1
|
Anderson CJ, Talmane L, Luft J, Connelly J, Nicholson MD, Verburg JC, Pich O, Campbell S, Giaisi M, Wei PC, Sundaram V, Connor F, Ginno PA, Sasaki T, Gilbert DM, López-Bigas N, Semple CA, Odom DT, Aitken SJ, Taylor MS. Strand-resolved mutagenicity of DNA damage and repair. Nature 2024; 630:744-751. [PMID: 38867042 PMCID: PMC11186772 DOI: 10.1038/s41586-024-07490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.
Collapse
Affiliation(s)
- Craig J Anderson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lana Talmane
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Juliet Luft
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - John Connelly
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
- Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Laboratory Medicine, NHS Lothian, Edinburgh, UK
| | - Michael D Nicholson
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jan C Verburg
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susan Campbell
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marco Giaisi
- Brain Mosaicism and Tumorigenesis (B400), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pei-Chi Wei
- Brain Mosaicism and Tumorigenesis (B400), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vasavi Sundaram
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Frances Connor
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Paul A Ginno
- Division of Regulatory Genomics and Cancer Evolution (B270), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | | | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Colin A Semple
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Division of Regulatory Genomics and Cancer Evolution (B270), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sarah J Aitken
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Martin S Taylor
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Nicholson MD, Anderson CJ, Odom DT, Aitken SJ, Taylor MS. DNA lesion bypass and the stochastic dynamics of transcription-coupled repair. Proc Natl Acad Sci U S A 2024; 121:e2403871121. [PMID: 38717857 PMCID: PMC11098089 DOI: 10.1073/pnas.2403871121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
DNA base damage is a major source of oncogenic mutations and disruption to gene expression. The stalling of RNA polymerase II (RNAP) at sites of DNA damage and the subsequent triggering of repair processes have major roles in shaping the genome-wide distribution of mutations, clearing barriers to transcription, and minimizing the production of miscoded gene products. Despite its importance for genetic integrity, key mechanistic features of this transcription-coupled repair (TCR) process are controversial or unknown. Here, we exploited a well-powered in vivo mammalian model system to explore the mechanistic properties and parameters of TCR for alkylation damage at fine spatial resolution and with discrimination of the damaged DNA strand. For rigorous interpretation, a generalizable mathematical model of DNA damage and TCR was developed. Fitting experimental data to the model and simulation revealed that RNA polymerases frequently bypass lesions without triggering repair, indicating that small alkylation adducts are unlikely to be an efficient barrier to gene expression. Following a burst of damage, the efficiency of transcription-coupled repair gradually decays through gene bodies with implications for the occurrence and accurate inference of driver mutations in cancer. The reinitation of transcription from the repair site is not a general feature of transcription-coupled repair, and the observed data is consistent with reinitiation never taking place. Collectively, these results reveal how the directional but stochastic activity of TCR shapes the distribution of mutations following DNA damage.
Collapse
Affiliation(s)
- Michael D. Nicholson
- Cancer Research United Kingdom Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, United Kingdom
| | - Craig J. Anderson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, United Kingdom
| | - Duncan T. Odom
- Division of Regulatory Genomics and Cancer Evolution (B270), German Cancer Research Center, Heidelberg69120, Germany
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
| | - Sarah J. Aitken
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Medical Research Council Toxicology Unit, University of Cambridge, CambridgeCB2 1QR, United Kingdom
- Department of Histopathology, Cambridge University Hospitals National Health Service Foundation Trust, CambridgeCB2 0QQ, United Kingdom
| | - Martin S. Taylor
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, United Kingdom
| |
Collapse
|
3
|
Wu J, Wu J, Clabaugh G, Wang Y. Replication Studies of Alkyl Phosphotriester Lesions in Human Cells. Chem Res Toxicol 2024; 37:451-454. [PMID: 38417054 PMCID: PMC10947855 DOI: 10.1021/acs.chemrestox.3c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Alkyl phosphotriester (alkyl-PTE) lesions in DNA are shown to be poorly repaired; however, little is known about how these lesions impact DNA replication in human cells. Here, we investigated how the SP and RP diastereomers of four alkyl-PTE lesions (alkyl = Me, Et, nPr, or nBu) at the TT site perturb DNA replication in HEK293T cells. We found that these lesions moderately impede DNA replication and that their replicative bypass is accurate. Moreover, CRISPR-Cas9-mediated depletion of Pol η or Pol ζ resulted in significantly attenuated bypass efficiencies for both diastereomers of nPr- and nBu-PTE adducts, and the SP diastereomer of Et-PTE. Diminished bypass efficiencies were also detected for the Rp diastereomer of nPr- and nBu-PTE lesions upon ablation of Pol κ. Together, our study uncovered the impact of the alkyl-PTE lesions on DNA replication in human cells and revealed the roles of individual translesion synthesis DNA polymerases in bypassing these lesions.
Collapse
Affiliation(s)
- Jun Wu
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Jiabin Wu
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
| | - Garrit Clabaugh
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
4
|
Sotty J, Bablon P, Weiss PH, Soussan P. Diethylnitrosamine Induction of Hepatocarcinogenesis in Mice. Methods Mol Biol 2024; 2769:15-25. [PMID: 38315386 DOI: 10.1007/978-1-0716-3694-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Diethylnitrosamine (DEN) is a chemical hepatocarcinogenic agent that triggers a large array of oncogenic mutations after a single injection. Initiated hepatocytes subsequently undergo clonal expansion within a proliferative environment, rendering the DEN model a comprehensive carcinogen. In rodent studies, DEN finds extensive utility in experimental liver cancer research, mimicking several aspects of human hepatocellular carcinoma (HCC), including angiogenesis, metabolic reprogramming, immune exhaustion, and the ability to metastasize. Beyond the wealth of scientific insights gleaned from this model, the objective of this chapter is to review morphological, genomic, and immunological characteristics associated to DEN-induced HCC. Furthermore, this chapter provides a detailed procedural guide to effectively induce hepatocarcinogenesis in mice through a single intraperitoneal injection of DEN.
Collapse
Affiliation(s)
- Jules Sotty
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche de Saint Antoine (CRSA), Paris, France
| | - Pierre Bablon
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche de Saint Antoine (CRSA), Paris, France
| | - Paul-Henry Weiss
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche de Saint Antoine (CRSA), Paris, France
| | - Patrick Soussan
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche de Saint Antoine (CRSA), Paris, France.
- Département de Virologie, Assistance Publique - Hôpitaux de Paris (AP-HP), Sorbonne Université, GHU Paris-Est, Paris, France.
| |
Collapse
|
5
|
Li Y, Hecht SS. Metabolic Activation and DNA Interactions of Carcinogenic N-Nitrosamines to Which Humans Are Commonly Exposed. Int J Mol Sci 2022; 23:ijms23094559. [PMID: 35562949 PMCID: PMC9105260 DOI: 10.3390/ijms23094559] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Carcinogenic N-nitrosamine contamination in certain drugs has recently caused great concern and the attention of regulatory agencies. These carcinogens-widely detectable in relatively low levels in food, water, cosmetics, and drugs-are well-established and powerful animal carcinogens. The electrophiles resulting from the cytochrome P450-mediated metabolism of N-nitrosamines can readily react with DNA and form covalent addition products (DNA adducts) that play a central role in carcinogenesis if not repaired. In this review, we aim to provide a comprehensive and updated review of progress on the metabolic activation and DNA interactions of 10 carcinogenic N-nitrosamines to which humans are commonly exposed. Certain DNA adducts such as O6-methylguanine with established miscoding properties play central roles in the cancer induction process, whereas others have been linked to the high incidence of certain types of cancers. We hope the data summarized here will help researchers gain a better understanding of the bioactivation and DNA interactions of these 10 carcinogenic N-nitrosamines and facilitate further research on their toxicologic and carcinogenic properties.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +1-612-624-8187
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
6
|
Aitken SJ, Anderson CJ, Connor F, Pich O, Sundaram V, Feig C, Rayner TF, Lukk M, Aitken S, Luft J, Kentepozidou E, Arnedo-Pac C, Beentjes SV, Davies SE, Drews RM, Ewing A, Kaiser VB, Khamseh A, López-Arribillaga E, Redmond AM, Santoyo-Lopez J, Sentís I, Talmane L, Yates AD, Semple CA, López-Bigas N, Flicek P, Odom DT, Taylor MS. Pervasive lesion segregation shapes cancer genome evolution. Nature 2020; 583:265-270. [PMID: 32581361 PMCID: PMC7116693 DOI: 10.1038/s41586-020-2435-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Cancers arise through the acquisition of oncogenic mutations and grow by clonal expansion1,2. Here we reveal that most mutagenic DNA lesions are not resolved into a mutated DNA base pair within a single cell cycle. Instead, DNA lesions segregate, unrepaired, into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterize this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multiallelic and combinatorial genetic diversity. The phasing of lesions enables accurate measurement of strand-biased repair processes, quantification of oncogenic selection and fine mapping of sister-chromatid-exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.
