1
|
Amadou A, Praud D, Marques C, Noh H, Frenoy P, Vigneron A, Coudon T, Deygas F, Severi G, Fervers B, Mancini FR. Dietary intake of polycyclic aromatic hydrocarbons (PAHs) and breast cancer risk: Evidence from the French E3N-Generations prospective cohort. ENVIRONMENT INTERNATIONAL 2025; 200:109505. [PMID: 40373460 DOI: 10.1016/j.envint.2025.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND While there is compelling evidence of the association between occupational exposure to polycyclic aromatic hydrocarbons (PAHs) and risk of breast cancer (BC), findings on PAH dietary exposure are less consistent. The present study aims to evaluate the association between PAH dietary intake and BC risk. METHODS The study included 67,879 women who completed a validated semi-quantitative dietary questionnaire (208 food items) from the E3N-Generations cohort study. PAH dietary intake was estimated by combining E3N food consumption data with food contamination levels obtained from the second French total diet study (TDS2). Cox regression was used to estimate adjusted hazard ratios (HRs) and 95 % confidence intervals (CIs) for the association between PAH dietary intake (sum of four PAHs (PAH4) namely benzo[a]pyrene (BaP), chrysene (CHR), benzo[a]anthracene (BaA) and benzo[b]fluoranthene (BbF)) and BC risk. Additionally, BaP, a surrogate for total PAHs, was investigated as the second exposure variable. RESULTS After an average follow-up of 17.6 years, 5,686 incident BC were diagnosed. Overall, the estimated HRs for the associations between each quintile of PAH4 and BC risk, taking the first quintile as reference, were all greater than 1, but were statistically significant only for the third quintile (HRQ3 vs Q1 = 1.10; CI: 1.01-1.20). By estrogen (ER) and progesterone (PR) hormone receptor status, we observed a positive association between PAH4 dietary intake and ER-PR- BC (HRQ4 vs Q1 = 1.34; CI: 1.01-1.76). Moreover, there was a borderline positive association with BaP, for the second (HRQ2 vs Q1 = 1.08; CI: 0.99-1.17) and third (HRQ3 vs Q1 = 1.07; CI: 0.98-1.16) quintiles. CONCLUSIONS This study supports a relationship between PAH4 dietary intake and BC risk, notably with a non-linear trend. A positive but marginal association was observed between BaP dietary intake and BC risk.
Collapse
Affiliation(s)
- Amina Amadou
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France.
| | - Delphine Praud
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France
| | - Chloé Marques
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
| | - Hwayoung Noh
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France
| | - Pauline Frenoy
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
| | - Arnaud Vigneron
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, 69008 Lyon, France
| | - Thomas Coudon
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France
| | - Floriane Deygas
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France; Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | - Béatrice Fervers
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France
| | | |
Collapse
|
2
|
Sondermann NC, Vogel CFA, Haarmann-Stemmann T. Dioxins do not only bind to AHR but also team up with EGFR at the cell-surface: a novel mode of action of toxicological relevance? EXCLI JOURNAL 2025; 24:184-197. [PMID: 39996234 PMCID: PMC11847957 DOI: 10.17179/excli2024-8038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 02/26/2025]
Abstract
Dioxins and dioxin-like compounds (DLCs) are highly toxic organic pollutants whose production and use are prohibited by international law. Despite this, these biopersistent and lipophilic chemicals are prevalent in the environment and accumulate in the food chain, posing significant health risks to consumers even at low exposure levels. Acute dioxin intoxication can cause chloracne, while chronic exposure has been associated with a wide range of adverse health effects, including carcinogenicity, reproductive and developmental disorders, immunotoxicity, and endocrine disruption. In the mid-1970s, scientists identified a transcription factor known as the aryl hydrocarbon receptor (AHR), which becomes activated upon binding of dioxins. AHR orchestrates numerous adaptive and maladaptive stress responses and is believed to mediate most, if not all, of the toxic effects triggered by dioxins and DLCs. Recent studies have provided mounting evidence that dioxins and dioxin-like polychlorinated biphenyls can inhibit growth factor-induced activation of the epidermal growth factor receptor (EGFR) by directly binding to its extracellular domain. This interaction prevents the activation of EGFR by polypeptide growth factors and downstream signal transduction. In this article, we explain this newly identified mechanism of action for dioxins and DLCs in detail and discuss its potential toxicological relevance by using two examples, i.e. breast cancer development and placental toxicity. Finally, we briefly refer to other environmental chemicals of global concern that, based on first published data, may act via the same mode of action. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Natalie C. Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F. A. Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
3
|
Mercoeur B, Fervers B, Coudon T, Noh H, Giampiccolo C, Grassot L, Faure E, Couvidat F, Severi G, Mancini FR, Roy P, Praud D, Amadou A. Exposure to air pollutants and breast cancer risk: mediating effects of metabolic health biomarkers in a nested case-control study within the E3N-Generations cohort. Breast Cancer Res 2024; 26:159. [PMID: 39548533 PMCID: PMC11568591 DOI: 10.1186/s13058-024-01913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Growing epidemiological evidence suggests an association between exposure to air pollutants and breast cancer. Yet, the underlying mechanisms remain poorly understood. This study explored the mediating role of thirteen metabolic health biomarkers in the relationship between exposure to three air pollutants, i.e. nitrogen dioxide (NO2), polychlorinated biphenyls 153 (PCB153), and benzo[a]pyrene (BaP), and breast cancer risk. METHODS We used data from a nested case-control study within the French national prospective E3N-Generations cohort, involving 523 breast cancer cases and 523 matched controls. The four-way decomposition mediation of total effects for thirteen biomarkers was applied to estimate interaction and mediation effects (controlled direct, reference interaction, mediated interaction, and pure indirect effects). RESULTS The analyses indicated a significant increase in breast cancer risk associated with BaP exposure (odds ratio (OR)Q4 vs Q1 = 2.32, 95% confidence intervals (CI): 1.00-5.37). PCB153 exposure showed a positive association only in the third quartile (ORQ3 vs Q1 = 2.25, CI 1.13-4.57), but it appeared to be non-significant in the highest quartile (ORQ4 vs Q1 = 2.07, CI 0.93-4.61). No association was observed between NO2 exposure and breast cancer risk. Estradiol was associated with an increased risk of breast cancer (OR per one standard deviation (SD) increment = 1.22, CI 1.05-1.42), while thyroid-stimulating hormone was inversely related to breast cancer risk (OR per 1SD increase = 0.87, CI 0.75-1.00). We observed a suggestive mediated effect of the association between the three pollutants and breast cancer risk, through albumin, high-density lipoproteins cholesterol, low-density lipoprotein cholesterol, parathormone, and estradiol. CONCLUSION Although limited by a lack of statistical power, this study provides relevant insights into the potential mediating role of certain biomarkers in the association between air pollutant exposure and breast cancer risk, highlighting the need for further in-depth studies in large populations.
Collapse
Affiliation(s)
- Benoît Mercoeur
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Béatrice Fervers
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Thomas Coudon
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Hwayoung Noh
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Camille Giampiccolo
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
- Laboratoire de Biométrie Et Biologie Evolutive, CNRS UMR 5558, Villeurbanne, France
- Service de Biostatistique-Bioinformatique, Pole Sante Publique, Hospices Civils de Lyon, Lyon, France
| | - Lény Grassot
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Elodie Faure
- Universite Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Florian Couvidat
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Gianluca Severi
- Universite Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | | | - Pascal Roy
- Laboratoire de Biométrie Et Biologie Evolutive, CNRS UMR 5558, Villeurbanne, France
- Service de Biostatistique-Bioinformatique, Pole Sante Publique, Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Delphine Praud
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Amina Amadou
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France.
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France.
| |
Collapse
|
4
|
Waddingham CM, Hinton P, Villeneuve PJ, Brook JR, Lavigne E, Larsen K, King WD, Wen D, Meng J, Zhang J, Galarneau E, Harris SA. Exposure to ambient polycyclic aromatic hydrocarbons and early-onset female breast cancer in a case-control study in Ontario, Canada. Environ Epidemiol 2024; 8:e333. [PMID: 39386012 PMCID: PMC11463212 DOI: 10.1097/ee9.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/02/2024] [Indexed: 10/12/2024] Open
Abstract
Background Ambient polycyclic aromatic hydrocarbons (PAHs) are a class of toxicologically important and understudied air pollutants. Epidemiologic evidence suggests that chronic exposure to PAHs increases breast cancer risk; however, there are few studies in nonoccupational settings that focus on early-onset diagnoses. Methods The relationship between residentially-based ambient PAH concentrations and female breast cancer, among those 18-45 years of age, was characterized in the Ontario Environment and Health Study (OEHS). The OEHS was a population-based case-control study undertaken in Ontario, Canada between 2013 and 2015. Primary incident breast cancers were identified within 3 months of diagnosis, and a population-based series of controls were recruited. Concentrations of ambient PAHs, using fluoranthene as a surrogate, were derived using a chemical transport model at a 2.5 km spatial resolution. These estimates were assigned to participants' residences at the time of the interview and 5 years prior. Logistic regression was used to estimate odds ratios (ORs) and their 95% confidence intervals (CIs) based on a quartile categorization of fluoranthene exposure while adjusting for a series of individual- and area-level risk factors. The shape of the exposure-response trend was evaluated using cubic splines. Results Median fluoranthene exposure for cases and controls was 0.0017 µg/m3 and 0.0014 µg/m3, respectively. In models adjusted for a parsimonious set of risk factors, the highest quartile of exposure was associated with an increased risk of breast cancer (OR = 2.16; 95% CI = 1.22, 3.84). Restricted spline analyses revealed nonlinear dose-response patterns. Conclusions These findings support the hypothesis that ambient PAH exposures increases the risk of early-onset breast cancer.
Collapse
Affiliation(s)
| | - Patrick Hinton
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Paul J. Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jeffrey R. Brook
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Eric Lavigne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristian Larsen
- Office of Environmental Health, Health Canada, Ottawa, Ontario Canada
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Geography and Planning, University of Toronto, Toronto, Ontario, Canada
| | - Will D. King
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Deyong Wen
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Jun Meng
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
- Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington
| | - Junhua Zhang
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Shelley A. Harris
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Le Provost B, Parent MÉ, Villeneuve PJ, Waddingham CM, Brook JR, Lavigne E, Dugandzic R, Harris SA. Residential exposure to ambient fine particulate matter (PM 2.5) and nitrogen dioxide (NO 2) and incident breast cancer among young women in Ontario, Canada. Cancer Epidemiol 2024; 92:102606. [PMID: 38986354 DOI: 10.1016/j.canep.2024.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Air pollution has been classified as a human carcinogen based largely on findings for respiratory cancers. Emerging, but limited, evidence suggests that it increases the risk of breast cancer, particularly among younger women. We characterized associations between residential exposure to ambient fine particulate matter (PM2.5) and nitrogen dioxide (NO2) and breast cancer. Analyses were performed using data collected in the Ontario Environmental Health Study (OEHS). METHODS The OEHS, a population-based case-control study, identified incident cases of breast cancer in Ontario, Canada among women aged 18-45 between 2013 and 2015. A total of 465 pathologically confirmed primary breast cancer cases were identified from the Ontario Cancer Registry, while 242 population-based controls were recruited using random-digit dialing. Self-reported questionnaires were used to collect risk factor data and residential histories. Land-use regression and remote-sensing estimates of NO2 and PM2.5, respectively, were assigned to the residential addresses at interview, five years earlier, and at menarche. Logistic regression was used to estimate odds ratios (OR) and their 95 % confidence intervals (CI) in relation to an interquartile range (IQR) increase in air pollution, adjusting for possible confounders. RESULTS PM2.5 and NO2 were positively correlated with each other (r = 0.57). An IQR increase of PM2.5 (1.9 µg/m3) and NO2 (6.6 ppb) at interview residence were associated with higher odds of breast cancer and the adjusted ORs and 95 % CIs were 1.37 (95 % CI = 0.98-1.91) and 2.33 (95 % CI = 1.53-3.53), respectively. An increased odds of breast cancer was observed with an IQR increase in NO2 at residence five years earlier (OR = 2.16, 95 % CI: 1.41-3.31), while no association was observed with PM2.5 (OR = 0.96, 95 % CI 0.64-1.42). CONCLUSIONS Our findings support the hypothesis that exposure to ambient air pollution, especially those from traffic sources (i.e., NO2), increases the risk of breast cancer in young women.
Collapse
Affiliation(s)
- Blandine Le Provost
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED), École de Santé Publique, Université de Bordeaux, Bordeaux, France
| | - Marie-Élise Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, Québec, Canada; Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, Montreal, Quebec, Canada; Centre de recherche du CHUM, Montréal, Québec, Canada
| | - Paul J Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| | | | - Jeffrey R Brook
- Divisions of Epidemiology and Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Eric Lavigne
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Population Studies Division, Health Canada, Ottawa, Ontario, Canada
| | - Rose Dugandzic
- Office of Environmental Health, Health Canada, Ottawa, Ontario, Canada
| | - Shelley A Harris
- Divisions of Epidemiology and Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Desnavailles P, Praud D, Le Provost B, Kobayashi H, Deygas F, Amadou A, Coudon T, Grassot L, Faure E, Couvidat F, Severi G, Mancini FR, Fervers B, Proust-Lima C, Leffondré K. Trajectories of long-term exposure to PCB153 and Benzo[a]pyrene (BaP) air pollution and risk of breast cancer. Environ Health 2024; 23:72. [PMID: 39244555 PMCID: PMC11380782 DOI: 10.1186/s12940-024-01106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND While genetic, hormonal, and lifestyle factors partially elucidate the incidence of breast cancer, emerging research has underscored the potential contribution of air pollution. Polychlorinated biphenyls (PCBs) and benzo[a]pyrene (BaP) are of particular concern due to endocrine-disrupting properties and their carcinogenetic effect. OBJECTIVE To identify distinct long term trajectories of exposure to PCB153 and BaP, and estimate their associations with breast cancer risk. METHODS We used data from the XENAIR case-control study, nested within the ongoing prospective French E3N cohort which enrolled 98,995 women aged 40-65 years in 1990-1991. Cases were incident cases of primary invasive breast cancer diagnosed from cohort entry to 2011. Controls were randomly selected by incidence density sampling, and individually matched to cases on delay since cohort entry, and date, age, department of residence, and menopausal status at cohort entry. Annual mean outdoor PCB153 and BaP concentrations at residential addresses from 1990 to 2011 were estimated using the CHIMERE chemistry-transport model. Latent class mixed models were used to identify profiles of exposure trajectories from cohort entry to the index date, and conditional logistic regression to estimate their association with the odds of breast cancer. RESULTS 5058 cases and 5059 controls contributed to the analysis. Five profiles of trajectories of PCB153 exposure were identified. The class with the highest PCB153 concentrations had a 69% increased odds of breast cancer compared to the class with the lowest concentrations (95% CI 1.08, 2.64), after adjustment for education and matching factors. The association between identified BaP trajectories and breast cancer was weaker and suffered from large CI. CONCLUSIONS Our results support an association between long term exposure to PCB153 and the risk of breast cancer, and encourage further studies to account for lifetime exposure to persistent organic pollutants.
