1
|
Veselá B, Bzdúšková J, Ramešová A, Holomková K, Matalová E. Caspase-12 affects chondrogenesis in mice. Ann Anat 2025; 257:152347. [PMID: 39437937 DOI: 10.1016/j.aanat.2024.152347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Caspase-12 is a molecule whose functions are still not well understood. Although its expression has been found in various tissues, specific roles have been described in only a few cases. These include the effect of caspase-12 on murine bone cell differentiation during craniofacial development. This work focused on the development of the limbs taking place through endochondral ossification, which precedes the formation of the cartilaginous growth plate. Caspase-12 was described here for the first time in growth plate chondrocytes during physiological development. Using pharmacological inhibition, caspase-12 was found to affect chondrogenesis. Limb-derived micromass cultures showed a significantly increased area of chondrogenic nodules after caspase-12 inhibition and there were changes in gene expression, the most significant of which was the reduction of Mmp9. These data point to potential new functions of caspase-12 in chondrogenesis.
Collapse
Affiliation(s)
- Barbora Veselá
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
| | - Jana Bzdúšková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Alice Ramešová
- Department of Biological Sciences and Pathobiology, Unit of Physiology and Pathophysiology, University of Veterinary Medicine Vienna, Austria
| | - Kateřina Holomková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Matalová
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
2
|
Bessot A, Medeiros Savi F, Gunter J, Mendhi J, Amini S, Waugh D, McGovern J, Hutmacher DW, Bock N. Humanized In Vivo Bone Tissue Engineering: In Vitro Preculture Conditions Control the Structural, Cellular, and Matrix Composition of Humanized Bone Organs. Adv Healthc Mater 2025; 14:e2401939. [PMID: 39444080 PMCID: PMC11729988 DOI: 10.1002/adhm.202401939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/07/2024] [Indexed: 10/25/2024]
Abstract
Bone tissue engineering (BTE) has long sought to elucidate the key factors controlling human/humanized bone formation for regenerative medicine and disease modeling applications, yet with no definitive answers due to the high number and co-dependency of parameters. This study aims to clarify the relative impacts of in vitro biomimetic 'preculture composition' and 'preculture duration' before in vivo implantation as key criteria for the optimization of BTE design. These parameters are directly related to in vitro osteogenic differentiation (OD) and mineralization and are being investigated across different osteoprogenitor-loaded biomaterials, specifically fibrous calcium phosphate-polycaprolactone (CaP-mPCL) scaffolds and gelatin methacryloyl (GelMA) hydrogels. The results show that OD and mineralization levels prior to implantation, enhanced by a mineralization medium supplement to the osteogenic medium (OM), significantly improve ectopic BTE outcomes, regardless of the biomaterial type. Specifically, preculture conditions are pivotal in achieving more faithful mimicry of human bone structure, cellular and extracellular matrix composition and organization, and provide control over bone marrow composition. This work emphasizes the potential of using biomimetic culture compositions, specifically the addition of a mineralization medium as a cost-effective and straightforward approach to enhance BTE outcomes, facilitating rapid development of bone models with superior quality and resemblance to native bone.
Collapse
Affiliation(s)
- Agathe Bessot
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
| | - Flavia Medeiros Savi
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D ImagingModellingand Manufacturing (M3D Innovation)Queensland University of TechnologyBrisbaneQLD4000Australia
| | - Jennifer Gunter
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre (APCRC‐Q)QUTBrisbaneQLD4102Australia
| | - Jayanti Mendhi
- Central Analytical Research FacilityQUTBrisbaneQLD4102Australia
| | - Shahrouz Amini
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - David Waugh
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jacqui McGovern
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies (CTET)QUTBrisbaneQLD4000Australia
| | - Dietmar W. Hutmacher
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D ImagingModellingand Manufacturing (M3D Innovation)Queensland University of TechnologyBrisbaneQLD4000Australia
| | - Nathalie Bock
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D ImagingModellingand Manufacturing (M3D Innovation)Queensland University of TechnologyBrisbaneQLD4000Australia
| |
Collapse
|
3
|
Hopkins T, Midha S, Grossemy S, Screen HRC, Wann AKT, Knight MM. Engineering growth factor gradients to drive spatiotemporal tissue patterning in organ-on-a-chip systems. J Tissue Eng 2025; 16:20417314251326256. [PMID: 40290860 PMCID: PMC12033634 DOI: 10.1177/20417314251326256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/22/2025] [Indexed: 04/30/2025] Open
Abstract
Spatial heterogeneity plays a key role in the development and function of human tissues and therefore needs to be incorporated within in vitro models to maximise physiological relevance and predictive power. Here, we developed and optimised methods to generate spatial heterogeneity of hydrogel-embedded bioactive signalling molecules within organ-on-a-chip (OOAC) systems, to drive spatiotemporal tissue patterning through controlled stem cell differentiation. As an exemplar application, we spatially patterned bone morphogenetic protein-2 (BMP-2) in both closed-channel and open-chamber OOAC formats. The resulting BMP-2 gradient in 3D heparin methacryloyl/gelatin methacryloyl, successfully drove spatially divergent differentiation of human bone marrow-derived stem cells into bone-like and cartilage-like regions, mimicking the process of endochondral ossification in the growth plate. The application of hydrogel-embedded morphogens to drive spatial tissue patterning within OOAC systems represents a significant technological advancement and has broad-ranging applicability for a diverse range of tissues and organs, and a wide variety of OOAC platforms.
Collapse
Affiliation(s)
- Timothy Hopkins
- Centre for Predictive In Vitro Models, Queen Mary University of London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
| | - Swati Midha
- Centre for Predictive In Vitro Models, Queen Mary University of London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
- School of Biological Sciences, Institute for Life Sciences, University of Southampton, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Simon Grossemy
- Centre for Predictive In Vitro Models, Queen Mary University of London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
| | - Hazel R. C. Screen
- Centre for Predictive In Vitro Models, Queen Mary University of London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
| | - Angus K. T. Wann
- School of Biological Sciences, Institute for Life Sciences, University of Southampton, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Martin M. Knight
- Centre for Predictive In Vitro Models, Queen Mary University of London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
| |
Collapse
|
4
|
Zhang Z, Boggavarapu NR, Muhr LSA, Garcia-Serrango A, Aeppli TRJ, Nava TS, Zhao Y, Gutierrez-Farewik EM, Kulachenko A, Sävendahl L, Zaman F. Genomic Effects of Biomechanical Loading in Adolescent Human Growth Plate Cartilage: A Pilot Study. Cartilage 2024:19476035241302954. [PMID: 39655393 PMCID: PMC11629350 DOI: 10.1177/19476035241302954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE The genomic effects of biomechanical loading on human growth plate cartilage are unknown so far. To address this, we used rare human growth plate biopsies obtained from children undergoing epiphysiodesis and exposed them to precisely controlled mechanical loading using a microloading device. The biopsies were cultured 24 hours after mechanical loading, followed by RNA-sequencing analyses to decipher the genomic regulation. DESIGN We conducted RNA-seq analysis of human growth plate cartilage obtained from three patients cultured ex vivo and subjected to cyclical mechanical loading with peak 0.4 N with frequency 0.77 Hz during a 30-second duration, using a specialized microloading device. RESULTS Gene ontology analysis revealed novel data showing three significantly upregulated signaling pathways, including notch, oxytocin, and tight junction, and three significantly downregulated signaling pathways, including lysosome, sphingolipid metabolism, and peroxisome proliferator-activated receptor (PPAR) in human growth plate cartilage. Moreover, we found 15 significantly regulated genes within these signaling pathways from all three patients. These genes included PSEN2, HEY1, and NCOR2 from the notch signaling; CACNB1 and PPP3R2 from the oxytocin signaling; ACTR3C, WHAMM, and ARHGEF18 from the tight junction signaling; ARSA, SMPD1, and CD68 from the lysosome signaling; ARSA and SMPD1 from the sphingolipid metabolism signaling; and SLC27A4 and AQP7 from the PPAR signaling pathway. In addition, 20 significantly upregulated genes and six significantly downregulated genes shared between two patient samples were identified. CONCLUSION Our study provides the first-ever transcriptomic data of mechanical loading of human growth plate cartilage. These findings can potentially provide genetic targets for future investigations in physiological and pathological bone growth conditions.
Collapse
Affiliation(s)
- Zhengpei Zhang
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Nageswara Rao Boggavarapu
- Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Laila Sara Arroyo Muhr
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Ainhoa Garcia-Serrango
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Tim RJ Aeppli
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Tobia Sebastiano Nava
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yunhan Zhao
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Elena M. Gutierrez-Farewik
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Artem Kulachenko
- Material and Structural Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lars Sävendahl
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Farasat Zaman
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
5
|
Hastuti J, Rahmawati NT, Julia M. Childhood High Adiposity has no Advantage for Height in Adulthood: Cross-Sectional Studies in Indonesian Children to Young Adults. Int J Prev Med 2024; 15:64. [PMID: 39742121 PMCID: PMC11687686 DOI: 10.4103/ijpvm.ijpvm_95_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/25/2024] [Indexed: 01/03/2025] Open
Abstract
Background Childhood obesity is associated with faster linear growth; nonetheless, its benefit to the mature height of Indonesian children is questionable. This study aimed to evaluate the relationship between adiposity and height growth of Indonesian children, adolescents, and young adults aged 7 to 23 years. Methods Height and skinfolds at triceps, subscapular, suprailiac, and calf were measured in 2,520 children, adolescents, and young adults aged 7 to 23 years (boys = 1,116, girls = 1,404). Central adiposity (subscapular and suprailiac skinfolds) and peripheral adiposity (triceps and calf skinfolds) were projected against heights in each age group. The ANCOVA test and partial correlation were used for statistical analysis. Results With the exception of ages 8 to 12 years, boys were always taller than girls after controlling for age and central or peripheral adiposity. Boys with higher central and peripheral adiposity were taller than their peers up to the age of 17 (r = 0.30-0.72, P < 0.05, P < 0.01). Girls with central adiposity grew taller than their thinner peers until the age of 14 (r = 0.17-0.50, P < 0.05, P < 0.01), whereas girls with peripheral adiposity benefit from this advantage over a more extended period of time. Afterward, adiposity did not offer any benefit on heights. Conclusions Children with high adiposity who were taller at an earlier age have no significant advantage over their thinner peers in terms of adult height.