Collapse
Affiliation(s)
- Sarah J Aitken
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Craig J Anderson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Frances Connor
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Vasavi Sundaram
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Christine Feig
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Tim F Rayner
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Margus Lukk
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Stuart Aitken
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Juliet Luft
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sjoerd V Beentjes
- School of Mathematics and Maxwell Institute, University of Edinburgh, Edinburgh, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ruben M Drews
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ailith Ewing
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Vera B Kaiser
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ava Khamseh
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Higgs Centre for Theoretical Physics, University of Edinburgh, Edinburgh, UK
| | - Erika López-Arribillaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aisling M Redmond
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Inés Sentís
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Lana Talmane
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew D Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Paul Flicek
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany.
| | - Martin S Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Yun BH, Guo J, Bellamri M, Turesky RJ. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. MASS SPECTROMETRY REVIEWS 2020; 39:55-82. [PMID: 29889312 PMCID: PMC6289887 DOI: 10.1002/mas.21570] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
8
|
Ma B, Stepanov I, Hecht SS. Recent Studies on DNA Adducts Resulting from Human Exposure to Tobacco Smoke. TOXICS 2019; 7:E16. [PMID: 30893918 PMCID: PMC6468371 DOI: 10.3390/toxics7010016] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
Abstract
DNA adducts are believed to play a central role in the induction of cancer in cigarette smokers and are proposed as being potential biomarkers of cancer risk. We have summarized research conducted since 2012 on DNA adduct formation in smokers. A variety of DNA adducts derived from various classes of carcinogens, including aromatic amines, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, alkylating agents, aldehydes, volatile carcinogens, as well as oxidative damage have been reported. The results are discussed with particular attention to the analytical methods used in those studies. Mass spectrometry-based methods that have higher selectivity and specificity compared to 32P-postlabeling or immunochemical approaches are preferred. Multiple DNA adducts specific to tobacco constituents have also been characterized for the first time in vitro or detected in vivo since 2012, and descriptions of those adducts are included. We also discuss common issues related to measuring DNA adducts in humans, including the development and validation of analytical methods and prevention of artifact formation.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Ma B, Zarth AT, Carlson ES, Villalta PW, Upadhyaya P, Stepanov I, Hecht SS. Identification of more than 100 structurally unique DNA-phosphate adducts formed during rat lung carcinogenesis by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 2018; 39:232-241. [PMID: 29194532 PMCID: PMC5862267 DOI: 10.1093/carcin/bgx135] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/25/2017] [Accepted: 11/25/2017] [Indexed: 02/01/2023] Open
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a powerful lung carcinogen in animal models and is considered a causative factor for lung cancer in people who use tobacco products. NNK undergoes metabolic activation-a critical step in its mechanism of carcinogenesis-to an intermediate which reacts with DNA to form pyridyloxobutyl DNA base and phosphate adducts. Another important metabolic pathway of NNK is its conversion to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which similarly forms pyridylhydroxybutyl DNA base adducts that have been characterized previously. In this study, we investigated the potential formation of pyridylhydroxybutyl DNA phosphate adducts. We report the characterization and quantitation of 107 structurally unique pyridylhydroxybutyl DNA phosphate adducts in the lungs of rats treated chronically with a carcinogenic dose of 5 ppm of NNK in their drinking water for up to 70 weeks, by using a novel liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry method. Our findings demonstrate that pyridylhydroxybutyl phosphate adducts account for 38-55 and 34-40% of all the measured pyridine-containing DNA adducts in rat lung and liver, respectively, upon treatment with NNK. Some of the pyridylhydroxybutyl DNA phosphate adducts persisted in both tissues for over 70 weeks, suggesting that they could be potential biomarkers of chronic exposure to NNK and NNAL. This study provides comprehensive characterization and relative quantitation of a panel of NNK/NNAL-derived DNA phosphate adducts, thus identifying NNK as the source of the most structurally diverse set of DNA adducts identified to date from any carcinogen.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Adam T Zarth
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Erik S Carlson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Ma B, Zarth AT, Carlson ES, Villalta PW, Stepanov I, Hecht SS. Pyridylhydroxybutyl and pyridyloxobutyl DNA phosphate adduct formation in rats treated chronically with enantiomers of the tobacco-specific nitrosamine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. Mutagenesis 2017; 32:561-570. [PMID: 29186507 PMCID: PMC5907908 DOI: 10.1093/mutage/gex031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/17/2017] [Indexed: 01/24/2023] Open
Abstract
The tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is metabolically converted to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in a reaction which is both stereoselective and reversible. NNAL is also a lung carcinogen, with both (R)-NNAL and (S)-NNAL inducing a high incidence of lung tumours in rats. Both NNAL and NNK undergo metabolic activation to intermediates which react with DNA to form pyridylhydroxybutyl and pyridyloxobutyl DNA adducts, respectively. DNA adduct formation by NNAL and NNK is an important step in their mechanisms of carcinogenesis. In this study, we quantified both pyridylhydroxybutyl and pyridyloxobutyl DNA phosphate adducts in the lung of rats treated with 5 ppm of (R)-NNAL or (S)-NNAL in drinking water for 10, 30, 50 and 70 weeks. In (R)-NNAL-treated rats, the pyridylhydroxybutyl and pyridyloxobutyl phosphate adducts were 4530-6920 fmol/mg DNA and 46-175 fmol/mg DNA, accounting for 45-51% and 0.3-1% of the total measured DNA phosphate and base adducts, respectively. In (S)-NNAL-treated rats, the two types of phosphate adducts were 3480-4180 fmol/mg DNA and 1180-4650 fmol/mg DNA, accounting for 30-36% and 11-38% of the total adducts, respectively. Distinct patterns of adduct formation were observed, with higher levels of NNAL-derived pyridylhydroxybutyl phosphate adducts and lower levels of NNK-derived pyridyloxobutyl phosphate adducts in the (R)-NNAL treatment group than the (S)-NNAL group. The persistence and increase over time of certain pyridylhydroxybutyl phosphate adducts over the course of the study suggest that these adducts could be useful biomarkers of chronic exposure to NNAL and NNK. The results of this study provide important new information regarding DNA damage by NNAL and NNK, and contribute to understanding mechanisms of tobacco-related carcinogenesis.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Adam T Zarth
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Erik S Carlson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Ma B, Villalta PW, Zarth AT, Kotandeniya D, Upadhyaya P, Stepanov I, Hecht SS. Comprehensive High-Resolution Mass Spectrometric Analysis of DNA Phosphate Adducts Formed by the Tobacco-Specific Lung Carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone. Chem Res Toxicol 2015; 28:2151-9. [PMID: 26398225 PMCID: PMC4652278 DOI: 10.1021/acs.chemrestox.5b00318] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 11/28/2022]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 1) is a potent lung carcinogen in laboratory animals and is believed to play a key role in the development of lung cancer in smokers. Metabolic activation of NNK leads to the formation of pyridyloxobutyl DNA adducts, a critical step in its mechanism of carcinogenesis. In addition to DNA nucleobase adducts, DNA phosphate adducts can be formed by pyridyloxobutylation of the oxygen atoms of the internucleotidic phosphodiester linkages. We report the use of a liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry technique to characterize 30 novel pyridyloxobutyl DNA phosphate adducts in calf thymus DNA (CT-DNA) treated with 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc, 2), a regiochemically activated form of NNK. A (15)N3-labeled internal standard was synthesized for one of the most abundant phosphate adducts, dCp[4-oxo-4-(3-pyridyl)butyl]dC (CpopC), and this standard was used to quantify CpopC and to estimate the levels of other adducts in the NNKOAc-treated CT-DNA. Formation of DNA phosphate adducts by NNK in vivo was further investigated in rats treated with NNK acutely (0.1 mmol/kg once daily for 4 days by subcutaneous injection) and chronically (5 ppm in drinking water for 10, 30, 50, and 70 weeks). This study provides the first comprehensive structural identification and quantitation of a panel of DNA phosphate adducts of a structurally complex carcinogen and chemical support for future mechanistic studies of tobacco carcinogenesis in humans.
Collapse
Affiliation(s)
- Bin Ma
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| | - Adam T. Zarth
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| | - Delshanee Kotandeniya
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| | - Irina Stepanov
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic
Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Liu S, Wang Y. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts. Chem Soc Rev 2015; 44:7829-54. [PMID: 26204249 PMCID: PMC4787602 DOI: 10.1039/c5cs00316d] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exogenous and endogenous sources of chemical species can react, directly or after metabolic activation, with DNA to yield DNA adducts. If not repaired, DNA adducts may compromise cellular functions by blocking DNA replication and/or inducing mutations. Unambiguous identification of the structures and accurate measurements of the levels of DNA adducts in cellular and tissue DNA constitute the first and important step towards understanding the biological consequences of these adducts. The advances in mass spectrometry (MS) instrumentation in the past 2-3 decades have rendered MS an important tool for structure elucidation, quantification, and revelation of the biological consequences of DNA adducts. In this review, we summarized the development of MS techniques on these fronts for DNA adduct analysis. We placed our emphasis of discussion on sample preparation, the combination of MS with gas chromatography- or liquid chromatography (LC)-based separation techniques for the quantitative measurement of DNA adducts, and the use of LC-MS along with molecular biology tools for understanding the human health consequences of DNA adducts. The applications of mass spectrometry-based DNA adduct analysis for predicting the therapeutic outcome of anti-cancer agents, for monitoring the human exposure to endogenous and environmental genotoxic agents, and for DNA repair studies were also discussed.
Collapse
Affiliation(s)
- Shuo Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA and Department of Chemistry, University of California, Riverside, CA 92521-0403, USA.
| |
Collapse
|
13
|
Chakkath T, Lavergne S, Fan TM, Bunick D, Dirikolu L. Alkylation and Carbamylation Effects of Lomustine and Its Major Metabolites and MGMT Expression in Canine Cells. Vet Sci 2015; 2:52-68. [PMID: 29061931 PMCID: PMC5644621 DOI: 10.3390/vetsci2020052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/20/2015] [Accepted: 04/20/2015] [Indexed: 11/24/2022] Open
Abstract
DNA Alkylation is thought to be the reason for the efficacy of lomustine while carbamylation has been implicated as the cause for the side effects seen with lomustine treatment such as hepatotoxicity. In the alkylation study we show that lomustine and its metabolites form similar levels of the DNA adducts N⁷ hydroxyethylguanine and O⁶ hydroxyethyldeoxyguanosine. In terms of carbamylation, lomustine showed greater extent of carbamylation in the canine hepatocytes and lymphoma cell lines. The DNA repair enzyme O⁶ methylguanine DNA methyltransferase (MGMT) causes resistance of tumor cells to bifunctional nitrosourea, like lomustine. There is no data available regarding MGMT expression/activity in canine cells or tissues. Our study shows that there is low MGMT activity in the canine lymphoid cell line 17-71 while the GL-1 cells did not show any detectable enzyme activity or mRNA expression. The MGMT enzyme activity measured in canine hepatocytes is about 250-350 fmol/mg protein as compared to about 90 fmol/mg protein in 17-71 cells. We also show that MGMT mRNA expression in 17-71 cells and canine hepatocytes positively correlates with its enzyme activity in these cells.