Collapse
Affiliation(s)
- Pauline Desnavailles
- Bordeaux Population Health Center (BPH Inserm U1219), Université de Bordeaux, 146 Rue Leo Saignat, Bordeaux, 33000, France
| | - Delphine Praud
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Blandine Le Provost
- Bordeaux Population Health Center (BPH Inserm U1219), Université de Bordeaux, 146 Rue Leo Saignat, Bordeaux, 33000, France
| | - Hidetaka Kobayashi
- Bordeaux Population Health Center (BPH Inserm U1219), Université de Bordeaux, 146 Rue Leo Saignat, Bordeaux, 33000, France
| | - Floriane Deygas
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Amina Amadou
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Thomas Coudon
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Lény Grassot
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Elodie Faure
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | - Florian Couvidat
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie Et Santé Des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | - Francesca Romana Mancini
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | - Béatrice Fervers
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Cécile Proust-Lima
- Bordeaux Population Health Center (BPH Inserm U1219), Université de Bordeaux, 146 Rue Leo Saignat, Bordeaux, 33000, France
| | - Karen Leffondré
- Bordeaux Population Health Center (BPH Inserm U1219), Université de Bordeaux, 146 Rue Leo Saignat, Bordeaux, 33000, France.
| |
Collapse
|
7
|
Hinton P, Villeneuve PJ, Galarneau E, Larsen K, Wen D, Meng J, Savic-Jovcic V, Zhang J, King WD. Ambient polycyclic aromatic hydrocarbon exposure and breast cancer risk in a population-based Canadian case-control study. Cancer Causes Control 2024; 35:1165-1180. [PMID: 38630334 PMCID: PMC11266283 DOI: 10.1007/s10552-024-01866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/20/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Polycyclic aromatic hydrocarbons (PAHs) represent a class of ubiquitous pollutants recognized as established human carcinogens and endocrine-disrupting chemicals. PAHs have seldom been modeled at the population-level in epidemiological studies. Fluoranthene is a prevalent PAH in urban settings and correlates with the occurrence of other PAHs. The purpose of this study was to evaluate associations between long-term residential exposure to ambient PAHs and breast cancer risk, both pre- and post-menopausal, in Canada. METHODS Using the National Enhanced Cancer Surveillance System (NECSS), a national-scale Canadian population-based case-control study, annual fluoranthene exposures were estimated using the GEM-MACH-PAH chemical transport model on the basis of geocoded residential histories throughout a 20-year exposure window. Odds ratios (ORs) and 95% confidence intervals (CIs) controlling for potential confounders were estimated using logistic regression. Separate analyses were conducted for Ontario and national samples given a finer-resolution exposure surface and additional risk factor information available for Ontario. RESULTS Positive associations were observed between fluoranthene exposure and premenopausal breast cancer, with inconsistent findings for postmenopausal breast cancer. For premenopausal breast cancer, adjusted ORs of 2.48 (95% CI: 1.29, 4.77) and 1.59 (95% CI: 1.11, 2.29) were observed when comparing the second highest category of exposure to the lowest, among the Ontario and national samples, respectively. For postmenopausal breast cancer, adjusted ORs were 1.10 (95% CI: 0.67, 1.80) and 1.33 (95% CI: 1.02, 1.73). Associations for the highest level of exposure, across both samples and menopausal strata, were non-significant. CONCLUSION This study provides support for the hypothesis that ambient PAH exposures increase the risk of premenopausal breast cancer.
Collapse
Affiliation(s)
- Patrick Hinton
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| | | | - Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Kristian Larsen
- Office of Environmental Health, Health Canada, Ottawa, ON, Canada
| | - Deyong Wen
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Jun Meng
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Verica Savic-Jovcic
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Junhua Zhang
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
8
|
D’Agostini M, Collatuzzo G, Teglia F, Boffetta P. Risk of Gynecological and Breast Cancers in Workers Exposed to Diesel Exhaust: A Systematic Review and Meta-Analysis Of Cohort Studies. LA MEDICINA DEL LAVORO 2024; 115:e2024011. [PMID: 38922840 PMCID: PMC11223564 DOI: 10.23749/mdl.v115i3.15568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/02/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND This study aimed to explore the association between occupational exposure to diesel exhaust (DE) and gynaecological and breast cancers. METHODS A systematic review was performed to identify cohort studies reporting results on the association between occupational exposure to DE and risk of gynaecological and breast cancers. STROBE guidelines and PECOS criteria were followed. We identified 6 studies for breast cancer (BC), 4 for cervical cancer (CC), 4 for endometrial cancer (EC) and 7 for ovarian cancer (OC). Random-effects meta-analyses were conducted on the relationship between DE exposure and BC, CC, EC, and OC risk; 95% confidence intervals (CI) and prediction intervals (PI) were reported. We investigated between-study heterogeneity and potential publication bias using Egger's test. RESULTS No associations were observed between occupational DE exposure and risk of BC [RR=0.93; CI: 0.77-1.13; PI:0.50-1.73, I2=80.31%], EC [RR=0.89; CI: 0.75-1.05; PI:0.61-1.30, I2=0.78%], and OC [RR=1.08; CI: 0.89-1.32, PI: 0.76-1.56, I2=11.87%]. A weak association was observed for CC [RR=1.41; CI: 1.17-1.17; PI:0.85-2.30, I2=6.44%]. No between-study heterogeneity or publication bias was detected. CONCLUSIONS This study identified an association between DE exposure and CC, which was not adjusted for potential confounders. No evidence of an association was found with BC, EC, and OC.
Collapse
Affiliation(s)
- Marika D’Agostini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Federica Teglia
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
9
|
Amadou A, Giampiccolo C, Bibi Ngaleu F, Praud D, Coudon T, Grassot L, Faure E, Couvidat F, Frenoy P, Severi G, Romana Mancini F, Roy P, Fervers B. Multiple xenoestrogen air pollutants and breast cancer risk: Statistical approaches to investigate combined exposures effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124043. [PMID: 38679129 DOI: 10.1016/j.envpol.2024.124043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/10/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Studies suggested that exposure to air pollutants, with endocrine disrupting (ED) properties, have a key role in breast cancer (BC) development. Although the population is exposed simultaneously to a mixture of multiple pollutants and ED pollutants may act via common biological mechanisms leading to synergic effects, epidemiological studies generally evaluate the effect of each pollutant separately. We aimed to assess the complex effect of exposure to a mixture of four xenoestrogen air pollutants (benzo-[a]-pyrene (BaP), cadmium, dioxin (2,3,7,8-Tétrachlorodibenzo-p-dioxin TCDD)), and polychlorinated biphenyl 153 (PCB153)) on the risk of BC, using three recent statistical methods, namely weighted quantile sum (WQS), quantile g-computation (QGC) and Bayesian kernel machine regression (BKMR). The study was conducted on 5222 cases and 5222 matched controls nested within the French prospective E3N cohort initiated in 1990. Annual average exposure estimates to the pollutants were assessed using a chemistry transport model, at the participants' residence address between 1990 and 2011. We found a positive association between the WQS index of the joint effect and the risk of overall BC (adjusted odds ratio (OR) = 1.10, 95% confidence intervals (CI): 1.03-1.19). Similar results were found for QGC (OR = 1.11, 95%CI: 1.03-1.19). Despite the association did not reach statistical significance in the BKMR model, we observed an increasing trend between the joint effect of the four pollutants and the risk of BC, when fixing other chemicals at their median concentrations. BaP, cadmium and PCB153 also showed positive trends in the multi-pollutant mixture, while dioxin showed a modest inverse trend. Despite we found a clear evidence of a positive association between the joint exposure to pollutants and BC risk only from WQS and QGC regression, we observed a similar suggestive trend using BKMR. This study makes a major contribution to the understanding of the joint effects of air pollution.
Collapse
Affiliation(s)
- Amina Amadou
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations: Défense, Santé, Environnement, Lyon, France.
| | - Camille Giampiccolo
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France; Service de Biostatistique-Bioinformatique, Pole Sante Publique, Hospices Civils de Lyon, Lyon, France; Laboratoire de Biometrie Et Biologie Evolutive, CNRS UMR 5558, Villeurbanne, France
| | - Fabiola Bibi Ngaleu
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations: Défense, Santé, Environnement, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France
| | - Delphine Praud
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations: Défense, Santé, Environnement, Lyon, France
| | - Thomas Coudon
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations: Défense, Santé, Environnement, Lyon, France
| | - Lény Grassot
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations: Défense, Santé, Environnement, Lyon, France
| | - Elodie Faure
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France
| | - Florian Couvidat
- National Institute for industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Pauline Frenoy
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France; Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Italy
| | - Francesca Romana Mancini
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France.
| | - Pascal Roy
- Université Claude Bernard Lyon 1, Lyon, France; Service de Biostatistique-Bioinformatique, Pole Sante Publique, Hospices Civils de Lyon, Lyon, France; Laboratoire de Biometrie Et Biologie Evolutive, CNRS UMR 5558, Villeurbanne, France
| | - Béatrice Fervers
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations: Défense, Santé, Environnement, Lyon, France.
| |
Collapse
|
10
|
Jiménez T, Domínguez-Castillo A, Fernández de Larrea-Baz N, Lucas P, Sierra MÁ, Salas-Trejo D, Llobet R, Martínez I, Pino MN, Martínez-Cortés M, Pérez-Gómez B, Pollán M, Lope V, García-Pérez J. Residential exposure to traffic pollution and mammographic density in premenopausal women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172463. [PMID: 38615764 DOI: 10.1016/j.scitotenv.2024.172463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Mammographic density (MD) is the most important breast cancer biomarker. Ambient pollution is a carcinogen, and its relationship with MD is unclear. This study aims to explore the association between exposure to traffic pollution and MD in premenopausal women. METHODOLOGY This Spanish cross-sectional study involved 769 women attending gynecological examinations in Madrid. Annual Average Daily Traffic (AADT), extracted from 1944 measurement road points provided by the City Council of Madrid, was weighted by distances (d) between road points and women's addresses to develop a Weighted Traffic Exposure Index (WTEI). Three methods were employed: method-1 (1dAADT), method-2 (1dAADT), and method-3 (e1dAADT). Multiple linear regression models, considering both log-transformed percentage of MD and untransformed MD, were used to estimate MD differences by WTEI quartiles, through two strategies: "exposed (exposure buffers between 50 and 200 m) vs. not exposed (>200 m)"; and "degree of traffic exposure". RESULTS Results showed no association between MD and traffic pollution according to buffers of exposure to the WTEI (first strategy) for the three methods. The highest reductions in MD, although not statistically significant, were detected in the quartile with the highest traffic exposure. For instance, method-3 revealed a suggestive inverse trend (eβQ1 = 1.23, eβQ2 = 0.96, eβQ3 = 0.85, eβQ4 = 0.85, p-trend = 0.099) in the case of 75 m buffer. Similar non-statistically significant trends were observed with Methods-1 and -2. When we examined the effect of traffic exposure considering all the 1944 measurement road points in every participant (second strategy), results showed no association for any of the three methods. A slightly decreased MD, although not significant, was observed only in the quartile with the highest traffic exposure: eβQ4 = 0.98 (method-1), and eβQ4 = 0.95 (methods-2 and -3). CONCLUSIONS Our results showed no association between exposure to traffic pollution and MD in premenopausal women. Further research is needed to validate these findings.
Collapse
Affiliation(s)
- Tamara Jiménez
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid (UAM), Madrid, Spain; HM CINAC (Centro Integral de Neurociencias AC), Hospital Universitario Puerta del Sur, Fundación HM Hospitales, Móstoles, Spain
| | - Alejandro Domínguez-Castillo
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain.
| | - Nerea Fernández de Larrea-Baz
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Pilar Lucas
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain.
| | - María Ángeles Sierra
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Dolores Salas-Trejo
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain; Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain; Center for Public Health Research CSISP, FISABIO, Valencia, Spain.
| | - Rafael Llobet
- Institute of Computer Technology, Universitat Politècnica de València, Valencia, Spain.
| | - Inmaculada Martínez
- Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain; Center for Public Health Research CSISP, FISABIO, Valencia, Spain.
| | - Marina Nieves Pino
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain.
| | - Mercedes Martínez-Cortés
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain.
| | - Beatriz Pérez-Gómez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Marina Pollán
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Virginia Lope
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| |
Collapse
|
11
|
Zhang P, Zhou C, Zhao K, Liu C, Liu C, He F, Peng W, Jia X, Mi J. Associations of air pollution and greenness with global burden of breast cancer: an ecological study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103921-103931. [PMID: 37697184 DOI: 10.1007/s11356-023-29579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
Despite the significance of the associations of air pollution and greenness with the risk of breast cancer, this topic has not been investigated on a global scale. We conducted an ecological study using 7 years of data from 162 countries. Disability-adjusted life years (DALYs) and incidence data were used to represent the breast cancer disease burden. Particulate matter with a diameter < 2.5 μm (PM2.5), ozone (O3), nitrogen dioxide (NO2), and the normalized difference vegetation index (NDVI) were adopted as our exposures. We employed generalized linear mixed models to explore the relationship between air pollution and greenness on breast cancer disease burden. The rate ratio (RR) and its 95% confidence interval (CI) indicate the effect size. There is a positive association between air pollution and the burden of breast cancer disease. Contrarily, per interquartile range increment in NDVI was negatively associated with DALYs and incidence. In terms of air pollutants and breast cancer, NDVI seems to have a significant influence on the relationship between these two conditions. A higher amount of greenness helps to alleviate the negative association of air pollution on breast cancer. PM2.5 and O3 play a mediating role in the relationship between greenness and breast cancer disease burden. In areas with higher levels of greenness, there is a possibility that the inverse association between air pollutants and the burden of breast cancer may be influenced.
Collapse
Affiliation(s)
- Peiyao Zhang
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Cheng Zhou
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Ke Zhao
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Chengrong Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Chao Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Fenfen He
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Wenjia Peng
- School of Public Health, Fudan University, Shanghai, China
| | - Xianjie Jia
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Jing Mi
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China.
| |
Collapse
|
12
|
Chen J, Li Y, Yin X, Man J, Zhang X, Zhang T, Yang X, Lu M. Dose-response association of polycyclic aromatic hydrocarbon with self-reported trouble sleeping in adults: evidence from the National Health and Nutrition Examination Survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82613-82624. [PMID: 37330443 DOI: 10.1007/s11356-023-28218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Previous epidemiological evidence from large population-based studies on the association between polycyclic aromatic hydrocarbons (PAH) exposure and the risk of sleep disorders is inadequate. To comprehensively examine the relationship between independent and combined PAHs and trouble sleeping, we analyzed data from 8194 participants from the National Health and Nutrition Survey (NHANES) cycles. Multivariate adjusted logistic regression and restricted cubic spline models were applied to assess the relationship between PAH exposure and the risk of trouble sleeping. Bayesian kernel machine regression and weighted quantile sum regression models were used to estimate the combined association of urinary PAHs with trouble sleeping. In the single-exposure analyses, compared with the lowest level, the respective adjusted odds ratios (ORs) for trouble sleeping among subjects from the highest quartile were 1.34 (95% CI, 1.15, 1.56), 1.23 (95% CI, 1.05, 1.44), 1.31 (95% CI, 1.11, 1.54), 1.35 (95% CI, 1.15, 1.58), and 1.29 (95% CI, 1.08, 1.53) for 1-hydroxynaphthalene (1-NAP), 2-hydroxynaphthalene (2-NAP), 3-hydroxyfluorene (3-FLU), 2-hydroxyfluorene(2-FLU), and 1-hydroxypyrene(1-PYR). An overall positive correlation between the PAH mixture and trouble sleeping was observed when the mixture was at the 50th percentile or higher. The current study reveals that PAH metabolites (1-NAP, 2-NAP, 3-FLU, 2-FLU, and 1-PYR) may be detrimental to trouble sleeping. PAH mixture exposure was positively associated with trouble sleeping. The results suggested the potential impacts of PAHs and expressed concerns regarding the potential impact of PAHs on health. More intensive research and monitoring of environmental pollutants in the future will contribute to preventing environmental hazards.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufei Li
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaolin Yin
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinyu Man
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuening Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tongchao Zhang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
- Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
- Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China.
- Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
13
|
Song M, Huang X, Wei X, Tang X, Rao Z, Hu Z, Yang H. Spatial patterns and the associated factors for breast cancer hospitalization in the rural population of Fujian Province, China. BMC Womens Health 2023; 23:247. [PMID: 37161393 PMCID: PMC10170828 DOI: 10.1186/s12905-023-02336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/07/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Despite the known increasing incidence of breast cancer in China, evidence on the spatial pattern of hospitalization for breast cancer is scarce. This study aimed to describe the disparity of breast cancer hospitalization in the rural population of Southeast China and to explore the impacts of socioeconomic factors and heavy metal pollution in soil. METHODS This study was conducted using the New Rural Cooperative Medical Scheme (NRCMS) claims data covering 20.9 million rural residents from 73 counties in Southeast China during 2015-2016. The associations between breast cancer hospitalization and socioeconomic factors and soil heavy metal pollutants were evaluated with quasi-Poisson regression models and geographically weighted Poisson regressions (GWPR). RESULTS The annual hospitalization rate for breast cancer was 101.40/100,000 in the studied area and the rate varied across different counties. Overall, hospitalization for breast cancer was associated with road density (β = 0.43, P = 0.02), urbanization (β = 0.02, P = 0.002) and soil cadmium (Cd) pollution (β = 0.01, P = 0.02). In the GWPR model, a stronger spatial association of Cd, road density and breast cancer hospitalization was found in the northeast regions of the study area while breast cancer hospitalization was mainly related to urbanization in the western regions. CONCLUSIONS Soil Cd pollution, road density, and urbanization were associated with breast cancer hospitalization in different regions. Findings in this study might provide valuable information for healthcare policies and intervention strategies for breast cancer.
Collapse
Affiliation(s)
- Mengjie Song
- Department of Epidemiology and Health Statistics, School of Public Health & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Xiaoxi Huang
- Department of Breast, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujjan Medical University, Fuzhou, 350001, China
| | - Xueqiong Wei
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xuwei Tang
- Department of Epidemiology and Health Statistics, School of Public Health & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Zhixiang Rao
- Department of Epidemiology and Health Statistics, School of Public Health & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, School of Public Health & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, University Town, Xue Yuan Road 1, Fuzhou, 350122, China
| | - Haomin Yang
- Department of Epidemiology and Health Statistics, School of Public Health & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, 17177, Sweden.
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, University Town, Xue Yuan Road 1, Fuzhou, 350122, China.
| |
Collapse
|
14
|
Praud D, Deygas F, Amadou A, Bouilly M, Turati F, Bravi F, Xu T, Grassot L, Coudon T, Fervers B. Traffic-Related Air Pollution and Breast Cancer Risk: A Systematic Review and Meta-Analysis of Observational Studies. Cancers (Basel) 2023; 15:cancers15030927. [PMID: 36765887 PMCID: PMC9913524 DOI: 10.3390/cancers15030927] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Current evidence of an association of breast cancer (BC) risk with air pollution exposure, in particular from traffic exhaust, remains inconclusive, and the exposure assessment methodologies are heterogeneous. This study aimed to conduct a systematic review and meta-analysis on the association between traffic-related air pollution (TRAP) and BC incidence (PROSPERO CRD42021286774). We systematically reviewed observational studies assessing exposure to TRAP and BC risk published until June 2022, available on Medline/PubMed and Web of Science databases. Studies using models for assessing exposure to traffic-related air pollutants or using exposure proxies (including traffic density, distance to road, etc.) were eligible for inclusion. A random-effects meta-analysis of studies investigating the association between NO2/NOx exposure and BC risk was conducted. Overall, 21 studies meeting the inclusion criteria were included (seven case-control, one nested case-control, 13 cohort studies); 13 studies (five case-control, eight cohort) provided data for inclusion in the meta-analyses. Individual studies provided little evidence of an association between TRAP and BC risk; exposure assessment methods and time periods of traffic emissions were different. The meta-estimate on NO2 exposure indicated a positive association (pooled relative risk per 10 µg/m3 of NO2: 1.015; 95% confidence interval, CI: 1.003; 1.028). No association between NOx exposure and BC was found (three studies). Although there was limited evidence of an association for TRAP estimated with proxies, the meta-analysis showed a significant association between NO2 exposure, a common TRAP pollutant marker, and BC risk, yet with a small effect size. Our findings provide additional support for air pollution carcinogenicity.
Collapse
Affiliation(s)
- Delphine Praud
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Correspondence:
| | - Floriane Deygas
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| | - Amina Amadou
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| | - Maryline Bouilly
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| | - Federica Turati
- Department of Clinical Sciences and Community Health, University of Milan, Via A. Vanzetti 5, 20133 Milan, Italy
| | - Francesca Bravi
- Department of Clinical Sciences and Community Health, University of Milan, Via A. Vanzetti 5, 20133 Milan, Italy
| | - Tingting Xu
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| | - Lény Grassot
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| | - Thomas Coudon
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| | - Béatrice Fervers
- Prevention Cancer Environment Department, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| |
Collapse
|
15
|
Sweeney C, Lazennec G, Vogel CFA. Environmental exposure and the role of AhR in the tumor microenvironment of breast cancer. Front Pharmacol 2022; 13:1095289. [PMID: 36588678 PMCID: PMC9797527 DOI: 10.3389/fphar.2022.1095289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Activation of the aryl hydrocarbon receptor (AhR) through environmental exposure to chemicals including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins (PCDDs) can lead to severe adverse health effects and increase the risk of breast cancer. This review considers several mechanisms which link the tumor promoting effects of environmental pollutants with the AhR signaling pathway, contributing to the development and progression of breast cancer. We explore AhR's function in shaping the tumor microenvironment, modifying immune tolerance, and regulating cancer stemness, driving breast cancer chemoresistance and metastasis. The complexity of AhR, with evidence for both oncogenic and tumor suppressor roles is discussed. We propose that AhR functions as a "molecular bridge", linking disproportionate toxin exposure and policies which underlie environmental injustice with tumor cell behaviors which drive poor patient outcomes.
Collapse
Affiliation(s)
- Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, United States
| | - Gwendal Lazennec
- Centre National de la Recherche Scientifique, SYS2DIAG-ALCEN, Cap Delta, Montpellier, France
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California Davis, Davis, CA, United States
- Department of Environmental Toxicology, University of California Davis, Davis, CA, United States
| |
Collapse
|
16
|
Iamiceli AL, Abate V, Bena A, De Filippis SP, De Luca S, Iacovella N, Farina E, Gandini M, Orengia M, De Felip E, Abballe A, Dellatte E, Ferri F, Fulgenzi AR, Ingelido AM, Ivaldi C, Marra V, Miniero R, Crosetto L, Procopio E, Salamina G. The longitudinal biomonitoring of residents living near the waste incinerator of Turin: Polycyclic Aromatic Hydrocarbon metabolites after three years from the plant start-up. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120199. [PMID: 36155226 DOI: 10.1016/j.envpol.2022.120199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The waste-to-energy (WTE) incinerator plant located in the Turin area (Italy) started to recover energy from the combustion of municipal solid waste in 2013. A health surveillance program was implemented to evaluate the potential health effects on the population living near the plant. This program included a longitudinal biomonitoring to evaluate temporal changes of some environmental pollutants, including polycyclic aromatic hydrocarbons (PAHs), in residents living in areas near the Turin incinerator (exposed group, E) compared to those observed in subjects living far from the plant (not exposed group, NE). Ten monohydroxy-PAHs (OH-PAHs), consisting in the principal metabolites of naphthalene, fluorine, phenanthrene, and pyrene, were analyzed in urines collected from the E and NE subjects after one (T1) and three years (T2) of plant activity and compared with those determined in the same cohort established before the plant start-up (T0). Spearman correlation analysis was undertaken to explore possible associations between OH-PAHs and personal characteristics, lifestyle variables, and dietary habits. A linear mixed model (LMM) approach was applied to determine temporal trends of OH-PAHs observed in the E and NE subjects and to evaluate possible differences in trend between the two groups. Temporal trends of OH-PAHs determined by LMM analysis demonstrated that, at all times, the E group had concentrations lower than those assessed in the NE group, all other conditions being equal. Moreover, no increase in OH-PAH concentrations was observed at T1 and T2 either in E or in NE group. Significant positive correlations were found between all OH-PAHs and smoking habits. Regarding variables associated to outdoor PAH exposure, residence near high traffic roads and daily time in traffic road was positively correlated with 1-hydroxynaphthalene and 1-hydroxypyrene, respectively. In conclusion, no impact of the WTE plant on exposure to PAHs was observed on the population living near the plant.
Collapse
Affiliation(s)
- A L Iamiceli
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy.
| | - V Abate
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - A Bena
- Department of Epidemiology, ASL TO3, Via Sabaudia 164, 10095, Grugliasco (Turin), Italy
| | - S P De Filippis
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - S De Luca
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - N Iacovella
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - E Farina
- Department of Epidemiology, ASL TO3, Via Sabaudia 164, 10095, Grugliasco (Turin), Italy
| | - M Gandini
- Department of Epidemiology and Environmental Health, Regional Environmental Protection Agency, Via Pio VII 9, 10135, Turin, Italy
| | - M Orengia
- Department of Epidemiology and Environmental Health, Regional Environmental Protection Agency, Via Pio VII 9, 10135, Turin, Italy
| | - E De Felip
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - A Abballe
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - E Dellatte
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - F Ferri
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - A R Fulgenzi
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - A M Ingelido
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - C Ivaldi
- Department of Epidemiology and Environmental Health, Regional Environmental Protection Agency, Via Pio VII 9, 10135, Turin, Italy
| | - V Marra
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - R Miniero
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - L Crosetto
- Department of Epidemiology and Environmental Health, Regional Environmental Protection Agency, Via Pio VII 9, 10135, Turin, Italy
| | - E Procopio
- Department of Epidemiology, ASL TO3, Via Sabaudia 164, 10095, Grugliasco (Turin), Italy
| | - G Salamina
- Department of Prevention, ASL TO1, Via Della Consolata 10, Turin, Italy
| |
Collapse
|
17
|
Pinchas-Mizrachi R, Jacobson Liptz J, Zalcman BG, Romem A. Disparities in Breast Cancer Mortality Rates in Israel among Urban and Rural Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15785. [PMID: 36497859 PMCID: PMC9737317 DOI: 10.3390/ijerph192315785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Breast cancer is a leading cause of death. There are a number of risk factors for breast cancer mortality including parity, age, ethnicity, genetic history, and place of residence. This study examined the disparities in breast cancer-related mortality rates among women from urban areas compared to rural areas in Israel. This was a retrospective, follow-up study on mortality from breast cancer among 894,608 Israeli women born between the years of 1940 and 1960. Data was collected from the Israeli Central Bureau of Statistics, the Population Authority, the Education Ministry, and the Health Ministry. Over 80% of women lived in urban areas. A higher incidence of mortality from breast cancer in Israel was found among urban women compared to rural women (1047.8/100,000 compared to 837/100,000, respectively). Even after adjusting for sociodemographic variables, higher mortality rates were found among women from urban areas in Israel compared to women from rural areas in Israel. It is believed that environmental factors can partially explain the geographic variation of breast cancer incidence, and that breast cancer incidence is likely a complex interaction between genetic, environmental, and health factors.
Collapse
Affiliation(s)
| | | | | | - Anat Romem
- Jerusalem College of Technology, Tal Campus, Jerusalem 9548311, Israel
| |
Collapse
|
18
|
Okunromade O, Yin J, Ray C, Adhikari A. Air Quality and Cancer Prevalence Trends across the Sub-Saharan African Regions during 2005-2020. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811342. [PMID: 36141614 PMCID: PMC9517113 DOI: 10.3390/ijerph191811342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 06/01/2023]
Abstract
Poor air quality and environmental pollution remain some of the main etiological factors leading to cancers and cancer-related deaths worldwide. As a result of human activities, deleterious airborne chemicals can be dispersed not only in the environment but also released in occupational environments and industrial areas. Air pollutants and cancer links are now established through various oxidative stress-related mechanisms and related DNA damages. Generally, ambient and indoor air pollutants have been understudied in sub-Saharan Africa (SSA) compared to other regions in the world. Our study not only highlights the deleterious effects of air pollutants in these developing countries, but it has strived to examine the trends and correlations between cancers and some air pollutants-carbon dioxide, other greenhouse gases, PM2.5, and human development index-in some SSA countries, where recent cancer burdens were reported as high. Our results showed strikingly higher yearly trends of cancers and above-mentioned air pollutant levels in some sub-Saharan countries during 2005-2020. Relative risks (RR) of these air pollutants-related cancer case rates were, however, below, or slightly above 1.0, or not statistically significant possibly due to other responsible and confounding factors which were not considered in our analyses due to data unavailability. We recommend new approaches to monitoring, minimizing, and creating awareness of the trends of hazardous air pollutants in sub-Saharan Africa, which will help ameliorate cancer prevalence and support the reduction in air pollution levels within regulatory limits, thereby relieving the cumulative burdens of cancers. Utilization of the findings from the study will support large-scale public health and health policy efforts on cancer management through environmental stewardship in SSA countries having the poorest outcome and the shortest survival rates from cancers.
Collapse
Affiliation(s)
- Omolola Okunromade
- Department of Health Policy and Community Health, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| | - Jingjing Yin
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| | - Clara Ray
- Department of Geology and Geography, College of Science and Mathematics, Georgia Southern University, Statesboro, GA 30460, USA
| | - Atin Adhikari
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
19
|
Gamboa-Loira B, López-Carrillo L, Mar-Sánchez Y, Stern D, Cebrián ME. Epidemiologic evidence of exposure to polycyclic aromatic hydrocarbons and breast cancer: A systematic review and meta-analysis. CHEMOSPHERE 2022; 290:133237. [PMID: 34929281 DOI: 10.1016/j.chemosphere.2021.133237] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women. However, only 58% of cases have been associated with known risk factors (reproductive, hormonal, lifestyles, and genetic), and the rest to unknown causes. Nevertheless, growing evidence suggests that exposure to environmental contaminants is an important risk factor for BC. Polycyclic aromatic hydrocarbons (PAHs) are formed during organic matter combustion, including smoking, grilled meat, and fuels, and are important carcinogenic constituents of environmental pollution. We examined the information generated by epidemiological studies evaluating the association between BC and PAHs exposure from multiple sources. Our work was conducted according to Conducting Systematic Reviews and Meta-Analyses of Observational Studies of Etiology (COSMOS-E) guidelines. We searched PubMed, Web of Science, and Scopus from January 2000 to December 2019. A total of 124 records were identified, and only 23 articles met all inclusion criteria. Occupational and/or environmental exposure to PAHs was significantly associated with BC, irrespective of exposure being assessed by direct or indirect methods. CYP1A1 and CYP1B1 adverse polymorphisms, familial BC history and smoking status, significantly strengthened the association between PAHs exposure and BC, whereas high fruit and vegetable intake had antagonistic associations. The positive relationships obtained in the studies here reviewed indicated that PAHs exposure is a risk factor for BC. Research needs include the improvement of exposure assessment, particularly identification of specific PAHs, reconstruction of time-varying and distant past exposures and further studies on the interaction between known BC factors and modifiable diet and life-style factors allowing BC prevention and control.
