1
|
Nehring M, Dickmann EM, Billington K, VandeWoude S. Study of feline immunodeficiency virus prevalence and expert opinions on standards of care. J Feline Med Surg 2024; 26:1098612X241245046. [PMID: 39073897 PMCID: PMC11292943 DOI: 10.1177/1098612x241245046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE The purpose of this study was to identify knowledge gaps in the global prevalence of feline immunodeficiency virus (FIV) and to obtain professional opinions and experiences regarding FIV in selected countries. We conducted a literature review of abstracts that reported the prevalence of FIV and interviewed experts in feline medicine and retroviruses from different countries to determine regional perspectives. METHODS A total of 90 articles reporting FIV prevalence as a primary unbiased population-level analysis between 1980 and 2017 were indexed. FIV prevalence, demographics, year and location were analyzed. Statistics were evaluated and compared. In total, 10 experts were interviewed. Results were analyzed for congruence with the findings of the literature review. RESULTS FIV prevalence was typically in the range of 5-8%, with a global prevalence of 4.7%, and remained largely constant over the reporting period (1980-2017). Over 90% of articles reported greater prevalence in older male cats. More studies were conducted in North America and Europe and reported the lowest prevalence. Expert-estimated prevalence approximated literature review prevalence. Attitudes and recommendations for management were consistent among experts. The limitations of the present review include varying inclusion criteria of cats tested in different studies, variation in testing modalities and the inability to conduct summary statistics across dissimilar cohorts. CONCLUSIONS AND RELEVANCE The global prevalence of FIV has not changed since its discovery 40 years ago. Prevalence is higher in older male cats and is lower in North America and Europe than other continents. Experts agree that FIV is not typically a disease of high concern and is often associated with infections of the oral cavity. Vaccination is not typically recommended and has been discontinued in North America. The evaluation of risk factors for FIV progression is useful in managing infections. Recommendations for future research include analyses to determine copathogen and environmental factors that impact progression, assessment of life span impacts and investigations of treatment efficacy and side effects.
Collapse
Affiliation(s)
- Mary Nehring
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ellyn M Dickmann
- Institute for Research in the Social Sciences, Colorado State University, Fort Collins, CO, USA
- Dickmann and Associates, Fort Collins, CO, USA
| | - Kara Billington
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Sumiyoshi A, Kitao K, Miyazawa T. Genetic and biological characterization of feline foamy virus isolated from a leopard cat (Prionailurus bengalensis) in Vietnam. J Vet Med Sci 2021; 84:157-165. [PMID: 34880191 PMCID: PMC8810315 DOI: 10.1292/jvms.21-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Foamy viruses have been isolated from various mammals and show long-term co-speciation with their hosts. However, the frequent inter-species transmission of feline foamy viruses (FFVs) from
domestic cats to wild cats across genera has been reported. Because infectious molecular clones of FFVs derived from wild cats have not been available, whether there are specific
characteristics enabling FFVs to adapt to the new host species is still unknown. Here, we obtained the complete genome sequences of two FFV isolates (strains NV138 and SV201) from leopard
cats (Prionailurus bengalensis) in Vietnam and constructed an infectious molecular clone, named pLC960, from strain NV138. The growth kinetics of the virus derived from
pLC960 were comparable to those of other FFVs derived from domestic cats. Phylogenetic analysis revealed that these two FFVs from leopard cats are clustered in the same clade as FFVs from
domestic cats in Vietnam. Comparisons of the amino acid sequences of Env and Bet proteins showed more than 97% identity among samples and no specific amino acid substitutions between FFVs
from domestic cats and ones from leopard cats. These results indicate the absence of genetic constraint of FFVs for interspecies transmission from domestic cats to leopard cats.
Collapse
Affiliation(s)
- Aoi Sumiyoshi
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Koichi Kitao
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| |
Collapse
|
3
|
Seroprevalence of feline foamy virus in domestic cats in Poland. J Vet Res 2021; 65:407-413. [PMID: 35111993 PMCID: PMC8775732 DOI: 10.2478/jvetres-2021-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Feline foamy virus (FFVfca) is widespread and its prevalence in naturally infected domestic cats ranges between 30% and 80% worldwide. The infection is persistent, with a sustained antibody response in FFVfca-positive cats; however to date, no defined disease or clinical symptoms have been proved to be associated with it. The goal of the presented study was to determine the prevalence of FFVfca infection in domestic cats in Poland.
Material and Methods
A total of 223 serum samples collected from domestic cats were tested with a glutathione S-transferase capture ELISA test to detect antibodies specific to capsid (Gag), accessory (Bet) and envelope (Env) FFVfca antigens. A Western blot test was used to confirm the ELISA results.
Results
The cut-off value for the Gag antigen was established by calculation and evaluation with the immunoblotting assay. The cut-off values for Bet and Env were calculated from the reactivity of Gag-negative samples. The sera of 99 cats (44%) showed reactivity to Gag, those of 80 did so (35.9 %) to Bet, while only 56 samples (25%) were reactive to Env. Only 51 (22.9%) sera were positive for all antigens. The main diagnostic antigen was selected to be Gag. A statistically significant association was found between FFVfca status and the age of the cat.
Conclusions
This study proved the high seroprevalence of FFVfca in domestic cats in Poland for the first time and confirmed that adult cats are at higher FFVfca infection risk than preadult cats. Its results correspond to those reported from other countries.