Collapse
Affiliation(s)
- Thushara Chakkath
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA.
| | - Sidonie Lavergne
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA.
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA.
| | - David Bunick
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA.
| | - Levent Dirikolu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA.
| |
Collapse
|
14
|
Coffing SL, Kenyon MO, Ackerman JI, Shutsky TJ, Dobo KL. Evaluation of the in vivo mutagenicity of isopropyl methanesulfonate in acute and 28-day studies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:322-332. [PMID: 25229874 DOI: 10.1002/em.21910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 06/03/2023]
Abstract
Understanding the mutagenic dose response could prove beneficial in the management of pharmaceutically relevant impurities. For most alkyl ester impurities, such as isopropyl methanesulfonate (IPMS), little in vivo mutagenicity data exist for dose analysis. The likelihood of a sublinear dose response for IPMS was assessed by comparing the Swain Scott constant, the SN 1/SN 2 reaction mechanism and the O(6) :N(7) guanine adduct ratio to that of more well-known alkyl esters. Based on available information, IPMS was predicted to have a mutagenic profile most like ethyl nitrosourea. To test this hypothesis, mature male Wistar Han rats were administered IPMS using acute (single administration at 3.5 to 56 mg/kg) or subchronic (28 days at 0.125 to 2 mg/kg/day) exposures. The in vivo Pig-a mutation assay was used to identify mutant phenotype reticulocyte (Ret) and red blood cell (RBC) populations. The maximum mutant response occurred approximately 15 and 28 days after the last dose administration in the mutant Ret and RBC populations respectively in the acute study and on Day 29 and 56 in the mutant Ret and RBC populations, respectively, in the subchronic study. A comparison of RBC mutant frequencies from acute and subchronic protocols suggests a sublinear response; however, this was not substantiated by statistical analysis. A No Observed Effect Level (NOEL) of 0.25 mg/kg/day resulted in a Permitted Daily Exposure equivalent to the Threshold of Toxicological Concern. An estimate of the NOEL based on the previously mentioned factors, in practice, would have pre-empted further investigation of the potent mutagen IPMS.
Collapse
Affiliation(s)
- Stephanie L Coffing
- Pfizer Worldwide Research and Development, Genetic Toxicology, Groton, Connecticut
| | | | | | | | | |
Collapse
|
15
|
Chen HJC, Lin CR. Simultaneous quantification of ethylpurine adducts in human urine by stable isotope dilution nanoflow liquid chromatography nanospray ionization tandem mass spectrometry. J Chromatogr A 2013; 1322:69-73. [DOI: 10.1016/j.chroma.2013.10.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/28/2022]
|
16
|
Andersen N, Wang P, Wang Y. Replication across regioisomeric ethylated thymidine lesions by purified DNA polymerases. Chem Res Toxicol 2013; 26:1730-8. [PMID: 24134187 DOI: 10.1021/tx4002995] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Causal links exist between smoking cigarettes and cancer development. Some genotoxic agents in cigarette smoke are capable of alkylating nucleobases in DNA, and higher levels of ethylated DNA lesions were observed in smokers than in nonsmokers. In this study, we examined comprehensively how the regioisomeric O(2)-, N3-, and O(4)-ethylthymidine (O(2)-, N3-, and O(4)-EtdT, respectively) perturb DNA replication mediated by purified human DNA polymerases (hPols) η, κ, and ι, yeast DNA polymerase ζ (yPol ζ), and the exonuclease-free Klenow fragment (Kf(-)) of Escherichia coli DNA polymerase I. Our results showed that hPol η and Kf(-) could bypass all three lesions and generate full-length replication products, whereas hPol ι stalled after inserting a single nucleotide opposite the lesions. Bypass conducted by hPol κ and yPol ζ differed markedly among the three lesions. Consistent with its known ability to efficiently bypass the minor groove N(2)-substituted 2'-deoxyguanosine lesions, hPol κ was able to bypass O(2)-EtdT, though it experienced great difficulty in bypassing N3-EtdT and O(4)-EtdT. yPol ζ was only modestly blocked by O(4)-EtdT, but the polymerase was strongly hindered by O(2)-EtdT and N3-EtdT. LC-MS/MS analysis of the replication products revealed that DNA synthesis opposite O(4)-EtdT was highly error-prone, with dGMP being preferentially inserted, while the presence of O(2)-EtdT and N3-EtdT in template DNA directed substantial frequencies of misincorporation of dGMP and, for hPol ι and Kf(-), dTMP. Thus, our results suggested that O(2)-EtdT and N3-EtdT may also contribute to the AT → TA and AT → GC mutations observed in cells and tissues of animals exposed to ethylating agents.
Collapse
Affiliation(s)
- Nisana Andersen
- Department of Chemistry and ‡Environmental Toxicology Graduate Program, University of California , Riverside, California 92521-0403, United States
| | | | | |
Collapse
|
17
|
Chen HJC, Liu YF. Simultaneous quantitative analysis of N3-ethyladenine and N7-ethylguanine in human leukocyte deoxyribonucleic acid by stable isotope dilution capillary liquid chromatography-nanospray ionization tandem mass spectrometry. J Chromatogr A 2012; 1271:86-94. [PMID: 23228920 DOI: 10.1016/j.chroma.2012.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/07/2012] [Accepted: 11/10/2012] [Indexed: 11/30/2022]
Abstract
Cigarette smoke contains ethylating agents which damage DNA producing ethylated DNA adducts, such as N(3)-ethyladenine (3-EtAde), N(7)-ethylguanine (7-EtGua), and regioisomers of ethylthymine. Among them, 3-EtAde and 7-EtGua are present in human urine and their levels are higher in smokers than in nonsmokers. The amount of ethylated DNA adducts in tissue DNA represents the steady-state levels of DNA adducts resulting from the ethylating agent after repair in vivo. In this study, we have developed a highly sensitive, accurate, and quantitative assay for simultaneous detection and quantification of 3-EtAde and 7-EtGua by stable isotope dilution capillary liquid chromatography-nanospray ionization tandem mass spectrometry (capLC-NSI/MS/MS). Under the highly selective reaction monitoring (H-SRM) mode, the detection limit of 3-EtAde and 7-EtGua injected on-column was 5.0 fg (31 amol) and 10 fg (56 amol), respectively. The quantification limit for the entire assay was 50 and 100 fg of 3-EtAde and 7-EtGua, corresponding to 4.7 and 8.6 adducts in 10(9) normal nucleotides, respectively, starting with 20 μg of DNA isolated from <1 mL of blood and injecting an equivalent of 4 μg of DNA on-column. The mean (±SD) levels of 3-EtAde and 7-EtGua in leukocyte DNA from 20 smokers were 16.0±7.8 and 9.7±8.3 in 10(8) normal nucleotides, respectively, which were statistically significantly higher than those of 5.4±2.6 3-EtAde and 0.3±0.8 7-EtGua in 10(8) normal nucleotides from 20 nonsmokers (p<0.0001). The levels of 3-EtAde and 7-EtGua in these 40 leukocyte DNA samples are positively correlated (γ=0.6970, p<0.0001). Furthermore, there are statistically significant associations between the number of cigarettes smoked per day, as well as the smoking index, and the levels of 3-EtAde and 7-EtGua. Levels of 3-EtAde and 7-EtGua are compared to those of ethylthymidine adducts. To our knowledge, this is the first assay for simultaneous quantification of 3-EtAde and 7-EtGua in the same DNA sample and is the first report of 3-EtAde in human DNA. This highly sensitive and specific stable isotope dilution capLC-NSI/MS/MS assay should be useful in measuring 3-EtAde and 7-EtGua in human leukocyte DNA as potential biomarkers for smoking-related cancers.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan.