Collapse
Affiliation(s)
- Brenda Gamboa-Loira
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| | - Lizbeth López-Carrillo
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| | - Yuliana Mar-Sánchez
- CINVESTAV Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico.
| | - Dalia Stern
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| | - Mariano E Cebrián
- CINVESTAV Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico.
| |
Collapse
|
20
|
Lemarchand C, Gabet S, Cénée S, Tvardik N, Slama R, Guénel P. Breast cancer risk in relation to ambient concentrations of nitrogen dioxide and particulate matter: results of a population-based case-control study corrected for potential selection bias (the CECILE study). ENVIRONMENT INTERNATIONAL 2021; 155:106604. [PMID: 34030067 DOI: 10.1016/j.envint.2021.106604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/20/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND There is only scant evidence that air pollution increases the risk of breast cancer. OBJECTIVES We investigated this relationship for three air pollutants: nitrogen dioxide (NO2) and particulate matter with an aerodynamical diameter below 10 µm (PM10) and 2.5 µm (PM2.5). METHODS We conducted a population-based case-control study on breast cancer in two French départements, including 1,229 women diagnosed with breast cancer in 2005-2007 and 1,316 control women frequency-matched on age. Concentrations of NO2, PM10 and PM2.5 at participants' addresses occupied during the last 10 years were assessed using a chemistry transport model. Odds ratios (OR) and 95% confidence intervals (95% CI) were estimated using multivariable logistic regression models where each woman was assigned a weight depending on her probability of selection into the study. RESULTS The OR for breast cancer per 10-µg/m3 increase in NO2 was 1.11 (95% CI, 0.98, 1.26), and 1.41 (95% CI 1.07, 1.86) in the highest exposure quintile (Q5), compared to the first. The ORs per 10-µg/m3 NO2 did not markedly differ between pre- (OR 1.09, 95% CI 0.89, 1.35)) and post-menopausal women (OR 1.14, 95% CI 0.97, 1.33)), but the OR was substantially higher for hormone-receptor positive (ER+/PR+) breast tumor subtypes (OR 1.15, 95% CI 1.00, 1.31) than for ER-/PR- tumors (OR 0.95, 95% CI 0.72, 1.26). Breast cancer risk was not associated with either PM10 (OR per 1 µg/m3 1.01, 95% CI, 0.96, 1.06) or PM2.5 (OR per 1 µg/m3 1.02, 95% CI 0.95, 1.08), regardless of the menopausal status or of the breast tumor subtype. DISCUSSION Our study provides evidence that NO2 exposure, a marker of traffic-related air pollutants, may be associated with an increased risk of breast cancer, particularly ER+/PR+ tumors.
Collapse
Affiliation(s)
- Clémentine Lemarchand
- University Paris-Saclay, UVSQ, Gustave Roussy, Inserm, CESP, Team Exposome and Heredity, 94800 Villejuif, France
| | - Stephan Gabet
- Univ. Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, 38000 Grenoble, France
| | - Sylvie Cénée
- University Paris-Saclay, UVSQ, Gustave Roussy, Inserm, CESP, Team Exposome and Heredity, 94800 Villejuif, France
| | - Nastassia Tvardik
- University Paris-Saclay, UVSQ, Gustave Roussy, Inserm, CESP, Team Exposome and Heredity, 94800 Villejuif, France
| | - Rémy Slama
- Univ. Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, 38000 Grenoble, France
| | - Pascal Guénel
- University Paris-Saclay, UVSQ, Gustave Roussy, Inserm, CESP, Team Exposome and Heredity, 94800 Villejuif, France.
| |
Collapse
|
21
|
Sahay D, Lloyd SE, Rivera JA, Jezioro J, McDonald JD, Pitiranggon M, Yan B, Szabolcs M, Terry MB, Miller RL. Prenatal polycyclic aromatic hydrocarbons, altered ERα pathway-related methylation and expression, and mammary epithelial cell proliferation in offspring and grandoffspring adult mice. ENVIRONMENTAL RESEARCH 2021; 196:110961. [PMID: 33675803 PMCID: PMC8119355 DOI: 10.1016/j.envres.2021.110961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Airborne polycyclic aromatic hydrocarbons (PAH) possess carcinogenic and endocrine disrupting properties linked to mammary tumorigenesis. These effects may be initiated during a prenatal period of susceptibility to PAH activation of the aryl hydrocarbon receptor (Ahr) and through downstream effects on estrogen receptor (Er) α. PURPOSE We hypothesized prenatal airborne PAH exposure induces sustained effects in female adult wild type BALB/cByj mice detected in the offspring (F1) and grandoffspring (F2) generation. We hypothesized these effects would include altered expression and epigenetic regulation of Erα and altered expression of aryl hydrocarbon receptor repressor (Ahrr, Ahrr/aryl hydrocarbon receptor nuclear translocator (Arnt), and breast cancer type 1 susceptibility (Brca1). Further, we hypothesized that PAH would induce precancerous outcomes such as epithelial cell proliferation and epithelial cell hyperplasia in mammary glands of adult female offspring and grandoffspring. RESULTS Prenatal ambient PAH exposure lowered Erα mRNA expression (F1 and F2: p<0.001 for each) and induced methylation in the Erα promoter in mammary tissue in offspring and grandoffspring mice on postnatal day (PND) 60. Prenatal PAH lowered Brca1 mRNA (F1: p=0.002, F2: p=0.02); Erα mRNA was correlated with Brca1 (F1: r=0.42, p=0.02; F2: r=0.53, p=0.005). Prenatal PAH lowered Ahrr (F1: p=0.03, F2: p=0.009) and raised Arnt mRNA expression (F1: p=0.01, F2: p=0.03). Alterations in Erα mRNA (F2: p<0.0001) and Ahrr (F2: p=0.02) in the grandoffspring mice also occured by PND 28, and similarly occurred in the dam on postpartum day (PPD) 28. Finally, prenatal PAH was associated with higher mammary epithelial cell proliferation in the offspring (p=0.02), but not grandoffspring mice, without differences in the frequency of mammary cell hyperplasia. These results did not differ after adjustment by each candidate gene expression level. CONCLUSIONS Prenatal PAH exposure induces DNA methylation and alters gene expression in the Erα-mediated pathway across generations, and suggests that functional outcomes such as mammary cell proliferation also may occur in offspring as a result.
Collapse
Affiliation(s)
- Debashish Sahay
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York City, NY, United States
| | - Susan E Lloyd
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, NY, United States
| | - Janelle A Rivera
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York City, NY, United States
| | - Jacqueline Jezioro
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York City, NY, United States
| | - Jacob D McDonald
- Department of Toxicology, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Masha Pitiranggon
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Matthias Szabolcs
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York City, NY, United States
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, NY, United States; Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, United States
| | - Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York City, NY, United States; Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, United States.
| |
Collapse
|
22
|
Amadou A, Praud D, Coudon T, Deygas F, Grassot L, Faure E, Couvidat F, Caudeville J, Bessagnet B, Salizzoni P, Gulliver J, Leffondré K, Severi G, Mancini FR, Fervers B. Risk of breast cancer associated with long-term exposure to benzo[a]pyrene (BaP) air pollution: Evidence from the French E3N cohort study. ENVIRONMENT INTERNATIONAL 2021; 149:106399. [PMID: 33503556 DOI: 10.1016/j.envint.2021.106399] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Benzo[a]pyrene (BaP) is an endocrine-disrupting pollutant formed during incomplete combustion of organic materials. It has been recognized as a reproductive and developmental toxicant, however epidemiological evidence of the long-term effect of ambient air BaP on breast cancer (BC) is limited. Thus we evaluated associations between ambient air BaP exposure and risk of BC, overall and according to menopausal status and molecular subtypes (estrogen receptor negative/positive (ER-/ER+) and progesterone receptor negative/positive (PR-/PR+)), stage and grade of differentiation of BC in the French E3N cohort study. METHODS Within a nested case-control study of 5222 incident BC cases and 5222 matched controls, annual BaP exposure was estimated using a chemistry-transport model (CHIMERE) and was assigned to the geocoded residential addresses of participants for each year during the 1990-2011 follow-up period. Multivariable conditional logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Overall, cumulative airborne BaP exposure was significantly associated with the overall risk of BC, for each 1 interquartile range (IQR) increase in the concentration levels of BaP (1.42 ng/m3), the OR = 1.15 (95% CI: 1.04-1.27). However, by menopausal status, the significant positive association remained only in women who underwent menopausal transition (i.e. premenopausal women at inclusion who became postmenopausal at diagnosis), OR per 1 IQR = 1.20 (95% CI: 1.03-1.40). By hormone receptor status, positive associations were observed for ER+, PR + and ER + PR + BC, with ORs = 1.17 (95% CI: 1.04-1.32), 1.16 (95% CI: 1.01-1.33), and 1.17 (95% CI: 1.01-1.36) per 1 IQR, respectively. There was also a borderline positive association between BaP and grade 3 BC (OR per 1 IQR = 1.15 (95% CI: 0.99-1.34). CONCLUSIONS We provide evidence of increased risk of BC associated with cumulative BaP exposure, which varied according to menopausal status, hormone receptor status, and grade of differentiation of BC. Our results add further epidemiological evidence to the previous experimental studies suggesting the adverse effects of BaP.
Collapse
Affiliation(s)
- Amina Amadou
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm UMR 1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Delphine Praud
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm UMR 1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Thomas Coudon
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm UMR 1296 Radiations : Défense, Santé, Environnement, Lyon, France; Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Ecully, France
| | - Floriane Deygas
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm UMR 1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Leny Grassot
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm UMR 1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Elodie Faure
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France
| | - Florian Couvidat
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Julien Caudeville
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Bertrand Bessagnet
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France; Citepa, Technical Reference Center for Air Pollution and Climate Change, Paris, France
| | - Pietro Salizzoni
- Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Ecully, France
| | - John Gulliver
- Centre for Environmental Health and Sustainability, School of Geography, Geology and the Environment, University of Leicester, United Kingdom
| | - Karen Leffondré
- Université de Bordeaux, ISPED, Inserm U1219, Bordeaux Population Health Center, Bordeaux, France
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France; Departement of Statistics, Computer Science and Applications (DISIA), University of Florence, Italy
| | - Francesca Romana Mancini
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France.
| | - Béatrice Fervers
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm UMR 1296 Radiations : Défense, Santé, Environnement, Lyon, France.
| |
Collapse
|
23
|
White AJ, Gregoire AM, Niehoff NM, Bertrand KA, Palmer JR, Coogan PF, Bethea TN. Air pollution and breast cancer risk in the Black Women's Health Study. ENVIRONMENTAL RESEARCH 2021; 194:110651. [PMID: 33387538 PMCID: PMC7946730 DOI: 10.1016/j.envres.2020.110651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/04/2020] [Accepted: 12/17/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Air pollution contains numerous carcinogens and endocrine disruptors which may be relevant for breast cancer. Previous research has predominantly been conducted in White women; however, Black women may have higher air pollution exposure due to geographic and residential factors. OBJECTIVE We evaluated the association between air pollution and breast cancer risk in a large prospective population of Black women. METHODS We estimated annual average ambient levels of particulate matter <2.5 μm (PM2.5), nitrogen dioxide (NO2) and ozone (O3) at the 1995 residence of 41,317 participants in the Black Women's Health Study who resided in 56 metropolitan areas across the United States. Cox proportional hazards regression was used to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for an interquartile range (IQR) increase in each pollutant. We evaluated whether the association varied by menopausal status, estrogen receptor (ER) status of the tumor and geographic region of residence. RESULTS With follow-up through 2015 (mean = 18.3 years), 2146 incident cases of breast cancer were confirmed. Higher exposure to NO2 or O3 was not associated with a higher risk of breast cancer. For PM2.5, although we observed no association overall, there was evidence of modification by geographic region for both ER- (p for heterogeneity = 0.01) and premenopausal breast cancer (p for heterogeneity = 0.01). Among women living in the Midwest, an IQR increase in PM2.5 (2.87 μg/m3), was associated with a higher risk of ER- (HR = 1.53, 95% CI: 1.07-2.19) and premenopausal breast cancer (HR = 1.32, 95% CI: 1.03-1.71). In contrast, among women living in the South, PM2.5 was inversely associated with both ER- (HR = 0.74, 95% CI: 0.56-0.97) and premenopausal breast cancer risk (HR = 0.75, 95% CI: 0.62-0.91). DISCUSSION Overall, we observed no association between air pollution and increased breast cancer risk among Black women, except perhaps among women living in the Midwestern US.
Collapse
Affiliation(s)
- Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
| | - Allyson M Gregoire
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Nicole M Niehoff
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | | | - Traci N Bethea
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
24
|
Li W, Park R, Alexandrou N, Dryfhout-Clark H, Brice K, Hung H. Multi-year Analyses Reveal Different Trends, Sources, and Implications for Source-Related Human Health Risks of Atmospheric Polycyclic Aromatic Hydrocarbons in the Canadian Great Lakes Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2254-2264. [PMID: 33512990 DOI: 10.1021/acs.est.0c07079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are of high concern to public health due to their carcinogenic and mutagenic properties. Here, we present the first comprehensive and quantitative analysis of sources, potential source regions according to source sectors and source-related human health risks of multi-year atmospheric measurements of PAHs in the Canadian Great Lakes Basin (GLB). The highest PAH concentrations were observed at a rural residential site (Egbert), followed by two regionally representative remote sites [Point Petre (PPT) and Burnt Island]. The levels of most PAHs in the GLB atmosphere significantly decreased between 1997 and 2017, broadly consistent with the decreasing trends of anthropogenic emissions. Coal, liquid fossil fuel, and biomass burning were the most common potential sources. The potential source regions for most source sectors were identified south or southwest of the sampling sites. Risk assessment suggests potential health risks associated with the inhalation of atmospheric PAHs. On a positive note, health risks from coal combustion, liquid fossil fuel combustion, and petrogenic sources at PPT significantly decreased, directly demonstrating the success of emission control in reducing health impacts. In contrast, the health risk from forest fire-related PAH emissions may play an increasing role in the future due to climate change.
Collapse
Affiliation(s)
- Wenlong Li
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Richard Park
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Nick Alexandrou
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Helena Dryfhout-Clark
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Ken Brice
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| |
Collapse
|
25
|
Lichtiger L, Rivera J, Sahay D, Miller RL. Polycyclic Aromatic Hydrocarbons and Mammary Cancer Risk: Does Obesity Matter too? JOURNAL OF CANCER IMMUNOLOGY 2021; 3:154-162. [PMID: 34734210 PMCID: PMC8561337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Breast cancer risk remains incompletely explained, and higher incidence rates of breast cancer over recent times and in urban and industrialized areas suggest environmental causes. Polycyclic aromatic hydrocarbons (PAH) are ubiquitous in the environment and epidemiological and rodent studies have shown associations between exposure to PAH and breast cancer incidence as well as mammary tumorigenesis. In addition, in vitro and rodent studies have implicated alterations in estrogen receptor alpha (Erα) signaling pathways following PAH exposure in limited experimental studies. However, our understanding of these mechanisms is incomplete. Sahay et al. addressed this gap by examining the effect of PAH exposure on epigenetic and transcriptional regulation of genes in the Erα pathway in a mouse cohort exposed to aerosolized PAH at proportions measured in urban air. In addition to alterations in the Erα signaling pathway in the pregnant mice and in their offspring and grandoffspring, the investigators observed higher body weights in mice exposed to PAH compared to the control. Given that associations between mammary tissue adiposity, systemic adiposity, and breast cancer risk have been observed previously, the finding of higher body weight in the PAH exposure group raises the possibility that body weight might influence the association between PAH exposure and breast cancer risk. Along with new analyses, we discuss the possibility that body weight may modify the association between PAH exposure, mammary cellular proliferation, and mammary gland ductal hyperplasia in offspring and grandoffspring mice and future research that may be needed to delineate these associations.