Collapse
Affiliation(s)
- Janatin Hastuti
- Department of Nutrition and Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Neni Trilusiana Rahmawati
- Department of Nutrition and Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Madarina Julia
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
6
|
Hernández-García F, Fernández-Iglesias Á, Rodríguez Suárez J, Gil Peña H, López JM, Pérez RF. The Crosstalk Between Cartilage and Bone in Skeletal Growth. Biomedicines 2024; 12:2662. [PMID: 39767569 PMCID: PMC11727353 DOI: 10.3390/biomedicines12122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
While the flat bones of the face, most of the cranial bones, and the clavicles are formed directly from sheets of undifferentiated mesenchymal cells, most bones in the human body are first formed as cartilage templates. Cartilage is subsequently replaced by bone via a very tightly regulated process termed endochondral ossification, which is led by chondrocytes of the growth plate (GP). This process requires continuous communication between chondrocytes and invading cell populations, including osteoblasts, osteoclasts, and vascular cells. A deeper understanding of these signaling pathways is crucial not only for normal skeletal growth and maturation but also for their potential relevance to pathophysiological processes in bones and joints. Due to limited information on the communication between chondrocytes and other cell types in developing bones, this review examines the current knowledge of how interactions between chondrocytes and bone-forming cells modulate bone growth.
Collapse
Affiliation(s)
- Frank Hernández-García
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Ángela Fernández-Iglesias
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Julián Rodríguez Suárez
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS-SAMID (RD21/0012), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Helena Gil Peña
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS2040 (RD21/0005/0011), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José M. López
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- Departamento de Morfología y Biología Celular, Oviedo University, 33003 Oviedo, Spain
| | - Rocío Fuente Pérez
- Universidad Europea de Madrid, Department of Nursing, Faculty of Medicine, Health and Sports, 28670 Madrid, Spain
| |
Collapse
|
7
|
García-Martínez J, Salto R, Girón MD, Pérez-Castillo ÍM, Bueno Vargas P, Vílchez JD, Linares-Pérez A, Manzano M, García-Córcoles MT, Rueda R, López-Pedrosa JM. Supplementation with a Whey Protein Concentrate Enriched in Bovine Milk Exosomes Improves Longitudinal Growth and Supports Bone Health During Catch-Up Growth in Rats. Nutrients 2024; 16:3814. [PMID: 39599602 PMCID: PMC11597726 DOI: 10.3390/nu16223814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Undernutrition impairs linear growth while restoration of nutritional provisions leads to accelerated growth patterns. However, the composition of the nutrition provided is key to facilitating effective catch-up growth without compromising bone quantity, quality, and long-term health. METHODS We evaluated the role of a whey protein concentrate enriched in bovine milk exosomes (BMEs) in modulating the proliferative properties of human chondrocytes in vitro and studied how these effects might impact bone quantity and quality measured as longitudinal tibia growth, bone mineral content (BMC) and density (BMD), and trabecular micro-CT parameters in stunted rats during catch-up growth. RESULTS BMEs promoted proliferation in C28/I2 human chondrocytes mediated by mTOR-Akt signaling. In a stunting rat model, two-week supplementation with BMEs during refeeding was associated with improved tibia BMD, trabecular microstructure (trabecular number (Tb. N.) and space (Tb. Sp.)), and a more active growth plate (higher volume, surface, and thickness) compared to non-supplemented stunted rats. Positive effects on physis translated to significantly longer tibias without compromising bone quality when extending the refeeding period for another two weeks. CONCLUSIONS Overall, BME supplementation positively contributed to longitudinal bone growth and improved bone quantity and quality during catch-up growth. These findings might be relevant for improving diets aimed at addressing the nutritional needs of children undergoing undernutrition during early life.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - Íñigo M. Pérez-Castillo
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Pilar Bueno Vargas
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Jose D. Vílchez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - Azahara Linares-Pérez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - Manuel Manzano
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - María T. García-Córcoles
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Ricardo Rueda
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - José M. López-Pedrosa
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| |
Collapse
|
8
|
Cho JH, Jung HW, Shim KS. Growth plate closure and therapeutic interventions. Clin Exp Pediatr 2024; 67:553-559. [PMID: 39463341 PMCID: PMC11551597 DOI: 10.3345/cep.2023.00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 10/29/2024] Open
Abstract
Height gains result from longitudinal bone growth, which is largely dependent on chondrocyte differentiation and proliferation within the growth plates of long bones. The growth plate, that is, the epiphyseal plate, is divided into resting, proliferative, and hypertrophic zones according to chondrocyte characteristics. The differentiation potential of progenitor cells in the resting zone, continuous capacity for chondrocyte differentiation and proliferation within the proliferative zone, timely replacement by osteocytes, and calcification in the hypertrophic zone are the 3 main factors controlling longitudinal bone growth. Upon adequate longitudinal bone growth, growth plate senescence limits human body height. During growth plate senescence, progenitor cells within the resting zone are depleted, proliferative chondrocyte numbers decrease, and hypertrophic chondrocyte number and size decrease. After senescence, hypertrophic chondrocytes are replaced by osteocytes, the extracellular matrix is calcified and vascularized, the growth plate is closed, and longitudinal bone growth is complete. To date, gonadotropin-releasing hormone analogs, aromatase inhibitors, C-type natriuretic peptide analogs, and fibroblast growth factor receptor 3 inhibitors have been studied or used as therapeutic interventions to delay growth plate closure. Complex networks of cellular, genetic, paracrine, and endocrine signals are involved in growth plate closure. However, the detailed mechanisms of this process remain unclear. Further elucidation of these mechanisms will enable the development of new therapeutic modalities for the treatment of short stature, precocious puberty, and skeletal dysplasia.
Collapse
Affiliation(s)
- Ja Hyang Cho
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Kyung Hee University Hospital, Seoul, Korea
| | - Hae Woon Jung
- Department of Pediatrics, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
| | - Kye Shik Shim
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Kyung Hee University Hospital, Seoul, Korea
| |
Collapse
|
9
|
Nudelman H, Lőrincz A, Lamberti AG, Varga M, Kassai T, Józsa G. Management of pediatric ankle fractures: comparison of biodegradable PLGA implants with traditional metal screws. Front Pediatr 2024; 12:1410750. [PMID: 39539764 PMCID: PMC11558883 DOI: 10.3389/fped.2024.1410750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The relevance of biodegradable implants has gained more importance in modern clinical practice. The study aimed to evaluate the effects and outcomes of ankle fracture treatment with absorbable implants compared to metal screws. These implants are made from poly l-lactic-co-glycolic acid (PLGA), however, there are several other materials available on the market. Methods In a retrospective review, a total of 128 patients were under observation, with distal tibial fracture types ranging from Salter-Harris II-IV. In the absorbable group, patients were treated with the implants (n = 76). The metal group included patients treated with titanium or steel screws (n = 52). The extremities were placed in a cast for six weeks after surgery and were utilized for another 6-8 weeks. Patients were followed up for 12-30 months and were evaluated accordingly. The authors examined several aspects such as age, gender, open or closed repair, mechanism of injury, length of hospitalization, type of fracture, time of recovery, and complications. Results There were no statistically significant differences between the groups regarding demographic qualities, such as age, type of fracture, side of injury, and length of cast application (p > 0.05 in all cases). Out of 76 patients in the PLGA group, only two presented with complications, so reoperation took place. The rest healed without complications or refractures. Two of those treated with metal screws (n = 52) had minor, and four had major complications with reoperation. Discussion In pediatric cases, PLGA implants may present excellent results for treating ankle fractures. They do not disturb the growth plate and do not require reoperation. For this reason, they reduce the burden on the patient and the healthcare provider while simultaneously decreasing the risk of complications, such as infections or problems due to general anesthesia.
Collapse
Affiliation(s)
- Hermann Nudelman
- Division of Surgery, Traumatology and Otorhinolaryngology, Department of Paediatrics, Clinical Complex, University of Pécs, Pécs, Hungary
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Aba Lőrincz
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Anna Gabriella Lamberti
- Division of Surgery, Traumatology and Otorhinolaryngology, Department of Paediatrics, Clinical Complex, University of Pécs, Pécs, Hungary
| | - Marcell Varga
- Department of Pediatric Traumatology, Péterfy Hospital, Manninger Jenő National Trauma Center, Budapest, Hungary
| | - Tamás Kassai
- Department of Pediatric Traumatology, Péterfy Hospital, Manninger Jenő National Trauma Center, Budapest, Hungary
| | - Gergő Józsa
- Division of Surgery, Traumatology and Otorhinolaryngology, Department of Paediatrics, Clinical Complex, University of Pécs, Pécs, Hungary
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
10
|
Ko SH. Effects of Heat Stress-Induced Sex Hormone Dysregulation on Reproduction and Growth in Male Adolescents and Beneficial Foods. Nutrients 2024; 16:3032. [PMID: 39275346 PMCID: PMC11397449 DOI: 10.3390/nu16173032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/16/2024] Open
Abstract
Heat stress due to climate warming can significantly affect the synthesis of sex hormones in male adolescents, which can impair the ability of the hypothalamus to secrete gonadotropin-releasing hormone on the hypothalamic-pituitary-gonadal axis, which leads to a decrease in luteinizing hormone and follicle-stimulating hormone, which ultimately negatively affects spermatogenesis and testosterone synthesis. For optimal spermatogenesis, the testicular temperature should be 2-6 °C lower than body temperature. Heat stress directly affects the testes, damaging them and reducing testosterone synthesis. Additionally, chronic heat stress abnormally increases the level of aromatase in Leydig cells, which increases estradiol synthesis while decreasing testosterone, leading to an imbalance of sex hormones and spermatogenesis failure. Low levels of testosterone in male adolescents lead to delayed puberty and incomplete sexual maturation, negatively affect height growth and bone mineral density, and can lead to a decrease in lean body mass and an increase in fat mass. In order for male adolescents to acquire healthy reproductive capacity, it is recommended to provide sufficient nutrition and energy, avoid exposure to heat stress, and provide foods and supplements to prevent or repair testosterone reduction, germ cell damage, and sperm count reduction caused by heat stress so that they can enter a healthy adulthood.