| | | |
Collapse
|
18
|
Hu CW, Chao MR. Direct-Acting DNA Alkylating Agents Present in Aqueous Extracts of Areca Nut and Its Products. Chem Res Toxicol 2012; 25:2386-92. [DOI: 10.1021/tx300252r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety
and Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department
of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
19
|
Fautch JM, Wilker JJ. Solution Speciation, Kinetics, and Observing Reaction Intermediates in the Alkylation of Oxidovanadium Compounds. Inorg Chem 2010; 49:4791-801. [PMID: 20420457 DOI: 10.1021/ic901922m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jessica M. Fautch
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084
| | - Jonathan J. Wilker
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084
| |
Collapse
|
20
|
Jones GDD, Le Pla RC, Farmer PB. Phosphotriester adducts (PTEs): DNA's overlooked lesion. Mutagenesis 2009; 25:3-16. [DOI: 10.1093/mutage/gep038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Chao MR, Wang CJ, Wu MT, Pan CH, Kuo CY, Yang HJ, Chang LW, Hu CW. Repeated measurements of urinary methylated/oxidative DNA lesions, acute toxicity, and mutagenicity in coke oven workers. Cancer Epidemiol Biomarkers Prev 2009; 17:3381-9. [PMID: 19064554 DOI: 10.1158/1055-9965.epi-08-0721] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We conducted a repeated-measures cohort study of coke oven workers to evaluate the relationships between the traditional exposure biomarker, urinary 1-hydroxypyrene (1-OHP), and a series of biomarkers, including urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), N7-methylguanine (N7-MeG), acute toxicity, and mutagenicity. A total of eight spot urine samples were collected from each high-exposed (at topside oven area) and low-exposed workers (at side oven area) during the whole working cycle, which consisted of 6 consecutive days of working followed by 2 days off. Our results showed that the high-exposed workers had significantly higher urinary levels of 1-OHP, 8-oxodG, and N7-MeG compared with the low-exposed workers. Acute toxicity and mutagenicity of urine were also found to be markedly increased in the high-exposed workers, as determined by Microtox assay and Ames test, respectively. Multivariate regressions analysis revealed that the urinary 8-oxodG, N7-MeG, or acute toxicity was significantly correlated with 1-OHP concentrations. Overall, the present study showed that exposure to coke oven emissions increased oxidatively damaged DNA products and mutagenicity of urine, and for the very first time, such exposure was also found to increase DNA methylation and urinary acute toxicity. The potential source of methylating agents in coke oven emissions warrants further investigation. Additionally, with repeated measurements, the pattern of time course for urinary 1-OHP was found to be different from those of 8-oxodG and N7-MeG, as well as acute toxicity and mutagenicity. This finding implies that the single measurement that was often conducted in occupational healthy investigations should be used with certain precautions, because single measurement may fail to provide the proper information of interest.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department ofOccupational Safety and Health, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo North Road, Taichung 402, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chao MR, Chang YZ, Wong RH, Hu CW. Time course evaluation of N-nitrosodialkylamines-induced DNA alkylation and oxidation in liver of mosquito fish. Mutat Res 2009; 660:33-39. [PMID: 19007796 DOI: 10.1016/j.mrfmmm.2008.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/03/2008] [Accepted: 10/08/2008] [Indexed: 05/27/2023]
Abstract
Here we simultaneously measured N7-alkylguanines and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in liver of small fish, respectively, to assess the time course of the formation and removal of alkylation and oxidative damage to DNA caused by N-nitrosodialkylamines. Mosquito fish (Gambusia affinis) were killed at various times during (4 days) and post-exposure (16 days) to N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) alone or their combination with concentrations of 10 and 50mg/l. The modified guanine adducts were sensitively and selectively quantitated by isotope-dilution LC-MS/MS methods. During exposure, N7-methylguanine (N7-MeG) and N7-ethylguanine (N7-EtG) in liver DNA increased with the duration and dose of N-nitrosodialkylamine exposure, while 8-oxodG was dose-dependently induced within 1 day. It was found that NDMA formed substantially more N7-alkylated guanines and 8-oxodG than NDEA on the basis of adducts formed per micromolar concentration, suggesting that NDMA can be more easily bioactivated than NDEA to form reactive alkylating agents with the concomitant formation of oxygen radicals. After cessation of exposure, N7-alkylguanines remained elevated for 1 day and then gradually decreased over time but still higher than the background levels, even at day 16 (half-lives of 7-8 days). However, 8-oxodG was excised quickly from liver DNA and returned to the background level within 4 days post-exposure (half-lives less than 2 days). Taken together, this study firstly demonstrated that in addition to alkylation, N-nitrosodialkylamines can concurrently cause oxidative damage to DNA in vivo.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
23
|
Scheepers PTJ. The use of biomarkers for improved retrospective exposure assessment in epidemiological studies: summary of an ECETOC workshop. Biomarkers 2009; 13:734-48. [DOI: 10.1080/13547500802528630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Fautch JM, Fanwick PE, Wilker JJ. Oxidovanadium Complexes for the Consumption of Alkylating Toxins. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200800949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Oreffo V, Singh R, Rich KJ, Shuker DEG, Carthew P, Cordero R, Van Delft JHM, Farmer PB. DNA adducts in relation to lung tumour outcome are not markers of susceptibility following a single dose treatment of SWR, BALB/c and C57BL/6J mice withN-nitrosodiethylamine. Biomarkers 2008; 5:323-40. [DOI: 10.1080/135475000424348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Doak SH, Jenkins GJS, Johnson GE, Quick E, Parry EM, Parry JM. Mechanistic influences for mutation induction curves after exposure to DNA-reactive carcinogens. Cancer Res 2007; 67:3904-11. [PMID: 17440105 DOI: 10.1158/0008-5472.can-06-4061] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A mechanistic understanding of carcinogenic genotoxicity is necessary to determine consequences of chemical exposure on human populations and improve health risk assessments. Currently, linear dose-responses are assumed for DNA reactive compounds, ignoring cytoprotective processes that may limit permanent damage. To investigate the biological significance of low-dose exposures, human lymphoblastoid cells were treated with alkylating agents that have different mechanisms of action and DNA targets: methylmethane sulfonate (MMS), methylnitrosourea (MNU), ethylmethane sulfonate (EMS), and ethylnitrosourea (ENU). Chromosomal damage and point mutations were quantified with the micronucleus and hypoxanthine phosphoribosyltransferase forward mutation assays. MNU and ENU showed linear dose-responses, whereas MMS and EMS had nonlinear curves containing a range of nonmutagenic low doses. The lowest observed effect level for induction of chromosomal aberrations was 0.85 microg/mL MMS and 1.40 microg/mL EMS; point mutations required 1.25 microg/mL MMS and 1.40 microg/mL EMS before a mutagenic effect was detected. This nonlinearity could be due to homeostatic maintenance by DNA repair, which is efficient at low doses of compounds that primarily alkylate N(7)-G and rarely attack O atoms. A pragmatic threshold for carcinogenicity may therefore exist for such genotoxins.
Collapse
Affiliation(s)
- Shareen H Doak
- School of Medicine, University of Wales Swansea, Singleton Park, Swansea, Wales, United Kingdom.
| | | | | | | | | | | |
Collapse
|
27
|
Ganesan N, Kato S, Bowman ED, Shields PG. N-7-Alkyl-2'-Deoxyguanosine as surrogate biomarkers for N-nitrosamine exposure in human lung. INTERNATIONAL JOURNAL OF CANCER PREVENTION 2007; 2:265-277. [PMID: 19060962 PMCID: PMC2593895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
N-Nitrosamines are a large group of chemical compounds that are carcinogenic in animals, and probably in humans. These compounds form DNA adducts, namely 7-methyl-deoxyguanosine monophosphate (7-methyl-dGp) and 7-ethyl-deoxyguanosine monophosphate (7-ethyl-dGp). In study, we have used a combined two-step HPLC and (32)P-postlabeling assay to measure these adducts in the lung tissues of 88 autopsy donors. The mean levels for 7-methyl-dGp and 7-ethyl-dGp were 2.1 ± 0.9 (range 0.4 - 5.3) and 0.9 ± 0.5 (range = 0.1-3.0) adducts per 10(7) dGp. Normal distributions of adduct levels were found. The mean ratio for 7-methyl-dGp to 7-ethyl-dGp was 2.8 (S.D. = 2.3), and the levels were highly correlated (R=0.22, P=0.048). However, this was mostly attributed to nonsmokers. Examinations of adduct levels by race revealed no association with either of adducts studied (P=0.3 and P=0.7 for 7-methyl-dGp and 7-ethyl-dGp, respectively), serum cotinine (P=0.4) or ethanol (P=0.7). Overall, there was no association with smoking status, although there was a borderline correlation of the 7-ethyl-dGp adducts (P=0.09) among men, and for 7-methyl-2'-deoxyguanosine (P=0.03) among women. Women smokers showed higher 7-ethyl-dGp levels than men (P=0.03), and African American smokers had more 7-methyl-dGp levels that Caucasians (P=0.08). This study demonstrates that 7-ethyl-dGp adducts are lower than 7-methyl-dgP adducts in both smokers and non-smokers, but that they were only correlated in nonsmokers. Thus, there is a wide interindividual variation in adduct levels, likely due to differences in N-nitrosamine metabolism, which widens at higher levels of exposure. The presence of lower 7-ethyl-dGp levels in human tissues is consistent with experimental animal studies, yet ethylating N-nitrosamines are more potent than those that cause methylation. Although this study is limited by a small number of study subjects, the findings of higher adduct levels in women and African-American smokers are consistent with the reported increased risk and/or incidence of lung cancer in these groups.
Collapse
Affiliation(s)
- Natarajan Ganesan
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC-20057
| | | | - Elise D. Bowman
- Center for Cancer Research, National Cancer Institute, N.I.H., Bethesda, MD 20892
| | - Peter G. Shields
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC-20057
| |
Collapse
|
28
|
Le Pla RC, Bowman KJ, Farmer PB, Jones GDD. Phosphate alkylation in different DNA substrates: the role of local DNA sequence and electrophile character in determining the nonrandom nature of phosphotriester adduct formation. Chem Res Toxicol 2006; 19:407-13. [PMID: 16544945 DOI: 10.1021/tx050298c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA phosphate oxygens are sites for alkylation leading to DNA phosphotriester adduct (PTE) formation. Previously, we have reported that the manifestation of PTEs was nonrandom in mouse liver DNA treated in vivo [Guichard et al. (2000) Cancer Res. 60, 1276-1282], and while further studies revealed possible PTE repair, this was determined not to play a role in the observed nonrandom manifestation in vivo [Le Pla et al. (2004) Chem. Res. Toxicol. 17, 1491-1500]. In the present study, to determine whether the nonrandom manifestation of PTEs in vivo was specifically due to their nonrandom formation, we have compared the in vitro formation of diethylsulfate (DES)-induced PTEs in h2E1/OR human B-lymphoblastoid cells, their isolated nuclei, and their isolated DNA, using the 5' nearest neighbor analysis postlabeling procedure developed by Le Pla et al.. Furthermore, to determine the role of electrophile character in PTE manifestation, prepared oligonucleotides ([dT](20)[dG](20):[dC](20)[dA](20)) were treated with three alkylating agents of differing electrophilic character (DES, methylnitrosourea, and ethylnitrosourea), and PTE manifestation was assessed by postlabeling. The formation of PTEs was determined to be nonrandom in the whole cells, nuclei, and DNA, with PTEs being formed to a greater extent 3' to pyrimidine moieties than 3' to purine moieties. The studies with the oligonucleotides confirm these observations and demonstrate that the nonrandom formation of PTEs is primarily determined by DNA sequence, and not by DNA packaging/chromatin factors, and that the extent of the nonrandom formation of PTEs is also governed by electrophile reactivity, with the more reactive electrophiles yielding a more random formation of PTEs. From our observations, we propose a model for the nonrandom formation of PTEs, which is governed by (i) the phosphate oxygens having to compete with adjacent nucleophilic sites for the alkylating electrophile and (ii) the electrophile's inherent reactivity.