Collapse
Affiliation(s)
| | | | | | - Rachel L. Miller
- Correspondence should be addressed to Rachel L. Miller MD, FAAAAI;
| |
Collapse
|
26
|
Cathey AL, Watkins DJ, Rosario ZY, Vélez Vega CM, Loch-Caruso R, Alshawabkeh AN, Cordero JF, Meeker JD. Polycyclic aromatic hydrocarbon exposure results in altered CRH, reproductive, and thyroid hormone concentrations during human pregnancy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141581. [PMID: 32829279 PMCID: PMC7755823 DOI: 10.1016/j.scitotenv.2020.141581] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 05/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are byproducts of incomplete combustion reactions and are ubiquitous in the environment, leading to widespread human exposure via inhalation and ingestion pathways. PAHs have been implicated as endocrine disrupting compounds in previous animal and in vitro studies, but human studies are currently lacking. Pregnant women and their developing fetuses are particularly susceptible populations to environmental contaminants, in part because alterations in hormone physiology during gestation can have adverse consequences on the health of the pregnancy. We utilized data on 659 pregnant women from the PROTECT longitudinal birth cohort in Puerto Rico to assess associations between repeated measures of 8 urinary hydroxylated PAH (OH-PAH) metabolites and 9 serum hormones during gestation. Urine samples were collected at 3 study visits (median gestational ages of 18, 22, and 26 weeks at each visit, respectively) and serum samples were collected at the first and third study visits. Linear mixed effects models were used to ascertain longitudinal associations between OH-PAHs and hormones, and sensitivity analyses were employed to assess potential nonlinearity and differences in associations on the basis of fetal sex and timing of biomarker measurement. Among the multiple positive associations we observed between OH-PAHs and CRH, estriol, progesterone, T3, and the ratio of T3 to T4, and inverse associations with testosterone, the most notable are a 24.3% increase (95% CI: 13.0, 36.7) in CRH with an interquartile range (IQR) increase in 1-hydroxyphenanthrene and a 17.2% decrease (95% CI: 8.13, 25.4) in testosterone with an IQR increase in 1-hydroxynapthalene. Many associations observed were dependent on fetal sex, and some relationships showed evidence of nonlinearity. These findings demonstrate the importance of studying PAH exposures during pregnancy and highlight the potential complexity of their impacts on the physiology of human pregnancy.
Collapse
Affiliation(s)
- Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zaira Y Rosario
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Carmen M Vélez Vega
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | - José F Cordero
- College of Public Health, Athens, University of Georgia, GA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Amadou A, Coudon T, Praud D, Salizzoni P, Leffondre K, Lévêque E, Boutron-Ruault MC, Danjou AMN, Morelli X, Le Cornet C, Perrier L, Couvidat F, Bessagnet B, Caudeville J, Faure E, Mancini FR, Gulliver J, Severi G, Fervers B. Chronic Low-Dose Exposure to Xenoestrogen Ambient Air Pollutants and Breast Cancer Risk: XENAIR Protocol for a Case-Control Study Nested Within the French E3N Cohort. JMIR Res Protoc 2020; 9:e15167. [PMID: 32930673 PMCID: PMC7525465 DOI: 10.2196/15167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer is the most frequent cancer in women in industrialized countries. Lifestyle and environmental factors, particularly endocrine-disrupting pollutants, have been suggested to play a role in breast cancer risk. Current epidemiological studies, although not fully consistent, suggest a positive association of breast cancer risk with exposure to several International Agency for Research on Cancer Group 1 air-pollutant carcinogens, such as particulate matter, polychlorinated biphenyls (PCB), dioxins, Benzo[a]pyrene (BaP), and cadmium. However, epidemiological studies remain scarce and inconsistent. It has been proposed that the menopausal status could modify the relationship between pollutants and breast cancer and that the association varies with hormone receptor status. Objective The XENAIR project will investigate the association of breast cancer risk (overall and by hormone receptor status) with chronic exposure to selected air pollutants, including particulate matter, nitrogen dioxide (NO2), ozone (O3), BaP, dioxins, PCB-153, and cadmium. Methods Our research is based on a case-control study nested within the French national E3N cohort of 5222 invasive breast cancer cases identified during follow-up from 1990 to 2011, and 5222 matched controls. A questionnaire was sent to all participants to collect their lifetime residential addresses and information on indoor pollution. We will assess these exposures using complementary models of land-use regression, atmospheric dispersion, and regional chemistry-transport (CHIMERE) models, via a Geographic Information System. Associations with breast cancer risk will be modeled using conditional logistic regression models. We will also study the impact of exposure on DNA methylation and interactions with genetic polymorphisms. Appropriate statistical methods, including Bayesian modeling, principal component analysis, and cluster analysis, will be used to assess the impact of multipollutant exposure. The fraction of breast cancer cases attributable to air pollution will be estimated. Results The XENAIR project will contribute to current knowledge on the health effects of air pollution and identify and understand environmental modifiable risk factors related to breast cancer risk. Conclusions The results will provide relevant evidence to governments and policy-makers to improve effective public health prevention strategies on air pollution. The XENAIR dataset can be used in future efforts to study the effects of exposure to air pollution associated with other chronic conditions. International Registered Report Identifier (IRRID) DERR1-10.2196/15167
Collapse
Affiliation(s)
- Amina Amadou
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France.,Inserm UA 08 Radiations: Défense, Santé, Environnement, Lyon, France
| | - Thomas Coudon
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France.,Ecole Centrale de Lyon, INSA, Université Claude Bernard Lyon 1, Ecully, France
| | - Delphine Praud
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France.,Inserm UA 08 Radiations: Défense, Santé, Environnement, Lyon, France
| | - Pietro Salizzoni
- Ecole Centrale de Lyon, INSA, Université Claude Bernard Lyon 1, Ecully, France
| | - Karen Leffondre
- ISPED, Inserm U1219, Bordeaux Population Health Center, Université de Bordeaux, Bordeaux, France
| | - Emilie Lévêque
- ISPED, Inserm U1219, Bordeaux Population Health Center, Université de Bordeaux, Bordeaux, France
| | - Marie-Christine Boutron-Ruault
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Faculté de Médecine, Université Paris-Saclay, Villejuif, France
| | - Aurélie M N Danjou
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
| | - Xavier Morelli
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
| | - Charlotte Le Cornet
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France.,Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lionel Perrier
- Univ Lyon, Centre Léon Bérard, GATE L-SE UMR 5824, Lyon, France
| | - Florian Couvidat
- National Institute for industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Bertrand Bessagnet
- National Institute for industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Julien Caudeville
- National Institute for industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Elodie Faure
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
| | - Francesca Romana Mancini
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Faculté de Médecine, Université Paris-Saclay, Villejuif, France
| | - John Gulliver
- Centre for Environmental Health and Sustainability, School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Faculté de Médecine, Université Paris-Saclay, Villejuif, France
| | - Béatrice Fervers
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France.,Inserm UA 08 Radiations: Défense, Santé, Environnement, Lyon, France
| |
Collapse
|
28
|
Fernández-Martínez NF, Ching-López A, Olry de Labry Lima A, Salamanca-Fernández E, Pérez-Gómez B, Jiménez-Moleón JJ, Sánchez MJ, Rodríguez-Barranco M. Relationship between exposure to mixtures of persistent, bioaccumulative, and toxic chemicals and cancer risk: A systematic review. ENVIRONMENTAL RESEARCH 2020; 188:109787. [PMID: 32798941 DOI: 10.1016/j.envres.2020.109787] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 05/15/2023]
Abstract
Environmental risks are responsible for one in five of all deaths worldwide. Persistent, bioaccumulative, and toxic substances are chemicals that can subsist for decades in human tissues and the environment. They include heavy metals, organochlorines, polychlorinated biphenyls, organobromines, organofluorines, and polycyclic aromatic hydrocarbons among others. Although humans are often exposed to multiple pollutants simultaneously, their negative effects on health have generally been studied for each one separately. Among the most severe of these harmful effects is cancer. Here, to compile and analyze the available evidence on the relationship between exposure to mixtures of persistent, bioaccumulative, and toxic chemicals and the risk of developing cancer in the general population, we provide a systematic review based on the main databases (Cochrane, PubMed and Embase), together with complementary sources, using the general methodology of the PRISMA Statement. The articles analyzed were selected by two researchers working independently and their quality was evaluated by reference to the Newcastle-Ottawa scale. The initial search yielded 2379 results from the main sources of information and 22 from the complementary ones. After the article selection process, 22 were included in the final review (21 case-control studies and one cohort study). Analysis of the selected studies revealed that most of the mixtures analyzed were positively associated with risk of cancer, especially that of the breast, colon-rectum or testis, and more strongly so than each contaminant alone. In view of the possible stronger association observed with the development of cancer for some mixtures of pollutants than when each one is present separately, exposure to mixtures should also be monitored and measured, preferably in cohort designs, to complement the traditional approach to persistent, bioaccumulative, and toxic chemicals. The results presented should be taken into account in public health policies in order to strengthen the regulatory framework for cancer prevention and control.
Collapse
Affiliation(s)
- Nicolás Francisco Fernández-Martínez
- Unidad de Gestión Clínica Interniveles de Prevención, Promoción y Vigilancia de La Salud, Hospital Universitario Reina Sofía, Córdoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Córdoba, Spain
| | - Ana Ching-López
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Andalusian School of Public Health (EASP), Granada, Spain
| | - Antonio Olry de Labry Lima
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Elena Salamanca-Fernández
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Beatriz Pérez-Gómez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - José Juan Jiménez-Moleón
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Maria José Sánchez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain.
| | - Miguel Rodríguez-Barranco
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| |
Collapse
|
29
|
Carbon nanotube filler enhances incinerated thermoplastics-induced cytotoxicity and metabolic disruption in vitro. Part Fibre Toxicol 2020; 17:40. [PMID: 32787867 PMCID: PMC7424660 DOI: 10.1186/s12989-020-00371-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/28/2020] [Indexed: 11/11/2022] Open
Abstract
Background Engineered nanomaterials are increasingly being incorporated into synthetic materials as fillers and additives. The potential pathological effects of end-of-lifecycle recycling and disposal of virgin and nano-enabled composites have not been adequately addressed, particularly following incineration. The current investigation aims to characterize the cytotoxicity of incinerated virgin thermoplastics vs. incinerated nano-enabled thermoplastic composites on two in vitro pulmonary models. Ultrafine particles released from thermally decomposed virgin polycarbonate or polyurethane, and their carbon nanotube (CNT)-enabled composites were collected and used for acute in vitro exposure to primary human small airway epithelial cell (pSAEC) and human bronchial epithelial cell (Beas-2B) models. Post-exposure, both cell lines were assessed for cytotoxicity, proliferative capacity, intracellular ROS generation, genotoxicity, and mitochondrial membrane potential. Results The treated Beas-2B cells demonstrated significant dose-dependent cellular responses, as well as parent matrix-dependent and CNT-dependent sensitivity. Cytotoxicity, enhancement in reactive oxygen species, and dissipation of ΔΨm caused by incinerated polycarbonate were significantly more potent than polyurethane analogues, and CNT filler enhanced the cellular responses compared to the incinerated parent particles. Such effects observed in Beas-2B were generally higher in magnitude compared to pSAEC at treatments examined, which was likely attributable to differences in respective lung cell types. Conclusions Whilst the effect of the treatments on the distal respiratory airway epithelia remains limited in interpretation, the current in vitro respiratory bronchial epithelia model demonstrated profound sensitivity to the test particles at depositional doses relevant for occupational cohorts.
Collapse
|
30
|
Zeinomar N, Oskar S, Kehm RD, Sahebzeda S, Terry MB. Environmental exposures and breast cancer risk in the context of underlying susceptibility: A systematic review of the epidemiological literature. ENVIRONMENTAL RESEARCH 2020; 187:109346. [PMID: 32445942 PMCID: PMC7314105 DOI: 10.1016/j.envres.2020.109346] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND The evidence evaluating environmental chemical exposures (ECE) and breast cancer (BC) risk is heterogeneous which may stem in part as few studies measure ECE during key BC windows of susceptibility (WOS). Another possibility may be that most BC studies are skewed towards individuals at average risk, which may limit the ability to detect signals from ECE. OBJECTIVES We reviewed the literature on ECE and BC focusing on three types of studies or subgroup analyses based on higher absolute BC risk: BC family history (Type 1); early onset BC (Type 2); and/or genetic susceptibility (Type 3). METHODS We systematically searched the PubMed database to identify epidemiologic studies examining ECE and BC risk published through June 1, 2019. RESULTS We identified 100 publications in 56 unique epidemiologic studies. Of these 56 studies, only 2 (3.6%) were enriched with BC family history and only 11% of studies (6/56) were specifically enriched with early onset cases. 80% of the publications from these 8 enriched studies (Type 1: 8/10 publications; Type 2: 8/10 publications) supported a statistically significant association between ECE and BC risk including studies of PAH, indoor cooking, NO2, DDT; PCBs, PFOSA; metals; personal care products; and occupational exposure to industrial dyes. 74% of Type 3 publications (20/27) supported statistically significant associations for PAHs, traffic-related air pollution, PCBs, phthalates, and PFOSAs in subgroups of women with greater genetic susceptibility due to variants in carcinogen metabolism, DNA repair, oxidative stress, cellular apoptosis and tumor suppressor genes. DISCUSSION Studies enriched for women at higher BC risk through family history, younger age of onset and/or genetic susceptibility consistently support an association between an ECE and BC risk. In addition to measuring exposures during WOS, designing studies that are enriched with women at higher absolute risk are necessary to robustly measure the role of ECE on BC risk.
Collapse
Affiliation(s)
- Nur Zeinomar
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sabine Oskar
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rebecca D Kehm
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Shamin Sahebzeda
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
31
|
Liu T, Song Y, Chen R, Zheng R, Wang S, Li L. Solid fuel use for heating and risks of breast and cervical cancer mortality in China. ENVIRONMENTAL RESEARCH 2020; 186:109578. [PMID: 32380244 DOI: 10.1016/j.envres.2020.109578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Carcinogens released from indoor burning of solid fuels are believed to enter the bloodstream and to be metabolized in breast and cervical tissues. Little evidence exists about the relationship of solid fuel use from heating with breast and cervical cancer. OBJECTIVES To examine the association of solid heating fuel use with breast and cervical cancer mortality. METHODS This study included female participants aged 30-79 years who were enrolled in the China Kadoorie Biobank during 2004-2008 from 10 diverse regions across China. During a 10.2-year median follow-up, 177 breast cancer deaths and 113 cervical cancer deaths were documented. Multivariable Cox regression models yielded adjusted hazard ratios (HRs) for the associations of self-reported long-term heating fuel exposure with two cancer deaths. Stratified analyses were used to assess effect modification. RESULTS We included 236,116 participants for breast cancer analyses and 228,795 for cervical cancer analyses. Compared with non-solid fuel use, the fully adjusted HRs of cervical cancer deaths were 1.75 (0.91-3.38) for wood use, 2.23 (1.09-4.59) for mixed fuel (coal and wood) use. No evident relationship was observed for breast cancer deaths. Cervical cancer risk increased with the duration of solid fuel use (P for trend = 0.041). Elevated cervical cancer risk was observed in post-menopausal women (HR 2.01, 1.01-4.03), not in pre-menopausal women (HR 0.77, 0.56-2.31) (P for heterogeneity = 0.004); and in those aged ≥50 years (HR 2.56, 1.17-5.86), not in those aged < 50 years (HR 0.69, 0.26-1.84) (P < 0.001). CONCLUSION Indoor solid fuel combustion for heating may be associated with a higher risk for cervical cancer death, but not for breast cancer. The strength of the association increased with the duration of exposure and was modified by age and menopause status.