Collapse
|
4
|
Diet, parasites, and other pathogens of Sunda leopard cats ( Prionailurus javanensis Desmarest 1816) in Aborlan, Palawan Island, Philippines. J Parasit Dis 2021; 45:627-633. [PMID: 34475642 DOI: 10.1007/s12639-020-01335-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022] Open
Abstract
This study is the first investigation of parasites and other pathogens present in Sunda leopard cats (Prionailurus javanensis) in Aborlan, Palawan, Philippines. With the nature of wild carnivore sampling, four (4) wild Sunda leopard cats were captured in Aborlan, Palawan, Philippines for a period of nine (9) months. Of these, three (3) were considered for blood and fecal examination due to the poor condition of one animal. Rapid diagnostic kits were used to detect the presence of selected pathogens in blood samples while fecal samples were examined for parasite fauna and diet contents. Nine (9) parasite species were identified namely: Toxoplasma gondii, Ancylostoma sp., Capillaria hepatica, Echinostoma sp., Hymenolepis nana, Isospora felis, Physaloptera sp., Trichostrongylus sp., and a fasciolid. Chlamydophila felis, a bacterial pathogen was also detected in the blood. No individuals were found to be positive for feline immunodeficiency virus, feline infectious peritonitis virus, and feline leukemia virus antibodies. Six (6) small mammal prey species were identified from the feces of Sunda leopard cats namely: Palawan spiny rat (Maxomys panglima), Asian house rat (Rattus tanezumi), Polynesian rat (Rattus exulans), house mouse (Mus musculus), Southern Palawan tree squirrel (Sundasciurus steerii), and Palawan treeshrew (Tupaia palawanensis). Sunda leopard cats in Aborlan, Palawan, may be highly infected by parasites primarily due to their diet of small mammals such as rodents. Transmission is also possible through environmental contact with contaminated water or soil or direct physical contact with infected domestic animals. This paper contributes to the knowledge on host-parasite systems in wildlife ecosystem in the Philippines which is extremely poorly understood.
Collapse
|
5
|
Kokkinaki KG, Saridomichelakis MN, Leontides L, Mylonakis ME, Konstantinidis AO, Steiner JM, Suchodolski JS, Xenoulis PG. A prospective epidemiological, clinical, and clinicopathologic study of feline leukemia virus and feline immunodeficiency virus infection in 435 cats from Greece. Comp Immunol Microbiol Infect Dis 2021; 78:101687. [PMID: 34225228 DOI: 10.1016/j.cimid.2021.101687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 01/29/2023]
Abstract
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses causing significant morbidity and mortality in cats. The aim of this study was to describe the epidemiological, clinical and clinicopathologic aspects of FeLV and FIV infections in different populations of cats in Greece, including client-owned cats, stray cats and cats who live in catteries. A total of 435 cats were prospectively enrolled. Serological detection of FeLV antigen and FIV antibody was performed using a commercial in-house ELISA test kit. The results showed that 17 (3.9 %) and 40 (9.2 %) of the 435 cats were positive for FeLV antigen and FIV antibody, respectively, whereas 5 (1.1 %) had concurrent infection with FeLV and FIV. Factors that were associated with FeLV antigenemia, based on multivariate analysis, included vomiting, rhinitis, infection with FIV, neutropenia, decreased blood urea nitrogen and increased serum cholesterol and triglyceride concentrations. Factors associated with FIV seropositivity included male gender, older age, outdoor access, weight loss, fever, gingivostomatitis, skin lesions and/or pruritus and hyperglobulinemia. Various clinical signs and laboratory abnormalities were found to be significantly associated with retroviral infections, suggesting that current guidelines to test all sick cats should be followed, taking into particular consideration the high-risk groups of cats found in this study.
Collapse
Affiliation(s)
- K G Kokkinaki
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Str., GR-43132, Karditsa, Greece.
