1
|
Liu Z, Wang G, Ye X, Zhang X, Jiang Y, Han Y, Lu L, Liu Z, Zhang H. Multigenerational toxic effects in Daphnia pulex are induced by environmental concentrations of tire wear particle leachate. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136977. [PMID: 39724716 DOI: 10.1016/j.jhazmat.2024.136977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Microplastic pollution has emerged as the second most significant scientific issue in environmental science and ecology. Similarly, the biological effects of tire wear particles (TWPs) have garnered considerable research attention; however, studies on chronic TWP leachate toxicity at environmentally relevant concentrations remain sparse. Here, we investigated the effects of TWP leachate at environmentally relevant concentrations (0.3 mg/L and 3 mg/L) on multigenerational and transgenerational Daphnia pulex for 21 days/generation, spanning three generations (F0-F2). Growth and reproductive indices (body length, growth rate, time to first clutch, number of clutches, and total offspring/female) across generations were analyzed. Multigenerational exposure to TWP leachate did not cause D. pulex death, but impaired growth and development, prolonged sexual maturity time, and reduced reproductive capacity. The transgenerational exposure group (3 mg/L) also exhibited some sub-lethal effects, such as delayed reproduction, suggesting a transgenerational impact. Gene transcription analyses and weighted gene co-expression network analysis showed that the most impacted pathways were associated with lysosome function, apoptosis, and glutathione metabolism, indicating that TWP leachate exposure compromised immune defense mechanisms and disrupted APs, CTSB, GST, DUSP1, and ERN1 gene expression. These findings underscore multigenerational toxicity effects and TWP leachate transmission patterns on aquatic organisms at realistic environmental concentrations.
Collapse
Affiliation(s)
- Zhiqun Liu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Guanghui Wang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xindi Ye
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaofang Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Jiang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
2
|
Sgariboldi A, Posté E, Chirico N, Sangion A, Evangelista M, Morosini C, Re A, Torretta V, Papa E. Global Assessment of Emerging Contaminant Removal in Wastewater Treatment Plants: In Silico Hazard Screening and Risk Evaluation. TOXICS 2024; 13:6. [PMID: 39853006 PMCID: PMC11768813 DOI: 10.3390/toxics13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Pharmaceuticals and personal care products (PPCPs) are emerging contaminants (ECs), whose presence in the environment is of increasing concern due to their widespread use and possible detrimental effects on wildlife and humans. These chemicals may present multiple hazardous properties such as environmental persistence, toxicity, high mobility, and the potential for bioaccumulation. In this study, extended bibliographic research was conducted to characterize the removal efficiency (RE) of PPCPs in wastewater treatment plants (WWTPs) considering different technologies. Measured values of RE were collected from the literature or calculated for 251 compounds. The molecular structure of the 245 PPCPs were used as the input to generate predictions of multiple properties using several QSAR tools, such as the OECD Toolbox, OPERA, EPI Suite™, and QSAR-ME Profiler. These predictions were compared to regulatory thresholds to identify hazardous chemicals and to screen persistent, mobile and toxic (PMT) or persistent, bioaccumulative and toxic (PBT) substances. Finally, chemicals were prioritized by combining values of RE and QSAR predictions for multiple properties. A total of 16 out of the 245 molecules were prioritized as the most hazardous compounds to the aquatic environment and, among these, six were associated with potential risk due to their exposure concentrations reported in the literature.
Collapse
Affiliation(s)
- Arianna Sgariboldi
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Elena Posté
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
- AIR CLEAN S.r.l., via Trento 37, 20017 Rho, Italy
| | - Nicola Chirico
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
| | | | - Marco Evangelista
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Cristiana Morosini
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Andrea Re
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
- Xylem Water Solutions Italia S.r.l., Via G. Rossini, 1/A, 20045 Lainate, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
| | - Ester Papa
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
| |
Collapse
|
3
|
Ye M, Yang J, Cai Z, Wu J, Xiong W, Hou L. The effect of cortisone on female zebrafish (Dania rerio): Reducing reproductive capacity and offspring survival rate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107132. [PMID: 39515241 DOI: 10.1016/j.aquatox.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Cortisone is a naturally occurring corticosteroid hormone known for its wide range of anti-inflammatory and immunosuppressive effects, and it is commonly found in various aquatic environments. Previous reports have shown that cortisone can have significant negative impacts on fish; however, its specific effects on fish reproduction have not been thoroughly investigated. In this study, female adult zebrafish were exposed to 0.0 (control), 3.9, 40.2, and 377.9 ng/L of cortisone for 60 days, and multiple endpoints were evaluated. The results showed that as the concentration of cortisone increased, there was an increase in the percentage of perinuclear oocytes and a decrease in the proportion of late-stage oocytes, indicating a stagnation in oocyte development. Additionally, female zebrafish exposed to cortisone exhibited decreased attraction to males and reduced mating intimacy. Furthermore, exposure to cortisone resulted in changes in the development and behavior of zebrafish embryos. At cortisone concentrations of 3.9 and 40.2 ng/L, fewer eggs were laid and the survival rate of fertilized eggs decreased. These observed effects are associated with abnormal transcription levels of genes (Star, Cyp11a1, Cyp17, Cyp19a, Cyp11b, Hsd11β2, Hsd17β3) related to the HPG axis. These findings provided new insights into understanding potential environmental risks associated with corticosteroids.
Collapse
Affiliation(s)
- MeiXin Ye
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - JinLin Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - ZiPing Cai
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - JunHao Wu
- Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wenting Xiong
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| | - LiPing Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China; Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
4
|
Terzic S, Ivankovic K, Jambrosic K, Kurtovic B, Ahel M. Bioaccumulation and tissue distribution of pharmaceuticals and their transformation products in fish along the pollution gradients of a wastewater-impacted river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177339. [PMID: 39505042 DOI: 10.1016/j.scitotenv.2024.177339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
A field study on the occurrence and distribution of forty-three pharmaceutically active compounds (PhACs) in water and fish samples from anthropogenically impacted section of the Sava River (Croatia) was performed to estimate the importance of bioaccumulation for the environmental risk assessment of PhACs. The study was performed using a highly specific LC-MS/MS method, tailored to include the most prominent PhACs from different therapeutic categories as well as their major metabolites and/or transformation products (TPs). The results revealed a widespread occurrence of PhAC residues both in water and fish samples with a large spatial variability reflecting the distance from the dominant wastewater discharges. The most prominent PhAC categories in less polluted upstream part of the river were common psychostimulants caffeine and cotinine, therapeutic opioids and cardiovascular drugs, while in the river section affected by the local municipal and industrial wastewater inputs, antibiotic drugs became clearly predominant, especially in fish tissue samples. The apparent bioconcentration factors (BCFs) of investigated PhACs varied over several orders of magnitude, from 0.02 ± 0.01 L kg-1 for O-desmethyl tramadol in fish muscle to 784 ± 260 L kg-1 for terbinafine in fish liver, indicating rather large differences in their bioconcentration potential and affinity to different tissues, with the tissue-specific BCFs increasing in the following order: muscle < gills < gonads < heart < liver < kidneys. The bioconcentration potential of most of the PhACs included in this study was only low to moderate however moderately high BCFs of certain PhACs (e.g. sertraline, terbinafine, loratadine, diazepam and azithromycin) in some tissues should be taken into consideration when assessing their potential environmental risks. Moreover, it was shown that BCFs could be strongly affected by biotransformation in fish. Risk prioritization based on risk quotient (RQ) and ToxPi index, revealed antibiotics, in particular azithromycin, and therapeutic psychoactive substances as the most hazardous pharmaceutical contaminants in the Sava River.
Collapse
Affiliation(s)
- Senka Terzic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia.
| | - Klaudija Ivankovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Karlo Jambrosic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Bozidar Kurtovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Fu Z, Zhang S, Zhou L, Wang Y, Feng X, Zhao X, Sun M. Zebrafishtracker3D: A 3D skeleton tracking algorithm for multiple zebrafish based on particle matching. ISA TRANSACTIONS 2024; 151:363-376. [PMID: 38839550 DOI: 10.1016/j.isatra.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Zebrafish are considered as model organisms in biological and medical research because of their high degree of homology with human genes. Automatic behavioral analysis of multiple zebrafish based on visual tracking is expected to improve research efficiency. However, vision-based multi-object tracking algorithms often suffer from data loss owing to mutual occlusion. In addition, simply tracking zebrafish as points is not sufficient-more detailed information, which is required for research on zebrafish behavior. In this paper, we propose Zebrafishtracker3D, which utilizes a skeleton stability strategy to reduce detection error caused by frequent overlapping of multiple zebrafish effectively and estimates zebrafish skeletons using head coordinates in the top view. Further, we transform the front- and top-view matching task into an optimization problem and propose a particle-matching method to perform 3D tracking. The robustness of the algorithm with respect to occlusion is estimated on the dataset comprising two and three zebrafish. Experimental results demonstrate that the proposed algorithm exhibits a multiple object tracking accuracy (MOTA) exceeding 90% in the top view and a 3D tracking matching accuracy exceeding 90% in the complex videos with frequent overlapping. It is noteworthy that each instance in the trace saves its skeleton. In addition, Zebrafishtracker3D is applied in the zebrafish courtship experiment, establishes the stability of the method in applications of life science, and proves that the data can be used for behavioral analysis. Zebrafishtracker3D is the first algorithm that realizes 3D skeleton tracking of multiple zebrafish simultaneously.
Collapse
Affiliation(s)
- Zhenhua Fu
- Institute of Robotics and Automatic Information System (IRAIS) and Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin, 300071, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, 518063, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Lu Zhou
- Institute of Robotics and Automatic Information System (IRAIS) and Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin, 300071, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, 518063, China
| | - Yiwen Wang
- Institute of Robotics and Automatic Information System (IRAIS) and Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin, 300071, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, 518063, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics and Automatic Information System (IRAIS) and Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin, 300071, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, 518063, China
| | - Mingzhu Sun
- Institute of Robotics and Automatic Information System (IRAIS) and Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin, 300071, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, 518063, China.
| |
Collapse
|
6
|
Medykowska M, Wiśniewska M, Szewczuk-Karpisz K, Galaburda M. Adsorption Capacity of Carbon-Silica Composites Towards Diclofenac in Poly(acrylic acid) Containing Systems: A Crucial Study on Common Wastewater Contaminants. Chemphyschem 2024; 25:e202300813. [PMID: 38430067 DOI: 10.1002/cphc.202300813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
Diclofenac is one of the most popular over-the-counter non-steroidal anti-inflammatory drug and poly(acrylic acid) is a frequently used as thickener, filler or stabilizer. For these reasons, they are common organic contaminants in raw wastewater. The purpose of the presented studies was to compare the adsorption capacity of three carbon-silica composites - metal-free C/SiO2, iron-enriched C/Fe/SiO2 and manganese-enriched C/Mn/SiO2 towards diclofenac. The studies were carried out in single, and mixed systems in the presence of poly(acrylic acid) polymer. Adsorption, desorption and kinetics of the adsorption process were investigated. The concentration of diclofenac in the supernatants was determined using high-performance liquid chromatography. The solids were also characterized with an ASAP apparatus using low-temperature nitrogen desorption adsorption isotherms at liquid nitrogen temperature. In addition, potentiometric titrations and electrophoretic mobility measurements, as well as stability tests of the studied suspensions were carried out. The most efficient composite among investigated ones proved to be C/Fe/SiO2 removing diclofenac at the level of 46.68 mg/g for its initial concentration of 90 ppm. The results obtained clearly demonstrated that the carbon-silica composites are effective in separation of drugs from aqueous solutions and can be successfully used in the future for the removal of organic pollutants from water environment.