Collapse
Affiliation(s)
- Tanxin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yongfeng Song
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ru Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongshou Zheng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengfeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
32
|
Drivers of Foliar Fungal Endophytic Communities of Kudzu (Pueraria montana var. lobata) in the Southeast United States. DIVERSITY 2020. [DOI: 10.3390/d12050185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fungal endophytes play important roles in plant fitness and plant–microbe interactions. Kudzu (Pueraria montana var. lobata) is a dominant, abundant, and highly aggressive invasive plant in the Southeast United States. Kudzu serves as a pathogen reservoir that impacts economically important leguminous crops. We conducted the first investigations on kudzu fungal endophytes (Illumina MiSeq—ITS2) to elucidate drivers of endophytic communities across the heart of the invasive range in the Southeast United States (TN, MS, AL, GA). We tested the impacts of multiple environmental parameters (Chlorophyll, NO3−, K+, soil pH, leaf area, host genotype, traffic intensity, and geographic location) on foliar endophyte communities. Endophytic communities were diverse and structured by many factors in our PerMANOVA analyses, but location, genotype, and traffic (proxy for pollution) were the strongest drivers of community composition (R2 = 0.152, p < 0.001, R2 = 0.129, p < 0.001, and R2 = 0.126, p < 0.001, respectively). Further, we examined the putative ecological interactions between endophytic fungi and plant pathogens. We identify numerous OTUs that are positively and strongly associated with pathogen occurrence, largely within the families Montagnulaceae and Tremellales incertae sedis. Taken together, these data suggest location, host genetics and local pollution play instrumental roles in structuring communities, and integrative plant management must consider these factors when developing management strategies.
Collapse
|
33
|
Cohen G, Steinberg DM, Keinan-Boker L, Yuval, Levy I, Chen S, Shafran-Nathan R, Levin N, Shimony T, Witberg G, Bental T, Shohat T, Broday DM, Kornowski R, Gerber Y. Preexisting coronary heart disease and susceptibility to long-term effects of traffic-related air pollution: A matched cohort analysis. Eur J Prev Cardiol 2020; 28:2047487320921987. [PMID: 32389024 DOI: 10.1177/2047487320921987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Individuals with coronary heart disease are considered susceptible to traffic-related air pollution exposure. Yet, cohort-based evidence on whether preexisting coronary heart disease modifies the association of traffic-related air pollution with health outcomes is lacking. AIM Using data of four Israeli cohorts, we compared associations of traffic-related air pollution with mortality and cancer between coronary heart disease patients and matched controls from the general population. METHODS Subjects hospitalized with acute coronary syndrome from two patient cohorts (inception years: 1992-1993 and 2006-2014) were age- and sex-matched to coronary heart disease-free participants of two cycles of the Israeli National Health and Nutrition Surveys (inception years: 1999-2001 and 2005-2006). Ambient concentrations of nitrogen oxides at the residential place served as a proxy for traffic-related air pollution exposure across all cohorts, based on a high-resolution national land use regression model (50 m). Data on all-cause mortality (last update: 2018) and cancer incidence (last update: 2016) were retrieved from national registries. Cox-derived stratum-specific hazard ratios with 95% confidence intervals were calculated, adjusted for harmonized covariates across cohorts, including age, sex, ethnicity, neighborhood socioeconomic status, smoking, diabetes, hypertension, prior stroke and prior malignancy (the latter only in the mortality analysis). Effect-modification was examined by testing nitrogen oxides-by-coronary heart disease interaction term in the entire matched cohort. RESULTS The cohort (mean (standard deviation) age 61.5 (14) years; 44% women) included 2393 matched pairs, among them 2040 were cancer-free at baseline. During a median (25th-75th percentiles) follow-up of 13 (10-19) and 11 (7-17) years, 1458 deaths and 536 new cancer cases were identified, respectively. In multivariable-adjusted models, a 10-parts per billion nitrogen oxides increment was positively associated with all-cause mortality among coronary heart disease patients (hazard ratio = 1.13, 95% confidence interval 1.05-1.22), but not among controls (hazard ratio = 1.00, 0.93-1.08) (pinteraction = 0.003). A similar pattern was seen for all-cancer incidence (hazard ratioCHD = 1.19 (1.03-1.37), hazard ratioCHD-Free = 0.93 (0.84-1.04) (pinteraction = 0.01)). Associations were robust to multiple sensitivity analyses. CONCLUSIONS Coronary heart disease patients might be at increased risk for traffic-related air pollution-associated mortality and cancer, irrespective of their age and sex. Patients and clinicians should be more aware of the adverse health effects on coronary heart disease patients of chronic exposure to vehicle emissions.
Collapse
Affiliation(s)
- Gali Cohen
- Department of Epidemiology and Preventive Medicine, Tel Aviv University, Israel
- Stanley Steyer Institute for Cancer Epidemiology and Research, Tel Aviv University, Israel
| | - David M Steinberg
- Department of Statistics and Operations Research, Tel Aviv University, Israel
| | - Lital Keinan-Boker
- Israel Center for Disease Control, Israel Ministry of Health, Israel
- School of Public Health, University of Haifa, Israel
| | - Yuval
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Ilan Levy
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Shimon Chen
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Rakefet Shafran-Nathan
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Noam Levin
- Department of Geography, Hebrew University of Jerusalem, Israel
- Remote Sensing Research Centre, School of Earth and Environmental Sciences, The University of Queensland, Australia
| | - Tal Shimony
- Israel Center for Disease Control, Israel Ministry of Health, Israel
| | - Guy Witberg
- Remote Sensing Research Centre, School of Earth and Environmental Sciences, The University of Queensland, Australia
- Department of Cardiology, Rabin Medical Center (Beilinson and Hasharon Hospitals), Israel
| | - Tamir Bental
- Remote Sensing Research Centre, School of Earth and Environmental Sciences, The University of Queensland, Australia
| | - Tamar Shohat
- Department of Epidemiology and Preventive Medicine, Tel Aviv University, Israel
| | - David M Broday
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Ran Kornowski
- Remote Sensing Research Centre, School of Earth and Environmental Sciences, The University of Queensland, Australia
- Deptartment of Cardiovascular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Yariv Gerber
- Department of Epidemiology and Preventive Medicine, Tel Aviv University, Israel
- Stanley Steyer Institute for Cancer Epidemiology and Research, Tel Aviv University, Israel
| |
Collapse
|
34
|
Iamiceli AL, Abate V, Abballe A, Bena A, De Filippis SP, De Luca S, Fulgenzi AR, Iacovella N, Ingelido AM, Marra V, Miniero R, Farina E, Gandini M, Orengia M, De Felip E. Biomonitoring of the adult population in the area of turin waste incinerator: Baseline levels of polycyclic aromatic hydrocarbon metabolites. ENVIRONMENTAL RESEARCH 2020; 181:108903. [PMID: 31806290 DOI: 10.1016/j.envres.2019.108903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 05/18/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) was assessed in a cohort of 394 subjects, 198 residing in three small municipalities near a new waste-to-energy (WTE) incinerator located in the Turin area, and 196 residing in neighbouring control areas in the town (of Turin). The assessment of exposure to PAHs was part of a human biomonitoring study aimed at assessing potential incremental exposure to pollutants related to incineration activities through the analysis of such pollutants before the plant start-up, and after one and three years of operation. The exposure assessment described in this study was carried out before the start-up of the WTE incinerator. Ten monohydroxy-PAHs (OH-PAHs) were analyzed in urine samples, consisting in the principal metabolites of naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), and pyrene (PYR). Concentrations of the sum of OH-PAHs (Σ10OH-PAHs) were in the range of 525-85200 ng/g creatinine, with P50 equal to 6770 ng/g creatinine. Metabolites of naphthalene were found at the highest concentrations (P50 values of 892 and 4300 ng/g creatinine for 1- and 2-OH-NAP, respectively) followed by the three OH-FLUs (P50 values of individual compounds in the range of 58.2-491 ng/g creatinine), the four OH-PHEs (P50 values in the range of 30.5-145 ng/g creatinine), and 1-OH-PYR (P50 value of 82.8 ng/g creatinine). Concentrations of 1-OH-NAP, 9-OH-FLU, 1-, 2-, 3, 4-OH-PHE, and 1-OH-PYR were significantly lower in subjects living near the WTE plant compared to those living in the town of Turin, with differences between the two groups in the range 14-31%. Smoking habits markedly influence the urinary concentrations OH-PAHs. Median concentrations of the single metabolites in smokers were from 1.4 fold (for 4-OH-PHE) to 14 fold higher (for 3-OH-FLU) than those observed in non-smokers. The heating system used also resulted to be a major contributor to PAH exposure. Concentrations of OH-PAHs were generally comparable with those observed in other industrialized countries. The profile pattern was consistent with those reported in the literature. Concentrations of OH-PAHs assessed in this study may be considered indicative of the background exposure to PAHs for adult population living in an urban and industrialized area.
Collapse
Affiliation(s)
- Anna Laura Iamiceli
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Vittorio Abate
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Annalisa Abballe
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonella Bena
- Department of Epidemiology, ASL TO3, Via Sabaudia 164, 10095, Turin, Grugliasco, Italy
| | - Stefania P De Filippis
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Silvia De Luca
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Anna Rita Fulgenzi
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Nicola Iacovella
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Anna Maria Ingelido
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Valentina Marra
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Roberto Miniero
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Elena Farina
- Department of Epidemiology, ASL TO3, Via Sabaudia 164, 10095, Turin, Grugliasco, Italy
| | - Martina Gandini
- Department of Epidemiology and Environmental Health, Regional Environmental Protection Agency, Via Pio VII 9, 10135, Turin, Italy
| | - Manuela Orengia
- Department of Epidemiology, ASL TO3, Via Sabaudia 164, 10095, Turin, Grugliasco, Italy
| | - Elena De Felip
- Department of Environment and Health, Italian National Institute for Health, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
35
|
Maesano CN, Morel G, Matynia A, Ratsombath N, Bonnety J, Legros G, Da Costa P, Prud'homme J, Annesi-Maesano I. Impacts on human mortality due to reductions in PM 10 concentrations through different traffic scenarios in Paris, France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134257. [PMID: 31494426 DOI: 10.1016/j.scitotenv.2019.134257] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/24/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES Air pollution is a well-known burden for population health and health systems worldwide. Reduction in air pollution is associated with improvements in mortality and rates of respiratory, cardiovascular and other diseases. Though air quality is a problem globally, efforts to lower air pollutant concentrations are usually regional or local. In industrialized countries, most urban air pollution is caused by vehicles, suggesting reductions in traffic would result in reductions of pollution. However, detailed data on how such reductions can be achieved and impact public health is just beginning to emerge, and other influencing factors, including vehicle flow or urban landscape are largely unaccounted for. METHODS We utilized a unique combination of vehicle emission measurements combined with simulations of traffic and vehicle variations, as well as urban topographies, to quantify health impacts of PM10 reduction in a single district of Paris, France, for various methods of traffic improvement. Here we rank and evaluate improvements in non-accidental mortality for thirteen possible scenarios to reduce traffic related PM10 emissions. RESULTS The maximum impact scenario requires all passenger vehicles to meet Euro 5 standards and excludes diesel vehicles, resulting in long-term decreases in non-accidental mortality of 148.79 people per year, or 104.40 per 100,000 people. Similar reductions hold for the scenario requiring a completely electric passenger fleet, with long-term annual reductions of 137.14 premature mortalities. Removing all diesel vehicles is the third most impactful scenario, preventing 135.55 deaths yearly. DISCUSSION PARTLESS provides comparisons between thirteen different traffic-related air quality reduction mechanisms in terms of improvements in mortality rates. Improving emissions standards, increasing electric vehicle use and removing diesel vehicles can prevent more than 148 deaths per year in this district alone. Further improvements in mortality reduction may require changes to the composition of vehicle components, asphalt or to the management of resuspended particulate matter.
Collapse
Affiliation(s)
- C N Maesano
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, F75013 Paris, France.
| | - G Morel
- UTC Sorbonne Université, Université de Technologie de Compiegne, EA 7284 Avenues, Centre Pierre Guillaumat, CS 60319-60203 Compeigne, France
| | - A Matynia
- Sorbonne Université, UPMC Paris 06, CNRS UMR 7190, Institut Jean le Rond d'Alembert, Paris, France
| | - N Ratsombath
- UTC Sorbonne Université, Université de Technologie de Compiegne, EA 7284 Avenues, Centre Pierre Guillaumat, CS 60319-60203 Compeigne, France
| | - J Bonnety
- Sorbonne Université, UPMC Paris 06, CNRS UMR 7190, Institut Jean le Rond d'Alembert, Paris, France
| | - G Legros
- Sorbonne Université, UPMC Paris 06, CNRS UMR 7190, Institut Jean le Rond d'Alembert, Paris, France
| | - P Da Costa
- Sorbonne Université, UPMC Paris 06, CNRS UMR 7190, Institut Jean le Rond d'Alembert, Paris, France
| | - J Prud'homme
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, F75013 Paris, France
| | - I Annesi-Maesano
- INSERM, Sorbonne Université, Institut Pierre Louis d'Épidémiologie et de Santé Publique, F75013 Paris, France
| |
Collapse
|
36
|
Liu H, Ma S, Zhang X, Yu Y. Application of thermal desorption methods for airborne polycyclic aromatic hydrocarbon measurement: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113018. [PMID: 31419659 DOI: 10.1016/j.envpol.2019.113018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Thermal desorption (TD) is a universal solvent-free pre-concentration technique. It is often used to pre-concentrate semi-volatile and volatile organic compounds in various sample types. Polycyclic aromatic hydrocarbons (PAHs) are widespread contaminants from incomplete combustion of organic matter and fossil fuel, which have carcinogenic effects on human health. Conventional methods for determining PAHs, represented by solvent extraction, are gradually being replaced by solvent-free methods, typically the TD technique, because of TD's many advantages, including time savings and environmentally friendly treatment. This work presents an extensive review of the universal methods used to determine PAHs in the atmosphere based on the TD technique. The methods currently used for collection and detection of both gas- and particle-phase PAHs in the air are critically reviewed. In addition, the operating parameters of the TD unit are summarized and discussed. The design shortcomings of existing studies and the problems that researchers should address are presented, and promising alternatives are suggested. This paper also discusses important parameters, such as reproducibility and limit of detection, that form a crucial part of quality assurance. Finally, the limitations and the future prospects of the TD technique for use in airborne PAH analyses are addressed. This is the first review of the latest developments of the TD technique for analysis of PAHs and their derivatives in the atmosphere.
Collapse
Affiliation(s)
- Hao Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Xiaolan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
37
|
White AJ, Keller JP, Zhao S, Carroll R, Kaufman JD, Sandler DP. Air Pollution, Clustering of Particulate Matter Components, and Breast Cancer in the Sister Study: A U.S.-Wide Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107002. [PMID: 31596602 PMCID: PMC6867190 DOI: 10.1289/ehp5131] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Particulate matter (PM) is a complex mixture. Geographic variations in PM may explain the lack of consistent associations with breast cancer. OBJECTIVE We aimed to evaluate the relationship between air pollution, PM components, and breast cancer risk in a United States-wide prospective cohort. METHODS We estimated annual average ambient residential levels of particulate matter <2.5 μm and <10 μm in aerodynamic diameter (PM2.5 and PM10, respectively) and nitrogen dioxide (NO2) using land-use regression for 47,433 Sister Study participants (breast cancer-free women with a sister with breast cancer) living in the contiguous United States. Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for risk associated with an interquartile range (IQR) increase in pollutants. Predictive k-means were used to assign participants to clusters derived from PM2.5 component profiles to evaluate the impact of heterogeneity in the PM2.5 mixture. For PM2.5, we investigated effect measure modification by component cluster membership and by geographic region without regard to air pollution mixture. RESULTS During follow-up (mean=8.4 y), 2,225 invasive and 623 ductal carcinoma in situ (DCIS) cases were identified. PM2.5 and NO2 were associated with breast cancer overall [HR=1.05 (95% CI:0.99, 1.11) and 1.06 (95% CI:1.02, 1.11), respectively] and with DCIS but not with invasive cancer. Invasive breast cancer was associated with PM2.5 only in the Western United States [HR=1.14 (95% CI:1.02, 1.27)] and NO2 only in the Southern United States [HR=1.16 (95% CI:1.01, 1.33)]. PM2.5 was associated with a higher risk of invasive breast cancer among two of seven identified composition-based clusters. A higher risk was observed [HR=1.25 (95% CI: 0.97, 1.60)] in a California-based cluster characterized by low S and high Na and nitrate (NO3-) fractions and for another Western United States cluster [HR=1.60 (95% CI: 0.90, 2.85)], characterized by high fractions of Si, Ca, K, and Al. CONCLUSION Air pollution measures were related to both invasive breast cancer and DCIS within certain geographic regions and PM component clusters. https://doi.org/10.1289/EHP5131.