Collapse
Affiliation(s)
- Rachel C Le Pla
- Radiation & Oxidative Stress Group, Department of Cancer Studies & Molecular Medicine, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | | | | | | |
Collapse
|
29
|
Hamilton EE, Fanwick PE, Wilker JJ. Alkylation of Inorganic Oxo Compounds and Insights on Preventing DNA Damage. J Am Chem Soc 2006; 128:3388-95. [PMID: 16522120 DOI: 10.1021/ja056568v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabolism of food- and tobacco-borne procarcinogens results in the exposure of DNA to toxic alkylating agents. These assaults can bring about DNA alkylation damage, mutations, and cancer. Dietary inorganic compounds such as selenium and vanadium are known to prevent cancer, possibly by reacting directly with alkylating agents, thereby preventing DNA damage. To understand potential interactions between oxo species and alkylating toxins, we reacted a series of alkylating agents with varied classes of oxo compounds (i.e., vanadates, selenate, phosphate, sulfate, acetate, nitrate, and nitrite). A new organic-soluble selenate, [(C6H5)4P]3(O3SeOCH2OSeO3)(HSeO4), was synthesized and characterized for these studies. Vanadates were found to convert ethylating agents into ethanol, whereas other anions formed esters upon alkylation. General trends show that oxo anions of the greatest charge density were the most reactive. These studies suggest that the design of new compounds for cancer prevention should incorporate reactive oxo groups with high anionic charge density.
Collapse
Affiliation(s)
- Elizabeth E Hamilton
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, USA
| | | | | |
Collapse
|
30
|
Le Pla RC, Guichard Y, Bowman KJ, Gaskell M, Farmer PB, Jones GDD. Further development of 32P-postlabeling for the detection of alkylphosphotriesters: evidence for the long-term nonrandom persistence of ethyl-phosphotriester adducts in vivo. Chem Res Toxicol 2005; 17:1491-500. [PMID: 15540947 DOI: 10.1021/tx049798g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA phosphate oxygens are sites for alkylation leading to phosphotriester adducts (PTEs). PTEs are reported to be both abundant and persistent and so may serve as long-term markers of genotoxicity. Previously, we reported a 32P-postlabeling assay for the specific detection of PTEs plus identification of nucleosides located 5' to PTEs. Using this, we demonstrated the nonrandom nature of ethyl-PTEs (Et-PTEs) in vivo, these results being suggestive of either the nonrandom formation of Et-PTEs in vivo or sequence specific Et-PTE repair. Presently, we report the further development and validation of the 32P-postlabeling assay, to permit the more straightforward determination of nucleosides 5' to PTEs and, using this, have investigated the long-term persistence of PTEs in vivo. Analysis of liver DNA of mice treated in vivo with N-nitrosodiethylamine reveals an initial decline in the level of Et-PTEs (t1/2<24 h) as well as their nonrandom persistence for the duration of the time course, with approximately 37 and approximately 15% of the initial Et-PTEs remaining 4 and 56 days after treatment, respectively. From this, we conclude that Et-PTEs are suitable as long-term markers of genotoxic exposure and that putative PTE repair is not responsible for their nonrandom manifestation. However, the possibility of active repair contributing to the initial decline of Et-PTEs is considered.
Collapse
Affiliation(s)
- Rachel C Le Pla
- Department of Cancer Studies & Molecular Medicine, Biocenter, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Singh R, Kaur B, Farmer PB. Detection of DNA damage derived from a direct acting ethylating agent present in cigarette smoke by use of liquid chromatography-tandem mass spectrometry. Chem Res Toxicol 2005; 18:249-56. [PMID: 15720129 DOI: 10.1021/tx049793j] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cigarette smoke contains a complex mixture of chemicals, including some that are genotoxic. A number of epidemiological and clinical studies have reported the association of increased DNA adduct levels with the development of lung cancer in smokers. The majority of chemicals present in cigarette smoke require cytochrome P450-mediated metabolic activation to form the ultimate reactive species that covalently binds with DNA. We have investigated the presence of a direct-acting ethylating agent present in cigarette smoke by studying the formation of N-7 ethylguanine (N-7EtG) following exposure of DNA to cigarette smoke in vitro. A sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with multiple reaction monitoring (MRM) was developed for the detection of N-7EtG in DNA. DNA samples were subjected to thermal hydrolysis to selectively release the N-7EtG, which was then quantified by LC-MS/MS MRM using a stable isotope internal standard [15N5]N-7EtG. The limit of detection of the method for N-7EtG was 2.0 fmol injected on column with 100 microg of calf thymus DNA as the matrix (0.6 N-7EtG adducts per 10(8) nucleotides). A linear dose-response was observed for the formation of N-7EtG in calf thymus DNA treated with diethyl sulfate at concentrations ranging from 1 to 1000 microM. Calf thymus DNA treated with smoke generated from 1, 5, and 10 commercially available cigarettes resulted in the formation of 1.3, 3.6, and 8.4 N-7EtG adducts per 10(8) nucleotides, respectively. There was a positive correlation between the formation of N-7EtG and the number of cigarettes (r = 0.9938). These results confirm the presence of an as yet unidentified direct acting ethylating agent in cigarette smoke, which is present at levels that can produce DNA damage that could ultimately have adverse implications for human health, particularly in the case of the development of lung cancer.
Collapse
Affiliation(s)
- Rajinder Singh
- Cancer Biomarkers and Prevention Group, Biocenter, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom.
| | | | | |
Collapse
|
32
|
Hamilton EE, Wilker JJ. Inhibition of DNA alkylation damage with inorganic salts. J Biol Inorg Chem 2004; 9:894-902. [PMID: 15378408 DOI: 10.1007/s00775-004-0597-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 08/27/2004] [Indexed: 10/26/2022]
Abstract
Human exposure to alkylating agents metabolized from tobacco- and food-borne carcinogens occurs regularly. Dietary inorganic compounds such as selenium and vanadium have been shown previously to provide chemoprotective benefits in rat and human trials. Here, we present biochemical data on the ability of inorganic compounds to protect DNA from alkylation damage. An enzyme cleavage assay is used to observe alkylated DNA. Simple salts (e.g., NaCl or NiCl(2)) did not prevent DNA alkylation, whereas anionic oxo species (e.g., Na(2)SeO(4) or Na(3)VO(4)) did inhibit alkylation. We propose that these oxo species behave as nucleophilic targets for the electrophilic alkylating agents, thereby preventing DNA damage.
Collapse
Affiliation(s)
- Elizabeth E Hamilton
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | | |
Collapse
|
33
|
Reynolds M, Peterson E, Quievryn G, Zhitkovich A. Human nucleotide excision repair efficiently removes chromium-DNA phosphate adducts and protects cells against chromate toxicity. J Biol Chem 2004; 279:30419-24. [PMID: 15087443 DOI: 10.1074/jbc.m402486200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular reduction of carcinogenic Cr(VI) leads to the extensive formation of Cr(III)-DNA phosphate adducts. Repair mechanisms for chromium and other DNA phosphate-based adducts are currently unknown in human cells. We found that nucleotide excision repair (NER)-proficient human cells rapidly removed chromium-DNA adducts, with an average t((1/2)) of 7.1 h, whereas NER-deficient XP-A, XP-C, and XP-F cells were severely compromised in their ability to repair chromium-DNA lesions. Activation of NER in Cr(VI)-treated human fibroblasts or lung epithelial H460 cells was manifested by XPC-dependent binding of the XPA protein to the nuclear matrix, which was also observed in UV light-treated (but not oxidant-stressed) cells. Intracellular replication of chromium-modified plasmids demonstrated increased mutagenicity of binary Cr(III)-DNA and ternary cysteine-Cr(III)-DNA adducts in cells with inactive NER. NER deficiency created by the loss of XPA in fibroblasts or by knockdown of this protein by stable expression of small interfering RNA in H460 cells increased apoptosis and clonogenic death by Cr(VI), providing genetic evidence for the role of monofunctional chromium-DNA adducts in the toxic effects of this metal. The rate of NER of chromium-DNA adducts under saturating conditions was calculated to be approximately 50,000 lesions/min/cell. Because chromium-DNA adducts cause only small changes in the DNA helix, rapid repair of these modifications in human cells indicates that the presence of major structural distortions in DNA is not required for the efficient detection of the damaged sites by NER proteins in vivo.
Collapse
Affiliation(s)
- Mindy Reynolds
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
34
|
Khan MA, Mustafa J, Musarrat J. Mechanism of DNA strand breakage induced by photosensitized tetracycline-Cu(II) complex. Mutat Res 2003; 525:109-19. [PMID: 12650911 DOI: 10.1016/s0027-5107(03)00008-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tetracyclines (TCs) in combination with Cu(II) ions exhibited significant DNA damaging potential vis a vis tetracyclines per se. Interaction of tetracyclines with DNA resulted in alkylation at N-7 and N-3 positions of adenine and guanine bases, and caused destabilization of DNA secondary structure. Significant release of acid-soluble nucleotides from tetracycline-modified DNA upon incubation with S(1) nuclease ascertained the formation of single stranded regions in the DNA. Also, the treatment of tetracycline-modified DNA with 0.1 and 0.5M NaOH resulted in 62 and 76% hydrolysis compared to untreated control. Comparative alkaline hydrolysis of DNA modified with tetracycline derivatives showed differential DNA damaging ability in the order as DOTC > DMTC > TC > OTC > CTC. Addition of Cu(II) invariably augmented the extent of tetracycline-induced DNA damage. The alkaline unwinding assay clearly demonstrated the formation of approximately six strand breaks per unit DNA at 1:10 DNA nucleotide/TC molar ratio in the presence of 0.1mM Cu(II) ions. At a similar Cu(II) concentration, a progressive transformation of covalently closed circular (CCC) (form-I) plasmid pBR322 DNA to forms-II and -III was noticed with increasing tetracycline concentrations. The results obtained with the free-radical quenchers viz. mannitol, thiourea, sodium benzoate and superoxide dismutase (SOD) suggested the involvement of reactive oxygen species in the DNA strand breakage. It is concluded that the tetracycline-Cu(II)-induced DNA damage occurs due to (i) significant binding of tetracycline and Cu(II) with DNA, (ii) methyl group transfer from tetracycline to the putative sites on nitrogenous bases, and (iii) metal ion catalyzed free-radical generation in close vicinity of DNA backbone upon tetracycline photosensitization. Albeit, the DNA alkylation and strand cleavage are repairable lesions, but any defect in the critical repair pathway may augment the damage accumulation and mutagenesis.