Collapse
Affiliation(s)
- Magdalena Medykowska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | | | - Mariia Galaburda
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Street 17, 03164, Kyiv, Ukraine
- Department of Physicochemistry of Solid Surface, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie- Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| |
Collapse
|
7
|
Ivankovic K, Krizman-Matasic I, Dragojevic J, Mihaljevic I, Smital T, Ahel M, Terzic S. Uptake/depuration kinetics, bioaccumulation potential and metabolic transformation of a complex pharmaceutical mixture in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134144. [PMID: 38554516 DOI: 10.1016/j.jhazmat.2024.134144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Uptake and elimination kinetics, bioconcentration factors (BCFs), and metabolic transformation of 20 different pharmaceutically active compounds (PhACs), covering a wide range of therapeutic categories and physico-chemical properties, were studied using zebrafish (Danio rerio). The fish were exposed to the mixture of the selected PhACs at environmentally relevant concentrations similar to 10 µg L-1. The experiments were performed in semi-static conditions and comprised a 7-day uptake period followed by a 7-day depuration period. Most of the PhACs reached a concentration plateau within the 7-day uptake-phase which was followed by an efficient depuration, with the observed uptake (ku) and depuration rate constants (kd,) ranging between 0.002 and 3.752 L kg-1 h-1, and 0.010 to 0.217 h-1, respectively. The investigated PhACs showed low to moderate BCFs. The highest BCFs of 47.8, 28.6 and 47.6 L kg-1 were determined for sertraline, diazepam and desloratadine, respectively. A high contribution of metabolic products to the total internal concentration was observed for some PhACs such as codeine (69%), sulfamethoxazole (51%) and verapamil (87%), which has to be taken into account when assessing the bioconcentration potential. Moreover, most of the metabolites exhibited significantly longer half-lives in zebrafish than their parent compounds and affected the overall depuration kinetics.
Collapse
Affiliation(s)
- Klaudija Ivankovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Ivona Krizman-Matasic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Jelena Dragojevic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Ivan Mihaljevic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Tvrtko Smital
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Senka Terzic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia.
| |
Collapse
|
8
|
Baekelandt S, Bouchat A, Leroux N, Robert JB, Burattin L, Cishibanji E, Lambert J, Gérard C, Delierneux C, Kestemont P. Estetrol/drospirenone versus 17α-ethinylestradiol/drospirenone: An extended one generation test to evaluate the endocrine disruption potential on zebrafish (Danio rerio). ENVIRONMENT INTERNATIONAL 2024; 187:108702. [PMID: 38678935 DOI: 10.1016/j.envint.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Combined oral contraceptives, comprising of both an oestrogen and a progestin component, are released in aquatic environments and potentially pose a risk to aquatic wildlife by their capacity to disrupt physiological mechanisms. In this study, the endocrine disruptive potential of two mixtures, 17α-ethinylestradiol (EE2), a synthetic oestrogen, or estetrol (E4), a natural oestrogen, with the progestin drospirenone (DRSP) have been characterised in three generations of zebrafish, according to an adapted Medaka Extended One Generation Reproduction Test. Zebrafish (Danio rerio) were exposed to a range of concentrations of EE2/DRSP and E4/DRSP (∼1×, ∼3×, ∼10× and ∼30× predicted environmental concentration, PEC). Survival, growth, hatching success, fecundity, fertilisation success, vitellogenin (VTG), gonad histopathology, sex differentiation, and transcriptional analysis of genes related to gonadal sex steroid hormones synthesis were assessed. In the F0 generation, exposure to EE2/DRSP at ∼10 and ∼30× PEC decreased fecundity and increased male VTG concentrations. The highest concentration of EE2/DRSP also affected VTG concentrations in female zebrafish and the expression of genes implicated in steroid hormones synthesis. In the F1 generation, sex determination was impaired in fish exposed to EE2/DRSP at concentrations as low as ∼3× PEC. Decreased fecundity and fertility, and abnormal gonadal histopathology were also observed. No effects were observed in the F2 generation. In contrast, E4/DRSP induced only minor histopathological changes and an increase in the proportion of males, at the highest concentration tested (∼30× PEC) in the F1 generation and had no effect on hatching success of F2 generation. Overall, this study suggests that the combination E4/DRSP has a more favourable environmental profile than EE2/DRSP.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium.
| | - Antoine Bouchat
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Nathalie Leroux
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Jean-Baptiste Robert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Laura Burattin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Emmanuel Cishibanji
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Céline Gérard
- Estetra SRL, An Affiliated Company of Mithra Pharmaceuticals, Rue Saint-Georges 5, 4000 Liège, Belgium
| | - Céline Delierneux
- Estetra SRL, An Affiliated Company of Mithra Pharmaceuticals, Rue Saint-Georges 5, 4000 Liège, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| |
Collapse
|
9
|
Pannetier P, Gölz L, Pissarreira Mendes Fagundes MT, Knörr S, Behnstedt L, Coordes S, Matthiessen P, Morthorst JE, Vergauwen L, Knapen D, Holbech H, Braunbeck T, Baumann L. Development of the integrated fish endocrine disruptor test (iFEDT)-Part A: Merging of existing fish test guidelines. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:817-829. [PMID: 37483114 DOI: 10.1002/ieam.4819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
There has been increasing interest in endocrine-disrupting chemicals (EDCs) among scientists and public authorities over the last 30 years, notably because of their wide use and the increasing evidence of detrimental effects on humans and the environment. However, test systems for the detection of potential EDCs as well as testing strategies still require optimization. Thus, the aim of the present project was the development of an integrated test protocol that merges the existing OECD test guidelines (TGs) 229 (fish short-term reproduction assay) and 234 (fish sexual development test) and implements thyroid-related endpoints for fish. The integrated fish endocrine disruptor test (iFEDT) represents a comprehensive approach for fish testing, which covers reproduction, early development, and sexual differentiation, and will thus allow the identification of multiple endocrine-disruptive effects in fish. Using zebrafish (Danio rerio) as a model organism, two exposure tests were performed with well-studied EDCs: 6-propyl-2-thiouracil (PTU), an inhibitor of thyroid hormone synthesis, and 17α-ethinylestradiol (EE2), an estrogen receptor agonist. In part A of this article, the effects of PTU and EE2 on established endpoints of the two existing TGs are reported, whereas part B focuses on the novel thyroid-related endpoints. Results of part A document that, as expected, both PTU and EE2 had strong effects on various endocrine-related endpoints in zebrafish and their offspring. Merging of TGs 229 and 234 proved feasible, and all established biomarkers and endpoints were responsive as expected, including reproductive and morphometric changes (PTU and EE2), vitellogenin levels, sex ratio, gonad maturation, and histopathology (only for EE2) of different life stages. A validation of the iFEDT with other well-known EDCs will allow verification of the sensitivity and usability and confirm its capacity to improve the existing testing strategy for EDCs in fish. Integr Environ Assess Manag 2024;20:817-829. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Pauline Pannetier
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Laboratoire de Ploufragan-Plouzané-Niort, Site de Plouzané, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Plouzané, France
| | - Lisa Gölz
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Susanne Knörr
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Jane E Morthorst
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Lucia Vergauwen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Dries Knapen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section Environmental Health and Toxicology, Vrije Universiteit Amsterdam, HV Amsterdam, The Netherlands
| |
Collapse
|
10
|
Akangbe OA, Chukwuka AV, Imiuwa ME, Adeogun AO. Gonad pathology, sex hormone modulation and vitellogenin expression in Chrysichthys nigrodigitatus from Lagos and Epe lagoons within the southern-lagoon system, Nigeria. FRONTIERS IN TOXICOLOGY 2024; 6:1336916. [PMID: 38380148 PMCID: PMC10878419 DOI: 10.3389/ftox.2024.1336916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction: Estrogenic chemicals in aquatic environments impact fish reproductive health, with vitellogenin protein levels serving as a crucial biomarker for xenoestrogen exposure. Limited knowledge exists on estrogenic effects in tropical environments, prompting an investigation into the influence of environmental estrogens on Chrysichthys nigrodigitatus in Lagos and Epe lagoons. Methods: A total of 195 fish samples underwent analysis for vitellogenin protein, sex hormones (testosterone and 17 β-estradiol), and gonad pathology in effluent-receiving areas of the specified lagoons. Results: Gonadal alterations were observed in male and female fish, including empty seminiferous tubules and distorted ovaries. Intersex occurred in 3.81% of Lagos and 3.33% of Epe. Testosterone levels were generally higher in females and males from both lagoons, while E2 levels were higher in females from both lagoons, with Lagos showing higher levels than Epe. Vtg levels were higher in males than females in Lagos samples but showed no significant difference in Epe samples. Discussion: Contaminant analysis revealed similar trends in metals (Hg, As, Cr) and phthalates (DEHP, DBP, DEP) in both sexes in the Epe population. Multivariate depictions from the PCA showed sex-specific patterns of metal uptake (Cd) in male fishes at the Lagos Lagoon. The positive association between higher pH loadings and metal and DBP levels in sediment at the Lagos lagoon suggests the influence of higher alkalinity in lower bioavailability of contaminants. Conclusion: Endocrine disrupting effects were observed in male and female Chrysichthys nigrodigitatus in Lagos and Epe lagoons populations, with notable differences in hormone and contaminant concentrations between the two lagoon systems. Identification of specific contaminants and their spatial and temporal trends can inform targeted management and remediation efforts to protect and restore these valuable aquatic ecosystems.
Collapse
Affiliation(s)
| | - Azubuike V. Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Wupa, Nigeria
| | - Maurice E. Imiuwa
- Department of Animal and Environmental Biology, University of Benin, Benin, Nigeria
| | - Aina O. Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Oyo, Nigeria
| |
Collapse
|
11
|
Lyu L, Yao Y, Xie S, Wang X, Wen H, Li Y, Li J, Zuo C, Yan S, Dong J, Qi X. Mating behaviors in ovoviviparous black rockfish ( Sebastes schlegelii): molecular function of prostaglandin E2 as both a hormone and pheromone. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:15-30. [PMID: 38433961 PMCID: PMC10902245 DOI: 10.1007/s42995-023-00214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/08/2023] [Indexed: 03/05/2024]
Abstract
Prostaglandins (PGs) are profound hormones in teleost sexual behavior, especially in mating. PGs act as pheromones that affect the olfactory sensory neurons of males, inducing the initiation of a series of mating behaviors. However, the molecular mechanism by which PGs trigger mating behavior in ovoviviparous teleosts is still unclear. In the present study, we employed the ovoviviparous black rockfish (Sebastes schlegelii), an economically important marine species whose reproductive production is limited by incomplete fertilization, as a model species. The results showed that when the dose of PGE2 was higher than 10 nmol/L, a significant (P < 0.05) increase in mating behaviors was observed. Dual-fluorescence in situ hybridization indicated that PGE2 could fire specific neurons in different brain regions and receptor cells in the olfactory sac. After combining with specific neurons in the central nervous system (CNS), a series of genes related to reproduction are activated. The intracerebroventricular administration of PGE2 significantly increased lhb levels (P < 0.05) in both sexes. Moreover, steroidogenesis in gonads was also affected, inducing an increase (P < 0.05) in E2 levels in males and T levels in females. PGE2 levels were also increased significantly (P < 0.05) in both sexes. The present study revealed that PGE2 can activate mating behavior in black rockfish in both hormone and pheromone pathways, leading to variations in sex steroid levels and activation of reproductive behaviors. Our results provide not only novel insight into the onset of mating behaviors in ovoviviparous teleosts but also solutions for the incomplete fertilization caused by natural mating in cage aquaculture. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00214-w.
Collapse
Affiliation(s)
- Likang Lyu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Yijia Yao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Songyang Xie
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Xiaojie Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Jianshuang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Shaojing Yan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Jingyi Dong
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
12
|
Paravani EV, Bianchi M, Querubín Pereyra PL, Acosta MG, Odetti L, Simoniello MF, Poletta G. DNA damage, alterations in the expression of antioxidant enzyme genes and in the histoarchitecture of gill cells of zebrafish exposed to 17-α-ethinylestradiol. Drug Chem Toxicol 2024; 47:60-66. [PMID: 36912201 DOI: 10.1080/01480545.2023.2188441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Endocrine disruptors, such as estrogen, are chemical substances with the potential to alter the hormonal balance of organisms. Their origin can be natural or artificial, and they can act at very low doses. The estrogen 17α-ethinylestradiol (EE2) is used worldwide as an oral contraceptive and is a potential contaminant in aquatic ecosystems. It is well documented that these environmental pollutants can act directly or indirectly on the reproductive system, impairing development and fertility. However, little is known about the alteration of the cell oxidative status induced by EE2. The main objective of this study was to evaluate the effect on the gill cells of adult zebrafish exposed in vivo to EE2, analyzing cell histology, DNA damage and the expression levels of genes encoding the main enzymes involved in oxidative stress pathways. The histological study showed that EE2 produces moderate to high damage to the gill tissue, an increase in gill cell DNA damage and the mRNA levels of the genes corresponding to the manganese superoxide dismutase (Mn-sod) and catalase (cat) after exposure to 5 ng/L EE2. The results indicate that EE2 causes tissue alterations, DNA damage and oxidative stress. EE2 produced important alterations in the gills, a fundamental organ for the survival of fish. There is a clear need for further research on the ecological consequences of EDCs on non-target organisms.