| | - M N Saridomichelakis
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Str., GR-43132, Karditsa, Greece
| | - L Leontides
- Laboratory of Epidemiology, Biostatistics and Animal Health Economics, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Str., GR-43132, Karditsa, Greece
| | - M E Mylonakis
- Companion Animal Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., GR-54627, Thessaloniki, Greece
| | - A O Konstantinidis
- Companion Animal Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., GR-54627, Thessaloniki, Greece
| | - J M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary and Biomedical Sciences, Texas A & M University, 4474-77843 TAMU, College Station, TX, USA
| | - J S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary and Biomedical Sciences, Texas A & M University, 4474-77843 TAMU, College Station, TX, USA
| | - P G Xenoulis
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Str., GR-43132, Karditsa, Greece; Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary and Biomedical Sciences, Texas A & M University, 4474-77843 TAMU, College Station, TX, USA
| |
Collapse
|
6
|
Chen CC, Chang AM, Chen WJ, Chang PJ, Lai YC, Lee HH. Molecular survey of selected viral pathogens in wild leopard cats (Prionailurus bengalensis) in Taiwan with an emphasis on the spatial and temporal dynamics of carnivore protoparvovirus 1. Arch Virol 2021; 166:427-438. [PMID: 33389172 PMCID: PMC7778563 DOI: 10.1007/s00705-020-04904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/19/2020] [Indexed: 11/27/2022]
Abstract
The leopard cat (Prionailurus bengalensis) was listed as an endangered species under the Wildlife Conservation Act in Taiwan in 2009. However, no study has evaluated the possible direct or indirect effects of pathogens on the Taiwanese leopard cat population. Here, we targeted viral pathogens, including carnivore protoparvovirus 1 (genus Protoparvovirus), feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), coronaviruses (CoVs), and canine distemper virus (CDV), through molecular screening. The spatial and temporal dynamics of the target pathogens were evaluated. Through sequencing and phylogenetic analysis, we clarified the phylogenetic relationship of viral pathogens isolated from leopard cats and domestic carnivores. Samples from 23 live-trapped leopard cats and 29 that were found dead were collected from 2015 to 2019 in Miaoli County in northwestern Taiwan. Protoparvoviruses and CoVs were detected in leopard cats, and their prevalence (95% confidence interval) was 63.5% (50.4%–76.6%) and 8.8% (0%–18.4%), respectively. Most of the protoparvovirus sequences amplified from Taiwanese leopard cats and domestic carnivores were identical. All of the CoV sequences amplified from leopard cats were identified as feline CoV. No spatial or temporal aggregation of protoparvovirus infection in leopard cats was found in the sampling area, indicating a wide distribution of protoparvoviruses in the leopard cat habitat. We consider sympatric domestic carnivores to be the probable primary reservoir for the identified pathogens. We strongly recommend management of protoparvoviruses and feline CoV in the leopard cat habitat, particularly vaccination programs and population control measures for free-roaming dogs and cats.
Collapse
Affiliation(s)
- Chen-Chih Chen
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Ai-Mei Chang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Wan-Jhen Chen
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Po-Jen Chang
- Formosan Wild Sound Conservation Science Center, Miaoli, Taiwan
| | - Yu-Ching Lai
- Department of Landscape Architecture and Environmental Design, Huafan University, New Taipei City, Taiwan
| | - Hsu-Hsun Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
7
|
Dannemiller NG, Kechejian S, Kraberger S, Logan K, Alldredge M, Crooks KR, VandeWoude S, Carver S. Diagnostic Uncertainty and the Epidemiology of Feline Foamy Virus in Pumas (Puma concolor). Sci Rep 2020; 10:1587. [PMID: 32005906 PMCID: PMC6994588 DOI: 10.1038/s41598-020-58350-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/03/2020] [Indexed: 12/29/2022] Open
Abstract
Feline foamy virus (FFV) is a contact-dependent retrovirus forming chronic, largely apathogenic, infections in domestic and wild felid populations worldwide. Given there is no current ‘gold standard’ diagnostic test for FFV, efforts to elucidate the ecology and epidemiology of the virus may be complicated by unknown sensitivity and specificity of diagnostic tests. Using Bayesian Latent Class Analysis, we estimated the sensitivity and specificity of the only two FFV diagnostic tests available—ELISA and qPCR—as well as the prevalence of FFV in a large cohort of pumas from Colorado. We evaluated the diagnostic agreement of ELISA and qPCR, and whether differences in their diagnostic accuracy impacted risk factor analyses for FFV infection. Our results suggest ELISA and qPCR did not have strong diagnostic agreement, despite FFV causing a persistent infection. While both tests had similar sensitivity, ELISA had higher specificity. ELISA, but not qPCR, identified age to be a significant risk factor, whereas neither qPCR nor ELISA identified sex to be a risk factor. This suggests FFV transmission in pumas may primarily be via non-antagonistic, social interactions between adult conspecifics. Our study highlights that combined use of qPCR and ELISA for FFV may enhance estimates of the true prevalence of FFV and epidemiological inferences.
Collapse
Affiliation(s)
- Nicholas G Dannemiller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| | - Sarah Kechejian
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Simona Kraberger
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kenneth Logan
- Colorado Parks and Wildlife, Montrose, Colorado, USA
| | | | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
8
|
Ledesma-Feliciano C, Troyer RM, Zheng X, Miller C, Cianciolo R, Bordicchia M, Dannemiller N, Gagne R, Beatty J, Quimby J, Löchelt M, VandeWoude S. Feline Foamy Virus Infection: Characterization of Experimental Infection and Prevalence of Natural Infection in Domestic Cats with and without Chronic Kidney Disease. Viruses 2019; 11:E662. [PMID: 31330990 PMCID: PMC6669521 DOI: 10.3390/v11070662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022] Open
Abstract
Foamy viruses (FVs) are globally prevalent retroviruses that establish apparently apathogenic lifelong infections. Feline FV (FFV) has been isolated from domestic cats with concurrent diseases, including urinary syndromes. We experimentally infected five cats with FFV to study viral kinetics and tropism, peripheral blood mononuclear cell (PBMC) phenotype, urinary parameters, and histopathology. A persistent infection of primarily lymphoid tropism was detected with no evidence of immunological or hematologic perturbations. One cat with a significant negative correlation between lymphocytes and PBMC proviral load displayed an expanded FFV tissue tropism. Significantly increased blood urea nitrogen and ultrastructural kidney changes were noted in all experimentally infected cats, though chemistry parameters were not outside of normal ranges. Histopathological changes were observed in the brain, large intestine, and other tissues. In order to determine if there is an association of FFV with Chronic Kidney Disease, we additionally screened 125 Australian pet cats with and without CKD for FFV infection and found that FFV is highly prevalent in older cats, particularly in males with CKD, though this difference was not statistically significant compared to controls. Acute FFV infection was clinically silent, and while some measures indicated mild changes, there was no overt association of FFV infection with renal disease.
