CONCLUSIONS These findings provide important evidence for the positive relationship between long-term exposure to air pollution and AF prevalence in China and identify sulfate particles of PM2.5 as having the highest contribution to the overall mixture effects among all PM2.5 chemical constituents.
Collapse
Affiliation(s)
- Tao Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhanpeng Wang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Lijin Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xingyuan Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiaohui Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Peng Jia
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China; Hubei Luojia Laboratory, Wuhan, China; School of Public Health, Wuhan University, Wuhan, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Huanggang Institute of Translational Medicine, Huanggang, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
44
|
He B, Xu HM, Liu HW, Zhang YF. Unique regulatory roles of ncRNAs changed by PM 2.5 in human diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114812. [PMID: 36963186 DOI: 10.1016/j.ecoenv.2023.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 is a type of particulate matter with an aerodynamic diameter smaller than 2.5 µm, and exposure to PM2.5 can adversely damage human health. PM2.5 may impair health through oxidative stress, inflammatory reactions, immune function alterations and chromosome or DNA damage. Through increasing in-depth studies, researchers have found that noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs), circular RNAs (circRNAs) as well as long noncoding RNAs (lncRNAs), might play significant roles in PM2.5-related human diseases via some of the abovementioned mechanisms. Therefore, in this review, we mainly discuss the regulatory function of ncRNAs altered by PM2.5 in human diseases and summarize the potential molecular mechanisms. The findings reveal that these ncRNAs might induce or promote diseases via inflammation, the oxidative stress response, cell autophagy, apoptosis, cell junction damage, altered cell proliferation, malignant cell transformation, disruption of synaptic function and abnormalities in the differentiation and status of immune cells. Moreover, according to a bioinformatics analysis, the altered expression of potential genes caused by these ncRNAs might be related to the development of some human diseases. Furthermore, some ncRNAs, including lncRNAs, miRNAs and circRNAs, or processes in which they are involved may be used as biomarkers for relevant diseases and potential targets to prevent these diseases. Additionally, we performed a meta-analysis to identify more promising diagnostic ncRNAs as biomarkers for related diseases.
Collapse
Affiliation(s)
- Bo He
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Hao-Wen Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
45
|
Della Guardia L, Wang L. Fine particulate matter induces adipose tissue expansion and weight gain: Pathophysiology. Obes Rev 2023; 24:e13552. [PMID: 36700515 DOI: 10.1111/obr.13552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/25/2022] [Accepted: 01/08/2023] [Indexed: 01/27/2023]
Abstract
Dysregulations in energy balance represent a major driver of obesity. Recent evidence suggests that environmental factors also play a pivotal role in inducing weight gain. Chronic exposure to fine particulate matter (PM2.5 ) is associated with white adipose tissue (WAT) expansion in animals and higher rates of obesity in humans. This review discusses metabolic adaptions in central and peripheral tissues that promote energy storage and WAT accumulation in PM2.5 -exposed animals and humans. Chronic PM2.5 exposure produces inflammation and leptin resistance in the hypothalamus, decreasing energy expenditure and increasing food intake. PM2.5 promotes the conversion of brown adipocytes toward the white phenotype, resulting in decreased energy expenditure. The development of inflammation in WAT can stimulate adipogenesis and hampers catecholamine-induced lipolysis. PM2.5 exposure affects the thyroid, reducing the release of thyroxine and tetraiodothyronine. In addition, PM2.5 exposure compromises skeletal muscle fitness by inhibiting Nitric oxide (NO)-dependent microvessel dilation and impairing mitochondrial oxidative capacity, with negative effects on energy expenditure. This evidence suggests that pathological alterations in the hypothalamus, brown adipose tissue, WAT, thyroid, and skeletal muscle can alter energy homeostasis, increasing lipid storage and weight gain in PM2.5 -exposed animals and humans. Further studies will enrich this pathophysiological model.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, China
| |
Collapse
|
46
|