Collapse
Affiliation(s)
- Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Joshua P. Keller
- Department of Statistics, Colorado State University, Fort Collins, Colorado, USA
| | - Shanshan Zhao
- Biostatistics Branch, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Rachel Carroll
- Department of Mathematics and Statistics, University of North Carolina at Wilmington, North Carolina, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
38
|
Cohen G, Steinberg DM, Levy I, Chen S, Kark JD, Levin N, Witberg G, Bental T, Broday DM, Kornowski R, Gerber Y. Cancer and mortality in relation to traffic-related air pollution among coronary patients: Using an ensemble of exposure estimates to identify high-risk individuals. ENVIRONMENTAL RESEARCH 2019; 176:108560. [PMID: 31295664 DOI: 10.1016/j.envres.2019.108560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Moderate correlations were previously observed between individual estimates of traffic-related air pollution (TRAP) produced by different exposure modeling approaches. This induces exposure misclassification for a substantial fraction of subjects. AIM We used an ensemble of well-established modeling approaches to increase certainty of exposure classification and reevaluated the association with cancers previously linked to TRAP (lung, breast and prostate), other cancers, and all-cause mortality in a cohort of coronary patients. METHODS Patients undergoing percutaneous coronary interventions in a major Israeli medical center from 2004 to 2014 (n = 10,627) were followed for cancer (through 2015) and mortality (through 2017) via national registries. Residential exposure to nitrogen oxides (NOx) -a proxy for TRAP- was estimated by optimized dispersion model (ODM) and land use regression (LUR) (rPearson = 0.50). Mutually exclusive groups of subjects classified as exposed by none of the methods (high-certainty low-exposed), ODM alone, LUR alone, or both methods (high-certainty high-exposed) were created. Associations were examined using Cox regression models. RESULTS During follow-up, 741 incident cancer cases were diagnosed and 3051 deaths occurred. Using a ≥25 ppb cutoff, compared with high-certainty low exposed, the multivariable-adjusted hazard ratios (95% confidence intervals) for lung, breast and prostate cancer were 1.56 (1.13-2.15) in high-certainty exposed, 1.27 (0.86-1.86) in LUR-exposed alone, and 1.13 (0.77-1.65) in ODM-exposed alone. The association of the former category was strengthened using more extreme NOx cutoffs. A similar pattern, albeit less strong, was observed for mortality, whereas no association was shown for cancers not previously linked to TRAP. CONCLUSIONS Use of an ensemble of TRAP exposure estimates may improve classification, resulting in a stronger association with outcomes.
Collapse
Affiliation(s)
- Gali Cohen
- Dept. of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David M Steinberg
- Dept. of Statistics and Operations Research, School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Levy
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Shimon Chen
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Jeremy D Kark
- Epidemiology Unit, Braun School of Public Health and Community Medicine, Hebrew University and Hadassah Medical Organization, Jerusalem, Israel
| | - Noam Levin
- Dept. of Geography, Hebrew University of Jerusalem, Israel
| | - Guy Witberg
- Dept. of Cardiology, Rabin Medical Center, Petach-Tikva, Israel; Dept. of Cardiovascular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Bental
- Dept. of Cardiology, Rabin Medical Center, Petach-Tikva, Israel
| | - David M Broday
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Ran Kornowski
- Dept. of Cardiology, Rabin Medical Center, Petach-Tikva, Israel; Dept. of Cardiovascular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yariv Gerber
- Dept. of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Stanley Steyer Institute for Cancer Epidemiology and Research, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
39
|
Niehoff NM, Gammon MD, Keil AP, Nichols HB, Engel LS, Sandler DP, White AJ. Airborne mammary carcinogens and breast cancer risk in the Sister Study. ENVIRONMENT INTERNATIONAL 2019; 130:104897. [PMID: 31226564 PMCID: PMC6679994 DOI: 10.1016/j.envint.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Potentially carcinogenic hazardous air pollutants (air toxics) have been inconsistently associated with breast cancer. Whether metabolic factors modify these associations is unknown. We studied 29 non-metallic air toxics classified as mammary gland carcinogens in animal studies in relation to breast cancer risk. METHODS Participants included 49,718 women from the Sister Study. Census tract air toxic concentration estimates from the 2005 National Air Toxics Assessment were linked to enrollment residential addresses. Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for individual air toxics were estimated using Cox regression. Body mass index (BMI) was considered a potential modifier. Relevant mixtures were identified using classification trees. RESULTS Over follow-up (average = 8.4 years), 2975 women were newly diagnosed with breast cancer (invasive or ductal carcinoma in situ). Several air toxics, including methylene chloride, polycyclic organic matter, propylene dichloride, and styrene, were associated with increased risk. Of these, methylene chloride was most consistently associated with risk across multiple analyses. It was associated with overall (HRquintile 4vs1 = 1.21 (95%CI = 1.07-1.38)) and estrogen receptor positive (ER+) invasive breast cancer (HRquintile 4vs1 = 1.28 (95%CI = 1.08-1.52)) in individual pollutant models, although no dose-response was observed. Associations were stronger among overweight/obese (vs. non-overweight/obese) women (p < 0.05) for six air toxics. The classification tree identified combinations of age, methylene chloride, BMI, and four other toxics (propylene dichloride, ethylene dibromide, ethylidene dichloride, styrene) related to overall breast cancer. CONCLUSIONS Some non-metallic air toxics, particularly methylene chloride, were associated with the hazard for overall and ER+ breast cancer. Overweight/obese women may be particularly susceptible to air toxics.
Collapse
Affiliation(s)
- Nicole M Niehoff
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America.
| | - Marilie D Gammon
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Alexander P Keil
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Hazel B Nichols
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| |
Collapse
|
40
|
Terry MB, Michels KB, Brody JG, Byrne C, Chen S, Jerry DJ, Malecki KMC, Martin MB, Miller RL, Neuhausen SL, Silk K, Trentham-Dietz A. Environmental exposures during windows of susceptibility for breast cancer: a framework for prevention research. Breast Cancer Res 2019; 21:96. [PMID: 31429809 PMCID: PMC6701090 DOI: 10.1186/s13058-019-1168-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background The long time from exposure to potentially harmful chemicals until breast cancer occurrence poses challenges for designing etiologic studies and for implementing successful prevention programs. Growing evidence from animal and human studies indicates that distinct time periods of heightened susceptibility to endocrine disruptors exist throughout the life course. The influence of environmental chemicals on breast cancer risk may be greater during several windows of susceptibility (WOS) in a woman’s life, including prenatal development, puberty, pregnancy, and the menopausal transition. These time windows are considered as specific periods of susceptibility for breast cancer because significant structural and functional changes occur in the mammary gland, as well as alterations in the mammary micro-environment and hormone signaling that may influence risk. Breast cancer research focused on these breast cancer WOS will accelerate understanding of disease etiology and prevention. Main text Despite the plausible heightened mechanistic influences of environmental chemicals on breast cancer risk during time periods of change in the mammary gland’s structure and function, most human studies of environmental chemicals are not focused on specific WOS. This article reviews studies conducted over the past few decades that have specifically addressed the effect of environmental chemicals and metals on breast cancer risk during at least one of these WOS. In addition to summarizing the broader evidence-base specific to WOS, we include discussion of the NIH-funded Breast Cancer and the Environment Research Program (BCERP) which included population-based and basic science research focused on specific WOS to evaluate associations between breast cancer risk and particular classes of endocrine-disrupting chemicals—including polycyclic aromatic hydrocarbons, perfluorinated compounds, polybrominated diphenyl ethers, and phenols—and metals. We outline ways in which ongoing transdisciplinary BCERP projects incorporate animal research and human epidemiologic studies in close partnership with community organizations and communication scientists to identify research priorities and effectively translate evidence-based findings to the public and policy makers. Conclusions An integrative model of breast cancer research is needed to determine the impact and mechanisms of action of endocrine disruptors at different WOS. By focusing on environmental chemical exposure during specific WOS, scientists and their community partners may identify when prevention efforts are likely to be most effective.
Collapse
Affiliation(s)
- Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1611, New York, NY, 10032, USA
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, 650 Charles E. Young Drive South, CHS 71-254, Los Angeles, CA, 90095, USA
| | | | - Celia Byrne
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road A-1039F, Bethesda, MD, 20814, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, Duarte, CA, 91010, USA
| | - D Joseph Jerry
- Pioneer Valley Life Sciences Institute and Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant St., Amherst, MA, 01003, USA
| | - Kristen M C Malecki
- Department of Population Health Sciences and the Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St., WARF Room 605, Madison, WI, 53726, USA
| | - Mary Beth Martin
- Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University Medical Center, E411 New Research Building, Washington, DC, 20057, USA
| | - Rachel L Miller
- Departments of Medicine, Pediatrics, Environmental Health Sciences; Vagelos College of Physicians and Surgeons, Mailman School of Public Health, Columbia University, PH8E-101B, 630 W. 168th St, New York, NY, 10032, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Kami Silk
- Department of Communication, University of Delaware, 250 Pearson Hall, 125 Academy St, Newark, DE, 19716, USA
| | - Amy Trentham-Dietz
- Department of Population Health Sciences and Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St., WARF Room 307, Madison, WI, 53726, USA.
| | | |
Collapse
|
41
|
Sahay D, Terry MB, Miller R. Is breast cancer a result of epigenetic responses to traffic-related air pollution? A review of the latest evidence. Epigenomics 2019; 11:701-714. [PMID: 31070457 DOI: 10.2217/epi-2018-0158] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Environmental toxicants can exert adverse health effects via epigenetic regulation. We conducted a review of studies assessing traffic-related air pollution (TRAP) exposure and breast cancer (BC) risk, and the evidence for epigenetic mediation. 14 epidemiological studies demonstrated associations between TRAP exposure and BC risk, in which a total of 26 comparisons were assessed. 11 of these comparisons reported a positive association; whereas 15 comparisons were negative. Five publications linked TRAP exposure to epigenetic alterations in genes that may be related to BC risk. One animal study provided evidence of TRAP-treatment inducing breast tumorigenesis. Associations between TRAP components polycyclic aromatic hydrocarbons (PAH) and nitrogen dioxide (NO2) and BC risk were more consistent. While evidence for epigenetic regulation remains limited, polycyclic aromatic hydrocarbons (PAH) and nitrogen dioxide (NO2) exposures may alter methylation of breast tumorigenic genes (e.g., EPHB2, LONP1). Future epigenomic studies with environmental measures are needed to interrogate the relationship between TRAP and BC risk.
Collapse
Affiliation(s)
- Debashish Sahay
- Division of Pulmonary, Allergy & Critical Care of Medicine, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York City 10032, NY, USA
| | - Mary B Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City 10032, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York City 10032, NY, USA
| | - Rachel Miller
- Division of Pulmonary, Allergy & Critical Care of Medicine, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York City 10032, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York City 10032, NY, USA.,Division of Pediatric Allergy, Immunology, & Rheumatology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York City 10032, NY, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City 10032, NY, USA
| |
Collapse
|
42
|
Cheng I, Tseng C, Wu J, Yang J, Conroy SM, Shariff-Marco S, Li L, Hertz A, Gomez SL, Le Marchand L, Whittemore AS, Stram DO, Ritz B, Wu AH. Association between ambient air pollution and breast cancer risk: The multiethnic cohort study. Int J Cancer 2019; 146:699-711. [PMID: 30924138 DOI: 10.1002/ijc.32308] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/23/2019] [Accepted: 02/06/2019] [Indexed: 12/30/2022]
Abstract
Previous studies using different exposure methods to assess air pollution and breast cancer risk among primarily whites have been inconclusive. Air pollutant exposures of particulate matter and oxides of nitrogen were estimated by kriging (NOx , NO2 , PM10 , PM2.5 ), land use regression (LUR, NOx , NO2 ) and California Line Source Dispersion model (CALINE4, NOx , PM2.5 ) for 57,589 females from the Multiethnic Cohort, residing largely in Los Angeles County from recruitment (1993-1996) through 2010. Cox proportional hazards models were used to examine the associations between time-varying air pollution and breast cancer incidence adjusting for confounding factors. Stratified analyses were conducted by race/ethnicity and distance to major roads. Among all women, breast cancer risk was positively but not significantly associated with NOx (per 50 parts per billion [ppb]) and NO2 (per 20 ppb) determined by kriging and LUR and with PM2.5 and PM10 (per 10 μg/m3 ) determined by kriging. However, among women who lived within 500 m of major roads, significantly increased risks were observed with NOx (hazard ratio [HR] = 1.35, 95% confidence interval [95% CI]: 1.02-1.79), NO2 (HR = 1.44, 95% CI: 1.04-1.99), PM10 (HR = 1.29, 95% CI: 1.07-1.55) and PM2.5 (HR = 1.85, 95% CI: 1.15-2.99) determined by kriging and NOx (HR = 1.21, 95% CI:1.01-1.45) and NO2 (HR = 1.26, 95% CI: 1.00-1.59) determined by LUR. No overall associations were observed with exposures assessed by CALINE4. Subgroup analyses suggested stronger associations of NOx and NO2 among African Americans and Japanese Americans. Further studies of multiethnic populations to confirm the effects of air pollution, particularly near-roadway exposures, on the risk of breast cancer is warranted.
Collapse
Affiliation(s)
- Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Chiuchen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jun Wu
- Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of Irvine, Irvine, CA, USA
| | - Juan Yang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Shannon M Conroy
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Salma Shariff-Marco
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Lianfa Li
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew Hertz
- Cancer Prevention Institute of California, Fremont, CA, USA
| | - Scarlett Lin Gomez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Cancer Prevention Institute of California, Fremont, CA, USA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Li T, Wang Y, Hou J, Zheng D, Wang G, Hu C, Xu T, Cheng J, Yin W, Mao X, Wang L, He Z, Yuan J. Associations between inhaled doses of PM 2.5-bound polycyclic aromatic hydrocarbons and fractional exhaled nitric oxide. CHEMOSPHERE 2019; 218:992-1001. [PMID: 30609505 DOI: 10.1016/j.chemosphere.2018.11.196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is linked to various respiratory outcomes. However, the associations of concentrations of PM2.5-bound polycyclic aromatic hydrocarbons (PM2.5-bound PAHs) with airway inflammatory indices remains unclear. To assess effects of short-term exposure to PM2.5-bound PAHs on fractional exhaled nitric oxide (FeNO), we conducted a pilot study with repeated measures. We recruited 20 postgraduate students in Wuhan city, China, and repeatedly measured outdoor and indoor (including dormitories, offices and laboratories) PM2.5-bound PAHs concentrations, urinary monohydroxy polycyclic aromatic hydrocarbons (OH-PAHs) and FeNO levels in the four seasons. Subsequently, we estimated inhaled doses of PM2.5-bound PAHs based on the micro-environmental PM2.5-bound PAHs concentrations, time-activity patterns and referred inhalation rates. We assessed the association of inhaled doses of PM2.5-bound PAHs with FeNO using linear mixed-effects regression models. We found the positive associations of urinary ∑OH-PAHs levels with inhaled doses of indoor PM2.5-bound PAHs (including dormitories and offices) (all p < 0.05). A one-unit increase in inhaled doses of PM2.5-bound PAHs or in urinary concentrations of ∑OH-PAHs was corresponded to a maximum FeNO increase of 13.5% (95% CI: 5.4, 22.2) at lag2 day or of 6.8% (95% CI: 3.4, 10.2) at lag1 day. Inhaled doses of PM2.5-bound PAHs or urinary OH-PAHs was positively related to increased FeNO, they may be accepted as a short-term biomarker of exposure to PAHs in air. Exposure to PM2.5-bound PAHs in indoor air may contribute more to the body burden of PAHs than outdoor air, and exhibited stronger effect on increased FeNO rather than urinary OH-PAHs.