Collapse
Affiliation(s)
- E V Paravani
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
- Cátedra de Biología Celular y Molecular, Universidad Autónoma de Entre Ríos, Oro Verde, Argentina
| | - M Bianchi
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - P L Querubín Pereyra
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - M G Acosta
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - L Odetti
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - M F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
| | - G Poletta
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| |
Collapse
|
13
|
Pozzebon EA, Seifert L. Emerging environmental health risks associated with the land application of biosolids: a scoping review. Environ Health 2023; 22:57. [PMID: 37599358 PMCID: PMC10440945 DOI: 10.1186/s12940-023-01008-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Over 40% of the six million dry metric tons of sewage sludge, often referred to as biosolids, produced annually in the United States is land applied. Biosolids serve as a sink for emerging pollutants which can be toxic and persist in the environment, yet their fate after land application and their impacts on human health have not been well studied. These gaps in our understanding are exacerbated by the absence of systematic monitoring programs and defined standards for human health protection. METHODS The purpose of this paper is to call critical attention to the knowledge gaps that currently exist regarding emerging pollutants in biosolids and to underscore the need for evidence-based testing standards and regulatory frameworks for human health protection when biosolids are land applied. A scoping review methodology was used to identify research conducted within the last decade, current regulatory standards, and government publications regarding emerging pollutants in land applied biosolids. RESULTS Current research indicates that persistent organic compounds, or emerging pollutants, found in pharmaceuticals and personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS) have the potential to contaminate ground and surface water, and the uptake of these substances from soil amended by the land application of biosolids can result in contamination of food sources. Advanced technologies to remove these contaminants from wastewater treatment plant influent, effluent, and biosolids destined for land application along with tools to detect and quantify emerging pollutants are critical for human health protection. CONCLUSIONS To address these current risks, there needs to be a significant investment in ongoing research and infrastructure support for advancements in wastewater treatment; expanded manufacture and use of sustainable products; increased public communication of the risks associated with overuse of pharmaceuticals and plastics; and development and implementation of regulations that are protective of health and the environment.
Collapse
Affiliation(s)
- Elizabeth A Pozzebon
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA
| | - Lars Seifert
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA.
| |
Collapse
|
14
|
Luo X, Du Z, Hu J, Retyunskiy V, Ma B, Liu S, Gao X, Zhao Y, Zhang Q. Multi- and transcriptomic changes of chronic exposure to bisphenol A reveals reproductive toxicity in male zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:671-685. [PMID: 37436566 DOI: 10.1007/s10695-023-01214-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Bisphenol A (BPA) is considered to be a threat to marine organisms owning to its widespread usage and potential aquatic toxicity. However, the reproductive toxicity of BPA to transgenerational inheritance in aquatic organisms is still unclarified. In this study, the morphological, histological, and transgenerational changes by BPA in zebrafish testis were investigated. Results showed that BPA caused abnormities in sperm number, activity, and fertility rate. Testicular transcriptional alterations detected by RNA-seq identified 1940 differentially expressed genes (DEGs) after BPA exposure, of which 392 were upregulated and 1548 were downregulated. Gene Ontology analysis showed that acrosin binding, binding of sperm to zona pellucida, and positive regulation of acrosome reaction were significantly enriched in BPA-induced DEGs. Pathway analysis indicated that cell adhesion molecules, steroid hormone biosynthesis and fatty acid biosynthesis, elongation, and metabolism were remarkably changed after BPA treatment. Thus, we deduce here that multi- and transcriptomic changes of chronic exposure to BPA reveals reproductive toxicity in male zebrafish.
Collapse
Affiliation(s)
- Xu Luo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Zhanxiang Du
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Jinyuan Hu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Vladimir Retyunskiy
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Shan Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Xing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| | - Qi Zhang
- School of Food Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
15
|
Phukan D, Kumar V. Tracking drugged waters from various sources to drinking water-its persistence, environmental risk assessment, and removal techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86676-86698. [PMID: 37436619 DOI: 10.1007/s11356-023-28421-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023]
Abstract
Pharmaceuticals have become a major concern due to their nature of persistence and accumulation in the environment. Very few studies have been performed relating to its toxicity and ill effects on the aquatic/terrestrial flora and fauna. The typical wastewater and water treatment processes are not efficient enough to get these persistent pollutants treated, and there are hardly any guidelines followed. Most of them do not get fully metabolized and end up in rivers through human excreta and household discharge. Various methods have been adopted with the advancement in technology, sustainable methods are more in demand as they are usually cost-effective, and hardly any toxic by-products are produced. This paper aims to illustrate the concerns related to pharmaceutical contaminants in water, commonly found drugs in the various rivers and their existing guidelines, ill effects of highly detected pharmaceuticals on aquatic flora and fauna, and its removal and remediation techniques putting more emphasis on sustainable processes.
Collapse
Affiliation(s)
- Dixita Phukan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Vipin Kumar
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| |
Collapse
|
16
|
Hicks KA, Fuzzen MLM, Dhiyebi HA, Bragg LM, Marjan P, Cunningham J, McMaster ME, Srikanthan N, Nikel KE, Arlos MJ, Servos MR. Intersex manifestation in the rainbow darter (Etheostoma caeruleum): Are adult male fish susceptible to developing and recovering from intersex after exposure to endocrine active compounds? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106636. [PMID: 37487446 DOI: 10.1016/j.aquatox.2023.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
For over a decade, intersex has been observed in rainbow darter (RD) (Etheostoma caeruleum) populations living downstream wastewater treatment plants (WWTPs) in the Grand River, Ontario, Canada. To further our understanding of intersex development in adult male fish, the current study addressed three objectives: i) can intersex be induced in adult male fish, ii) is there a specific window of exposure when adult male fish are more susceptible to developing intersex, and iii) can pre-exposed adult male fish recover from intersex? To assess intersex induction in adult male fish, wild male RD were exposed in the laboratory for 22 weeks (during periods of spawning, gonadal regression, and gonadal recrudescence) to environmentally relevant concentrations of 17α-ethinylestradiol (EE2) including nominal 0, 1, and 10 ng/L. Intersex rates and severity at 10 ng/L EE2 were similar to those observed historically in adult male populations living downstream WWTPs in the Grand River and confirmed previous predictions that 1-10 ng/L EE2 would cause these adverse effects. To assess a window of sensitivity in developing intersex, male RD were exposed to nominal 0, 1 or 10 ng/L EE2 for 4 weeks during three different periods of gonadal development, including (i) spawning, (ii) early recrudescence and (iii) late recrudescence. These short-term exposures revealed that intersex incidence and severity were greater when RD were exposed while gonads were fully developed (during spawning) compared to periods of recrudescence. To assess if RD recover from intersex, wild fish were collected downstream WWTPs in the Grand River and assessed for intersex both before and after a 22-week recovery period in clean water that included gonadal regression and recrudescence. Results showed that fish did not recover from intersex, with intersex rates and severity similar to those both before and after the transition to clean water. This study further advances our knowledge on intersex manifestation in adult male fish including their sensitivity to endocrine active compounds during different periods of their annual reproductive cycle and their limited ability to recover from intersex after onset of the condition.
Collapse
Affiliation(s)
- Keegan A Hicks
- Alberta Environment and Protected Areas, 4938 89th Street, Edmonton, AB T6E5K1 Canada; Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada.
| | - Meghan L M Fuzzen
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Hadi A Dhiyebi
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Patricija Marjan
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada; Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Jessie Cunningham
- Aquatic Contaminant Research Division, Water Science and Technology Branch, Environmentand Climate Change Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1 Canada
| | - Mark E McMaster
- Aquatic Contaminant Research Division, Water Science and Technology Branch, Environmentand Climate Change Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1 Canada
| | - Nivetha Srikanthan
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Kirsten E Nikel
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Maricor J Arlos
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 St. NW, Edmonton, AB T6G 1H9 Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
17
|
Nzioka A, Madeira MJ, Kokokiris L, Ortiz-Zarrogoitia M, Diaz de Cerio O, Cancio I. Lack of genetic structure in euryhaline Chelon labrosus from the estuaries under anthropic pressure in the Southern Bay of Biscay to the coastal waters of the Mediterranean Sea. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106058. [PMID: 37379782 DOI: 10.1016/j.marenvres.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023]
Abstract
Over the last decade, xenoestrogenic effects have been reported in populations of thicklip grey mullet Chelon labrosus from contaminated estuaries in the Bay of Biscay, resulting in intersex condition. To understand the level of gene flow in individuals of different Basque estuaries microsatellite markers were used to evaluate the population structure and connectivity of C. labrosus from estuaries of the Basque coast. 46 microsatellites were tested and 10 validated for the analysis of 204 individuals collected from 5 selected Basque estuaries and 2 outgroups in the Bay of Cadiz and Thermaic Gulf. The polymorphic microsatellites revealed 74 total alleles, 2-19 alleles per locus. The mean observed heterozygosity (0.49 ± 0.02) was lower than the expected one (0.53 ± 0.01). There was no evidence of genetic differentiation (FST = 0.0098, P = 0.0000) among individuals or sites. Bayesian clustering analysis revealed a single population in all sampled locations. The results of this study indicate widespread genetic homogeneity and panmixia of C. labrosus across the current sampling areas spanning the Atlantic and Mediterranean basins. The hypothesis of panmixia could therefore be well supported so individuals inhabiting estuaries with high prevalence of intersex condition should be considered as members of the same single genetic group as those inhabiting adjacent estuaries without incidence of xenoestrogenicity.
Collapse
Affiliation(s)
- Anthony Nzioka
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - María José Madeira
- SystBioGen Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Lucio Lascaray Research Centre, University of the Basque Country, Calle Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Lambros Kokokiris
- Department of Nutritional Sciences & Dietetics, International Hellenic University, P.O. 141 Sindos, 57400, Thessaloniki, Greece
| | - Maren Ortiz-Zarrogoitia
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Oihane Diaz de Cerio
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Ibon Cancio
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain.
| |
Collapse
|
18
|
Baekelandt S, Leroux N, Burattin L, Gérard C, Delierneux C, Robert JB, Cornet V, Kestemont P. Estetrol has a lower impact than 17α-ethinylestradiol on the reproductive capacity of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106505. [PMID: 37058791 DOI: 10.1016/j.aquatox.2023.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023]
Abstract
Natural and synthetic oestrogens are commonly found in aquatic ecosystems. The synthetic oestrogen 17α-ethinylestradiol (EE2) is widely used in oral contraceptives and its ecotoxicological effects on aquatic organisms have been widely reported. The natural oestrogen estetrol (E4) was recently approved for use in a new combined oral contraceptive and, after therapeutic use, is likely to be found in the aquatic environment. However, its potential effects on non-target species such as fish is unknown. In order to characterize and compare the endocrine disruptive potential of E4 with EE2, zebrafish (Danio rerio) were exposed to E4 or EE2 in a fish short-term reproduction assay conducted according to OECD Test Guideline 229. Sexually mature male and female fish were exposed to a range of concentrations, including environmentally relevant concentrations of E4 and EE2, for 21 days. Endpoints included fecundity, fertilization success, gonad histopathology, head/tail vitellogenin concentrations, as well as transcriptional analysis of genes related to ovarian sex steroid hormones synthesis. Our data confirmed the strong impact of EE2 on several parameters including an inhibition of fecundity, an induction of vitellogenin both in male and female fish, an alteration of gonadal structures and the modulation of genes involved in sex steroid hormone synthesis in female fish. In contrast, only few significant effects were observed with E4 with no impact on fecundity. The results suggest that the natural oestrogen, E4, presents a more favorable environmental profile than EE2 and is less likely to affect fish reproductive capacity.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium.