Collapse
Affiliation(s)
- Carmen Ledesma-Feliciano
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO 80045, USA
| | - Ryan M Troyer
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond St., London, ON N6A 5C1, Canada
| | - Xin Zheng
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Craig Miller
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74075, USA
| | - Rachel Cianciolo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Matteo Bordicchia
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Nicholas Dannemiller
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Roderick Gagne
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Julia Beatty
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Jessica Quimby
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Veterinary Clinical Sciences, The Ohio State University Veterinary Medical Center, 601 Vernon Tharpe Street, Columbus, OH 43210, USA
| | - Martin Löchelt
- Department of Viral Transformation Mechanisms, Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
9
|
Isolation of an Equine Foamy Virus and Sero-Epidemiology of the Viral Infection in Horses in Japan. Viruses 2019; 11:v11070613. [PMID: 31284407 PMCID: PMC6669534 DOI: 10.3390/v11070613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022] Open
Abstract
An equine foamy virus (EFV) was isolated for the first time in Japan from peripheral blood mononuclear cells of a broodmare that showed wobbler syndrome after surgery for intestinal volvulus and the isolate was designated as EFVeca_LM. Complete nucleotide sequences of EFVeca_LM were determined. Nucleotide sequence analysis of the long terminal repeat (LTR) region, gag, pol, env, tas, and bel2 genes revealed that EFVeca_LM and the EFV reference strain had 97.2% to 99.1% identities. For a sero-epidemiological survey, indirect immunofluorescent antibody tests were carried out using EFVeca_LM-infected cells as an antigen against 166 sera of horses in five farms collected in 2001 to 2002 and 293 sera of horses in eight farms collected in 2014 to 2016 in Hokkaido, Japan. All of the farms had EFV antibody-positive horses, and average positive rates were 24.6% in sera obtained in 2001 to 2002 and 25.6% in sera obtained in 2014 to 2016 from broodmare farms. The positive rate in a stallion farm (Farm A) in 2002 was 10.7%, and the positive rates in two stallion farms, Farms A and B, in 2015 were 40.9% and 13.3%, respectively. The results suggested that EFV infection is maintained widely in horses in Japan.
Collapse
|
10
|
Kechejian SR, Dannemiller N, Kraberger S, Ledesma-Feliciano C, Malmberg J, Roelke Parker M, Cunningham M, McBride R, Riley SPD, Vickers WT, Logan K, Alldredge M, Crooks K, Löchelt M, Carver S, VandeWoude S. Feline Foamy Virus is Highly Prevalent in Free-Ranging Puma concolor from Colorado, Florida and Southern California. Viruses 2019; 11:E359. [PMID: 31010173 PMCID: PMC6521117 DOI: 10.3390/v11040359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
Feline foamy virus (FFV) is a retrovirus that has been detected in multiple feline species, including domestic cats (Felis catus) and pumas (Puma concolor). FFV results in persistent infection but is generally thought to be apathogenic. Sero-prevalence in domestic cat populations has been documented in several countries, but the extent of viral infections in nondomestic felids has not been reported. In this study, we screened sera from 348 individual pumas from Colorado, Southern California and Florida for FFV exposure by assessing sero-reactivity using an FFV anti-Gag ELISA. We documented a sero-prevalence of 78.6% across all sampled subpopulations, representing 69.1% in Southern California, 77.3% in Colorado, and 83.5% in Florida. Age was a significant risk factor for FFV infection when analyzing the combined populations. This high prevalence in geographically distinct populations reveals widespread exposure of puma to FFV and suggests efficient shedding and transmission in wild populations.
Collapse
Affiliation(s)
- Sarah R Kechejian
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Nick Dannemiller
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Simona Kraberger
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA.
| | - Carmen Ledesma-Feliciano
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave, Aurora, CO 80045, USA.
| | - Jennifer Malmberg
- Wyoming State Vet Lab, University of Wyoming, 1174 Snowy Range Road, Laramie, WY 82072, USA.
| | - Melody Roelke Parker
- Frederick National Laboratory of Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA.
| | - Mark Cunningham
- Florida Fish and Wildlife Conservation Commission, 1105 SW Williston Road, Gainesville, FL 32601, USA.
| | - Roy McBride
- Rancher's Supply Inc., Alpine, TX 79830, USA.
| | - Seth P D Riley
- National Park Service, Santa Monica Mountains National Recreation Area, Thousand Oaks, CA 90265, USA.
| | - Winston T Vickers
- Karen C. Drayer Wildlife Health Center, University of California, Davis, CA 95616, USA.
| | - Ken Logan
- Wildlife Researcher Colorado Parks and Wildlife, 2300 S. Townsend Avenue, Montrose, CO 80203, USA.
| | - Mat Alldredge
- Colorado Division of Wildlife Office, Mammals Research, 317 W. Prospect Rd, For Collins, CO 80526, USA.
| | - Kevin Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University 115 Wagar, Fort Collins, CO 80523, USA.