Collapse
Affiliation(s)
- Seong-Hee Ko
- Major in Food Science and Nutrition, College of Human Ecology, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
11
|
Zhang B, Berilla J, Cho S, Somoza RA, Welter JF, Alexander PE, Baskaran H. Synergistic effects of biological stimuli and flexion induce microcavities promote hypertrophy and inhibit chondrogenesis during in vitro culture of human mesenchymal stem cell aggregates. Biotechnol J 2024; 19:e2400060. [PMID: 39295570 PMCID: PMC11870314 DOI: 10.1002/biot.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 09/21/2024]
Abstract
Interzone/cavitation are key steps in early stage joint formation that have not been successfully developed in vitro. Further, current models of endochondral ossification, an important step in early bone formation, lack key morphology morphological structures such as microcavities found during development in vivo. This is possibly due to the lack of appropriate strategies for incorporating chemical and mechanical stimuli that are thought to be involved in joint development. We designed a bioreactor system and investigated the synergic effect of chemical stimuli (chondrogenesis-inducing [CIM] and hypertrophy-inducing medium [HIM]) and mechanical stimuli (flexion) on the growth of human mesenchymal stem cells (hMSCs) based linear aggregates under different conditions over 4 weeks of perfusion culture. Computational studies were used to evaluate tissue stress qualitatively. After harvesting, both Safranin-O and hematoxylin & eosin (H&E) staining histology demonstrated microcavity structures and void structures in the region of higher stresses for tissue aggregates cultured only in HIM under flexion. In comparison to either HIM treatment or flexion only, increased glycosaminoglycan (GAG) content in the extracellular matrix (ECM) at this region indicates the morphological change resembles the early stage of joint cavitation; while decreased type II collagen (Col II), and increased type X collagen (Col X) and vascular endothelial growth factor (VEGF) with a clear boundary in the staining section indicates it resembles the early stage of ossification. Further, cell alignment analysis indicated that cells were mostly oriented toward the direction of flexion in high-stress region only in HIM under flexion, resembling cell morphology in both joint cavitation and hypertrophic cartilage in growth plate. Collectively, our results suggest that flexion and HIM inhibit chondrogenesis and promote hypertrophy and development of microcavities that resemble the early stage of joint cavitation and endochondral ossification. We believe the tissue model described in this work can be used to develop in vitro models of joint tissue for applications such as pathophysiology and drug discovery.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jim Berilla
- Case School of Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sungwoo Cho
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rodrigo A Somoza
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jean F Welter
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peter E Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Harihara Baskaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Yaya-Quezada C, Fanney L, Patel V, Taragin BH, Williams BA, Simoni P, Nguyen JC. Imaging of the Pediatric Knee. Semin Musculoskelet Radiol 2024; 28:462-476. [PMID: 39074728 DOI: 10.1055/s-0044-1786152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
During normal development, imaging findings in the immature knee joint may mimic pathology or indicate transient sites of weakness, prone to injury. This article reviews the development of the knee joint, age- and maturation-dependent imaging considerations, and various developmental variants that can be encountered, subdivided into those that involve the tibiofemoral and patellofemoral compartments, soft tissues, and osseous components. The tibiofemoral compartment section reviews the focal periphyseal edema zone (FOPE), ossification variants of the femoral condyles, distal femoral metaphyseal cortical irregularity from periosteal traction, and the metaphyseal subperiosteal stripe, which should be distinguished from pathologic mimickers such as endochondral ossification dysfunction, osteochondritis dissecans (OCD), fibroosseous lesion, periosteal and subcortical pathologies. The patellofemoral compartment section includes a review of partite patella, dorsolateral defect, variant trochlear morphology, and maturation-dependent sites of transient weakness that are prone to injury from repetitive overuse (Sinding-Larsen-Johansson syndrome and Osgood-Schlatter disease) and avulsion fractures (patellar sleeve and tibial tubercle avulsions). Finally, soft tissue (discoid lateral meniscus, meniscal flounce, anterior cruciate ligament variants) and osseous components (meniscal ossicle, fabella, and cyamella) are reviewed.
Collapse
Affiliation(s)
- Carlos Yaya-Quezada
- Section of Musculoskeletal Imaging, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lewis Fanney
- Section of Musculoskeletal Imaging, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Eastern Virginia Medical School, Norfolk, Virginia
| | - Vandan Patel
- Section of Musculoskeletal Imaging, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Drexel University College of Medicine, Philadelphia, Pennsylvania
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Benjamin H Taragin
- Section of Musculoskeletal Imaging, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brendan A Williams
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paolo Simoni
- Queen Fabiola Children's University Hospital, Brussels, Belgium
| | - Jie C Nguyen
- Section of Musculoskeletal Imaging, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Verleyen M, He Y, Burssens A, Silva MS, Callewaert B, Audenaert E. A systematic review and cross-database analysis of single nucleotide polymorphisms underlying hip morphology and osteoarthritis reveals shared mechanisms. Osteoarthritis Cartilage 2024; 32:872-885. [PMID: 38852879 DOI: 10.1016/j.joca.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE Understanding the mechanisms of hip disease, such as osteoarthritis (OA), is crucial to advance their treatment. Such hip diseases often involve specific morphological changes. Genetic variations, called single nucleotide polymorphisms (SNPs), influence various hip morphological parameters. This study investigated the biological relevance of SNPs correlated to hip morphology in genome-wide association studies (GWAS). The SNP-associated genes were compared to genes associated with OA in other joints, aiming to see if the same genes play a role in both hip development and the risk of OA in other lower limb joints. METHODOLOGY A systematic literature review was conducted to identify SNPs correlated with hip morphology, based on the Population, Intervention, Comparison, Outcome, and Study (PICOS) framework. Afterwards, Gene Ontology (GO) analysis was performed, using EnrichR, on the SNP-associated genes and compared with non-hip OA-associated genes, across different databases. RESULTS Reviewing 49 GWAS identified 436 SNPs associated with hip joint morphology, encompassing variance in bone size, structure and shape. Among the SNP-associated genes, SOX9 plays a pivotal role in size, GDF5 impacts bone structure, and BMP7 affects shape. Overall, skeletal system development, regulation of cell differentiation, and chondrocyte differentiation emerged as crucial processes influencing hip morphology. Eighteen percent of GWAS-identified genes related to hip morphology were also associated with non-hip OA. CONCLUSION Our findings indicate the existence of multiple shared genetic mechanisms across hip morphology and OA, highlighting the necessity for more extensive research in this area, as in contrast to the hip, the genetic background on knee or foot morphology remains largely understudied.
Collapse
Affiliation(s)
- Marlies Verleyen
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Yukun He
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Orthopedic Surgery and Traumatology, Ghent University Hospital, Ghent, Belgium
| | - Arne Burssens
- Department of Orthopedic Surgery and Traumatology, Ghent University Hospital, Ghent, Belgium
| | | | - Bert Callewaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Emmanuel Audenaert
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Orthopedic Surgery and Traumatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
14
|
Hofbauer MH, Babu SS, Bradshaw CDL. Pediatric Trauma. Clin Podiatr Med Surg 2024; 41:571-592. [PMID: 38789171 DOI: 10.1016/j.cpm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Pediatric foot and ankle trauma includes a range of injuries affecting the lower extremities in children, typically aged from infancy to adolescence. These incidents can arise from various causes, including sports-related accidents, falls, and high-velocity injuries. Due to the dynamic growth and development of bones and soft tissues in pediatric patients, managing these injuries requires specialized knowledge and care. Early diagnosis and appropriate treatment are crucial to ensure optimal recovery and prevent potential long-term consequences. Treatment depends on severity and type of injury but may involve a combination of immobilization, physical therapy, or surgical intervention.
Collapse
Affiliation(s)
- Mark H Hofbauer
- WVU Medicine Wheeling Hospital, 10 Medical Park Road, Suite 203, Wheeling, WV, 26003, USA
| | - Sriya S Babu
- WVU Medicine Wheeling Hospital, 10 Medical Park Road, Suite 203, Wheeling, WV, 26003, USA.
| | | |
Collapse
|
15
|
Ko K, Choi S, Jo M, Kim C, Boonpraman N, Youm J, Yi SS. NOX4 and its association with myeloperoxidase and osteopontin in regulating endochondral ossification. J Vet Sci 2024; 25:e49. [PMID: 38910308 PMCID: PMC11291435 DOI: 10.4142/jvs.24076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
IMPORTANCE Endochondral ossification plays an important role in skeletal development. Recent studies have suggested a link between increased intracellular reactive oxygen species (ROS) and skeletal disorders. Moreover, previous studies have revealed that increasing the levels of myeloperoxidase (MPO) and osteopontin (OPN) while inhibiting NADPH oxidase 4 (NOX4) can enhance bone growth. This investigation provides further evidence by showing a direct link between NOX4 and MPO, OPN in bone function. OBJECTIVE This study investigates NOX4, an enzyme producing hydrogen peroxide, in endochondral ossification and bone remodeling. NOX4's role in osteoblast formation and osteogenic signaling pathways is explored. METHODS Using NOX4-deficient (NOX4-/-) and ovariectomized (OVX) mice, we identify NOX4's potential mediators in bone maturation. RESULTS NOX4-/- mice displayed significant differences in bone mass and structure. Compared to the normal Control and OVX groups. Hematoxylin and eosin staining showed NOX4-/- mice had the highest trabecular bone volume, while OVX had the lowest. Proteomic analysis revealed significantly elevated MPO and OPN levels in bone marrow-derived cells in NOX4-/- mice. Immunohistochemistry confirmed increased MPO, OPN, and collagen II (COLII) near the epiphyseal plate. Collagen and chondrogenesis analysis supported enhanced bone development in NOX4-/- mice. CONCLUSIONS AND RELEVANCE Our results emphasize NOX4's significance in bone morphology, mesenchymal stem cell proteomics, immunohistochemistry, collagen levels, and chondrogenesis. NOX4 deficiency enhances bone development and endochondral ossification, potentially through increased MPO, OPN, and COLII expression. These findings suggest therapeutic implications for skeletal disorders.