Yang Y, Yang T, Zhou J, Cao Z, Liao Z, Zhao Y, Su X, He J, Hua J. Prenatal exposure to concentrated ambient PM 2.5 results in spatial memory defects regulated by DNA methylation in male mice offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35142-35152. [PMID: 36526934 PMCID: PMC10017658 DOI: 10.1007/s11356-022-24663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Ambient fine particulate matter (PM2.5) exposures during pregnancy could lead to adverse birth outcomes, including neurobehavioral development defects. However, limited studies explored the effects and potential epigenetic mechanisms of maternal PM2.5 exposure on offspring spatial memory defects. This study aims to explore the effects and underlying epigenetic mechanisms of maternal concentrated ambient PM2.5 exposure in male mice offspring with spatial memory defects. Pregnant female C57BL/6 mice were exposed daily to concentrated ambient PM2.5 (CAP) or filtered air (FA) throughout gestation, with the concentration of particulates (102.99 ± 78.74 μg/m3) and (2.78 ± 1.19 μg/m3), respectively. Adult male mice offspring were subsequently assessed for spatial learning and memory ability using Morris Water Maze tests and locomotor activities in open field tests. The hippocampus of the male mice offspring was harvested to test mRNA expression and DNA methylation. Results from the probe test of Morris Water Maze showed that the mice offspring in the CAP group had shorter swimming distance travelled in the target quadrant, shorter duration in the target quadrant, and less number of entries into the target quadrant (p < 0.05), suggesting spatial memory impairments. The acquisition trials of Morris Water Maze did not show a significant difference in learning ability between the groups. The mRNA level of interleukin 6 (IL-6) in the CAP group hippocampus (10.80 ± 7.03) increased significantly compared to the FA group (1.08 ± 0.43). Interestingly, the methylation levels of the CpG sites in the IL-6 promoter region declined significantly in the CAP group, (5.66 ± 0.83)% vs. (4.79 ± 0.48)%. Prenatal exposure to concentrated ambient PM2.5 induced long-lasting spatial memory defects in male mice offspring. The underlying biological mechanism might be mediated by an inflammatory reaction which is regulated by DNA methylation.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Yang
- Department of Social Medicine, School of Public Health, Fudan University, Shanghai, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
- Shanghai Typhoon Institute, CMA, Shanghai, China
- Department of Atmospheric and Oceanic Sciences, & Institute of Atmospheric Sciences, Fudan University, Shanghai, China
| | - Zhijuan Cao
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Yan Zhao
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiujuan Su
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia He
- School of Medicine, Tongji University, Shanghai, China
| | - Jing Hua
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
47
|
Impact of air pollution on ischemic heart disease: Evidence, mechanisms, clinical perspectives. Atherosclerosis 2023; 366:22-31. [PMID: 36696748 DOI: 10.1016/j.atherosclerosis.2023.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Ambient air pollution, and especially particulate matter (PM) air pollution <2.5 μm in diameter (PM2.5), has clearly emerged as an important yet often overlooked risk factor for atherosclerosis and ischemic heart disease (IHD). In this review, we examine the available evidence demonstrating how acute and chronic PM2.5 exposure clinically translates into a heightened coronary atherosclerotic burden and an increased risk of acute ischemic coronary events. Moreover, we provide insights into the pathophysiologic mechanisms underlying PM2.5-mediated atherosclerosis, focusing on the specific biological mechanism through which PM2.5 exerts its detrimental effects. Further, we discuss about the possible mechanisms that explain the recent findings reporting a strong association between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, increased PM2.5 exposure, and morbidity and mortality from IHD. We also address the possible mitigation strategies that should be implemented to reduce the impact of PM2.5 on cardiovascular morbidity and mortality, and underscoring the strong need of clinical trials demonstrating the efficacy of specific interventions (including both PM2.5 reduction and/or specific drugs) in reducing the incidence of IHD. Finally, we introduce the emerging concept of the exposome, highlighting the close relationship between PM2.5 and other environmental exposures (i.e.: traffic noise and climate change) in terms of common underlying pathophysiologic mechanisms and possible mitigation strategies.