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania 7005, Australia.
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
11
|
Molecular detection, phylogenetic analysis, and identification of transcription motifs in feline leukemia virus from naturally infected cats in malaysia. Vet Med Int 2014; 2014:760961. [PMID: 25506469 PMCID: PMC4251355 DOI: 10.1155/2014/760961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 01/14/2023] Open
Abstract
A nested PCR assay was used to determine the viral RNA and proviral DNA status of naturally infected cats. Selected samples that were FeLV-positive by PCR were subjected to sequencing, phylogenetic analysis, and motifs search. Of the 39 samples that were positive for FeLV p27 antigen, 87.2% (34/39) were confirmed positive with nested PCR. FeLV proviral DNA was detected in 38 (97.3%) of p27-antigen negative samples. Malaysian FeLV isolates are found to be highly similar with a homology of 91% to 100%. Phylogenetic analysis revealed that Malaysian FeLV isolates divided into two clusters, with a majority (86.2%) sharing similarity with FeLV-K01803 and fewer isolates (13.8%) with FeLV-GM1 strain. Different enhancer motifs including NF-GMa, Krox-20/WT1I-del2, BAF1, AP-2, TBP, TFIIF-beta, TRF, and TFIID are found to occur either in single, duplicate, triplicate, or sets of 5 in different positions within the U3-LTR-gag region. The present result confirms the occurrence of FeLV viral RNA and provirus DNA in naturally infected cats. Malaysian FeLV isolates are highly similar, and a majority of them are closely related to a UK isolate. This study provides the first molecular based information on FeLV in Malaysia. Additionally, different enhancer motifs likely associated with FeLV related pathogenesis have been identified.
Collapse
|
12
|
Ortega-Pacheco A, Aguilar-Caballero AJ, Colin-Flores RF, Acosta-Viana KY, Guzman-Marin E, Jimenez-Coello M. Seroprevalence of feline leukemia virus, feline immunodeficiency virus and heartworm infection among owned cats in tropical Mexico. J Feline Med Surg 2014; 16:460-4. [PMID: 24196568 PMCID: PMC11112187 DOI: 10.1177/1098612x13509995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Several infectious agents may be distributed within a healthy population of cats where diverse risk factors predispose them to come into contact with pathogens. Blood samples from 227 owned cats in Merida, Mexico, were collected with the objective of determining the seroprevalence and associated risk factors of feline leukemia virus (FeLV) and Dirofilaria immitis antigen, and feline immunodeficiency virus (FIV) antibody. Serological detection of FeLV and D immitis antigens, and FIV antibodies was performed using the commercial kit SNAP Feline Triple Test. The prevalence was found to be 7.5% for FeLV, 2.5% for FIV and 0% for D immitis. Adult cats were at a higher risk of coming into contact with FeLV (P <0.01) than younger cats. Owing to its low prevalence, a risk factor analysis was not performed for FIV. The prevalence of retroviral infections found in this study was low, but within the limits reported in the different geographical areas of the world. Cases of filariosis in the domestic cats of Merida, Mexico, may be absent or very low; however, the low sample size may have influenced these results.
Collapse
Affiliation(s)
- Antonio Ortega-Pacheco
- Department of Animal Health and Preventative Medicine, Faculty of Veterinary Medicine, Autonomous University of Yucatan, Yucatán, Mexico
| | - Armando J Aguilar-Caballero
- Department of Animal Health and Preventative Medicine, Faculty of Veterinary Medicine, Autonomous University of Yucatan, Yucatán, Mexico
| | - Rafael F Colin-Flores
- Department of Animal Health and Preventative Medicine, Faculty of Veterinary Medicine, Autonomous University of Yucatan, Yucatán, Mexico
| | - Karla Y Acosta-Viana
- Laboratory of Cell Biology, Regional Research Centre 'Dr Hideyo Noguchi', Autonomous University of Yucatan, Yucatán, Mexico
| | - Eugenia Guzman-Marin
- Laboratory of Cell Biology, Regional Research Centre 'Dr Hideyo Noguchi', Autonomous University of Yucatan, Yucatán, Mexico
| | - Matilde Jimenez-Coello
- Laboratory of Cell Biology, Regional Research Centre 'Dr Hideyo Noguchi', Autonomous University of Yucatan, Yucatán, Mexico
| |
Collapse
|
13
|
Kehl T, Tan J, Materniak M. Non-simian foamy viruses: molecular virology, tropism and prevalence and zoonotic/interspecies transmission. Viruses 2013; 5:2169-209. [PMID: 24064793 PMCID: PMC3798896 DOI: 10.3390/v5092169] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/27/2022] Open
Abstract
Within the field of retrovirus, our knowledge of foamy viruses (FV) is still limited. Their unique replication strategy and mechanism of viral persistency needs further research to gain understanding of the virus-host interactions, especially in the light of the recent findings suggesting their ancient origin and long co-evolution with their nonhuman hosts. Unquestionably, the most studied member is the primate/prototype foamy virus (PFV) which was originally isolated from a human (designated as human foamy virus, HFV), but later identified as chimpanzee origin; phylogenetic analysis clearly places it among other Old World primates. Additionally, the study of non-simian animal FVs can contribute to a deeper understanding of FV-host interactions and development of other animal models. The review aims at highlighting areas of special interest regarding the structure, biology, virus-host interactions and interspecies transmission potential of primate as well as non-primate foamy viruses for gaining new insights into FV biology.