Collapse
Affiliation(s)
- Kayoung Ko
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Seohee Choi
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Miri Jo
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Chaeyoung Kim
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Napissara Boonpraman
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| | - Jihyun Youm
- Department of Gerontology, Graduate School of East-West Medical Science, Kyunghee University, Yongin 17104, Korea
| | - Sun Shin Yi
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
- iConnectome Co., LTD, Cheonan 31168, Korea.
| |
Collapse
|
16
|
Asmussen NC, Cohen DJ, Boyan BD, Schwartz Z. Regulatory Pathways in Growth Plate Chondrocytes that Are Impacted by Matrix Vesicle microRNA Identified by Targeted RISC Pulldown and Sequencing of the Resulting Transcriptome. Calcif Tissue Int 2024; 114:409-418. [PMID: 38315223 PMCID: PMC10957581 DOI: 10.1007/s00223-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/23/2023] [Indexed: 02/07/2024]
Abstract
During endochondral bone formation, growth plate chondrocytes are differentially regulated by various factors and hormones. As the cellular phenotype changes, the composition of the extracellular matrix is altered, including the production and composition of matrix vesicles (MV) and their cargo of microRNA. The regulatory functions of these MV microRNA in the growth plate are still largely unknown. To address this question, we undertook a targeted bioinformatics approach. A subset of five MV microRNA was selected for analysis based on their specific enrichment in these extracellular vesicles compared to the parent cells (miR-1-3p, miR-22-3p, miR-30c-5p, miR-122-5p, and miR-133a-3p). Synthetic biotinylated versions of the microRNA were produced using locked nucleic acid (LNA) and were transfected into rat growth plate chondrocytes. The resulting LNA to mRNA complexes were pulled down and sequenced, and the transcriptomic data were used to run pathway analysis pipelines. Bone and musculoskeletal pathways were discovered to be regulated by the specific microRNA, notably those associated with transforming growth factor beta (TGFβ) and Wnt pathways, cell differentiation and proliferation, and regulation of vesicles and calcium transport. These results can help with understanding the maturation of the growth plate and the regulatory role of microRNA in MV.
Collapse
Affiliation(s)
- Niels C Asmussen
- School of Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - David J Cohen
- College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA
| | - Barbara D Boyan
- College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Zvi Schwartz
- College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
17
|
Greer SE, Haller SJ, Lee D, Dudley AT. N-cadherin and β1 integrin coordinately regulate growth plate cartilage architecture. Mol Biol Cell 2024; 35:ar49. [PMID: 38294852 PMCID: PMC11064670 DOI: 10.1091/mbc.e23-03-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Spatial and temporal regulation of chondrocyte maturation in the growth plate drives growth of many bones. One essential event to generate the ordered cell array characterizing growth plate cartilage is the formation of chondrocyte columns in the proliferative zone via 90-degree rotation of daughter cells to align with the long axis of the bone. Previous studies have suggested crucial roles for cadherins and integrin β1 in column formation. The purpose of this study was to determine the relative contributions of cadherin- and integrin-mediated cell adhesion in column formation. Here we present new mechanistic insights generated by application of live time-lapse confocal microscopy of cranial base explant cultures, robust genetic mouse models, and new quantitative methods to analyze cell behavior. We show that conditional deletion of either the cell-cell adhesion molecule Cdh2 or the cell-matrix adhesion molecule Itgb1 disrupts column formation. Compound mutants were used to determine a potential reciprocal regulatory interaction between the two adhesion surfaces and identified that defective chondrocyte rotation in a N-cadherin mutant was restored by a heterozygous loss of integrin β1. Our results support a model for which integrin β1, and not N-cadherin, drives chondrocyte rotation and for which N-cadherin is a potential negative regulator of integrin β1 function.
Collapse
Affiliation(s)
- Sydney E. Greer
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Stephen J. Haller
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Donghee Lee
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Andrew T. Dudley
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
18
|
Zhang Y, Hu F, Li H, Duan Q, Pi Y, Li Y, Zhang H. Longitudinal skeletal growth and growth plate morphological characteristics of chondro-tissue specific CUL7 knockout mice. Ann Anat 2024; 253:152224. [PMID: 38367951 DOI: 10.1016/j.aanat.2024.152224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/25/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND 3 M syndrome is first reported in 1975,which characterized by severe pre- and postnatal growth retardation, skeletal malformation and facial dysmorphism. These three genes (CUL7, OBSL1 and CCDC8) have been identified to be respond for 3 M syndrome, of which CUL7 is accounting for approximately 70%. To date, the molecular mechanism underlying the pathogenesis of 3 M syndrome remains poorly understood. Previous studies showed that no Cul7-/- mice could survive after birth, because of growth retardation at late gestational stage and respiratory distress after birth. The establishment of the animal model of cartilage specific Cul7 knockout mice (Cul7fl/fl;Col2a1-CreERT2 mice) has confirmed that Cul7fl/fl;Col2a1-CreERT2 mice can be selective in a time- and tissue-dependent manner, which can provide an experimental basis for further research on severe genetic diseases related to growth plates. OBJECTIVE To establish a model of Cul7fl/fl;Col2a1-CreERT2 mice based on Cre/LoxP system, and to further observe its phenotype and morphological changes in growth plate. METHODS The Cul7fl/fl;Col2a1-CreERT2 mice were taken as the experimental group, while the genotype of Cul7fl/+;Col2a1-CreERT2 mice were used as the control group. The gross morphological features and X-ray films of limbs in the two groups were observed every week for 3-6 consecutive weeks, and the length of the mice from nose to the tail, the length of femur and tibia were recorded. In the meantime, The histological morphology of tibial growth plates was compared between the two groups. RESULTS A preliminary model of Cul7fl/fl;Col2a1-CreERT2 mice was established. The Cul7fl/fl;Col2a1-CreERT2 mice had abnormally short and deformed limbs (P<0.05), increased thickness of growth plate, the disorderly arranged chondrocyte columns, decreased number of cells in the proliferation zone, changes in the shape from flat to round, obviously expanded extracellular matrix, and disordered arrangement, thickening and loosening of bone trabecula at the proximal metaphysis of the femur. CONCLUSIONS The knockout of Cul7 gene may affect both the proliferation of chondrocytes and the endochondral osteogenesis, confirming that Cul7 is essential for the normal development of bone in the body.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Fangrui Hu
- Department of pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Hui Li
- Department of pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Qinli Duan
- Department of pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yalei Pi
- Department of pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yuqian Li
- Department of pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Huifeng Zhang
- Department of pediatrics, The Second Hospital of Hebei Medical University, No. 215 of Heping West Road, Xinhua District, Shijiazhuang, 050000, China.
| |
Collapse
|
19
|
Crawford RR, Hodson CM, Errickson D. Guidance for the identification of bony lesions related to smallpox. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2024; 44:65-77. [PMID: 38159426 DOI: 10.1016/j.ijpp.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This research aimed to address the underrepresentation of smallpox (osteomyelitis variolosa) in palaeopathology, providing a synthesis of published literature and presenting guidance for the identification of osteomyelitis variolosa in non-adult and adult skeletal remains. MATERIALS AND METHODS Literature regarding smallpox and published reports of individuals with osteomyelitis variolosa were synthesised and critiqued to produce clear diagnostic criteria for the identification of smallpox osteologically. RESULTS Associated osteological changes begin in non-adults, where skeletal morphology is rapidly changing. Characteristic lesions associated with non-adult osteomyelitis variolosa include inflammation and destructive remodelling of long-bone joints and metaphyses. Where childhood infection was survived, residual osteomyelitis variolosa lesions should also be visible in adults in the osteoarchaeological record. CONCLUSIONS Despite long-term clinical recognition, only limited osteological and archaeological evidence of osteomyelitis variolosa has yet emerged. With improved diagnostic criteria, osteomyelitis variolosa may be more frequently identified. SIGNIFICANCE This is the first synthesis of osteomyelitis variolosa encompassing both clinical and palaeopathological literature, providing detailed guidance for the identification of osteomyelitis variolosa in skeletal remains. It will lead to the increased identification of smallpox osteologically. LIMITATIONS Differential diagnoses should always be considered. The archaeological longevity of smallpox, and the potential for archaeological VARV to cause clinically recognised smallpox, is currently unknown. Characteristic bone changes in the archaeological record may be other, extinct human-infecting-orthopoxviruses. SUGGESTIONS FOR FURTHER RESEARCH Further consideration of the implications of age of smallpox contraction on bony pathology: whether epiphyses are affected differently due to state of fusion. Reassessment of individuals previously identified with smallpox-consistent lesions, but otherwise diagnosed.
Collapse
Affiliation(s)
- Rosie R Crawford
- Cranfield Forensic Institute, Cranfield University, College Road, Cranfield MK43 0AL, UK; McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK.
| | - Claire M Hodson
- Department of Archaeology, University of Reading, Whiteknights, Reading RG6 6AB, UK; Department of Archaeology, Durham University, Lower Mount Joy, South Rd, Durham DH1 3LE, UK
| | - David Errickson
- Cranfield Forensic Institute, Cranfield University, College Road, Cranfield MK43 0AL, UK
| |
Collapse
|
20
|
Colares Neto GDP, Alves CDAD. Demystifying Skeletal Dysplasias: A Practical Approach for the Pediatric Endocrinologist. Horm Res Paediatr 2024; 98:214-225. [PMID: 38310868 DOI: 10.1159/000536564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Skeletal dysplasias encompass a group of genetic conditions associated with cartilaginous and bone tissue abnormalities, exhibiting a variable phenotype depending on the involved genes and mechanisms. Differential diagnosis is challenging as there are many skeletal dysplasias with similar phenotypes. SUMMARY In this review, we describe the physiology of skeletal development and the classification of skeletal dysplasias, followed by a practical approach to the workup of a child with suspected skeletal dysplasia. Diagnosis requires clinical, laboratory, and radiological evaluation to differentiate potential conditions in the patient. Genotyping has emerged as a confirmatory tool in many cases, enabling personalized treatment through a multidisciplinary approach and assessment of associated comorbidities. KEY MESSAGES As skeletal dysplasias often present with short stature, proportionate or disproportionate, the pediatric endocrinologist plays a crucial role in initial investigative and diagnostic guidance. Identifying the critical clinical manifestations, conducting appropriate initial screening tests, and referring for multidisciplinary follow-up contribute to expeditious diagnosis and family support.