Collapse
|
48
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
49
|
Xu H, Wen Q, Xu X, Yu D, Liu Z, Zhang C, Zhang X, Ma J, Zhao H, Song L. Heme oxygenase-1 protects against PM2.5 induced endothelial dysfunction through inhibition of HIF1α. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104024. [PMID: 36427673 DOI: 10.1016/j.etap.2022.104024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
PM2.5 has been accepted as a strong risk factor for cardiovascular diseases. Activation of the renin-angiotensin system (RAS) has been proved to be a key factor in triggering vascular endothelial dysfunction upon PM2.5 exposure in our previous reports. In the current study, we observed the concurrent induction of hemoxygenase (HO)- 1 and RAS components (ANGII and AT1R) expression both in the vascular endothelial cell lines and in rat lung tissue after PM2.5 exposure. Furthermore, HO-1 inhibited RAS activation by suppressing the expression and activity of HIF1α, the upstream transcriptional activator of ANGII and AT1R. In addition, HO-1 blocked significantly increased the release of cell adhesion molecules and chemokines (VCAM-1, E-Selectin, P-Selectin, IL-8, MCP-1) that drive monocyte-endothelium adhesion, along with the enhanced the generation of oxidative stress response mediators in the vascular endothelium. These data together indicate that PM2.5 induced HO-1 upregulation functions as a self-defense response to antagonize endothelial dysfunction by inhibiting HIF1α-mediated RAS activation. Targeting endogenous protective pathway might be helpful to protect from PM2.5-induced cardiovascular injury.
Collapse
Affiliation(s)
- Huan Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China; Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Qing Wen
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Xiuduan Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China; Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Dengjun Yu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China; School of Pharmacy,Jiamusi University, Jiamusi 154007, PR China
| | - Zhihui Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang 473007, PR China
| | - Chongchong Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China; Henan University Joint National Laboratory for Antibody Drug Engineering, 357 Ximen Road, Kaifeng 475004, PR China
| | - Xiaodan Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang 473007, PR China
| | - Junguo Ma
- College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang 473007, PR China
| | - Hong Zhao
- School of Pharmacy,Jiamusi University, Jiamusi 154007, PR China
| | - Lun Song
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China; Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; School of Pharmacy,Jiamusi University, Jiamusi 154007, PR China; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang 473007, PR China.
| |
Collapse
|
50
|
Chaulin AM, Sergeev AK. Modern Concepts of the Role of Fine Particles (PM 2.5) in the Genesis of Atherosclerosis and Myocardial Damage: Clinical and Epidemiological Data, the Main Pathophysiological Mechanisms. Curr Cardiol Rev 2023; 19:e170822207573. [PMID: 35980071 PMCID: PMC10201893 DOI: 10.2174/1573403x18666220817103105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022] Open
Abstract
Due to the fact that atherosclerotic cardiovascular diseases (CVDs) dominate in the structure of morbidity, disability and mortality of the population, the study of the risk factors for the development of atherosclerotic CVDs, as well as the study of the underlying pathogenetic mechanisms thereof, is the most important area of scientific research in modern medicine. Understanding these aspects will allow improving the set of treatment and preventive measures and activities. One of the important risk factors for the development of atherosclerosis, which has been actively studied recently, is air pollution with fine particulate matter (PM 2.5). According to clinical and epidemiological data, the level of air pollution with PM 2.5 exceeds the normative indicators in most regions of the world and is associated with subclinical markers of atherosclerosis and mortality from atherosclerotic CVDs. The aim of this article is to systematize and discuss in detail the role of PM 2.5 in the development of atherosclerosis and myocardial damage with the consideration of epidemiological and pathogenetic aspects. Materials and Methods: This narrative review is based on the analysis of publications in the Medline, PubMed, and Embase databases. The terms "fine particles" and "PM 2.5" in combination with "pathophysiological mechanisms," "cardiovascular diseases", "atherosclerosis", "cardiac troponins", "myocardial damage" and "myocardial injury" were used to search publications. Conclusion: According to the conducted narrative review, PM 2.5 should be regarded as the significant risk factor for the development of atherosclerotic CVDs. The pro-atherogenic effect of fine particulate matter is based on several fundamental and closely interrelated pathophysiological mechanisms: endothelial dysfunction, impaired lipid metabolism, increased oxidative stress and inflammatory reactions, impaired functioning of the vegetative nervous system and increased activity of the hemostatic system. In addition, PM 2.5 causes subclinical damage to cardiac muscle cells by several mechanisms: apoptosis, oxidative stress, decreased oxygen delivery due to coronary atherosclerosis and ischemic damage of cardiomyocytes. Highly sensitive cardiac troponins are promising markers for detecting subclinical myocardial damage in people living in polluted regions.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara, 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara, 443099, Russia
| | | |
Collapse
|