Collapse
Affiliation(s)
- Timo Kehl
- German Cancer Research Center, INF242, Heidelberg 69120, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-6221-42-4935; Fax: +49-6221-42-4932
| | - Juan Tan
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; E-Mail:
| | - Magdalena Materniak
- Department of Biochemistry, National Veterinary Research Institute, Partyzantow Ave. 57, Pulawy 24-100, Poland; E-Mail:
| |
Collapse
|
14
|
Sukhumavasi W, Bellosa ML, Lucio-Forster A, Liotta JL, Lee ACY, Pornmingmas P, Chungpivat S, Mohammed HO, Lorentzen L, Dubey JP, Bowman DD. Serological survey of Toxoplasma gondii, Dirofilaria immitis, Feline Immunodeficiency Virus (FIV) and Feline Leukemia Virus (FeLV) infections in pet cats in Bangkok and vicinities, Thailand. Vet Parasitol 2012; 188:25-30. [PMID: 22497870 DOI: 10.1016/j.vetpar.2012.02.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 01/27/2012] [Accepted: 02/28/2012] [Indexed: 11/19/2022]
Abstract
The seroprevalence of Toxoplasma gondii, Dirofilaria immitis (heartworm), feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) infections was examined using serum or plasma samples from 746 pet cats collected between May and July 2009 from clinics and hospitals located in and around Bangkok, Thailand. The samples were tested for heartworm, FIV, and FeLV using a commercial ELISA. Of the 746 samples, 4.6% (34/746) were positive for heartworm antigen, 24.5% (183/746) had circulating FeLV antigen, and 20.1% (150/746) had antibodies against FIV. In addition, the first 348 submitted samples were tested for T. gondii antibodies using a modified agglutination test (MAT, cut off 1:25); 10.1% (35/348) were seropositive. Of the 348 cats sampled for all four pathogens, 11, 10, and 1 were positive for T. gondii antibodies and FIV antibodies, FeLV antigen, or D. immitis antigen, respectively. Of the 35 T. gondii-seropositive cats, 42.9% (15/35) were co-infected with at least one of the other three pathogens. The presence of antibodies to FIV was significantly associated with both age and gender, while FeLV antigen presence was only associated with age. In the case of FIV, males were twice as likely to be infected as females, and cats over 10 years of age were 13.5 times more likely to be infected than cats less than 1 year of age. FeLV antigen was more common in younger cats, with cats over 10 years of age being 10 times less likely to be FeLV positive than cats under 1 year of age. This is the first survey for these four pathogens affecting feline health in Thailand.
Collapse
Affiliation(s)
- Woraporn Sukhumavasi
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Bangkok 10330, Thailand.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pattern of seroreactivity against feline foamy virus proteins in domestic cats from Germany. Vet Immunol Immunopathol 2011; 143:292-300. [DOI: 10.1016/j.vetimm.2011.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Gleich SE, Krieger S, Hartmann K. Prevalence of feline immunodeficiency virus and feline leukaemia virus among client-owned cats and risk factors for infection in Germany. J Feline Med Surg 2009; 11:985-92. [PMID: 19616984 PMCID: PMC11318771 DOI: 10.1016/j.jfms.2009.05.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2009] [Indexed: 11/15/2022]
Abstract
This study was conducted to determine prevalence and risk factors for retrovirus infection of infected cats in a large cat population in Germany by evaluation of 17,462 client-owned cats that were tested for the presence of feline immunodeficiency virus (FIV) antibodies or feline leukaemia virus (FeLV) antigen. The owners of a subset of 100 cats were contacted to determine their cat's survival times. Prevalence of FIV and FeLV was 3.2% and 3.6%, respectively, remaining stable for FIV, but decreasing for FeLV (6-1%) over 10 years. Median age was 6 years in FIV- and 3 years in FeLV-infected cats. Risk factors for FIV infection were male gender, older age, mixed breed, access to outdoor, aggressive behaviour, and FeLV co-infection; and for FeLV infection contact to other cats, aggressive behaviour, and FIV co-infection. Median survival time of FIV-infected cats was not significantly different to non-infected cats, whereas FeLV-infected cats had significantly shorter median survival times than non-infected cats.
Collapse
Affiliation(s)
- Sabine E Gleich
- Clinic of Small Animal Internal Medicine, Ludwig Maximilian University Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | | | | |
Collapse
|
17
|
VandeWoude S, Apetrei C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev 2006; 19:728-62. [PMID: 17041142 PMCID: PMC1592692 DOI: 10.1128/cmr.00009-06] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over 40 nonhuman primate (NHP) species harbor species-specific simian immunodeficiency viruses (SIVs). Similarly, more than 20 species of nondomestic felids and African hyenids demonstrate seroreactivity against feline immunodeficiency virus (FIV) antigens. While it has been challenging to study the biological implications of nonfatal infections in natural populations, epidemiologic and clinical studies performed thus far have only rarely detected increased morbidity or impaired fecundity/survival of naturally infected SIV- or FIV-seropositive versus -seronegative animals. Cross-species transmissions of these agents are rare in nature but have been used to develop experimental systems to evaluate mechanisms of pathogenicity and to develop animal models of HIV/AIDS. Given that felids and primates are substantially evolutionarily removed yet demonstrate the same pattern of apparently nonpathogenic lentiviral infections, comparison of the biological behaviors of these viruses can yield important implications for host-lentiviral adaptation which are relevant to human HIV/AIDS infection. This review therefore evaluates similarities in epidemiology, lentiviral genotyping, pathogenicity, host immune responses, and cross-species transmission of FIVs and factors associated with the establishment of lentiviral infections in new species. This comparison of consistent patterns in lentivirus biology will expose new directions for scientific inquiry for understanding the basis for virulence versus avirulence.