| | - Nathalie Leroux
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Laura Burattin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Céline Gérard
- Estetra SRL, an affiliated company of Mithra Pharmaceuticals, Rue Saint-Georges 5, Liège 4000, Belgium
| | - Céline Delierneux
- Estetra SRL, an affiliated company of Mithra Pharmaceuticals, Rue Saint-Georges 5, Liège 4000, Belgium
| | - Jean-Baptiste Robert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| |
Collapse
|
19
|
Ivankovic K, Jambrosic K, Mikac I, Kapetanovic D, Ahel M, Terzic S. Multiclass determination of drug residues in water and fish for bioaccumulation potential assessment. Talanta 2023; 264:124762. [PMID: 37276678 DOI: 10.1016/j.talanta.2023.124762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
In this work, a wide-scope liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitative determination of environmental levels of multiclass drugs and their metabolites in water and fish samples was developed. The method allowed the reliable determination of 44 drugs, covering a rather wide range of chemistries and physicochemical characteristics. In order to obtain a reliable and robust analytical protocol, different combinations of extraction and cleanup techniques were systematically examined. Aqueous samples were extracted using a simple Oasis HLB SPE enrichment protocol with pH-optimized sample percolation (pH 3). The extraction of cryo-homogenized biota samples was performed using double extraction with MeOH basified with 0.5% NH3, which allowed high extraction recoveries for all target analytes. The problem of the coextracted lipid matrix, which is known to be the key obstacle for reliable biota analysis, was systematically examined in a series of model cleanup experiments. A combination of cryo-precipitation, filtration, and HLB SPE cleanup was proposed as a protocol, which allowed reliable and robust analysis of all target compounds at low ng/g levels. At the final conditions, the method which was validated at three concentration levels showed high extraction recoveries (68-97%), acceptable matrix effects (12 to -32%), accuracies (81-129%), and reproducibilities (3-32%) for all analytes. The developed method was used to determine drug concentrations in river water and in feral freshwater fish, including whole fish and muscle tissue, from the Sava River (Croatia), in order to estimate their corresponding bioaccumulation potential. With respect to bioaccumulation potential in whole fish and fish muscle, the most relevant drugs were lisinopril, sertraline, terbinafine, torsemide, diazepam, desloratadine, and loratadine with estimated bioaccumulation factors ranging from 20 to 838 and from 1 to 431, respectively.
Collapse
Affiliation(s)
- Klaudija Ivankovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Karlo Jambrosic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Iva Mikac
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Damir Kapetanovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Senka Terzic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
20
|
Reis R, Dhawle R, Du Pasquier D, Tindall AJ, Frontistis Z, Mantzavinos D, de Witte P, Cabooter D. Electrochemical degradation of 17α-ethinylestradiol: Transformation products, degradation pathways and in vivo assessment of estrogenic activity. ENVIRONMENT INTERNATIONAL 2023; 176:107992. [PMID: 37244003 DOI: 10.1016/j.envint.2023.107992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Conventional water treatment methods are not efficient in eliminating endocrine disrupting compounds (EDCs) in wastewater. Electrochemical Advanced Oxidation Processes (eAOPs) offer a promising alternative, as they electro-generate highly reactive species that oxidize EDCs. However, these processes produce a wide spectrum of transformation products (TPs) with unknown chemical and biological properties. Therefore, a comprehensive chemical and biological evaluation of these remediation technologies is necessary before they can be safely applied in real-life situations. In this study, 17α-ethinylestradiol (EE2), a persistent estrogen, was electrochemically degraded using a boron doped diamond anode with sodium sulfate (Na2SO4) and sodium chloride (NaCl) as supporting electrolytes. Ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was used for the quantification of EE2 and the identification of TPs. Estrogenic activity was assessed using a transgenic medaka fish line. At optimal operating conditions, EE2 removal reached over 99.9% after 120 min and 2 min, using Na2SO4 and NaCl, respectively. The combined EE2 quantification and in vivo estrogenic assessment demonstrated the overall estrogenic activity was consistently reduced with the degradation of EE2, but not completely eradicated. The identification and time monitoring of TPs showed that the radical agents readily oxidized the phenolic A-ring of EE2, leading to the generation of hydroxylated and/or halogenated TPs and ring-opening products. eAOP revealed to be a promising technique for the removal of EE2 from water. However, caution should be exercised with respect to the generation of potentially toxic TPs.
Collapse
Affiliation(s)
- Rafael Reis
- Laboratory of Pharmaceutical Analysis, Department for Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Rebecca Dhawle
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - David Du Pasquier
- Laboratoire WatchFrog, Bâtiment Genavenir 3, 1 Rue Pierre Fontaine, 91000 Evry, France
| | - Andrew J Tindall
- Laboratoire WatchFrog, Bâtiment Genavenir 3, 1 Rue Pierre Fontaine, 91000 Evry, France
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece; School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus
| | | | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Deirdre Cabooter
- Laboratory of Pharmaceutical Analysis, Department for Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
21
|
Malathion exposure during juvenile and peripubertal periods downregulate androgen receptor and 17-ß-HSD testicular gene expression and compromised sperm quality in rats. J Dev Orig Health Dis 2023; 14:286-293. [PMID: 36336997 DOI: 10.1017/s2040174422000599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malathion is an insecticide that is used to control arboviruses and agricultural pests. Adolescents that are exposed to this insecticide are the most vulnerable as they are in the critical period of postnatal sexual development. This study aimed to evaluate whether malathion damage can affect sperm function and its respective mechanisms when adolescents are exposed during postnatal sexual development. Twenty-four male Wistar rats (PND 25) were divided into three experimental groups and treated daily for 40 d: control group (saline 0.9%), 10 mg/kg (M10 group), or 50 mg/kg (M50 group) of malathion. At PND 65, the rats were anesthetized and euthanized. Testicles were collected for the evaluation of gene expression. Sperm cells from the epididymis were used for evaluation of the oxidative profile or spermatic function. Data showed that a lower dose of malathion downregulated the gene expression of androgen receptors and testosterone converter enzyme 17-β-HSD in the testis. The acrosomal integrity of sperm cells was compromised in the M50 group, but not the M10 group. The mitochondrial activity was not impaired by exposure. Finally, although no alterations in malondialdehyde and glutathione levels were observed, malathion, at both doses, increased antioxidant enzyme catalase activity and, at a higher dose, superoxide dismutase activity. The present study showed that low doses of malathion considered to be inoffensive are capable of impairing sperm quality and function through the downregulation of testicular genic expression of AR enzyme 17-β-HSD and can damage the spermatic antioxidant profile during critical periods of development.
Collapse
|
22
|
Stewart MK, Hoehne L, Dudczig S, Mattiske DM, Pask AJ, Jusuf PR. Exposure to an environmentally relevant concentration of 17α-ethinylestradiol disrupts craniofacial development of juvenile zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114541. [PMID: 36657377 DOI: 10.1016/j.ecoenv.2023.114541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Endocrine disrupting chemicals (EDCs) can interact with native hormone receptors to interfere with and disrupt hormone signalling that is necessary for a broad range of developmental pathways. EDCs are pervasive in our environment, in particular in our waterways, making aquatic wildlife especially vulnerable to their effects. Many of these EDCs are able to bind to and activate oestrogen receptors, causing aberrant oestrogen signalling. Craniofacial development is an oestrogen-sensitive process, with oestrogen receptors expressed in chondrocytes during critical periods of development. Previous studies have demonstrated a negative effect of high concentrations of oestrogen on early craniofacial patterning in the aquatic model organism, the zebrafish (Danio rerio). In order to determine the impacts of exposure to an oestrogenic EDC, we exposed zebrafish larvae and juveniles to either a high concentration to replicate previous studies, or a low, environmentally relevant concentration of the oestrogenic contaminant, 17α-ethinylestradiol. The prolonged / chronic exposure regimen was used to replicate that seen by many animals in natural waterways. We observed changes to craniofacial morphology in all treatments, and most strikingly in the larvae-juveniles exposed to a low concentration of EE2. In the present study, we have demonstrated that the developmental stage at which exposure occurs can greatly impact phenotypic outcomes, and these results allow us to understand the widespread impact of oestrogenic endocrine disruptors. Given the conservation of key craniofacial development pathways across vertebrates, our model can further be applied in defining the risks of EDCs on mammalian organisms.
Collapse
Affiliation(s)
- Melanie K Stewart
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luca Hoehne
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefanie Dudczig
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Deidre M Mattiske
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew J Pask
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Patricia R Jusuf
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
23
|
Wang C, Lu Y, Sun B, Zhang M, Wang C, Xiu C, Johnson AC, Wang P. Ecological and human health risks of antibiotics in marine species through mass transfer from sea to land in a coastal area: A case study in Qinzhou Bay, the South China sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120502. [PMID: 36283471 DOI: 10.1016/j.envpol.2022.120502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics have been detected in aquatic environment around the world. Understanding internal concentrations of antibiotics in organisms could further improve risk governance. In this study, we investigated the occurrence of seven sulfonamides, four tetracyclines, five fluoroquinolones, and five macrolides antibiotics in six fish, four crustaceans, and five mollusks species collected from Qinzhou Bay, an important part of the Beibu Gulf in the South China Sea in 2018. 19 of all the 21 target antibiotics were detectable in biota. The total concentrations of the antibiotics ranged from 15.2 to 182 ng/g dry weight in all marine organisms, with sulfonamides and macrolides being the most abundant antibiotics. Mollusks accumulated more antibiotics than fish and crustaceans, implying the species-specific bioaccumulation of antibiotics. The pH dependent partition coefficients of antibiotics exhibited significantly positive correlation with their concentrations in organisms. The ecological risk assessment suggested that marine species in Qinzhou Bay were threatened by azithromycin and norfloxacin. The annual mass loading of antibiotics from Qinzhou Bay to the coastal land area for human ingestion via marine fishery catches was 4.02 kg, with mollusks being the predominant migration contributor. The estimated daily intakes of erythromycin indicated that consumption of seafood from Qinzhou Bay posed considerable risks to children (2-5 years old). The results in this study provide important insights for antibiotics pollution assessment and risk management.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Danish Center for Education and Research, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Danish Center for Education and Research, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenchen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuo Xiu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Andrew C Johnson
- UK Center for Ecology and Hydrology, Wallingford, Oxon, OX 10 8BB, UK
| | - Pei Wang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
24
|
Ma X, Xiong J, Li H, Brooks BW, You J. Long-Term Exposure to Neonicotinoid Insecticide Acetamiprid at Environmentally Relevant Concentrations Impairs Endocrine Functions in Zebrafish: Bioaccumulation, Feminization, and Transgenerational Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12494-12505. [PMID: 36006007 DOI: 10.1021/acs.est.2c04014] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neonicotinoid insecticides have attracted worldwide attention due to their ubiquitous occurrence and detrimental effects on aquatic organisms, yet their impacts on fish reproduction during long-term exposure remain unknown. Here, zebrafish (F0) were exposed to a neonicotinoid, acetamiprid, at 0.19-1637 μg/L for 154 d. Accumulation and biotransformation of acetamiprid were observed in adult fish, and the parent compound and its metabolite (acetamiprid-N-desmethyl) were transferred to their offspring. Acetamiprid caused slight survival reduction and significant feminization in F0 fish even at the lowest concentration. Hormone levels in F0 fish were remarkedly altered, that is, gonad 17β-estradiol (E2) significantly increased, while androstenedione decreased. The corresponding transcription of steroidogenic genes (ar, cyp19b, fshβ, gnrh2, gnrh3, and lhβ) were significantly upregulated in the brain and gonad of the females but downregulated in the males. The vtg1 gene expression in the liver of male fish was also upregulated. In addition to F0 fish, parental exposure to acetamiprid decreased hatchability and enhanced malformation of F1 embryos. Chronic exposure to acetamiprid at environmentally relevant concentrations altered hormone production and the related gene expression of the hypothalamic-pituitary-gonad (HPG) axis in a sex-dependent way, caused feminization and reproductive dysfunction in zebrafish, and impaired production and development of their offspring.