Collapse
Affiliation(s)
- Tian Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Yao Wang
- Wuhan Center for Disease Prevention and Control, Department of Environmental Health and Food Safety, Wuhan 430022, Hubei, PR China
| | - Jian Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Dan Zheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Guiyang Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Chen Hu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Tian Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Juan Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Wenjun Yin
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Xiang Mao
- Wuhan Center for Disease Prevention and Control, Department of Environmental Health and Food Safety, Wuhan 430022, Hubei, PR China
| | - Lin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Zhenyu He
- Wuhan Center for Disease Prevention and Control, Department of Environmental Health and Food Safety, Wuhan 430022, Hubei, PR China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
44
|
White AJ, Weinberg CR, O'Meara ES, Sandler DP, Sprague BL. Airborne metals and polycyclic aromatic hydrocarbons in relation to mammographic breast density. Breast Cancer Res 2019; 21:24. [PMID: 30760301 PMCID: PMC6373138 DOI: 10.1186/s13058-019-1110-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breast density is strongly related to breast cancer. Identifying associations between environmental exposures and density may elucidate relationships with breast cancer. Metals and polycyclic aromatic hydrocarbons (PAHs) may influence breast density via oxidative stress or endocrine disruption. METHODS Study participants (n = 222,581) underwent a screening mammogram in 2011 at a radiology facility in the Breast Cancer Surveillance Consortium. Zip code residential levels of airborne PAHs and metals (arsenic, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, and selenium) were assessed using the 2011 EPA National Air Toxics Assessment. Breast density was measured using the Breast Imaging-Reporting and Data System (BI-RADS) lexicon. Logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (CI) for the individual air toxics and dense breasts (BI-RADS 3 or 4). Weighted quantile sum (WQS) regression was used to model the association between the air toxic mixture and density. RESULTS Higher residential levels of arsenic, cobalt, lead, manganese, nickel, or PAHs were individually associated with breast density. Comparing the highest to the lowest quartile, higher odds of having dense breasts were observed for cobalt (OR = 1.60, 95% CI 1.56-1.64) and lead (OR = 1.56, 95% CI 1.52-1.64). Associations were stronger for premenopausal women. The WQS index was associated with density overall (OR = 1.22, 95% CI 1.20-1.24); the most heavily weighted air toxics were lead and cobalt. CONCLUSIONS In this first study to evaluate the association between air toxics and breast density, women living in areas with higher concentrations of lead and cobalt were more likely to have dense breasts.
Collapse
Affiliation(s)
- Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709-2233, USA.
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ellen S O'Meara
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709-2233, USA
| | - Brian L Sprague
- Departments of Surgery and Radiology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
45
|
Coudon T, Danjou AMN, Faure E, Praud D, Severi G, Mancini FR, Salizzoni P, Fervers B. Development and performance evaluation of a GIS-based metric to assess exposure to airborne pollutant emissions from industrial sources. Environ Health 2019; 18:8. [PMID: 30683108 PMCID: PMC6347831 DOI: 10.1186/s12940-019-0446-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 01/03/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Dioxins are environmental and persistent organic carcinogens with endocrine disrupting properties. A positive association with several cancers, including risk of breast cancer has been suggested. OBJECTIVES This study aimed to develop and assess performances of an exposure metric based on a Geographic Information System (GIS) through comparison with a validated dispersion model to estimate historical industrial dioxin exposure for its use in a case-control study nested within a prospective cohort. METHODS Industrial dioxin sources were inventoried over the whole French territory (n > 2500) and annual average releases were estimated between 1990 and 2008. In three selected areas (rural, urban and urban-costal), dioxin dispersion was modelled using SIRANE, an urban Gaussian model and exposure of the French E3N cohort participants was estimated. The GIS-based metric was developed, calibrated and compared to SIRANE results using a set of parameters (local meteorological data, characteristics of industrial sources, e.g. emission intensity and stack height), by calculating weighted kappa statistics (wκ) and coefficient of determination (R2). Furthermore, as performance evaluation, the final GIS-based metric was tested to assess atmospheric exposure to cadmium. RESULTS The concordance between the GIS-based metric and the dispersion model for dioxin exposure estimate was strong (wκ median = 0.78 (1st quintile = 0.72, 3rd quintile =0.82) and R2 median = 0.82 (1st quintile = 0.71, 3rd quintile = 0.87)). We observed similar performance for cadmium. CONCLUSIONS Our study demonstrated the ability of the GIS-based metric to reliably characterize long-term environmental dioxin and cadmium exposures as well as the pertinence of using dispersion modelling to construct and calibrate the GIS-based metric.
Collapse
Affiliation(s)
- Thomas Coudon
- Département Cancer & Environnement, Centre Léon Bérard, 69008 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Aurélie Marcelle Nicole Danjou
- Département Cancer & Environnement, Centre Léon Bérard, 69008 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Elodie Faure
- Département Cancer & Environnement, Centre Léon Bérard, 69008 Lyon, France
| | - Delphine Praud
- Département Cancer & Environnement, Centre Léon Bérard, 69008 Lyon, France
- INSERM 1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, 69373 Lyon, France
| | - Gianluca Severi
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, Villejuif, France
| | - Francesca Romana Mancini
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, Villejuif, France
| | - Pietro Salizzoni
- Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509, University of Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon I, 36, avenue Guy de Collongue, 69134 Ecully, France
| | - Béatrice Fervers
- Département Cancer & Environnement, Centre Léon Bérard, 69008 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM 1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, 69373 Lyon, France
| |
Collapse
|
46
|
White AJ, O’Brien KM, Niehoff NM, Carroll R, Sandler DP. Metallic Air Pollutants and Breast Cancer Risk in a Nationwide Cohort Study. Epidemiology 2019; 30:20-28. [PMID: 30198937 PMCID: PMC6269205 DOI: 10.1097/ede.0000000000000917] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Toxic metals show evidence of carcinogenic and estrogenic properties. However, little is known about the relationship between airborne metals and breast cancer. We evaluated the risk of breast cancer in relation to exposure to toxic metallic substances in air, individually and combined, in a US-wide cohort. METHODS Sister Study participants (n = 50,884), breast cancer-free women who had a sister with breast cancer were recruited, from 2003 to 2009. The 2005 Environmental Protection Agency National Air Toxic Assessment's census-tract estimates of metal concentrations in air (antimony, arsenic, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, and selenium) were matched to participants' enrollment residence. We used Cox regression to estimate the association between quintiles of individual metals and breast cancer incidence and weighted quantile sum regression to model the association between the metal mixture and breast cancer. RESULTS A total of 2,587 breast cancer cases were diagnosed during follow-up (mean = 7.4 years). In individual chemical analyses comparing the highest to lowest quintiles, postmenopausal breast cancer risk was elevated for mercury (hazard ratio [HR] = 1.3, 95% confidence interval [CI], 1.1, 1.5), cadmium (HR = 1.1, 95% CI, 0.96, 1.3), and lead (HR = 1.1, 95% CI, 0.98, 1.3). The weighted quantile sum index was associated with postmenopausal breast cancer (odds ratio [OR] = 1.1, 95% CI, 1.0, 1.1). Consistent with the individual chemical analysis, the most highly weighted chemicals for predicting postmenopausal breast cancer risk were lead, cadmium, and mercury. Results were attenuated for overall breast cancer. CONCLUSIONS Higher levels of some airborne metals, specifically mercury, cadmium, and lead, were associated with a higher risk of postmenopausal breast cancer.
Collapse
Affiliation(s)
- Alexandra J. White
- Epidemiology Branch and National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Katie M. O’Brien
- Biostatistics Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Nicole M. Niehoff
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, USA
| | - Rachel Carroll
- Biostatistics Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Dale P. Sandler
- Epidemiology Branch and National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
47
|
Lee DG, Burstyn I, Lai AS, Grundy A, Friesen MC, Aronson KJ, Spinelli JJ. Women’s occupational exposure to polycyclic aromatic hydrocarbons and risk of breast cancer. Occup Environ Med 2018; 76:22-29. [DOI: 10.1136/oemed-2018-105261] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/21/2018] [Accepted: 11/06/2018] [Indexed: 11/04/2022]
Abstract
ObjectiveTo estimate the association between occupational polycyclic aromatic hydrocarbon (PAH) exposure and female breast cancer.MethodsLifetime work histories for 1130 cases and 1169 controls from British Columbia and Ontario (Canada) were assessed for PAH exposure using a job-exposure matrix based on compliance measurements obtained during US Occupational Safety and Health Administration workplace safety inspections.ResultsExposure to any level of PAHs was associated with an increased risk of breast cancer (OR=1.32, 95% CI: 1.10 to 1.59), as was duration at high PAH exposure (for >7.4 years: OR=1.45, 95% CI: 1.10 to 1.91; ptrend=0.01), compared with women who were never exposed. Increased risk of breast cancer was most strongly associated with prolonged duration at high occupational PAH exposure among women with a family history of breast cancer (for >7.4 years: OR=2.79, 95% CI: 1.25 to 6.24; ptrend<0.01).ConclusionsOur study suggests that prolonged occupational exposure to PAH may increase breast cancer risk, especially among women with a family history of breast cancer.
Collapse
|
48
|
Sansom GT, Kirsch KR, Stone KW, McDonald TJ, Horney JA. Domestic Exposures to Polycyclic Aromatic Hydrocarbons in a Houston, Texas, Environmental Justice Neighborhood. ENVIRONMENTAL JUSTICE (PRINT) 2018; 11:183-191. [PMID: 30464781 PMCID: PMC6241524 DOI: 10.1089/env.2018.0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of >100 chemicals that naturally occur in coal tar, crude oil, and gasoline and can be manufactured as part of dyes, plastics, and pesticides. PAHs are complex environmental toxicants and exposure to them have been linked to adverse health outcomes including cancer, as well as diseases of the skin, liver, and immune system. Residents of the environmental justice neighborhood of Manchester, located on Houston's East End, are disproportionally exposed to toxic pollutants from both industry and transportation infrastructure. Based on a longstanding community engagement partnership with the research team, neighborhood residents sought to better understand their domestic exposure to PAHs. Particulate wipes were used to collect dust from a marked area within the entryway of randomly selected homes to assess for the presence of PAHs. Nineteen of the 61 PAH analytes, including the Environmental Protection Administration's 16 priority PAHs and the subgroup of 7 probable human carcinogens, were found in the sampled homes. Residents of the Houston neighborhood of Manchester potentially have significant domestic exposure to PAHs from combustion sources. More research is needed to assess the source of the PAHs and to better understand the potential health impacts of these exposures.
Collapse
Affiliation(s)
- Garett T Sansom
- Institute for Sustainable Communities, Texas A&M University, 3137 TAMU, College Station, TX 77843,
| | - Katie R Kirsch
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, 1266 TAMU , College Station, TX 77843,
| | - Kahler W Stone
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, 1266 TAMU , College Station, TX 77843,
| | - Thomas J McDonald
- Department of Environmental and Occupational Health, Texas A&M School of Public Health, 1266 TAMU, College Station, TX 77843,
| | - Jennifer A Horney
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, 1266 TAMU , College Station, TX 77843, , Phone : 979-436-9391, Fax : 979-436-9595
| |
Collapse
|
49
|
Singla S, Bansal D, Misra A, Raheja G. Towards an integrated framework for air quality monitoring and exposure estimation-a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:562. [PMID: 30167891 DOI: 10.1007/s10661-018-6940-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
For the health and safety of the public, it is essential to measure spatiotemporal distribution of air pollution in a region and thus monitor air quality in a fine-grain manner. While most of the sensing-based commercial applications available until today have been using fixed environmental sensors, the use of personal devices such as smartphones, smartwatches, and other wearable devices has not been explored in depth. These kinds of devices have an advantage of being with the user continuously, thus providing an ability to generate accurate and well-distributed spatiotemporal air pollution data. In this paper, we review the studies (especially in the last decade) done by various researchers using different kinds of environmental sensors highlighting related techniques and issues. We also present important studies of measuring impact and emission of air pollution on human beings and also discuss models using which air pollution inhalation can be associated to humans by quantifying personal exposure with the use of human activity detection. The overarching aim of this review is to provide novel and key ideas that have the potential to drive pervasive and individual centric and yet accurate pollution monitoring techniques which can scale up to the future needs.
Collapse
Affiliation(s)
| | | | - Archan Misra
- Singapore Management University, Singapore, Singapore
| | | |
Collapse
|
50
|
Dobraca D, Lum R, Sjödin A, Calafat AM, Laurent CA, Kushi LH, Windham GC. Urinary biomarkers of polycyclic aromatic hydrocarbons in pre- and peri-pubertal girls in Northern California: Predictors of exposure and temporal variability. ENVIRONMENTAL RESEARCH 2018; 165:46-54. [PMID: 29665464 PMCID: PMC5999561 DOI: 10.1016/j.envres.2017.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs), a class of chemicals produced as combustion by-products, have been associated with endocrine disruption. To understand exposure in children, who have been less studied than adults, we examined PAH metabolite concentrations by demographic characteristics, potential sources of exposure, and variability over time, in a cohort study of pre- and peri-pubertal girls in Northern California. METHODS Urinary concentrations of ten PAH metabolites and cotinine were quantified in 431 girls age 6-8 years at baseline. Characteristics obtained from parental interview, physical exam, and linked traffic data were examined as predictors of PAH metabolite concentrations using multivariable linear regression. A subset of girls (n = 100) had repeat measures of PAH metabolites in the second and fourth years of the study. We calculated the intraclass correlation coefficient (ICC), Spearman correlation coefficients, and how well the quartile ranking by a single measurement represented the four-year average PAH biomarker concentration. RESULTS Eight PAH metabolites were detected in ≥ 95% of the girls. The most consistent predictors of PAH biomarker concentrations were cotinine concentration, grilled food consumption, and region of residence, with some variation by demographics and season. After adjustment, select PAH metabolite concentrations were higher for Hispanic and Asian girls, and lower among black girls; 2-naphthol concentrations were higher in girls from lower income households. Other than 1-naphthol, there was modest reproducibility over time (ICCs between 0.18 and 0.49) and the concentration from a single spot sample was able to reliably rank exposure into quartiles consistent with the multi-year average. CONCLUSIONS These results confirm diet and environmental tobacco smoke exposure as the main sources of PAHs. Controlling for these sources, differences in concentrations still existed by race for specific PAH metabolites and by income for 2-naphthol. The modest temporal variability implies adequate exposure assignment using concentrations from a single sample to define a multi-year exposure timeframe for epidemiologic exposure-response studies.
Collapse
Affiliation(s)
- Dina Dobraca
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA.
| | | | - Andreas Sjödin
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cecile A Laurent
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Gayle C Windham
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| |
Collapse
|