Collapse
Affiliation(s)
- Mateen A Khan
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, UP, India
| | | | | |
Collapse
|
35
|
Bartoszek A, Sielenko A, Wesiora M. Versatile method employing basic techniques of genetic engineering to study the ability of low-molecular-weight compounds to bind covalently with DNA in cell-free systems. Anal Biochem 2003; 313:53-9. [PMID: 12576058 DOI: 10.1016/s0003-2697(02)00564-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Numerous antitumor and carcinogenic compounds and free radicals are able to modify DNA by forming covalent bonds, mainly with nucleophilic centers in nucleobases. Such a binding is usually of utmost importance for the biological outcome. The level of DNA adducts formed by a given agent is in most cases extremely low; hence their detection is very difficult. Here we propose a simple approach, exploiting techniques widely used in genetic engineering, to demonstrate and characterize the covalent modification of a DNA fragment by any low-molecular-weight compound of interest in a cell-free system. The specifically designed, several-hundred-base-pairs-long double-stranded deoxyoligonucleotide (PCR amplified)--subject to modification--includes two restriction sites: one containing only GC base pairs recognized by restriction endonuclease MspI and the other including only AT base pairs recognized by restriction endonuclease Tru1I. The covalent modification of the restriction sites abolishes their recognition and thus cleavage by the endonucleases applied. The formation of DNA adducts is induced by incubating the oligonucleotide with increasing concentrations of a studied compound, in the appropriate activating system if required. Then, the modified oligonucleotide is submitted to digestion by the above-mentioned restriction endonucleases and the DNA fragments are separated by polyacrylamide gel electrophoresis. The inhibition of cleavage indicates the occurrence of covalent modification of the restriction site(s) while simultaneously pointing at the kind of base pairs involved in DNA adduct formation. The validation of the method was performed for two DNA binding antitumor compounds, cisplatin and CC-1065, which form adducts preferentially with guanine and adenine, respectively.
Collapse
Affiliation(s)
- Agnieszka Bartoszek
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, ul Narutowicza 11/12, Gdańsk 80-952, Poland.
| | | | | |
Collapse
|
36
|
Cloutier JF, Drouin R, Weinfeld M, O'Connor TR, Castonguay A. Characterization and mapping of DNA damage induced by reactive metabolites of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) at nucleotide resolution in human genomic DNA. J Mol Biol 2001; 313:539-57. [PMID: 11676538 DOI: 10.1006/jmbi.2001.4997] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an important tobacco-specific carcinogen associated with lung cancer. Its complex enzymatic activation, leading to methyl and pyridyloxobutyl (POB)-modified DNA, makes DNA damage difficult to characterize and quantify. Therefore, we use the NNK analogue 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone (NNKOAc) to induce damage in genomic DNA, and to map the sites and frequency of adducts at nucleotide resolution using ligation-mediated polymerase chain reaction and terminal transferase-dependent polymerase chain reactions (LMPCR and TDPCR). NNKOAc induced single-strand breaks in a concentration-dependent manner. Post-alkylation treatments, including hot piperidine or digestion with the enzymes Escherichia coli 3-methyladenine-DNA glycosylase II, formamidopyrimidine-DNA glycosylase, Escherichia coli endonuclease III, or phage T4 UV endonuclease V did not increase the level of DNA breaks in NNKOAc-treated DNA. Detection of DNA damage using LMPCR was possible only when POB-DNA was 5'-phosphorylated prior to the LMPCR procedure. NNKOAc generated damage at all four bases with the decreasing order guanine>adenine>cytosine>thymine. In contrast to NNKOAc damage distribution patterns, those induced by N-nitroso(acetoxymethyl)methylamine, a methylating NNK analog, induced damage principally at G positions detectable by enzymatic means that did not require phosphorylation. Analysis of damage distribution patterns, reveals a high frequency of damage in the p53 gene in codons 241 and 245 and a lower frequency of damage in codon 248. We analyzed the 3' termini of the NNKOAc induced single-strand breaks using a (32)P-post-labeling assay or a nucleotide exchange reaction at the 3'-termini catalyzed by T4 DNA polymerase combined with endonuclease IV treatment. Both methods indicate that the 3' termini of the single-strand breaks are not hydroxyl groups and are blocked by an unknown chemical structure that is not recognized by endonuclease IV. These data are consistent with POB-phosphotriester hydrolysis leading to strand breaks in DNA. The POB-damage could be mutagenic because NNKOAc produces single-strand breaks with the products being a 5'-hydroxyl group and a 3'-blocking group and strand breaks. These results represent the first step in determining if NNK pyridyloxobutylates DNA with sequence specificity similar to those observed with other model compounds.
Collapse
Affiliation(s)
- J F Cloutier
- Laboratory of Cancer Etiology and Chemoprevention, Faculty of Pharmacy, Laval University, Quebec City, G1K 7P4, Canada
| | | | | | | | | |
Collapse
|
37
|
Clewell HJ, Gentry PR, Gearhart JM, Allen BC, Andersen ME. Comparison of cancer risk estimates for vinyl chloride using animal and human data with a PBPK model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2001; 274:37-66. [PMID: 11453305 DOI: 10.1016/s0048-9697(01)00730-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Vinyl chloride (VC) is a trans-species carcinogen, producing tumors in a variety of tissues, from both inhalation and oral exposures, across a number of species. In particular, exposure to VC has been associated with a rare tumor, liver angiosarcoma, in a large number of studies in mice, rats, and humans. The mode of action for the carcinogenicity of VC appears to be a relatively straightforward example of DNA adduct formation by a reactive metabolite, leading to mutation, mistranscription, and neoplasia. The objective of the present analysis was to investigate the comparative potency of a classic genotoxic carcinogen across species, by performing a quantitative comparison of the carcinogenic potency of VC using data from inhalation and oral rodent bioassays as well as from human epidemiological studies. A physiologically-based pharmacokinetic (PBPK) model for VC was developed to support the target tissue dosimetry for the cancer risk assessment. Unlike previous models, the initial metabolism of VC was described as occurring via two saturable pathways, one representing low capacity-high affinity oxidation by CYP2E1 and the other (in the rodent) representing higher capacity-lower affinity oxidation by other isozymes of P450, producing in both cases chloroethylene oxide (CEO) and chloroacetaldehyde (CAA) as intermediate reactive products. Depletion of glutathione by reaction with CEO and CAA was also described. Animal-based risk estimates for human inhalation exposure to VC using total metabolism estimates from the PBPK model were consistent with risk estimates based on human epidemiological data, and were lower than those currently used in environmental decision-making by a factor of 80.
Collapse
Affiliation(s)
- H J Clewell
- KS Crump Group, Inc., ICF Consulting, Ruston, LA 71270, USA.
| | | | | | | | | |
Collapse
|
38
|
Vogel EW, Nivard MJ. Phenotypes of Drosophila homologs of human XPF and XPG to chemically-induced DNA modifications. Mutat Res 2001; 476:149-65. [PMID: 11336992 DOI: 10.1016/s0027-5107(01)00121-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DmXPF (mei9) and DmXPG (mus201) mutants are Drosophila homologs of the mammalian XPF and XPG genes, respectively. For Drosophila germ cells, causal correlations exist between the magnitude of a potentiating effect of a deficiency in these functions, measured as the M(NER-)/M(NER+) mutability ratio, and the type of DNA modification. M(NER-)/M(NER+) mutability ratios may vary with time interval between DNA adduct formation and repair, mutagen dose and depend also on the genetic endpoint measured. For forward mutations, there is no indication of any differential response of DmXPF compared to DmXPG. Subtle features appeared from a class-by-class comparison: (i) Methylating agents always produce higher M(NER-)/M(NER+) ratios than their ethylating analogs; (ii) M(NER-)/M(NER+) mutability ratios are significantly enhanced for cross-linking N-mustards, aziridine and di-epoxide compounds, but not for cross-linking nitrosoureas. The low hypermutability effects with bifunctional nitrogen mustards, aziridine and epoxide compounds are attributed to unrepaired mono-alkyl adducts; (iii) The efficient repair of mono-alkyl-adducts at ring nitrogens in wild-type germ cells is evident from the absence of a dose-response relationship for ethylene oxide, propylene imine and methyl methanesulfonate (MMS). These chemicals become powerful germline mutagens when the NER system is disrupted. Systematic studies of the type performed on germ cells are not available for somatic cells of Drosophila. The sparse data available show large differences in the response of germ cells and somatic cells. The bifunctional agent mechlorethamine (MEC) but not the monofunctional MMS or 2-chloroethylamine cause in NER(-) XXfemale symbol the highest potentiating effect on mitotic recombination. The causes of the discrepancy between the extraordinarily high activity of MEC in mus201 somatic cells and its low potentiating effect in germ cells is unknown at present.