Collapse
Affiliation(s)
- Xue Ma
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jingjing Xiong
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Huizhen Li
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Bryan W Brooks
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798, United States
| | - Jing You
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
25
|
Hamilton PB, Baynes A, Nicol E, Harris G, Uren Webster TM, Beresford N, Straszkiewicz M, Jobling S, Tyler CR. Feminizing effects of ethinylestradiol in roach (Rutilus rutilus) populations with different estrogenic pollution exposure histories. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106229. [PMID: 35753216 DOI: 10.1016/j.aquatox.2022.106229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Experimental exposures aimed at assessing the risks posed by estrogens in waste-water treatment work (WwTW) effluents to fish populations have rarely considered whether populations differ in their sensitivity to estrogenic compounds. This is despite evidence that selection at genes involved in the estrogen response has occurred in wild populations, and evidence that genotype can influence estrogen-response. In this study we compare the effects of a two-year exposure to a low measured concentration (1.3 ng/L) of ethinylestradiol (EE2) on the sexual development of roach (Rutilus rutilus) whose parental generation was sampled from two river stretches heavily contaminated with WwTW effluent and from two without any known WwTW effluent contamination. Exposure to EE2 significantly reduced the proportion of genetic males and induced a range of feminized phenotypes in males. Significantly, exposure also increased the proportion of genetic females with vitellogenic oocytes from 51 to 96%, raising the possibility that estrogen pollution could impact populations of annually spawning fish species through advancing female reproduction by at least a year. However, there was no evidence that river origin affected sensitivity to estrogens in either sex. Thus, we conclude that chronic exposure to low level EE2 has reproductive health outcomes for both male and female roach, but we find no evidence that the nature or magnitude of the response is affected by the population origin.
Collapse
Affiliation(s)
- Patrick B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK; College of Medicine and Health, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU.
| | - Alice Baynes
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Elizabeth Nicol
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Graham Harris
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Tamsyn M Uren Webster
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK; Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - Nicola Beresford
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Marta Straszkiewicz
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
26
|
Comparing Environmental Policies to Reduce Pharmaceutical Pollution and Address Disparities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148292. [PMID: 35886145 PMCID: PMC9325029 DOI: 10.3390/ijerph19148292] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022]
Abstract
Pharmaceutical products, including active pharmaceutical ingredients and inactive ingredients such as packaging materials, have raised significant concerns due to their persistent input and potential threats to human and environmental health. Discourse on reducing pharmaceutical waste and subsequent pollution is often limited, as information about the toxicity of pharmaceuticals in humans is yet to be fully established. Nevertheless, there is growing awareness about ecotoxicity, and efforts to curb pharmaceutical pollution in the European Union (EU), United States (US), and Canada have emerged along with waste disposal and treatment procedures, as well as growing concerns about impacts on human and animal health, such as through antimicrobial resistance. Yet, the outcomes of such endeavors are often disparate and involve multiple agencies, organizations, and departments with little evidence of cooperation, collaboration, or oversight. Environmental health disparities occur when communities exposed to a combination of poor environmental quality and social inequities experience more sickness and disease than wealthier, less polluted communities. In this paper, we discuss pharmaceutical environmental pollution in the context of health disparities and examine policies across the US, EU, and Canada in minimizing environmental pollution.
Collapse
|
27
|
Korkmaz NE, Savun-Hekimoğlu B, Aksu A, Burak S, Caglar NB. Occurrence, sources and environmental risk assessment of pharmaceuticals in the Sea of Marmara, Turkey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152996. [PMID: 35031378 DOI: 10.1016/j.scitotenv.2022.152996] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
In the present study, the occurrence and spatial distribution of selected eleven pharmaceuticals were investigated in the Sea of Marmara, Turkey. Samples were collected from different depths of the nine stations in April and October 2019. Pharmaceuticals were analyzed using liquid-liquid and solid-phase extraction (SPE) methods followed by high-performance liquid chromatography (HPLC). All target pharmaceutical compounds were detected at least once in the study area. Gemfibrozil, which belongs to the lipid regulatory group, was the most frequently detected in seawater at high concentrations (<0.016-9.71 μg/L). Ibuprofen (<0.015-2.13 μg/L) and 17α-ethynylestradiol (<0.010-3.55 μg/L) were identified as the other frequently detected pharmaceuticals. In addition, the presence of these selected compounds in April was higher than in October. According to the risk assessment results, naproxen, diclofenac, clofibric acid, gemfibrozil, 17β-estradiol, and 17α-ethynylestradiol represent a high risk to aquatic organisms in the Sea of Marmara. These findings underline the importance of continued monitoring of these compounds as relevant organic contaminants in the study area to take appropriate measures to protect the ecosystem and, ultimately, human health.
Collapse
Affiliation(s)
- Nagihan E Korkmaz
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Başak Savun-Hekimoğlu
- Istanbul University, Institute of Marine Sciences and Management, Department of Marine Environment, Istanbul, Turkey
| | - Abdullah Aksu
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Selmin Burak
- Istanbul University, Institute of Marine Sciences and Management, Department of Marine Environment, Istanbul, Turkey
| | - Nuray Balkis Caglar
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey.
| |
Collapse
|
28
|
Roy B, Basak R, Rai U. Impact of xenoestrogens on sex differentiation and reproduction in teleosts. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Willis KA, Serra-Gonçalves C, Richardson K, Schuyler QA, Pedersen H, Anderson K, Stark JS, Vince J, Hardesty BD, Wilcox C, Nowak BF, Lavers JL, Semmens JM, Greeno D, MacLeod C, Frederiksen NPO, Puskic PS. Cleaner seas: reducing marine pollution. REVIEWS IN FISH BIOLOGY AND FISHERIES 2022. [PMID: 34366578 DOI: 10.22541/au.160382467.73347721/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
UNLABELLED In the age of the Anthropocene, the ocean has typically been viewed as a sink for pollution. Pollution is varied, ranging from human-made plastics and pharmaceutical compounds, to human-altered abiotic factors, such as sediment and nutrient runoff. As global population, wealth and resource consumption continue to grow, so too does the amount of potential pollution produced. This presents us with a grand challenge which requires interdisciplinary knowledge to solve. There is sufficient data on the human health, social, economic, and environmental risks of marine pollution, resulting in increased awareness and motivation to address this global challenge, however a significant lag exists when implementing strategies to address this issue. This review draws upon the expertise of 17 experts from the fields of social sciences, marine science, visual arts, and Traditional and First Nations Knowledge Holders to present two futures; the Business-As-Usual, based on current trends and observations of growing marine pollution, and a More Sustainable Future, which imagines what our ocean could look like if we implemented current knowledge and technologies. We identify priority actions that governments, industry and consumers can implement at pollution sources, vectors and sinks, over the next decade to reduce marine pollution and steer us towards the More Sustainable Future. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11160-021-09674-8.
Collapse
Affiliation(s)
- Kathryn A Willis
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Catarina Serra-Gonçalves
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Kelsey Richardson
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | | | | | - Kelli Anderson
- Institute for Marine and Antarctic Studies, Fisheries and Aquaculture, University of Tasmania, Newnham, TAS Australia
| | - Jonathan S Stark
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Australian Antarctic Division, Hobart, TAS Australia
| | - Joanna Vince
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Britta D Hardesty
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- CSIRO Oceans & Atmosphere, Hobart, TAS Australia
| | - Chris Wilcox
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Barbara F Nowak
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, Fisheries and Aquaculture, University of Tasmania, Newnham, TAS Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Jayson M Semmens
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Dean Greeno
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- School of Creative Arts and Media, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Catriona MacLeod
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Nunnoq P O Frederiksen
- The PISUNA Project, Qeqertalik Municipality, Attu, Greenland
- Snowchange Cooperative, Selkie, Finland
| | - Peter S Puskic
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| |
Collapse
|
30
|
Willis KA, Serra-Gonçalves C, Richardson K, Schuyler QA, Pedersen H, Anderson K, Stark JS, Vince J, Hardesty BD, Wilcox C, Nowak BF, Lavers JL, Semmens JM, Greeno D, MacLeod C, Frederiksen NPO, Puskic PS. Cleaner seas: reducing marine pollution. REVIEWS IN FISH BIOLOGY AND FISHERIES 2022; 32:145-160. [PMID: 34366578 PMCID: PMC8326648 DOI: 10.1007/s11160-021-09674-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2021] [Indexed: 05/06/2023]
Abstract
UNLABELLED In the age of the Anthropocene, the ocean has typically been viewed as a sink for pollution. Pollution is varied, ranging from human-made plastics and pharmaceutical compounds, to human-altered abiotic factors, such as sediment and nutrient runoff. As global population, wealth and resource consumption continue to grow, so too does the amount of potential pollution produced. This presents us with a grand challenge which requires interdisciplinary knowledge to solve. There is sufficient data on the human health, social, economic, and environmental risks of marine pollution, resulting in increased awareness and motivation to address this global challenge, however a significant lag exists when implementing strategies to address this issue. This review draws upon the expertise of 17 experts from the fields of social sciences, marine science, visual arts, and Traditional and First Nations Knowledge Holders to present two futures; the Business-As-Usual, based on current trends and observations of growing marine pollution, and a More Sustainable Future, which imagines what our ocean could look like if we implemented current knowledge and technologies. We identify priority actions that governments, industry and consumers can implement at pollution sources, vectors and sinks, over the next decade to reduce marine pollution and steer us towards the More Sustainable Future. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11160-021-09674-8.
Collapse
Affiliation(s)
- Kathryn A. Willis
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
-
CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Catarina Serra-Gonçalves
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Kelsey Richardson
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
-
CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | | | | | - Kelli Anderson
- Institute for Marine and Antarctic Studies, Fisheries and Aquaculture, University of Tasmania, Newnham, TAS Australia
| | - Jonathan S. Stark
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Australian Antarctic Division, Hobart, TAS Australia
| | - Joanna Vince
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Britta D. Hardesty
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
-
CSIRO Oceans & Atmosphere, Hobart, TAS Australia
| | - Chris Wilcox
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
-
CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Barbara F. Nowak
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, Fisheries and Aquaculture, University of Tasmania, Newnham, TAS Australia
| | - Jennifer L. Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Jayson M. Semmens
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Dean Greeno
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- School of Creative Arts and Media, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Catriona MacLeod
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | -
Nunnoq P. O. Frederiksen
- The PISUNA Project, Qeqertalik Municipality, Attu, Greenland
- Snowchange Cooperative, Selkie, Finland
| | - Peter S. Puskic
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| |
Collapse
|
31
|
Clyde PM, Lee CS, Price RE, Venkatesan AK, Brownawell BJ. Occurrence and removal of PPCPs from on-site wastewater using nitrogen removing biofilters. WATER RESEARCH 2021; 206:117743. [PMID: 34717243 DOI: 10.1016/j.watres.2021.117743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The presence of pharmaceuticals and personal care products (PPCPs) in the environment is primarily the result of discharge of waste, including from onsite wastewater treatment systems (OWTSs) which are employed by 25% of homes in the United States. However, the occurrence and removal of PPCPs in OWTSs is not well understood, particularly given the large diversity in PPCP compounds as well as in OWTS designs. In this study, we monitored 26 different PPCPs in 13 full-scale nitrogen removing biofilters (NRBs), an innovative/alternative type of OWTS that utilizes an overlying sand layer and an underlying woodchip/sand layer to simultaneously remove nitrogen and other wastewater-derived contaminants. The specific objectives of this study were (i) to measure the occurrence of PPCPs in septic tank effluent (STE) that served as an influent to NRBs, (ii) to quantify PPCP removal in three types of NRB configurations (n = 13), and (iii) to evaluate PPCP removal with depth and environmental conditions in NRBs. Aqueous samples were taken during 42 separate sampling events during 2016 - 2019 and analyzed by liquid chromatography tandem mass spectrometry. Analysis of the STE samples yielded detection of 23 of the 26 PPCPs, with caffeine being the most abundant and frequently detected compound at 52,000 ng/L (range: 190 - 181,000 ng/L), followed by acetaminophen and paraxanthine at 47,500 ng/L (190 - 160,000 ng/L), and 34,300 ng/L (430 - 210,000 ng/L), respectively. Cimetidine, fenofibrate, and warfarin were the only compounds not detected. The average removal of PPCPs by NRBs ranged from 58% to >99% for the various compounds. PPCP removal as a function of depth in the systems showed that 50 to >99% of the observed removal was achieved within the top oxic layer (0 - 46 cm) of the NRBs for 19 analytes. Seven of the compounds had >85% removal by the same depth. These results indicate that NRBs are effective at removing PPCPs and that a large portion of the removal is achieved within the oxic nitrifying layer of the NRBs. Overall, the removal of PPCPs in NRBs was comparable (n = 8) or better (n = 15) than that observed for conventional wastewater treatment plants.