Collapse
|
21
|
Spurná Z, Čapková P, Punová L, DuchoslavovÁ J, Aleksijevic D, Venháčová P, Srovnal J, Štellmachová J, Curtisová V, Bitnerová V, Petřková J, Kolaříková K, Janíková M, Kratochvílová R, Vrtěl P, Vodička R, Vrtěl R, Zapletalová J. Clinical-genetic analysis of selected genes involved in the development of the human skeleton in 128 Czech patients with suspected congenital skeletal abnormalities. Gene 2024; 892:147881. [PMID: 37806643 DOI: 10.1016/j.gene.2023.147881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Congenital skeletal abnormalities are a heterogeneous group of diseases most commonly associated with small or disproportionate growth, cranial and facial dysmorphisms, delayed bone maturation, etc. Nonetheless, no detailed genotype-phenotype correlation in patients with specific genetic variants is readily available. Ergo, this study focuses on the analysis of patient phenotypes with candidate variants in genes involved in bone growth as detected by molecular genetic analysis. METHODS In this study we used molecular genetic methods to analyse the ACAN, COL2A1, FGFR3, IGFALS, IGF1, IGF1R, GHR, NPR2, STAT5B and SHOX genes in 128 Czech children with suspected congenital skeletal abnormalities. Pathogenic variants and variants of unclear clinical significance were identified and we compared their frequency in this study cohort to the European non-Finnish population. Furthermore, a prediction tool was utilised to determine their possible impact on the final protein. All clinical patient data was obtained during pre-test genetic counselling. RESULTS Pathogenic variants were identified in the FGFR3, GHR, COL2A1 and SHOX genes in a total of six patients. Furthermore, we identified 23 variants with unclear clinical significance and high allelic frequency in this cohort of patients with skeletal abnormalities. Five of them have not yet been reported in the scientific literature. CONCLUSION Congenital skeletal abnormalities may lead to a number of musculoskeletal, neurological, cardiovascular problems. Knowledge of specific pathogenic variants may help us in therapeutic procedures.
Collapse
Affiliation(s)
- Z Spurná
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - P Čapková
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic.
| | - L Punová
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - J DuchoslavovÁ
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - D Aleksijevic
- Paediatrics Department, Palacký University and University Hospital, Olomouc, Czech Republic
| | - P Venháčová
- Paediatrics Department, Palacký University and University Hospital, Olomouc, Czech Republic
| | - J Srovnal
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Czech Republic; Cancer Research Czech Republic, Olomouc, Czech Republic
| | - J Štellmachová
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - V Curtisová
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - V Bitnerová
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - J Petřková
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; First Department of Internal Medicine - Cardiology, University Hospital Olomouc, Olomouc, Czech Republic; First Department of Internal Medicine - Cardiology, Palacký University in Olomouc, Olomouc, Czech Republic; Institute of Pathological Physiology, Palacký University in Olomouc, Olomouc, Czech Republic
| | - K Kolaříková
- Department of Neurology, University Hospital Olomouc, Czech Republic; Department of Neurology, Palacky University Olomouc, Czech Republic
| | - M Janíková
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic; Institute of Clinical and Molecular Pathology, Palacký University in Olomouc, Olomouc, Czech Republic
| | - R Kratochvílová
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic
| | - P Vrtěl
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - R Vodička
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - R Vrtěl
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - J Zapletalová
- Paediatrics Department, Palacký University and University Hospital, Olomouc, Czech Republic
| |
Collapse
|
22
|
Klahs KJ, Dertinger JE, Mello GT, Thapa K, Sandler AB, Garcia EJJ, Parnes N. Epidemiologic investigation of pediatric distal humerus fractures: An American insurance claims database study. World J Orthop 2024; 15:52-60. [PMID: 38293264 PMCID: PMC10824061 DOI: 10.5312/wjo.v15.i1.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Distal humerus elbow fractures are one of the most common traumatic fractures seen in pediatric patients and present as three main types: Supracondylar (SC), lateral condyle (LC), and medial epicondyle (ME) fractures. AIM To evaluate the epidemiology of pediatric distal humerus fractures (SC, LC, and ME) from an American insurance claims database. METHODS A retrospective review was performed on patients 17 years and younger with the ICD 9 and 10 codes for SC, LC and ME fractures based on the IBM Truven MarketScan® Commercial and IBM Truven MarketScan Medicare Supplemental databases. Patients from 2015 to 2020 were queried for treatments, patient age, sex, length of hospitalization, and comorbidities. RESULTS A total of 1133 SC, 154 LC, and 124 ME fractures were identified. SC fractures had the highest percentage of operation at 83%, followed by LC (78%) and ME fractures (41%). Male patients were, on average, older than female patients for both SC and ME fractures. CONCLUSION In the insurance claims databases used, SC fractures were the most reported, followed by LC fractures, and finally ME fractures. Age was identified to be a factor for how a pediatric distal humerus fractures, with patients with SC and LC fractures being younger than those with ME fractures. The peak age per injury per sex was similar to reported historic central tendencies, despite reported trends for younger physiologic development.
Collapse
Affiliation(s)
- Kyle Jay Klahs
- Department of Orthopaedic Surgery, Texas Tech University Health Sciences-El Paso, El Paso, TX 79905, United States
| | - Jake E Dertinger
- Medical School, California Health Sciences University College of Osteopathic Medicine, Clovis, CA 93611, United States
| | - Grant T Mello
- Medical School, California Health Sciences University College of Osteopathic Medicine, Clovis, CA 93611, United States
| | - Kevin Thapa
- Undergraduate School, Binghampton University, Vestal, NY 13902, United States
| | - Alexis B Sandler
- Department of Orthopaedic Surgery, Texas Tech University Health Sciences-El Paso, El Paso, TX 79905, United States
| | - E'Stephan J Jesus Garcia
- Department of Orthopaedic Surgery, William Beaumont Army Medical Center, Fort Bliss, TX 79918, United States
| | - Nata Parnes
- Department of Orthopaedic Surgery, Carthage Area Hospital, Carthage, NY 13619, United States
| |
Collapse
|
23
|
Mi S, Zhang J, Sun M, Huo X, Lv Y, Beier F, Lu S, Yan J. GPx1 promotes hypertrophic differentiation of chondrocytes through modulation of akt signaling in a non-monotonic manner. Exp Cell Res 2023; 433:113824. [PMID: 37890608 DOI: 10.1016/j.yexcr.2023.113824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Affiliation(s)
- Sijia Mi
- Department of Human Anatomy, Histology, And Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jinhong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Mengyao Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Xinyu Huo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Yaqi Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jidong Yan
- Department of Human Anatomy, Histology, And Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
24
|
Pedersen K, Watt J, Maimone C, Hang H, Denys A, Schroder K, Suva LJ, Chen JR, Ronis MJJ. Deletion of NADPH oxidase 2 in chondrocytes exacerbates ethanol-mediated growth plate disruption in mice without major effects on bone architecture or gene expression. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:2233-2247. [PMID: 38151780 DOI: 10.1111/acer.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Excess reactive oxygen species generated by NADPH oxidase 2 (Nox2) in response to ethanol exposure mediate aspects of skeletal toxicity including increased osteoclast differentiation and activity. Because perturbation of chondrocyte differentiation in the growth plate by ethanol could be prevented by dietary antioxidants, we hypothesized that Nox2 in the growth plate was involved in ethanol-associated reductions in longitudinal bone growth. METHODS Nox2 conditional knockout mice were generated, where the essential catalytic subunit of Nox2, cytochrome B-245 beta chain (Cybb), is deleted in chondrocytes using a Cre-Lox model with Cre expressed from the collagen 2a1 promoter (Col2a1-Cre). Wild-type and Cre-Lox mice were fed an ethanol Lieber-DeCarli-based diet or pair-fed a control diet for 8 weeks. RESULTS Ethanol treatment significantly reduced the number of proliferating chondrocytes in the growth plate, enhanced bone marrow adiposity, shortened femurs, reduced body length, reduced cortical bone volume, and decreased mRNA levels of a number of osteoblast and chondrocyte genes. Conditional knockout of Nox2 enzymatic activity in chondrocytes did not consistently prevent any ethanol effects. Rather, knockout mice had fewer proliferating chondrocytes than wild-type mice in both the ethanol- and control-fed animals. Additional analysis of tibia samples from Nox4 knockout mice showed that loss of Nox4 activity also reduced the number of proliferating chondrocytes and altered chondrocyte size in the growth plate. CONCLUSIONS Although Nox enzymatic activity regulates growth plate development, ethanol-associated disruption of the growth plate morphology is independent of ethanol-mediated increases in Nox2 activity.
Collapse
Affiliation(s)
- K Pedersen
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - J Watt
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - C Maimone
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - H Hang
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - A Denys
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - K Schroder
- Institute of Physiology I, Goethe-University, Frankfurt, Germany
| | - L J Suva
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - J-R Chen
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - M J J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| |
Collapse
|
25
|
White CA, Serrat MA. Dysregulation of insulin-like growth factor-1 signaling in postnatal bone elongation. Biochem Cell Biol 2023; 101:388-393. [PMID: 37246759 DOI: 10.1139/bcb-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a critical modulator of cell growth and survival, making it a central part of maintaining essentially every biological system in the body. Knowledge of the intricate mechanisms involved in activating IGF-1 signaling is not only key to understanding basic processes of growth and development, but also for addressing diseases, such as cancer and diabetes. This brief review explores how dysregulation of normal IGF-1 signaling can impact growth by examining its role in postnatal bone elongation. IGF-1 actions are dysregulated in autoimmune diseases, such as juvenile idiopathic arthritis and chronic kidney disease, which results in growth stunting. Conversely, childhood obesity results in growth acceleration, premature growth cessation, and ultimately, diminished bone quality, while systemic IGF-1 levels remain normal. Understanding the role of IGF-1 signaling in normal and dysregulated growth can add to other studies that address how this system regulates chronic diseases.