Collapse
Affiliation(s)
- Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO 80538-1619, USA
| | | |
Collapse
|
18
|
Tejerizo G, Domenech A, Illera JC, Collado VM, Gomez-Lucia E. Effect of 17beta-estradiol and progesterone on the expression of FeLV in chronically infected cells. Vet Microbiol 2005; 109:191-9. [PMID: 16023797 DOI: 10.1016/j.vetmic.2005.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/18/2005] [Accepted: 06/02/2005] [Indexed: 11/28/2022]
Abstract
In a previous study, it was found that even though more male cats were infected by feline leukaemia virus (FeLV), females seemed to progress easier to overt disease. To study the effect of female hormones, 17beta-estradiol and progesterone were added in different concentrations (10(-3) M to 10(-12) M) to a culture of persistently FeLV-infected cells. The effect of both hormones was very similar. After 24 h the cell viability was very low at 10(-3) M and 10(-4) M but similar to controls at the remaining concentrations. Liberation of viral particles was estimated by the reverse transcriptase activity (RT), which was the lowest also at 10(-3) M and 10(-4) M. However, low viability could not account for this low RT, as when cells were lysed with lysis buffer RT was high. Thus, cells were dying without freeing viral particles, suggestive of apoptosis. This possibility was confirmed by staining hormone-treated cells with annexin V and propidium iodide. The FeLV antigen p27 measured in the cultures had a maximum at 10(-3) M and 10(-4) M, higher than controls and lysed cells, so the presence of p27 in the supernatant was not only due to cell lysis but a consequence of hormone effect. In conclusion, 17beta-estradiol and progesterone induce death of FeLV-infected cells at high concentrations, probably through a process of apoptosis, which might limit the spread of the infection, as infective viral particles would be hampered from budding.
Collapse
Affiliation(s)
- German Tejerizo
- Department of Animal Health, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Phung HTT, Tohya Y, Miyazawa T, Akashi H. Characterization of Env antigenicity of feline foamy virus (FeFV) using FeFV-infected cat sera and a monoclonal antibody. Vet Microbiol 2005; 106:201-7. [PMID: 15778026 DOI: 10.1016/j.vetmic.2004.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 12/24/2004] [Accepted: 12/24/2004] [Indexed: 11/29/2022]
Abstract
To characterize neutralizing antigenicity in relation to env genotypes of feline foamy virus (FeFV), serological analyses were performed using FeFV-infected cat sera and several field isolates including two env genotypes (F17- and FUV-types). Since three cats from which FeFV were isolated were found to have undetectable titers of virus neutralization (VN) antibodies, even to the homologous virus, VN antibodies were further examined with complement supplementation as an enhancement factor. With the presence of complement, the VN titers of FeFV-infected cat sera increased drastically. Although most of serum samples neutralized strains of either env genotype, sera sampled from two cats neutralized all the strains examined at similar titers, suggesting that superinfection with both env genotypes of FeFV might have occurred in the two cats. Further, we produced a monoclonal antibody (mAb) specifically neutralizing FeFV strains of FUV-type. The mAb was shown to have higher affinity to an epitope on Env of FUV-type than that of F17-type by immunoprecipitation assay. This study supplies basic information important for studies on FeFV vector development as well as on the relationship between the virus and the host immune response.
Collapse
Affiliation(s)
- Hang T T Phung
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
20
|
Phung HTT, Tohya Y, Shimojima M, Kato K, Miyazawa T, Akashi H. Establishment of a GFP-based indicator cell line to quantitate feline foamy virus. J Virol Methods 2003; 109:125-31. [PMID: 12711054 DOI: 10.1016/s0166-0934(03)00062-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To quantitate infectious feline foamy virus (FeFV), Crandell feline kidney (CRFK) cells were transfected with the gfp gene under the control of the FeFV long terminal repeat (LTR) for establishing an indicator cell line named FFG cells. The FeFV activates promoter activity of the LTR to express green fluorescent protein (GFP) upon infection. The titers determined by GFP-positive FFG cells (GFP-based assay) were higher than those determined by the cytopathic effects-positive CRFK cells (CPE-based assay). The titers determined by the GFP-based assay reached a plateau at 3-4 days post infection (d.p.i.), while those by the CPE-based assay reached 6-8 d.p.i. When stock viruses of various FeFV strains were titrated by both assays, titers determined by both assays correlated well with each other. The results show that the GFP-based assay is simpler and more rapid and sensitive than the CPE-based assay. Using the GFP-based assay, we examined the in vitro host range of FeFV. It was found that FeFV can productively infect various cell lines derived from cats, dogs, chickens, a human and a bat.