Collapse
Affiliation(s)
- Patricia M Clyde
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Cheng-Shiuan Lee
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Roy E Price
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Arjun K Venkatesan
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, United States.
| | - Bruce J Brownawell
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, United States
| |
Collapse
|
32
|
Xie QP, Li BB, Wei FL, Yu M, Zhan W, Liu F, Lou B. Growth and gonadal development retardations after long-term exposure to estradiol in little yellow croaker, Larimichthys polyactis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112462. [PMID: 34217113 DOI: 10.1016/j.ecoenv.2021.112462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 05/25/2023]
Abstract
Endocrine disrupting chemicals (EDCs) including 17β-estradiol (E2) are widely distributed in the aquatic environment and are known to negatively affect the reproductive system of many animals, including fish. EDCs leading to feminization, altered sex ratio and reduced fecundity, it is possibly posing potential risks to the ecosystems. To investigate the potentially toxic effects of E2 exposure on little yellow croaker (Larimichthys polyactis, L. poliactis) who have a unique gonadal development pattern that males undergo a hermaphroditic stage. An experiment was set up where L. poliactis were maintained in tanks and exposed to E2 concentrations of 10 μg/L or no E2 exposure (the ethanol and control groups) from 30 to 90 days post-hatching (dph). After exposure, the E2 withdrawal and continual cultured to 150 and 365 dph. The morphological and histological analyses were used to compare the changes in the fish body and gonad under E2 exposure. The results showed that E2 exposure caused three major phenotypes at 30 and 60 days after treatment (dat), including ovary, ovotestis and gonadal development retardation compared with the control groups. The average ratio of these three phenotypes is 60.6%, 11.97% and 27.43%, respectively. The body length and weight of E2 exposure groups were repressed during the E2 exposure period, while it can recover after E2 withdrawal. However, the gonadal development (Gonadosomatic Index) of E2 exposure groups testis were retarded at 60 dat and doesn't recover until 365 dph. The sex determination/differentiation-related genes erα, erβI, erβII, fshβ and cyp11b2 were significantly decreased in E2-exposure male fish. This research highlights the E2 leads to feminization, disrupts testis maturation and spermatogenesis, this effect persisted into the stage of sexual maturity. Collectively, our findings provide insights into the molecular mechanisms underlying E2 disturbance of a marine economic fish reproduction.
Collapse
Affiliation(s)
- Qing-Ping Xie
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Bing-Bing Li
- School of Fishery, Zhejiang Ocean University, Zhoushan 316021, China
| | - Fu-Liang Wei
- School of Fishery, Zhejiang Ocean University, Zhoushan 316021, China
| | - Min Yu
- School of Fishery, Zhejiang Ocean University, Zhoushan 316021, China
| | - Wei Zhan
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Liu
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
33
|
Wang H, Xi H, Xu L, Jin M, Zhao W, Liu H. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147819. [PMID: 34029823 DOI: 10.1016/j.scitotenv.2021.147819] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 05/07/2023]
Abstract
Due to the extensive use and incomplete removal, pharmaceutical and personal care products (PPCPs) are introduced into the water continuously. It has been proved that the unique properties of PPCPs are influential to organisms and the environment, and gradually affect human health. In this paper, the toxicological effects of typical PPCPs, and the environmental behavior of PPCPs in aquatic are reviewed. The risk assessments of PPCPs in the water are summarized. The research directions of environmental toxicology research of PPCPs in the future are proposed. Many PPCPs were found to be toxic or even highly toxic toward aquatic organisms, and have the potential for bioaccumulation. It is essential to study the acute and long-term toxicity of PPCPs and their metabolites, evaluate the environmental behaviors and make a reasonable assessment of ecotoxicology and human health risks of PPCPs.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Xi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Linling Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
34
|
Jeminiwa BO, Knight RC, Abbot KL, Pondugula SR, Akingbemi BT. Gonadal sex steroid hormone secretion after exposure of male rats to estrogenic chemicals and their combinations. Mol Cell Endocrinol 2021; 533:111332. [PMID: 34038751 PMCID: PMC9310441 DOI: 10.1016/j.mce.2021.111332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022]
Abstract
Environmental chemicals can interfere with the endocrine axis hence they are classified as endocrine disrupting chemicals (EDCs). Bisphenol S (BPS) is used in the manufacture of consumer products because of its superior thermal stability and is thought to be a safe replacement chemical for its analog bisphenol A (BPA). However, the safety profile of these compounds alone or in the presence of other EDCs is yet to be fully investigated. Also, the estrogenic chemical 17α-ethinyl estradiol (EE2) and a constituent of female oral contraceptives for women, is present in water supplies. To simulate concurrent exposure of the population to chemical mixtures, we investigated the effects of BPA, BPS, EE2, and their combinations on sex steroid secretion in the growing male rat gonad. Prepubertal and pubertal male rats at 21 and 35 days of age were provided test chemicals in drinking water (parts per billion) for 14 days. At termination of exposure, some individual chemical effects were modified by exposure to chemical combinations. Single chemical exposures markedly decreased androgen secretion but their combination (e.g., BPA + BPS + EE2) caused the opposite effect, i.e., increased Leydig cell T secretion. Also, the test chemicals acting alone or in combination increased testicular and Leydig cell 17β-estradiol (E2) secretion. Chemical-induced changes in T and E2 secretion were associated with altered testicular expression of the cholesterol side-chain cleavage (Cyp11a1) and 17β-hydroxysteroid dehydrogenase (Hsd17β) enzyme protein. Additional studies are warranted to understand the mechanisms by which single and chemical combinations impact function of testicular cells and disrupt their paracrine regulation.
Collapse
Affiliation(s)
- B O Jeminiwa
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - R C Knight
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - K L Abbot
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - S R Pondugula
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - B T Akingbemi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
35
|
You HH, Song G. Review of endocrine disruptors on male and female reproductive systems. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109002. [PMID: 33610819 DOI: 10.1016/j.cbpc.2021.109002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022]
Abstract
Endocrine disruptors (EDs) interfere with different hormonal and metabolic processes and disrupt the development of organs and tissues, as well as the reproductive system. In toxicology research, various animal models have been utilized to compare and characterize the effects of EDs. We reviewed studies assessing the effect of ED exposure in humans, zebrafish, and mouse models and the adverse effects of EDs on male and female reproductive systems. This review outlines the distinctive morphological characteristics, as well as gene expression, factors, and mechanisms that are known to occur in response to EDs. In each animal model, disturbances in the reproductive system were associated with certain factors of apoptosis, the hypothalamic-pituitary-gonadal axis, estrogen receptor pathway-induced meiotic disruption, and steroidogenesis. The effects of bisphenol A, phthalate, and 17α-ethinylestradiol have been investigated in animal models, each providing supporting outcomes and elaborating the key regulators of male and female reproductive systems.
Collapse
Affiliation(s)
- Hyekyoung Hannah You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
36
|
De Vargas JPR, Bastos MC, Al Badany M, Gonzalez R, Wolff D, Santos DRD, Labanowski J. Pharmaceutical compound removal efficiency by a small constructed wetland located in south Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30955-30974. [PMID: 33594565 DOI: 10.1007/s11356-021-12845-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The fate of pharmaceuticals during the treatment of effluents is of major concern since they are not completely degraded and because of their persistence and mobility in environment. Indeed, even at low concentrations, they represent a risk to aquatic life and human health. In this work, fourteen pharmaceuticals were monitored in a constructed wetland wastewater treatment plants (WWTP) assessed in both influent and effluent samples. The basic water quality parameters were evaluated, and the removal efficiency of pharmaceutical, potential for bioaccumulation, and the impact of WWTP were assessed using Polar Organic Chemical Integrative Sampler (POCIS) and biofilms. The pharmaceutical compounds were quantified by High Performance Liquid chromatography coupled to mass spectrometry. The sampling campaign was carried out during winter (July/2018) and summer (January/2019). The WWTP performed well regarding the removal of TSS, COD, and BOD5 and succeeded to eliminate a significant part of the organic and inorganic pollution present in domestic wastewater but has low efficiency regarding the removal of pharmaceutical compounds. Biofilms were shown to interact with pharmaceuticals and were reported to play a role in their capture from water. The antibiotics were reported to display a high risk for aquatic organisms.
Collapse
Affiliation(s)
- Jocelina Paranhos Rosa De Vargas
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France.
| | - Marília Camotti Bastos
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Maha Al Badany
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Rolando Gonzalez
- Departamento de Engenharia Ambiental, Centro de Tecnologia, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Delmira Wolff
- Departamento de Engenharia Ambiental, Centro de Tecnologia, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Danilo Rheinheimer Dos Santos
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Jérôme Labanowski
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| |
Collapse
|
37
|
Black GP, He G, Denison MS, Young TM. Using Estrogenic Activity and Nontargeted Chemical Analysis to Identify Contaminants in Sewage Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6729-6739. [PMID: 33909413 PMCID: PMC8378343 DOI: 10.1021/acs.est.0c07846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diverse organic compounds, many derived from consumer products, are found in sewage sludge worldwide. Understanding which of these poses the most significant environmental threat following land application can be investigated through a variety of predictive and cell-based toxicological techniques. Nontargeted analysis using high-resolution mass spectrometry with predictive estrogenic activity modeling was performed on sewage sludge samples from 12 wastewater treatment plants in California. Diisobutyl phthalate and dextrorphan were predicted to exhibit estrogenic activity and identified in >75% of sludge samples, signifying their universal presence and persistence. Additionally, the application of an estrogen-responsive cell bioassay revealed reductions in agonistic activity during mesophilic and thermophilic treatment but significant increases in antagonism during thermophilic treatment, which warrants further research. Ten nontarget features were identified (metoprolol, fenofibric acid, erythrohydrobupropion, oleic acid, mestranol, 4'-chlorobiphenyl-2,3-diol, medrysone, scillarenin, sudan I, and N,O-didesmethyltramadol) in treatment set samples and are considered to have influenced the in vitro estrogenic activity observed. The combination of predictive and in vitro estrogenicity with nontargeted analysis has led to confirmation of 12 estrogen-active contaminants in California sewage sludge and has highlighted the importance of evaluating both agonistic and antagonistic responses when evaluating the bioactivity of complex samples.
Collapse
Affiliation(s)
- Gabrielle P. Black
- Agricultural & Environmental Chemistry Graduate Group, University of California, Davis
| | - Guochun He
- Department of Environmental Toxicology, University of California, Davis
| | | | - Thomas M. Young
- Agricultural & Environmental Chemistry Graduate Group, University of California, Davis
- Department of Civil & Environmental Engineering, University of California, Davis
| |
Collapse
|
38
|
John A, Rajan MS, Thomas J. Carbon nitride-based photocatalysts for the mitigation of water pollution engendered by pharmaceutical compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24992-25013. [PMID: 33772713 DOI: 10.1007/s11356-021-13528-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In recent decades, the destructive impact of active pharmaceutical ingredients (API) present in surface and drinking water on aquatic and terrestrial life forms becomes a major concern of researchers. API like diclofenac (DCF), carbamazepine (CBZ), tetracycline (TC), and sulfamethoxazole (SME) found in water bodies cause antimicrobial resistance and are potent carcinogens and endocrine disruptors. Conventional wastewater treatment methods possess some drawbacks and were found to be insufficient for the effective removal of APIs. Visible light-assisted semiconductor photocatalysis has become an alternative choice for tackling this worse scenario. Graphitic carbon nitride, a metal-free visible light active semiconductor photocatalyst is an emerging hotspot nanomaterial whose practical utility in water purification is widely recognized. This review comes up with an insightful outlook on the panorama of recent progress in the field of g-C3N4-assisted photocatalytic systems for the eradication of APIs. In addition, the review summarizes various strategies adopted for the broad-spectrum utilization of visible light and the enhancement of charge separation of pristine g-C3N4. The mechanistic pathways followed by different pharmaceuticals during their photocatalytic degradation process were also briefly discussed.