Collapse
Affiliation(s)
- Cassaundra A White
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Maria A Serrat
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
26
|
Tedjosasongko U, Nelwan SC, Wahluyo S, Puteri MM, Dewi AM, Rahayu RP, Ardiwirastuti I, Ayuningtyas P, Pramudita RA, Marwah A. Analysis of Saliva Composition: Parathyroid Hormone-Related Protein, Total Protein, and Secretory Immunoglobulin A (sIgA) in Rattus norvegicus with Stunted Growth. Eur J Dent 2023; 17:765-770. [PMID: 36220123 PMCID: PMC10569847 DOI: 10.1055/s-0042-1755558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE This study aimed to determine total protein, secretory immunoglobulin A (sIgA) and parathyroid hormone-related protein (PTHrP) levels in the saliva of rats with stunted growth. MATERIALS AND METHODS Experimental laboratory research with a pre-and posttest control group design was conducted. Seventeen albino rats (Rattus norvegicus) were divided into the control group (eight rats) and the treatment group (nine rats). Rats in the treatment group were exposed to aflatoxin B1 5µg/kg orally for 5 weeks. Anthropometry data (body length, body weight) and saliva of R. norvegicus were collected. The levels of PTHrP and sIgA in the saliva were measured using an enzyme-linked immunosorbent assay kit for rats and the Bradford test for total protein and analyzed using SPSS 25.0. RESULTS Aflatoxin caused stunted growth in rats in the treatment group. There was a significant difference in body length, salivary flow, PTHrP, sIgA, and total protein in the treatment group compared with the control group. The average rat's body length change in the control group was 6.4 ± 1.1mm/5 weeks, while in the treatment group, the change was 3.7 ± 0.9 mm /5 weeks. There was no significant weight gain in the treatment group compared with the normal group. The average values of PTHrP, sIgA, and total protein in the control group were x̄0.9, x̄18, and x̄0.7 m./L, respectively, while in the treatment group, they measured x̄0.4, x̄10.7, and x̄0.5 mg/L, respectively. CONCLUSION This study showed that salivary flow, PTHrP, sIgA, and total protein levels in the saliva were significantly lower in stunted rats compared with normal rats.
Collapse
Affiliation(s)
- Udijanto Tedjosasongko
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sindy Cornelia Nelwan
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Soegeng Wahluyo
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mega Moeharyono Puteri
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ardianti Maartrina Dewi
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Retno Pudji Rahayu
- Department of Oral Pathology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ilvana Ardiwirastuti
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Puspita Ayuningtyas
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Regina Ayu Pramudita
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aisyah Marwah
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
27
|
Mahmoud M, Kokozidou M, Gögele C, Werner C, Auffarth A, Kohl B, Mrosewski I, Schulze-Tanzil GG. Does Vitamin K2 Influence the Interplay between Diabetes Mellitus and Intervertebral Disc Degeneration in a Rat Model? Nutrients 2023; 15:2872. [PMID: 37447201 DOI: 10.3390/nu15132872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain in diabetes mellitus type 2 (T2DM) patients. Its pathogenesis and the vitamin (vit.) K2 influence on this disease remain unclear. Lumbar motion segments of male Zucker Diabetes Fatty (ZDF) rats (non-diabetic [control] and diabetic; fed without or with vit. K2) were used. Femur lengths and vertebral epiphyseal cross-section areas were measured. IVDs were histopathologically examined. Protein synthesis and gene expression of isolated IVD fibrochondrocytes were analyzed. T2DM rats showed histopathological IVD degeneration. Femur lengths and epiphyseal areas were smaller in T2DM rats regardless of vit. K2 feeding. Fibrochondrocytes synthesized interleukin (IL)-24 and IL-10 with no major differences between groups. Alpha smooth muscle actin (αSMA) was strongly expressed, especially in cells of vit. K2-treated animals. Gene expression of aggrecan was low, and that of collagen type 2 was high in IVD cells of diabetic animals, whether treated with vit. K2 or not. Suppressor of cytokine signaling (Socs)3 and heme oxygenase (Hmox)1 gene expression was highest in the cells of diabetic animals treated with vit. K2. Vit. K2 influenced the expression of some stress-associated markers in IVD cells of diabetic rats, but not that of IL-10 and IL-24.
Collapse
Affiliation(s)
- Mohamed Mahmoud
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Maria Kokozidou
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Christian Werner
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Alexander Auffarth
- Department of Orthopedics and Traumatology, Paracelsus Medical University, Müllner-Hauptstraße 48, 5020 Salzburg, Austria
| | - Benjamin Kohl
- Department of Traumatology and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ingo Mrosewski
- MVZ MDI Limbach Berlin, Aroser Alle 84, 13407 Berlin, Germany
| | - Gundula Gesine Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
28
|
Fan M, Qiang L, Wang Y, Liu Y, Zhuang H, Guo R, Ben Y, Li Q, Zheng P. 3D bioprinted hydrogel/polymer scaffold with factor delivery and mechanical support for growth plate injury repair. Front Bioeng Biotechnol 2023; 11:1210786. [PMID: 37324424 PMCID: PMC10265638 DOI: 10.3389/fbioe.2023.1210786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Growth plate injury is a significant challenge in clinical practice, as it could severely affect the limb development of children, leading to limb deformity. Tissue engineering and 3D bioprinting technology have great potential in the repair and regeneration of injured growth plate, but there are still challenges associated with achieving successful repair outcomes. Methods: In this study, GelMA hydrogel containing PLGA microspheres loaded with chondrogenic factor PTH(1-34) was combined with BMSCs and Polycaprolactone (PCL) to develop the PTH(1-34)@PLGA/BMSCs/GelMA-PCL scaffold using bio-3D printing technology. Results: The scaffold exhibited a three-dimensional interconnected porous network structure, good mechanical properties, biocompatibility, and was suitable for cellchondrogenic differentiation. And a rabbit model of growth plate injury was appliedto validate the effect of scaffold on the repair of injured growth plate. The resultsshowed that the scaffold was more effective than injectable hydrogel in promotingcartilage regeneration and reducing bone bridge formation. Moreover, the addition ofPCL to the scaffold provided good mechanical support, significantly reducing limbdeformities after growth plate injury compared with directly injected hydrogel. Discussion: Accordingly, our study demonstrates the feasibility of using 3D printed scaffolds for treating growth plate injuries and could offer a new strategy for the development of growth plate tissue engineering therapy.
Collapse
Affiliation(s)
- Minjie Fan
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Qiang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yiwei Wang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanjie Zhuang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruoyi Guo
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yulong Ben
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang Li
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Qiang L, Fan M, Wang Y, Liu Y, Zhuang H, Guo R, Huang H, Ben Y, Wang D, Wu X, Wang J, Weng J, Zheng P. Injectable hydrogel loaded with bilayer microspheres to inhibit angiogenesis and promote cartilage regeneration for repairing growth plate injury. Front Bioeng Biotechnol 2023; 11:1181580. [PMID: 37274168 PMCID: PMC10232875 DOI: 10.3389/fbioe.2023.1181580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction: The repair and regeneration of growth plate injuries using tissue engineering techniques remains a challenge due to large bone bridge formation and low chondrogenic efficiency. Methods: In this study, a bilayer drug-loaded microspheres was developed that contains the vascular endothelial growth factor (VEGF) inhibitor, Bevacizumab, on the outer layer and insulin-like growth factor-1 (IGF-1), a cartilage repair factor, on the inner layer. The microspheres were then combined with bone marrow mesenchymal stem cells (BMSCs) in the gelatin methacryloyl (GelMA) hydrogel to create a composite hydrogel with good injectability and biocompatibility. Results: The in vitro drug-release profile of bilayer microspheres showed a sequential release, with Bevacizumab released first followed by IGF-1. And this hydrogel simultaneously inhibited angiogenesis and promoted cartilage regeneration. Finally, in vivo studies indicated that the composite hydrogel reduced bone bridge formation and improved cartilage regeneration in the rabbit model of proximal tibial growth plate injury. Conclusion: This bilayer microsphere-based composite hydrogel with sequential controlled release of Bevacizumab and IGF-1 has promising potential for growth plate injury repair.
Collapse
Affiliation(s)
- Lei Qiang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Minjie Fan
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwei Wang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanjie Zhuang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruoyi Guo
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Huang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yulong Ben
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dalin Wang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing, Jiangsu, China
| | - Xiaoling Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Hua J, Huang J, Li G, Lin S, Cui L. Glucocorticoid induced bone disorders in children: Research progress in treatment mechanisms. Front Endocrinol (Lausanne) 2023; 14:1119427. [PMID: 37082116 PMCID: PMC10111257 DOI: 10.3389/fendo.2023.1119427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
Long-term or supra-physiological dose of glucocorticoid (GC) application in clinic can lead to impaired bone growth and osteoporosis. The side effects of GC on the skeletal system are particularly serious in growing children, potentially causing growth retardation or even osteoporotic fractures. Children's bone growth is dependent on endochondral ossification of growth plate chondrocytes, and excessive GC can hinder the development of growth plate and longitudinal bone growth. Despite the availability of drugs for treating osteoporosis, they have failed to effectively prevent or treat longitudinal bone growth and development disorders caused by GCs. As of now, there is no specific drug to mitigate these severe side effects. Traditional Chinese Medicine shows potential as an alternative to the current treatments by eliminating the side effects of GC. In summary, this article comprehensively reviews the research frontiers concerning growth and development disorders resulting from supra-physiological levels of GC and discusses the future research and treatment directions for optimizing steroid therapy. This article may also provide theoretical and experimental insight into the research and development of novel drugs to prevent GC-related side effects.