Collapse
Affiliation(s)
- E W Vogel
- Department of Radiation Genetics & Chemical Mutagenesis, MGC Sylvius Laboratories, Leiden University Medical Centre, Wassenaarseweg 72, 2300 RA Leiden, The Netherlands.
| | | |
Collapse
|
39
|
Centurion SA, Kuo HR, Lambert WC. Damage-resistant DNA synthesis in Fanconi anemia cells treated with a DNA cross-linking agent. Exp Cell Res 2000; 260:216-21. [PMID: 11035916 DOI: 10.1006/excr.2000.4995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fanconi anemia (FA) is a recessive disorder associated with diverse congenital anomalies, progressive bone marrow failure, and a marked predisposition to develop cancer. At the cellular level, FA is characterized by a prolonged G(2) phase in proliferating cells and a marked hypersensitivity to both the cytotoxic and the clastogenic effects of agents which produce DNA interstrand cross-links. Treatment with these agents leads to even further prolongation of the G(2) phase in FA cells. We now show that FA cells, from four different complementation groups, fail to decrease their rates of replicative DNA synthesis, as do normal cells, following treatment with a DNA cross-linking agent. This may be responsible for the prolongation of the G2 phase seen in these cells, and suggests that the fundamental defect in response of FA cells to DNA cross-linking agents may be in the S phase, rather than the G(2) phase, of the cell cycle.
Collapse
Affiliation(s)
- S A Centurion
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey, 07103-2714, USA
| | | | | |
Collapse
|
40
|
Tomita-Mitchell A, Kat AG, Marcelino LA, Li-Sucholeiki XC, Goodluck-Griffith J, Thilly WG. Mismatch repair deficient human cells: spontaneous and MNNG-induced mutational spectra in the HPRT gene. Mutat Res 2000; 450:125-38. [PMID: 10838138 DOI: 10.1016/s0027-5107(00)00020-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have determined both the spontaneous and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced mutational spectra in the HPRT gene of human cells (MT1) defective in the mismatch repair gene hMSH6 (GTBP). Eight of nine exons and nine of sixteen intronic flanking sequences were scanned, encompassing >900 bp of the HPRT gene. Mutant hotspots were detected and separated by differences in their melting temperatures using constant denaturant capillary electrophoresis (CDCE) or denaturing gradient gel electrophoresis (DGGE).A key finding of this work is that a high proportion of all HPRT inactivating mutations is represented by a small number of hotspots distributed over the exons and mRNA splice sites. Thirteen spontaneous hotspots and sixteen MNNG-induced hotspots accounted for 55% and 48% of all 6TG(R) point mutations, respectively. MNNG-induced hotspots were predominantly G:C-->A:T transitions. The spontaneous spectrum of cells deficient in hMSH6 contained transversions (A:T-->T:A, G:C-->T:A, A:T-->C:G), transitions (A:T-->G:C), a plus-one insertion, and a minus-one deletion. Curiously, G:C-->A:T transitions, which dominate human germinal and somatic point mutations were absent from the spontaneous hMSH6 spectra.
Collapse
Affiliation(s)
- A Tomita-Mitchell
- Division of Bioengineering and Environmental Health, Center for Environmental Health Sciences, 21 Ames Street, Room 16-743, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
41
|
Perez ML, Stamato TD. Time versus replication dependence of EMS-induced delayed mutation in Chinese hamster cells. Mutat Res 1999; 423:55-63. [PMID: 10029676 DOI: 10.1016/s0027-5107(98)00225-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously observed in Chinese hamster cells that ethyl methane sulfonate (EMS) induces mutations which are distributed over at least 10-14 cell divisions following treatment. This delayed appearance of mutations could be explained by EMS-induced lesions which remain in DNA and have a probability that is significantly less than 1.0 of producing base mispairing errors during successive replication cycles (replication-dependent). Alternatively, delayed mutation may be a time-dependent process in which a slow acting or damage inducible error-prone repair process removes persistent DNA lesions and replaces them with an incorrect base during the course of 7-10 days of colony growth following EMS exposure. To address this question, the distribution of HGPRT delayed mutation events (fifth division or later) in cells plated immediately for exponential growth after EMS treatment was compared with the distribution in cells which remained under confluent growth conditions for 8 days and then were replated. Both the distribution and rate of accumulation of delayed mutations (mutations/cell division) were similar in the two culture conditions. In contrast, the frequency of early mutations (before the fifth division) in the confluent population was reduced more than 2-fold compared to dividing cells. A comparison of the frequency of EMS-induced DNA lesions in the two populations revealed that the density inhibited population contained one third the DNA lesions of the exponential population. These results argue against a time-dependent process since, if this mechanism applies, one would expect an increase in early mutant events and a decrease in delayed events in the confluent population. The results, however, are consistent with a replication model in which potential early mutant lesions are preferentially removed in the density inhibited culture during the 8 days of incubation while lesions producing late mutants are not removed.
Collapse
Affiliation(s)
- M L Perez
- The Lankenau Medical Research Center, 100 Lancaster Avenue, Wynnewood, PA 19096, USA
| | | |
Collapse
|
42
|
Stamato TD, Perez ML. EMS and UV-light-induced colony sectoring and delayed mutation in Chinese hamster cells. Int J Radiat Biol 1998; 74:739-45. [PMID: 9881719 DOI: 10.1080/095530098141014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE To review studies of mutagen-induced colony sectoring which demonstrate that UV light and EMS produce delayed mutational events in Chinese hamster ovary cells. METHODS AND RESULTS Since the late 1940s, it has been known that the treatment of a single bacterial or yeast cell with mutagenic agents produces complete mutant colonies (pures) and colonies composed of both mutant and non-mutant cell types (mosaics) with various sectored patterns. A similar sectoring phenomenon has been observed in Chinese hamster ovary cells (CHO) using the DNA alkylating agent ethyl methane sulphonate (EMS) or ultraviolet light. However, unlike bacteria and yeast, a significant fraction of CHO mutant colonies contained sectors of less than 1/2; i.e. 1/4, 1/8 and 1/16 sectors, suggesting a delayed production of mutations. Using various colony-replating approaches, it was found that these mutagenic agents produced the ratio of mutant to wild-type cells expected for a delayed mutational process which produces mutant events for at least 12-14 cell divisions following treatment. This delayed mutation phenomenon was observed at both the glucose-6-phosphate dehydrogenase (G6PD) and hypoxanthine guanine phosphoribosyltransferase (HGPRT) loci. Various mutational mechanisms for the production of delayed mutations are discussed. CONCLUSIONS These studies suggest that mutagens such as UV light and EMS induce long-term alterations in mammalian cells that act to increase the 'apparent' spontaneous mutation frequency. This delayed mutational decrease in stability of the genome may explain the accumulation over time of the multiple genetic changes observed in malignant tumours.
Collapse
Affiliation(s)
- T D Stamato
- The Lankenau Medical Research Center, Wynnewood, PA 19096, USA
| | | |
Collapse
|
43
|
Chovanec M, Vlasáková D, Margison GP, Näslund M, Brozmanová J. MNNG-induced [corrected] RecBCD dependent DNA degradation in recA13 mutant cells is not the basis of their hypersensitivity to this agent. Mutat Res 1998; 408:19-25. [PMID: 9678060 DOI: 10.1016/s0921-8777(98)00014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have examined the hypersensitivity of Escherichia coli recA13 mutant cells to killing by N-methyl-N'-nitro-N-nitro-soguanidine (MNNG) and have shown out that despite MNNG-induced adaptation they remained vastly more sensitive to the cytotoxic effect of this agent than wild type cells. Because this might have been a consequence of a different extent of induction of the adaptive response in the recA13 background, we have measured O6-alkylguanine-DNA alkyltransferase (ATase) activity in extracts of adapted and non-adapted recA13 mutant and wild type cells. Adaptation increased ATase levels by 28- and 34-fold in wild type and recA13 mutant cells, respectively. Thus, the adaptive response was no less inducible in recA13 mutant cells than in wild type cells. This indicates that the extreme sensitivity of recA13 cells to MNNG is not caused by an inability to repair the principal toxic lesions induced in DNA. Low doses of MNNG caused substantial degradation of cellular DNA in recA13 mutant cells but not in the wild type cells. This DNA degradation is shown to be the RecBCD-enzyme dependent. Since recA13 recB21 double mutants were even more sensitive to MNNG than recA single mutants, DNA degradation appears not to be the cause of the MNNG-hypersensitivity in recA13 cells.
Collapse
Affiliation(s)
- M Chovanec
- Department of Molecular Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
44
|
De Stasio E, Lephoto C, Azuma L, Holst C, Stanislaus D, Uttam J. Characterization of revertants of unc-93(e1500) in Caenorhabditis elegans induced by N-ethyl-N-nitrosourea. Genetics 1997; 147:597-608. [PMID: 9335597 PMCID: PMC1208182 DOI: 10.1093/genetics/147.2.597] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phenotypic reversion of the rubber-band, muscle-defective phenotype conferred by unc-93(e1500) was used to determine the utility of N-ethyl-N-nitrosourea (ENU) as a mutagen for genetic research in Caenorhabditis elegans. In this system, ENU produces revertants at a frequency of 3 x 10(-4), equivalent to that of the commonly used mutagen, EMS. The gene identity of 154 ENU-induced revertants shows that the distribution of alleles between three possible suppressor genes differs from induced by EMS. A higher percentage of revertants are alleles of unc-93 and many fewer are alleles of sup-9 and sup-10. Three revertants complement the three known suppressor genes; they may therefore identify a new gene product(s) involved in this system of excitation-contraction coupling in C. elegans. Molecular characterization of putative unc-93 null alleles reveals that the base changes induced by ENU are quite different from those induced by EMS; specifically we see an increased frequency of A/T-->G/C transitions. The frequency of ENU-induced intragenic deletions is found to be 13%. We suggest that ENU, at concentrations below 5 mM, will be a superior mutagen for studies of protein function in C. elegans.