Collapse
Affiliation(s)
- Anju John
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala, 686561, India
| | - Mekha Susan Rajan
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala, 686561, India
| | - Jesty Thomas
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala, 686561, India.
| |
Collapse
|
39
|
Sogani M, Pankan AO, Dongre A, Yunus K, Fisher AC. Augmenting the biodegradation of recalcitrant ethinylestradiol using Rhodopseudomonas palustris in a hybrid photo-assisted microbial fuel cell with enhanced bio-hydrogen production. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124421. [PMID: 33199150 DOI: 10.1016/j.jhazmat.2020.124421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
This study presents the biodegradation potential of ethinylestradiol (EE2) in anaerobic environments using exoelectrogenic activity of Rhodopseudomonas palustris. EE2, a basic ingredient in oral contraceptives, is a significant estrogenic micropollutant in various wastewaters and is considered highly recalcitrant. This recalcitrance of EE2 has caused anoxic areas to become repositories for these pollutants. Thus, it is essential to find the microorganisms and suitable methods to degrade this compound. An initial EE2 concentration of 1 mg/L, used in an anaerobic photobioreactor, resulted in 70% EE2 degradation over a period of 16 days with an increase of 63% in hydrogen production when EE2 was used with glycerol as the main carbon source in the culture medium. Furthermore, in the novel setup of hybrid photo-assisted microbial fuel cell (h-PMFC) employed here, EE2 degradation enhanced to 89.82% with a maximum power density of 0.633 ± 0.04 mW/m2. The hybrid MFC employed here could metabolize EE2 and sustained the bio-hydrogen production for 14 days to run the hydrogen fuel cell which otherwise could not be sustained with glycerol only and thus increased the overall power output. The current work highlights the use of R. palustris and the significance of co-metabolism in bioremediation of pollutants and bioenergy generation.
Collapse
Affiliation(s)
- Monika Sogani
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, United Kingdom CB3 0AS; School of Civil and Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Off Jaipur Ajmer Express Highway, Jaipur, India 303007.
| | - Aazraa O Pankan
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, United Kingdom CB3 0AS
| | - Aman Dongre
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, United Kingdom CB3 0AS; School of Civil and Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Off Jaipur Ajmer Express Highway, Jaipur, India 303007
| | - Kamran Yunus
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, United Kingdom CB3 0AS
| | - Adrian C Fisher
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, United Kingdom CB3 0AS
| |
Collapse
|
40
|
Vilela CLS, Villela HDM, Duarte GAS, Santoro EP, Rachid CTCC, Peixoto RS. Estrogen induces shift in abundances of specific groups of the coral microbiome. Sci Rep 2021; 11:2767. [PMID: 33531587 PMCID: PMC7854615 DOI: 10.1038/s41598-021-82387-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Synthetic estrogens such as ethinylestradiol (EE2) are persistent micropollutants that are not effectively removed from wastewater by conventional treatments. These contaminants are released into waterbodies, where they disrupt endocrine systems of organisms and cause harmful effects such as feminization, infertility, reproduction problems and genital malformations. The consequences of this pollution for key marine ecosystems such as coral reefs and their associated microbiomes are underexplored. We evaluated the effects of EE2 concentrations of 100 ng L-1 and 100 µg L-1 on the coral metaorganism Mussismilia harttii. The results indicated no effects on visible bleaching or Fv/Fm ratios in the corals during a 17-day microcosm experiment. However, next-generation sequencing of 16S rDNA revealed a statistically significant effect of high EE2 concentrations on OTU richness, and shifts in specific microbial groups after treatments with or without EE2. These groups might be bioindicators of early shifts in the metaorganism composition caused by EE2 contamination.
Collapse
Affiliation(s)
- Caren L S Vilela
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena D M Villela
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo A S Duarte
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erika P Santoro
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio T C C Rachid
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel S Peixoto
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuval, Saudi Arabia.
| |
Collapse
|
41
|
Gordon S, Jones DK, Blazer VS, Iwanowicz L, Williams B, Smalling K. Modeling estrogenic activity in streams throughout the Potomac and Chesapeake Bay watersheds. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:105. [PMID: 33527185 DOI: 10.1007/s10661-021-08899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Endocrine-disrupting compounds (EDCs), specifically estrogenic endocrine-disrupting compounds, vary in concentration and composition in surface waters under the influence of different landscape sources and landcover gradients. Estrogenic activity in surface waters may lead to adverse effects in aquatic species at both individual and population levels, often observed through the presence of intersex and vitellogenin induction in male fish. In the Chesapeake Bay Watershed, located on the mid-Atlantic coast of the USA, intersex has been observed in several sub-watersheds where previous studies have identified specific landscape sources of EDCs in tandem with observed fish health effects. Previous work in the Potomac River Watershed (PRW), the largest basin within the Chesapeake Bay Watershed, was leveraged to build random forest regression models to predict estrogenic activity at unsampled reaches in both the Potomac River and larger Chesapeake Bay Watersheds (CBW). Model outputs including important variables, partial dependence plots, and predicted values of estrogenic activity at unsampled reaches provide insight into drivers of estrogenic activity at different seasons and scales. Using the US Environmental Protection Agency effects-based threshold of 1.0 ng/L 17 β-estradiol equivalents, catchments predicted to exceed this value were categorized as at risk for adverse effects from exposure to estrogenic compounds and evaluated relative to healthy watersheds and recreation access locations throughout the PRW. Results show immediate catchment scale models are more reliable than upstream models, and the best predictive variables differ by season and scale. A small percentage of healthy watersheds (< 13%) and public access sites were classified as at risk using the "Total" (annual) model in the CBW. This study is the first Potomac River Watershed assessment of estrogenic activity, providing a new foundation for future risk assessment and management design efforts, with additional context provided for the entire Chesapeake Bay Watershed.
Collapse
Affiliation(s)
- Stephanie Gordon
- U.S. Geological Survey Leetown Science Center Aquatic Ecology Laboratory, Kearneysville, WV, USA.
| | - Daniel K Jones
- U.S. Geological Survey Utah Water Science Center, West Valley City, UT, USA
| | - Vicki S Blazer
- U.S. Geological Survey Leetown Science Center Fish Health Laboratory, Kearneysville, WV, USA
| | - Luke Iwanowicz
- U.S. Geological Survey Leetown Science Center Fish Health Laboratory, Kearneysville, WV, USA
| | - Brianna Williams
- U.S. Geological Survey New Jersey Water Science Center, Lawrenceville, NJ, USA
| | - Kelly Smalling
- U.S. Geological Survey New Jersey Water Science Center, Lawrenceville, NJ, USA
| |
Collapse
|
42
|
Alenzi A, Hunter C, Spencer J, Roberts J, Craft J, Pahl O, Escudero A. Pharmaceuticals effect and removal, at environmentally relevant concentrations, from sewage sludge during anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 319:124102. [PMID: 32977100 DOI: 10.1016/j.biortech.2020.124102] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 05/16/2023]
Abstract
This paper investigates the performance of AD in the presence of high-risk pharmaceuticals found in sewage sludge and its removal capacity. The digestion process of synthetic sewage sludge was observed in two 7L glass reactors (D1 and D2) at 38 °C (OLR 1.3 gVS L-1 d-1 and HRT 43 d). Environmentally relevant pharmaceuticals (clarithromycin, clotrimazole, erythromycin, fluoxetine, ibuprofen, sertraline, simvastatin and tamoxifen) were added in D2 at predicted environmental (sludge) conditions. The results demonstrated that long-term presence of pharmaceuticals can affect AD and induce instability resulting in an accumulation of VFAs. This study showed a concurrent effect on AD microbial composition, increasing the percentage of Firmicutes (>70%) and decreasing the percentages of Bacteroidetes and Euryarchaeota (<5%), which seems to be the cause of VFA accumulation and resultant the decrease in the biogas production. However, it seems that anaerobic microorganisms offer enhanced removal of the antibiotics clarithromycin and erythromycin over aerobic techniques.
Collapse
Affiliation(s)
- Asma Alenzi
- Glasgow Caledonian University, Glasgow, Scotland, UK; University of Tabuk, Tabuk, Saudi Arabia
| | - Colin Hunter
- Glasgow Caledonian University, Glasgow, Scotland, UK
| | | | | | - John Craft
- Glasgow Caledonian University, Glasgow, Scotland, UK
| | - Ole Pahl
- Glasgow Caledonian University, Glasgow, Scotland, UK
| | - Ania Escudero
- Glasgow Caledonian University, Glasgow, Scotland, UK.
| |
Collapse
|
43
|
Cooper R, David A, Lange A, Tyler CR. Health Effects and Life Stage Sensitivities in Zebrafish Exposed to an Estrogenic Wastewater Treatment Works Effluent. Front Endocrinol (Lausanne) 2021; 12:666656. [PMID: 33995285 PMCID: PMC8120895 DOI: 10.3389/fendo.2021.666656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/24/2021] [Indexed: 11/27/2022] Open
Abstract
A wide range of health effects in fish have been reported for exposure to wastewater treatment work (WwTW) effluents including feminized responses in males. Most of these exposure studies, however, have assessed acute health effects and chronic exposure effects are less well established. Using an Estrogen Responsive Element-Green Fluorescent Protein (ERE-GFP)-Casper transgenic zebrafish, we investigated chronic health effects and life stage sensitivities for exposure to an estrogenic WwTW effluent and the synthetic estrogen 17α-ethinylestradiol (EE2). Exposure to the WwTW effluent (at full strength;100%) and to 10 ng/L (nominal) EE2 delayed testis maturation in male fish but accelerated ovary development in females. Exposure to 50% and 100% effluent, and to 10 ng/L EE2, also resulted in skewed sex ratios in favor of females. Differing patterns of green fluorescent protein (GFP) expression, in terms of target tissues and developmental life stages occurred in the ERE-GFP- zebrafish chronically exposed to 100% effluent and reflected the estrogenic content of the effluent. gfp and vitellogenin (vtg) mRNA induction were positively correlated with measured levels of steroidal estrogens in the effluent throughout the study. Our findings illustrate the importance of a fish's developmental stage for estrogen exposure effects and demonstrate the utility of the ERE-GFP zebrafish for integrative health analysis for exposure to estrogenic chemical mixtures.
Collapse
Affiliation(s)
- Ruth Cooper
- College of Life & Environmental Sciences, University of Exeter, Biosciences, Exeter, United Kingdom
| | - Arthur David
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Anke Lange
- College of Life & Environmental Sciences, University of Exeter, Biosciences, Exeter, United Kingdom
| | - Charles R. Tyler
- College of Life & Environmental Sciences, University of Exeter, Biosciences, Exeter, United Kingdom
- *Correspondence: Charles R. Tyler,
| |
Collapse
|
44
|
De Oliveira J, Chadili E, Turies C, Brion F, Cousin X, Hinfray N. A comparison of behavioral and reproductive parameters between wild-type, transgenic and mutant zebrafish: Could they all be considered the same "zebrafish" for reglementary assays on endocrine disruption? Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108879. [PMID: 32877737 DOI: 10.1016/j.cbpc.2020.108879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Transgenic zebrafish models are efficiently used to study the effects of endocrine disrupting chemicals (EDC); thereby informing on their mechanisms of action. However, given the reported differences between zebrafish strains at the genetical, physiological and behavioral levels; care should be taken before using these transgenic models for EDC testing. In the present study, we undertook a set of experiments in different transgenic and/or mutant zebrafish strains of interest for EDC testing: casper, cyp19a1a-eGFP, cyp19a1a-eGFP-casper, cyp11c1-eGFP, cyp11c1-eGFP-casper. Some behavioral traits, and some biochemical and reproductive physiological endpoints commonly used in EDC testing were assessed and compared to those obtained in WT AB zebrafish to ensure that transgene insertion and/or mutations do not negatively modify basal reproductive physiology or behavior of the fish. Behavioral traits considered as anxiety and sociality have been monitored. Sociality was evaluated by monitoring the time spent near congeners in a shuttle box while anxiety was evaluated using the Novel tank diving test. No critical difference was observed between strains for either sociality or anxiety level. Concerning reproduction, no significant difference in the number of eggs laid per female, in the viability of eggs or in the female circulating VTG concentrations was noted between the 5 transgenic/mutants and the WT AB zebrafish studied. In summary, the transgene insertion and the mutations had no influence on the endpoints measured in basal conditions. These results were a prerequisite to the use of these transgenic/mutant models for EDC testing. Next step will be to determine the sensitivity of these biological models to chemical exposure to accurately validate their use in existing fish assays for EDC testing.