Collapse
Affiliation(s)
- Junying Hua
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Jianping Huang
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
31
|
Hecht JT, Chiu F, Veerisetty A, Hossain M, Posey KL. Matrix in Medicine: Health Consequences of Mutant Cartilage Oligomeric Matrix Protein and its relationship to abnormal growth and to joint degeneration. Matrix Biol 2023; 119:101-111. [PMID: 37001593 DOI: 10.1016/j.matbio.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
Cartilage oligomeric matrix protein (COMP), an extracellular matrix protein, has been shown to enhance proliferation and mechanical integrity in the matrix, supporting functions of the growth plate and articular cartilage. Mutations in COMP cause pseudoachondroplasia (PSACH), a severe dwarfing condition associated with premature joint degeneration and significant lifelong joint pain. The MT (mutant)-COMP mouse mimics PSACH with decreased limb growth, early joint degeneration and pain. Ablation of endoplasmic reticulum stress CHOP signaling eliminated pain and prevented joint degeneration. The health effects of mutant COMP are discussed in relation to cellular/chondrocyte stress in the growth plate, articular cartilage and nearby tissues, and the implications for therapeutic approaches. There are many similarities between osteoarthritis and mutant-COMP protein-induced joint degeneration, suggesting that the relevance of findings in the joints may extend beyond PSACH to idiopathic primary OA.
Collapse
|
32
|
Solidum JGN, Jeong Y, Heralde F, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023; 14:1137063. [PMID: 36926193 PMCID: PMC10013690 DOI: 10.3389/fphys.2023.1137063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal stem/progenitor cells (SSPCs), characterized by self-renewal and multipotency, are essential for skeletal development, bone remodeling, and bone repair. These cells have traditionally been known to reside within the bone marrow, but recent studies have identified the presence of distinct SSPC populations in other skeletal compartments such as the growth plate, periosteum, and calvarial sutures. Differences in the cellular and matrix environment of distinct SSPC populations are believed to regulate their stemness and to direct their roles at different stages of development, homeostasis, and regeneration; differences in embryonic origin and adjacent tissue structures also affect SSPC regulation. As these SSPC niches are dynamic and highly specialized, changes under stress conditions and with aging can alter the cellular composition and molecular mechanisms in place, contributing to the dysregulation of local SSPCs and their activity in bone regeneration. Therefore, a better understanding of the different regulatory mechanisms for the distinct SSPCs in each skeletal compartment, and in different conditions, could provide answers to the existing knowledge gap and the impetus for realizing their potential in this biological and medical space. Here, we summarize the current scientific advances made in the study of the differential regulation pathways for distinct SSPCs in different bone compartments. We also discuss the physical, biological, and molecular factors that affect each skeletal compartment niche. Lastly, we look into how aging influences the regenerative capacity of SSPCs. Understanding these regulatory differences can open new avenues for the discovery of novel treatment approaches for calvarial or long bone repair.
Collapse
Affiliation(s)
- Jea Giezl Niedo Solidum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Dongsu Park
- Department of Molecular and Human Genetics, Houston, TX, United States
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
33
|
Roles of Local Soluble Factors in Maintaining the Growth Plate: An Update. Genes (Basel) 2023; 14:genes14030534. [PMID: 36980807 PMCID: PMC10048135 DOI: 10.3390/genes14030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The growth plate is a cartilaginous tissue found at the ends of growing long bones, which contributes to the lengthening of bones during development. This unique structure contains at least three distinctive layers, including resting, proliferative, and hypertrophic chondrocyte zones, maintained by a complex regulatory network. Due to its soft tissue nature, the growth plate is the most susceptible tissue of the growing skeleton to injury in childhood. Although most growth plate damage in fractures can heal, some damage can result in growth arrest or disorder, impairing leg length and resulting in deformity. In this review, we re-visit previously established knowledge about the regulatory network that maintains the growth plate and integrate current research displaying the most recent progress. Next, we highlight local secretary factors, such as Wnt, Indian hedgehog (Ihh), and parathyroid hormone-related peptide (PTHrP), and dissect their roles and interactions in maintaining cell function and phenotype in different zones. Lastly, we discuss future research topics that can further our understanding of this unique tissue. Given the unmet need to engineer the growth plate, we also discuss the potential of creating particular patterns of soluble factors and generating them in vitro.
Collapse
|
34
|
Methylphenidate Promotes Premature Growth Plate Closure: In Vitro Evidence. Int J Mol Sci 2023; 24:ijms24044175. [PMID: 36835608 PMCID: PMC9968202 DOI: 10.3390/ijms24044175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
It is well known that patients with attention deficit hyperactivity disorder treated with stimulants, such as methylphenidate hydrochloride (MPH), have reduced height and weight. Even though MPH has an anorexigenic effect, an additional impact of this drug on the growth plate cannot be discarded. In this study, we aimed to determine the cellular effect of MPH on an in vitro growth plate model. We tested the effects of MPH on the viability and proliferation of a prechondrogenic cell line via an MTT assay. In vitro differentiation of this cell line was performed, and cell differentiation was evaluated through the expression of cartilage- and bone-related genes as measured via RT-PCR. MPH did not alter the viability or proliferation of prechondrogenic cells. However, it reduced the expression of cartilage extracellular matrix-related genes (type II collagen and aggrecan) and increased the expression of genes involved in growth plate calcification (Runx2, type I collagen, and osteocalcin) at different phases of their differentiation process. Our results evidence that MPH upregulates genes associated with growth plate hypertrophic differentiation. This may induce premature closure of the growth plate, which would contribute to the growth retardation that has been described to be induced by this drug.
Collapse
|
35
|
Wu H, Wang C, Yu S, Ye X, Jiang Y, He P, Shan X. Downregulation of ACAN is Associated with the Growth hormone pathway and Induces short stature. J Clin Lab Anal 2023; 37:e24830. [PMID: 36597844 PMCID: PMC9937877 DOI: 10.1002/jcla.24830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND ACAN heterozygous mutations can cause short stature in patients with or without advanced bone age and have recently attracted researchers' attention. Growth hormone can be used to treat short stature induced by ACAN mutations; however, few studies have focused on the underlying mechanism of this treatment. METHODS Four patients with new mutations were reported based on clinical data and genetic tests. We investigated the expression and Gene Ontology biological process enrichment of ACAN and GH pathways based on GTEx databases through bioinformatics analyses. The effect of ACAN on the growth hormone response evaluated in ATDC5 cells with a growth hormone stimulation test. RESULTS Four mutations were reported in this study: c.619C > A, c.1967A > G, c.1888G > A, and c.1308_1309del. All patients' heights were under -2.5 SD, with one had advanced bone age, and two had GH deficiency. Two individuals received growth hormone therapy acquired variable levels of height SD score improvement. ACAN and the GH pathway were strongly associated; ACAN does not affect GHR but regulates the response to GH. Downregulating ACAN inhibited ATDC5 cell proliferation induced by GH. CONCLUSION ACAN is associated with the GH pathway, revealing the potential mechanism underlying GH-targeted treatment for ACAN mutation-induced short stature. GH-promoting therapies may increase patients' heights.
Collapse
Affiliation(s)
- Huiping Wu
- Department of Pediatric EndocrineYuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Chaoban Wang
- Department of Pediatric EndocrineYuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shiwen Yu
- Department of Pediatric EndocrineYuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaojun Ye
- Department of Pediatric EndocrineYuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yalan Jiang
- Department of Pediatric EndocrineYuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Pingping He
- Department of Pediatric EndocrineYuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaoou Shan
- Department of Pediatric EndocrineYuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
36
|
WRN promotes bone development and growth by unwinding SHOX-G-quadruplexes via its helicase activity in Werner Syndrome. Nat Commun 2022; 13:5456. [PMID: 36114168 PMCID: PMC9481537 DOI: 10.1038/s41467-022-33012-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractWerner Syndrome (WS) is an autosomal recessive disorder characterized by premature aging due to mutations of the WRN gene. A classical sign in WS patients is short stature, but the underlying mechanisms are not well understood. Here we report that WRN is indispensable for chondrogenesis, which is the engine driving the elongation of bones and determines height. Zebrafish lacking wrn exhibit impairment of bone growth and have shorter body stature. We pinpoint the function of WRN to its helicase domain. We identify short-stature homeobox (SHOX) as a crucial and direct target of WRN and find that the WRN helicase core regulates the transcriptional expression of SHOX via unwinding G-quadruplexes. Consistent with this, shox−/− zebrafish exhibit impaired bone growth, while genetic overexpression of SHOX or shox expression rescues the bone developmental deficiency induced in WRN/wrn-null mutants both in vitro and in vivo. Collectively, we have identified a previously unknown function of WRN in regulating bone development and growth through the transcriptional regulation of SHOX via the WRN helicase domain, thus illuminating a possible approach for new therapeutic strategies.
Collapse
|
37
|
Ibelli AMG, Peixoto JDO, Zanella R, Gouveia JJDS, Cantão ME, Coutinho LL, Marchesi JAP, Pizzol MSD, Marcelino DEP, Ledur MC. Downregulation of growth plate genes involved with the onset of femoral head separation in young broilers. Front Physiol 2022; 13:941134. [PMID: 36003650 PMCID: PMC9393217 DOI: 10.3389/fphys.2022.941134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Femoral head separation (FHS) is characterized by the detachment of growth plate (GP) and articular cartilage, occurring in tibia and femur. However, the molecular mechanisms involved with this condition are not completely understood. Therefore, genes and biological processes (BP) involved with FHS were identified in 21-day-old broilers through RNA sequencing of the femoral GP. 13,487 genes were expressed in the chicken femoral head transcriptome of normal and FHS-affected broilers. From those, 34 were differentially expressed (DE; FDR ≤0.05) between groups, where all of them were downregulated in FHS-affected broilers. The main BP were enriched in receptor signaling pathways, ossification, bone mineralization and formation, skeletal morphogenesis, and vascularization. RNA-Seq datasets comparison of normal and FHS-affected broilers with 21, 35 and 42 days of age has shown three shared DE genes (FBN2, C1QTNF8, and XYLT1) in GP among ages. Twelve genes were exclusively DE at 21 days, where 10 have already been characterized (SHISA3, FNDC1, ANGPTL7, LEPR, ENSGALG00000049529, OXTR, ENSGALG00000045154, COL16A1, RASD2, BOC, GDF10, and THSD7B). Twelve SNPs were associated with FHS (p < 0.0001). Out of those, 5 were novel and 7 were existing variants located in 7 genes (RARS, TFPI2, TTI1, MAP4K3, LINK54, and AREL1). We have shown that genes related to chondrogenesis and bone differentiation were downregulated in the GP of FHS-affected young broilers. Therefore, these findings evince that candidate genes pointed out in our study are probably related to the onset of FHS in broilers.