Collapse
Affiliation(s)
- E De Stasio
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Bartoszek A, Dackiewicz P, Konopa J. 32P-post-labelling analysis of nucleobases involved in the formation of DNA adducts by antitumor 1-nitroacridines. Chem Biol Interact 1997; 103:131-9. [PMID: 9055871 DOI: 10.1016/s0009-2797(96)03753-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adducts generated in vitro by the reaction of 1-nitroacridines with poly(dN)s in the presence of dithiothreitol were used to identify a kind of nucleic base involved in the formation of individual adducts. The patterns of chromatographic spots corresponding to modified nucleotides obtained by 32P-post-labelling assay for synthetic homopolymers of four deoxyribonucleotides were compared with the fingerprints detected in the case of calf thymus DNA reacted with 1-nitroacridines under conditions in which the formation of identical DNA adducts as in cellular models was demonstrated in earlier investigations. Both compounds studied (Ledakrin and C-857) turned out to bind covalently only with purine nucleotides. Ledakrin formed with dG four and C-857 five different adducts. All of them were also detected in ctDNA. The incubation with poly(dA) resulted in four Ledakrin-dA species, two of which were found in ctDNA, and in two C-857-dA adducts that were not, however, observed in DNA containing samples. Modification of purines accounted for all adducts observed in ctDNA. For both compounds studied, the level of total binding to poly(dA) was about one order of magnitude lower than to poly(dG) for which it was comparable with the extent of ctDNA modification. This indicates that dG represents a preferential site of covalent binding of 1-nitroacridines to DNA.
Collapse
Affiliation(s)
- A Bartoszek
- Department of Pharmaceutical Technology and Biochemistry, Technical University of Gdańsk, Poland
| | | | | |
Collapse
|
46
|
Herrero ME, Arand M, Hengstler JG, Oesch F. Recombinant expression of human microsomal epoxide hydrolase protects V79 Chinese hamster cells from styrene oxide- but not from ethylene oxide-induced DNA strand breaks. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1997; 30:429-439. [PMID: 9435884 DOI: 10.1002/(sici)1098-2280(1997)30:4<429::aid-em8>3.0.co;2-d] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Styrene 7,8-oxide and ethylene oxide are widely used genotoxic bulk chemicals, which have been associated with potential carcinogenic hazard for occupationally exposed workers. Both epoxides alkylate DNA preferentially at the N-7 position of guanine and consequently produce single-strand breaks and alkali labile sites in the DNA of exposed cells. In order to study the role of human microsomal epoxide hydrolase (hmEH) in protecting cells against genotoxicity of styrene 7,8-oxide and ethylene oxide, we expressed the cDNA of hmEH in V79 Chinese hamster cells. We obtained a number of cell clones that expressed functionally active epoxide hydrolase. Among these, the clone 92hmEH-V79 revealed an especially high enzymatic mEH activity toward styrene 7,8-oxide (10 nmol converted per mg of protein per min, measured in the 9,000 x g supernatant of the cell homogenate), that was 100 times higher than that determined in mock-transfected cells and within the range of mEH activity in human liver. Styrene 7,8-oxide-induced DNA single-strand breaks/alkali labile sites (dose range 10 microM to 1 mM styrene 7,8-oxide) measured by the alkaline elution technique were significantly lower in the 92hmEH-V79 cells as compared to the mock-transfected cells. The protection against styrene 7,8-oxide genotoxicity in 92hmEH-V79 cells could be abolished by addition of valpromide, a selective inhibitor of microsomal epoxide hydrolase. These results clearly show that the metabolism of styrene 7,8-oxide by hmEH in 92hmEH-V79 cells was responsible for the protection against styrene 7,8-oxide genotoxicity. On the other hand, no protective effect of epoxide hydrolase expression could be observed on ethylene oxide-induced DNA damage with the recombinant cell line over a dose range of 0.5-2.5 mM ethylene oxide. This selectivity of the protective effect on epoxide genotoxicity thus appears to be an important factor that must be taken into account for the prediction of the genotoxic risk of epoxides themselves or compounds that can be metabolically activated to epoxides.
Collapse
Affiliation(s)
- M E Herrero
- Institute of Toxicology, University of Mainz, Germany
| | | | | | | |
Collapse
|
47
|
Gaver DP, Jacobs PA, Carpenter RL, Burkhart JG. A mathematical model for intracellular effects of toxins on DNA adduction and repair. Bull Math Biol 1997; 59:89-106. [PMID: 8980304 DOI: 10.1007/bf02459472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The process by which certain classes of toxins compounds or their metabolites may react with DNA to alter the genetic information contained in subsequent generations of cells or organisms are a major component of hazard associated with exposure to chemicals in the environment. Many classes of chemicals may form DNA adducts and there may or may not be a defined mechanism to remove a particular adduct from DNA independent of replication. Many compounds and metabolites that bind DNA also readily bind existing proteins; some classes of toxins and DNA adducts have the capacity to inactivate a repair enzyme and divert the repair process competitively. This paper formulates an intracellular dynamic model for one aspect of the action of toxins that form DNA adducts, recognizing a capacity for removal of those adducts by a repair enzyme combined with reaction of the toxin and/or the DNA adduct to inactivate the repair enzyme. This paper model illustrates the possible saturation of repair enzyme capacity by the toxin dosage and shows that bistable behavior can occur, with the potential to induce abrupt shifts away from steady state equilibria. The model suggests that bistable behavior, dose and variation between individuals or tissues may combine under certain conditions to amplify the biological effect of dose observed as DNA adduction and its consequences as mutation. A model recognizing stochastic phenomena also indicates that variation in within-cell toxin concentration may promote jumps between stable equilibria.
Collapse
Affiliation(s)
- D P Gaver
- Department of Operations Research, Naval Postgraduate School, Monterey, CA 93943, USA
| | | | | | | |
Collapse
|
48
|
Beard SE, Capaldi SR, Gee P. Stress responses to DNA damaging agents in the human colon carcinoma cell line, RKO. Mutat Res 1996; 371:1-13. [PMID: 8950345 DOI: 10.1016/s0165-1218(96)90089-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA damage results from a wide variety of external agents such as chemicals and radiation. The consequences of exposure to agents that damage DNA have been traditionally studied from the perspective of cell survival and mutagenesis. Mutations are late endpoints of DNA damage. Cells respond to the earlier stages of DNA damage by inducing the expression of several genes, including those specific of the nature of the lesion. These early transcriptional responses are likely to predetermine the later fate of the damaged cell. Genes activated during this early response include those involved in DNA repair, replication, and growth control. We are interested in the transcriptional mechanisms by which cells respond to DNA damaging agents. To facilitate the measurement of gene induction, we used seven different reporter constructs integrated stably into the RKO cell line derived from a human colon carcinoma. These constructs were derived from promoters and/or response elements isolated from genes associated with DNA damage responses in human cells, and were fused to the bacterial reporter gene, choramphenicol acetyl transferase (CAT). The cell lines generated in this manner contain the promoters and/or response elements representing DNA polymerase beta, p53, gadd (growth arrest and DNA damage) 45 and 153, c-fos, TPA response element, and tissue-type plasminogen activator. These recombinant cell lines were assembled in a 96-well microtiter plate permitting their simultaneous exposure to compounds and subsequent CAT protein measurement. This assembly has been designated the CAT-Tox (D) assay. These cell lines were exposed to different classes of DNA damaging agents including those which covalently join bases to form dimers (e.g., UVC irradiation), generate DNA adducts by alkylation (e.g., methylmethane sulfonate [MMS], ethylmethane sulfonate [EMS], N-methyl-N-nitro-N-nitrosoguanine [MNNG], dimethylnitrosamine [DMN]), cross-link DNA (e.g., mitomycin C), and inhibit DNA replication by intercalative (e.g., actinomycin D) and nonintercalative (e.g., hydroxyurea) mechanisms. The transcriptional responses were measured as a function of the accumulation of CAT protein using antibodies against CAT protein in a standard ELISA. Endogenous cellular responses were evaluated for a number of the genes represented in the assay at both the mRNA and protein levels by Northern and Western blot analysis, respectively. These data corroborate the stress-induced responses measured by CAT ELISA in the CAT-Tox (D) assay, demonstrating the usefulness of this assay as a rapid and sensitive method for detection of DNA damaging agents in human cells.
Collapse
Affiliation(s)
- S E Beard
- Xenometrix Inc., Boulder, CO 80301, USA.
| | | | | |
Collapse
|
49
|
Lewalter J. N-alkylvaline levels in globin as a new type of biomarker in risk assessment of alkylating agents. Int Arch Occup Environ Health 1996; 68:519-30. [PMID: 8891797 DOI: 10.1007/bf00377881] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adducts with the N-terminal valine of erythrocyte globin can serve as individual biomarkers of systemic and cellular exposure to endogenous and exogenous alkylating agents. In contrast to "detoxification markers" of this kind of mecapturic acids derived from alkylation of glutathione, individual N-alkylations of valine in globin reflect the formally "toxifying" part of the stress due to alkylating agents transformed into the ultimate toxicant. Thus, in contrast to the traditional methods of biological monitoring this approach enables a better evaluation of systemic exposure to reactive agents, adapted more sensibly to the exposure situation over the whole life span of erythrocytes, and it can serve as a specific biomarker of exposure for the purpose of health surveillance in occupational medicine. An individual evaluation of exposures in comparison with the range of corresponding background levels is discussed from the point of view of supplementary risk assessment in medical surveillance of occupationally exposed persons.
Collapse
Affiliation(s)
- J Lewalter
- BAYER AG, Department of Medicine, Leverkusen, Germany
| |
Collapse
|
50
|
Burkhart JG. Perspectives on molecular assays for measuring mutation in humans and rodents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1995; 25 Suppl 26:88-101. [PMID: 7789367 DOI: 10.1002/em.2850250613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The original idea for this article was to examine the new molecular techniques for detection of mutation directly at the DNA level in exposed individuals or their offspring and to assess their relative advantages and disadvantages for mutation monitoring in humans and rodents. However, an examination of the articles and a comparison of the technology indicated that our constant quests for methods improvement were leading to some loss of insight into the important health-related questions that should be guiding these endeavors. As a result, individual methods are not covered here in great technical detail. Instead, a few molecular methods are presented in a general overview, along with some of the biological issues related to the detection of induced mutations within individuals and populations. Some hypothetical scenarios are also presented because molecular approaches will continue to change rapidly, and we must continually adjust our thinking to combine the useful attributes of each current and future technical approach with the most appropriate biological questions.
Collapse
Affiliation(s)
- J G Burkhart
- Environmental Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|