Collapse
Affiliation(s)
- Hang T T Phung
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Phung HT, Ikeda Y, Miyazawa T, Nakamura K, Mochizuki M, Izumiya Y, Sato E, Nishimura Y, Tohya Y, Takahashi E, Mikami T. Genetic analyses of feline foamy virus isolates from domestic and wild feline species in geographically distinct areas. Virus Res 2001; 76:171-81. [PMID: 11410316 DOI: 10.1016/s0168-1702(01)00275-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To know the genetic diversities and phylogenetic relationship among feline foamy virus (FeFV) isolates from domestic cats (Felis catus) and FeFV-related viruses from the Iriomote cats (Felis iriomotensis) and leopard cats (Felis bengalensis) in geographically distinct areas, we sequenced a partial gag-pol region of 17 strains and a partial env region of nine strains, and the U3 region of long terminal repeat of three strains of the viruses. FeFV-related viruses from the feral cats were quite similar to the FeFV from domestic cats in the sequenced regions. In the partial gag region, the identities of nucleotide sequences among the isolates were from 94 to 99%. In the partial env gene, the isolates were divided into two distinct genotypes (F17- and FUV-types) as reported by Winkler et al. (Virology 247 (1999) 144-151). More than 94% nucleotide identities were observed in the env region within a particular env genotype and about 75% nucleotide identities were noted between the two genotypes.
Collapse
Affiliation(s)
- H T Phung
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, 113-8657, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ikeda Y, Nakamura K, Miyazawa T, Chen MC, Kuo TF, Lin JA, Mikami T, Kai C, Takahashi E. Seroprevalence of canine distemper virus in cats. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:641-4. [PMID: 11329473 PMCID: PMC96116 DOI: 10.1128/cdli.8.3.641-644.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A seroepidemiological survey of canine distemper virus (CDV) infection in Asian felids revealed that the prevalence of antibodies varied depending on region and, in some cases, exposure to dogs. The serologic pattern in cats with antibodies indicated that they had likely been exposed to field strains rather than typical CDV vaccine strains.
Collapse
Affiliation(s)
- Y Ikeda
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nakamura K, Miyazawa T, Ikeda Y, Sato E, Nishimura Y, Nguyen NT, Takahashi E, Mochizuki M, Mikami T. Contrastive prevalence of feline retrovirus infections between northern and southern Vietnam. J Vet Med Sci 2000; 62:921-3. [PMID: 10993195 DOI: 10.1292/jvms.62.921] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prevalence of infections with three feline retroviruses; feline leukemia virus (FeLV), feline immunodeficiency virus (FIV) and feline foamy virus (FeFV), was examined in domestic cats (Felis catus) and leopard cats (Felis bengalensis) in southern Vietnam in 1998. We then compared this data with our previous study in northern Vietnam in 1997. None of the cats had FeLV antigens in both the northern and southern areas. In contrast, there is a great distinction in the seropositivity of FIV. Twenty-two percent of domestic cats had FIV antibodies whereas no FIV positive cats were detected in northern area. FIV may have entered southern Vietnam recently and spread rapidly. FeFV infections were found in both areas, suggesting that FeFV might be present in the cat populations in Vietnam from the earliest time.
Collapse
Affiliation(s)
- K Nakamura
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kurosawa K, Ikeda Y, Miyazawa T, Izumiya Y, Nishimura Y, Nakamura K, Sato E, Mikami T, Kai C, Takahashi E. Development of restriction fragment-length polymorphism method to differentiate five subtypes of feline immunodeficiency virus. Microbiol Immunol 1999; 43:817-20. [PMID: 10524802 DOI: 10.1111/j.1348-0421.1999.tb02476.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Feline immunodeficiency virus (FIV) isolates have been classified into five subtypes (A to E) based on the sequences of the env variable V3 to V5 region. In this study, we sequenced a partial gag region of 4 and 3 isolates belonging to subtypes C and E, respectively. Phylogenetic analysis revealed that the branching pattern based on the region was similar to that based on the env V3 to V5 region. Here, we propose a protocol to differentiate five subtypes by polymerase chain reaction amplifying 329 bp within the region followed by restriction fragment-length polymorphism analysis using four restriction enzymes.
Collapse
Affiliation(s)
- K Kurosawa
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Miyazawa T, Ikeda Y, Nakamura K, Naito R, Mochizuki M, Tohya Y, Vu D, Mikami T, Takahashi E. Isolation of feline parvovirus from peripheral blood mononuclear cells of cats in northern Vietnam. Microbiol Immunol 1999; 43:609-12. [PMID: 10480557 DOI: 10.1111/j.1348-0421.1999.tb02447.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Feline parvovirus (FPV) was isolated rather frequently from the peripheral blood mononuclear cells (PBMCs) of cats in northern Vietnam by coculturing with MYA-1 cells (an interleukin-2-dependent feline T lymphoblastoid cell line) or Crandell feline kidney (CRFK) cells (a feline renal cell line). Efficiency of virus isolation was higher in MYA-1 cells than in CRFK cells. Interestingly, among the 17 cats from which FPV was isolated, 9 cats were positive for virus neutralizing (VN) antibody against FPV, indicating that FPV infected PBMCs and was not eliminated from PBMCs even in the presence of VN antibodies in the cats.
Collapse
Affiliation(s)
- T Miyazawa
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|