Collapse
Affiliation(s)
- Julie De Oliveira
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Edith Chadili
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Cyril Turies
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - François Brion
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Xavier Cousin
- MARBEC Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France; Univ. Paris-Saclay, AgroParisTech, INRAE, GABI, France
| | - Nathalie Hinfray
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France.
| |
Collapse
|
45
|
Hamilton PB, Lockyer AE, Uren Webster TM, Studholme DJ, Paris JR, Baynes A, Nicol E, Dawson DA, Moore K, Farbos A, Jobling S, Stevens JR, Tyler CR. Investigation into Adaptation in Genes Associated with Response to Estrogenic Pollution in Populations of Roach ( Rutilus rutilus) Living in English Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15935-15945. [PMID: 33227200 DOI: 10.1021/acs.est.0c00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exposure of male fish to estrogenic substances from wastewater treatment works (WwTWs) results in feminization and reduced reproductive fitness. Nevertheless, self-sustaining populations of roach (Rutilus rutilus) inhabit river stretches polluted with estrogenic WwTW effluents. In this study, we examine whether such roach populations have evolved adaptations to tolerate estrogenic pollution by comparing frequency differences in single-nucleotide polymorphisms (SNPs) between populations sampled from rivers receiving either high- or low-level WwTW discharges. SNPs within 36 "candidate" genes, selected for their involvement in estrogenic responses, and 120 SNPs in reference genes were genotyped in 465 roaches. There was no evidence for selection in highly estrogen-dependent candidate genes, including those for the estrogen receptors, aromatases, and vitellogenins. The androgen receptor (ar) and cytochrome P450 1A genes were associated with large shifts in allele frequencies between catchments and in individual populations, but there is no clear link to estrogen pollution. Selection at ar in the effluent-dominated River Lee may have resulted from historical contamination with endocrine-disrupting pesticides. Critically, although our results suggest population-specific selection including at genes related to endocrine disruption, there was no strong evidence that the selection resulted from exposure to estrogen pollution.
Collapse
Affiliation(s)
- Patrick B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
- College of Medicine and Health, University of Exeter, St Luke's Campus, Heavitree Road, Exeter EX1 2LU, U.K
| | - Anne E Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex UB8 3PH, U.K
| | - Tamsyn M Uren Webster
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
- Biosciences, College of Science, Swansea University, Swansea SA2 8PP, U.K
| | - David J Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Josephine R Paris
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Alice Baynes
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex UB8 3PH, U.K
| | - Elizabeth Nicol
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex UB8 3PH, U.K
| | - Deborah A Dawson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Karen Moore
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Audrey Farbos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex UB8 3PH, U.K
| | - Jamie R Stevens
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| |
Collapse
|
46
|
Das S, Ouddane B, Hwang JS, Souissi S. Intergenerational effects of resuspended sediment and trace metal mixtures on life cycle traits of a pelagic copepod. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115460. [PMID: 32892010 DOI: 10.1016/j.envpol.2020.115460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Multiple stressors like metal toxicity, organic compounds and sediment pollution from the Seine estuary are raising concern and novel toxicological approaches are needed to better assess and monitor the risk. In the present study, the copepod Eurytemora affinis from the Seine, was exposed to two different sources of contaminants, which were resuspended polluted sediments and a mixture of trace metals (dissolved phase). The exposure continued for four generations (F0, F1, F2, F3) where F0 is a generation for acclimation to the exposure condition and F3 is a generation for decontamination followed without any exposure, to detect possible maternal carryover effects of pollutants (F0 - F2) and the role of recovery (in F3). Higher accumulation of metals resulted in higher mortalities at both exposure conditions, with particularly F1 being the most sensitive generation showing highest bioaccumulation of metals, highest mortality, and smallest population size. Copper accumulation was highest of all metals in mixture from both the resuspended sediment and the combined trace metal treatment. A significantly lower naupliar production was seen in copepods exposed to resuspended sediment compared to trace metal exposed copepods. However, the decontamination phase (F3) indicated that E. affinis pre-exposed to resuspended sediment had a higher ability to recover the total population size, increase naupliar production, and depurate accumulated Cu. The population exposed to a trace metal mixture showed lower recovery and lower ability to discharge accumulated toxic metals indicating its greater effect on our experimental model when compared to resuspended sediment.
Collapse
Affiliation(s)
- Shagnika Das
- Univ. Lille, CNRS, Univ, Littoral Côte D'Opale, UMR 8187, LOG - Laboratoire D'Océanologie et de Géosciences, F- 59000, Lille, France; Université de Lille, LASIRE (UMR CNRS 8516), Equipe Physico-chimie de L'Environnement, Bâtiment C8, 59655, Villeneuve D'Ascq Cedex, France
| | - Baghdad Ouddane
- Université de Lille, LASIRE (UMR CNRS 8516), Equipe Physico-chimie de L'Environnement, Bâtiment C8, 59655, Villeneuve D'Ascq Cedex, France
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sami Souissi
- Univ. Lille, CNRS, Univ, Littoral Côte D'Opale, UMR 8187, LOG - Laboratoire D'Océanologie et de Géosciences, F- 59000, Lille, France.
| |
Collapse
|
47
|
Jackson L, Klerks P. Effects of the synthetic estrogen 17α-ethinylestradiol on Heterandria formosa populations: Does matrotrophy circumvent population collapse? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105659. [PMID: 33130452 DOI: 10.1016/j.aquatox.2020.105659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Feminization responses have been observed in some wild populations of fish living in rivers and streams, some of which have been shown to arise as a consequence of exposure to sewage treatment (STP) effluent discharges and the endocrine disrupting chemicals (EDCs) they contain which mimic or antagonize the actions of steroid hormones. The synthetic estrogen, 17α-ethinylestradiol (EE2), commonly used in oral contraceptives, is present in surface waters receiving STP effluents at concentrations ranging from non-detectable to 5 ng/L. Despite extensive evidence that EE2 negatively affects the reproductive health of fishes, relatively little is known about effects at the population level - and especially so for live-bearing fishes. To investigate the potential for such impacts, populations of the least killifish (Heterandria formosa) were exposed to 0 or 5 ng/L EE2. Exposures were started with newborn fish and continued for seven months. Chronic exposure to 5 ng/L EE2 caused significant reductions in population size, in abundances of newborns and males, and in population growth rates. The exposure also resulted in a female-biased sex ratio. However, individuals' survival rates were not affected. This study showed that chronic exposure to 5 ng/L EE2 negatively affected population dynamics in a live-bearing fish, demonstrating that the levels of EE2 detected near STPs have the potential to impact wild populations of these fish.
Collapse
Affiliation(s)
- Latonya Jackson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, United States.
| | - Paul Klerks
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, United States
| |
Collapse
|
48
|
García Hernández MP, Cabas I, Rodenas MC, Arizcun M, Chaves-Pozo E, Power DM, García Ayala A. 17α-ethynylestradiol prevents the natural male-to-female sex change in gilthead seabream (Sparus aurata L.). Sci Rep 2020; 10:20067. [PMID: 33208754 PMCID: PMC7676269 DOI: 10.1038/s41598-020-76902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
Exposure to 17α-ethynylestradiol (EE2, 5 μg/g food) impairs some reproductive events in the protandrous gilthead seabream and a short recovery period does not allow full recovery. In this study, spermiating seabream males in the second reproductive cycle (RC) were fed a diet containing 5 or 2.5 μg EE2/g food for 28 days and then a commercial diet without EE2 for the remaining RC. Individuals were sampled at the end of the EE2 treatment and then at the end of the RC and at the beginning of the third RC, 146 and 333 days after the cessation of treatment, respectively. Increased hepatic transcript levels of the gene coding for vitellogenin (vtg) and plasma levels of Vtg indicated both concentrations of EE2 caused endocrine disruption. Modifications in the histological organization of the testis, germ cell proliferation, plasma levels of the sex steroids and pituitary expression levels of the genes coding for the gonadotropin β-subunits, fshβ and lhβ were detected. The plasma levels of Vtg and most of the reproductive parameters were restored 146 days after treatments. However, although 50% of the control fish underwent sex reversal as expected at the third RC, male-to female sex change was prevented by both EE2 concentrations.
Collapse
Affiliation(s)
- M Pilar García Hernández
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Isabel Cabas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - M Carmen Rodenas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Marta Arizcun
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Elena Chaves-Pozo
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Deborah M Power
- Centro de Ciências Do Mar, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Alfonsa García Ayala
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
49
|
Vilela CLS, Peixoto RS, Rachid CTCDC, Bassin JP. Assessing the impact of synthetic estrogen on the microbiome of aerated submerged fixed-film reactors simulating tertiary sewage treatment and isolation of estrogen-degrading consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140428. [PMID: 32763724 DOI: 10.1016/j.scitotenv.2020.140428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
17α-ethinylestradiol (EE2) is a synthetic estrogen that can cause harmful effects on animals, such as male feminization and infertility. However, the impact of the EE2 contamination on microbial communities and the potential role of bacterial strains as bioremediation agents are underexplored. The aim of this work was to evaluate the impact of EE2 on the microbial community dynamics of aerated submerged fixed-film reactors (ASFFR) simulating a polishing step downstream of a secondary sewage treatment. For this purpose, the reactors were fed with a synthetic medium with low COD content (around 50 mg l-1), supplemented (reactor H) or not (reactor C) with 1 μg l-1 of EE2. Sludge samples were periodically collected during the bioreactors operation to assess the bacterial profile over time by 16S rRNA gene amplicon sequencing or by bacterial isolation using culture-dependent approach. The results revealed that the most abundant phyla in both reactors were Proteobacteria and Bacteroidetes. At genus level, Chitinophagaceae, Nitrosomonas and Bdellovibrio predominated. Significant effects caused by EE2 treatment and bioreactors operating time were observed by non-metric multidimensional scaling. Therefore, even at low concentrations as 1 μg l-1, EE2 is capable of influencing the bioreactor microbiome. Culture-dependent methods showed that six bacterial isolates, closely related to Pseudomonas and Acinetobacter genera, could grow on EE2 as the sole carbon source under aerobic conditions. These organisms may potentially be used for the assembly of an EE2-degrading bacterial consortium and further exploited for bioremediation applications, including tertiary sewage treatment to remove hormone-related compounds not metabolized in secondary depuration stages.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio Tavora Coelho da Costa Rachid
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Paulo Bassin
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
50
|
Baldwin WS, Bain LJ, Di Giulio R, Kullman S, Rice CD, Ringwood AH, den Hurk PV. 20th Pollutant Responses in Marine Organisms (PRIMO 20): Global issues and fundamental mechanisms caused by pollutant stress in marine and freshwater organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105620. [PMID: 32932042 PMCID: PMC11106729 DOI: 10.1016/j.aquatox.2020.105620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The 20th Pollutant Responses in Marine Organisms (PRIMO 20) conference provided a forum for scientists from around the world to communicate novel toxicological research findings specifically focused on aquatic organisms, by combining applied and basic research at the intersection of environmental and mechanistic toxicology. The work highlighted in this special issue of Aquatic Toxicology, a special issue of Marine Environmental Research, and presented through posters and presentations, encompass important and emerging topics in freshwater and marine toxicology. This includes multiple types of emerging contaminants including microplastics and UV filtering chemicals. Other studies aimed to further our understanding of the effects of endocrine disrupting chemicals, pharmaceuticals, and personal care products. Further research presented in this virtual issue examined the interactive effects of chemicals and pathogens, while the final set of manuscripts demonstrates continuing efforts to combine traditional biomonitoring, data from -omic technologies, and modeling for use in risk assessment and management. An additional goal of PRIMO meetings is to address the link between environmental and human health. Several articles in this issue of Aquatic Toxicology describe the appropriateness of using aquatic organisms as models for human health, while the keynote speakers, as described in the editorial below, presented research that highlighted bioaccumulation of contaminants such as PFOS and mercury from fish to marine mammals and coastal human populations such as the Gullah/GeeChee near Charleston, South Carolina, USA.
Collapse
Affiliation(s)
- William S Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29631, United States.
| | - Lisa J Bain
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| | - Richard Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States.
| | - Seth Kullman
- Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States.
| | - Charles D Rice
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| | - Amy H Ringwood
- Biological Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, United States.
| | - Peter van den Hurk
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| |
Collapse
|