Collapse
Affiliation(s)
- Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| | | | | | | | - Luiz Lehmann Coutinho
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de SP, Piracicaba, Brazil
| | | | | | | | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação Em Zootecnia, Universidade do Estado de SC, UDESC-Oeste, Chapecó, Brazil
- *Correspondence: Mônica Corrêa Ledur,
| |
Collapse
|
38
|
Xue C, Fu J. Progress on growth promoting therapies other than growth hormone. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:515-520. [PMID: 37202099 PMCID: PMC10264985 DOI: 10.3724/zdxbyxb-2022-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 05/20/2023]
Abstract
Recombinant human growth hormone is a classical therapeutic drug for children with short stature. In recent years, as the mechanism of growth in children has been further explored, growth-promoting therapies other than growth hormone have made great progress. Recombinant human insulin-like growth factor (IGF)-1 is the main treatment for primary IGF-1 deficiency, and C-type natriuretic peptide (CNP) offers a therapeutic option for children with short stature due to chondrodysplasia. Growth hormone-releasing peptide analogues stimulate growth hormone release and may be used for growth-promoting therapy. In addition, gonadotropin-releasing hormone analogue (GnRHa) and aromatase inhibitors may delay the bone age in children and may be beneficial in improving final height. In this article, the research progress of growth-promoting therapies other than growth hormones is reviewed to provide more options for the clinical treatment of children with short stature.
Collapse
|
39
|
Preliminary Considerations for Crime Scene Analysis in Cases of Animals Affected by Homemade Ammonium Nitrate and Aluminum Powder Anti-Personnel Landmines in Colombia: Characteristics and Effects. Animals (Basel) 2022; 12:ani12151938. [PMID: 35953927 PMCID: PMC9367463 DOI: 10.3390/ani12151938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Anti-personnel landmines are a major problem in countries that are subject to internal conflicts of a military or public order nature. They also continue to be a great threat to the population and biodiversity, even in post-conflict stages. Those most often used by armed groups are simple or homemade antipersonnel landmines that are designed without any type of technical regulations and standardized production systems. Their low-cost manufacturing and the use of easily accessible explosive substances for agricultural use, such as ammonium, have allowed their indiscriminate use, turning them into a huge public health problem. They are only detected when people or animals activate them, because they do not contain any materials that are detectable by traditional means. The scant literature on these artifacts focuses on injuries caused to humans, and only incidentally on field work. The objective of our study was to describe the behavior of a controlled explosion of a homemade antipersonnel landmine, and to verify the effects caused by the explosion on fauna and the environment. The results enable us to provide guidelines that may be implemented during field investigations, in which forensic veterinarians and related disciplines participate. Abstract During the armed conflict in Colombia, homemade improvised antipersonnel landmines were used to neutralize the adversary. Many active artifacts remain buried, causing damage to biodiversity by exploding. The extensive literature describes the effects and injuries caused to humans by conventional landmines. However, there is considerably less information on the behavior and effects of homemade antipersonnel landmines on fauna and good field investigation practices. Our objectives were to describe the characteristics of a controlled explosion of a homemade antipersonnel landmine (using ammonium nitrate as an explosive substance), to compare the effectiveness of some evidence search patterns used in forensic investigation, and to determine the effects on a piece of an animal carcass. The explosion generated a shock wave and an exothermic reaction, generating physical effects on the ground and surrounding structures near the point of explosion. The amputation of the foot in direct contact with the device during the explosion and multiple fractures were the main effects on the animal carcass. Finally, it was determined that finding evidence was more effective in a smaller search area. Many factors can influence the results, which must be weighed when interpreting the results, as discussed in this manuscript.
Collapse
|
40
|
Lef1 ablation alleviates cartilage mineralization following posttraumatic osteoarthritis induction. Proc Natl Acad Sci U S A 2022; 119:e2116855119. [PMID: 35594394 PMCID: PMC9173807 DOI: 10.1073/pnas.2116855119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cartilage mineralization is imperative in various processes such as skeletal growth and fracture repair. However, this process may also be pathological, as in the case of the degenerative joint disease, osteoarthritis (OA). Using a posttraumatic OA model (PTOA), we find that cartilage-specific Sirt1 genetic nulls caused severe synovitis and mineralization of the lateral joint compartment, due to augmented Lef1 gene expression. Conversely, cartilage-specific Lef1 nulls exhibited impaired synovitis and mineralization of the lateral joint, accompanied by a reduction of local pain. Consistently, transcriptomic profiles of Lef1-ablated chondrocytes exhibited enhanced anabolism, yet impaired pathways related to calcification and inflammation. Accordingly, cartilage mineralization of the lateral joint compartment relies on amplified inflammatory pathways, contributing to articular damage following PTOA. Cartilage mineralization is a tightly controlled process, imperative for skeletal growth and fracture repair. However, in osteoarthritis (OA), cartilage mineralization may impact the joint range of motion, inflict pain, and increase chances for joint effusion. Here we attempt to understand the link between inflammation and cartilage mineralization by targeting Sirtuin 1 (SIRT1) and lymphoid enhancer binding factor 1 (LEF1), both reported to have contrasting effects on cartilage. We find that inflammatory-dependent cleavage of SIRT1 or its cartilage-specific genetic ablation, directly enhanced LEF1 expression accompanied by a catabolic response. Applying a posttraumatic OA (PTOA) model to cartilage-specific Sirt1 nulls displayed severe OA, which was accompanied by synovitis, meniscal mineralization, and osteophyte formation of the lateral joint compartment. Alternatively, cartilage-specific Lef1 nulls presented reduced lateral mineralization, OA severity, and local pain. Differential gene expression analysis revealed that Lef1 ablation reduced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Toll-like receptor (Tlr) pathways, while enhancing SRY-Box transcription factor 9 (Sox9) and cartilaginous extracellular matrix genes. The results support a link between inflammation and Lef1-dependent cartilage mineralization, mediated by the inactivation of Sirt1. By ablating Lef1 in a PTOA model, the structural and pain-related phenotypes of OA were reduced, in part, by preventing cartilage mineralization of the lateral joint compartment, partially manifested by meniscal tissue mineralization. Overall, these data provide a molecular axis to link between inflammation and cartilage in a PTOA model.
Collapse
|
41
|
Allen DB, Merchant N, Miller BS, Backeljauw PF. Evolution and Future of Growth Plate Therapeutics. Horm Res Paediatr 2022; 94:319-332. [PMID: 34758467 DOI: 10.1159/000520812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Longitudinal bone growth is regulated by multiple endocrine signals (e.g., growth hormone, insulin-like growth factor I, estrogen, and androgen) and local factors (e.g., fibroblast growth factors and their receptors and the C-natriuretic peptide/natriuretic peptide receptor-B pathway). SUMMARY Abnormalities in both endocrine and local regulation of growth plate physiology cause many disorders of human skeletal growth. Knowledge of these pathways creates therapeutic potential for sustaining or even augmenting linear growth. Key Message: During the past 4 decades, advances in understanding growth plate physiology have been accompanied by development and implementation of growth-promoting treatments that have progressed in both efficacy and specificity of action. This paper reviews the history and continuing evolution of growth plate therapeutics.
Collapse
Affiliation(s)
- David B Allen
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nadia Merchant
- Division of Endocrinology and Diabetes, Children's National Hospital, Washington, District of Columbia, USA
| | - Bradley S Miller
- Division of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - Philippe F Backeljauw
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
42
|
Regulation of FGF-2, FGF-18 and Transcription Factor Activity by Perlecan in the Maturational Development of Transitional Rudiment and Growth Plate Cartilages and in the Maintenance of Permanent Cartilage Homeostasis. Int J Mol Sci 2022; 23:ijms23041934. [PMID: 35216048 PMCID: PMC8872392 DOI: 10.3390/ijms23041934] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to highlight the roles of perlecan in the regulation of the development of the rudiment developmental cartilages and growth plate cartilages, and also to show how perlecan maintains permanent articular cartilage homeostasis. Cartilage rudiments are transient developmental templates containing chondroprogenitor cells that undergo proliferation, matrix deposition, and hypertrophic differentiation. Growth plate cartilage also undergoes similar changes leading to endochondral bone formation, whereas permanent cartilage is maintained as an articular structure and does not undergo maturational changes. Pericellular and extracellular perlecan-HS chains interact with growth factors, morphogens, structural matrix glycoproteins, proteases, and inhibitors to promote matrix stabilization and cellular proliferation, ECM remodelling, and tissue expansion. Perlecan has mechanotransductive roles in cartilage that modulate chondrocyte responses in weight-bearing environments. Nuclear perlecan may modulate chromatin structure and transcription factor access to DNA and gene regulation. Snail-1, a mesenchymal marker and transcription factor, signals through FGFR-3 to promote chondrogenesis and maintain Acan and type II collagen levels in articular cartilage, but prevents further tissue expansion. Pre-hypertrophic growth plate chondrocytes also express high Snail-1 levels, leading to cessation of Acan and CoI2A1 synthesis and appearance of type X collagen. Perlecan differentially regulates FGF-2 and FGF-18 to maintain articular cartilage homeostasis, rudiment and growth plate cartilage growth, and maturational changes including mineralization, contributing to skeletal growth.
Collapse
|
43
|
Caetano-Silva S, Simbi BH, Marr N, Hibbert A, Allen SP, Pitsillides AA. Restraint upon Embryonic Metatarsal Ex Vivo Growth by Hydrogel Reveals Interaction between Quasi-Static Load and the mTOR Pathway. Int J Mol Sci 2021; 22:ijms222413220. [PMID: 34948015 PMCID: PMC8706285 DOI: 10.3390/ijms222413220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Mechanical cues play a vital role in limb skeletal development, yet their influence and underpinning mechanisms in the regulation of endochondral ossification (EO) processes are incompletely defined. Furthermore, interactions between endochondral growth and mechanics and the mTOR/NF-ĸB pathways are yet to be explored. An appreciation of how mechanical cues regulate EO would also clearly be beneficial in the context of fracture healing and bone diseases, where these processes are recapitulated. The study herein addresses the hypothesis that the mTOR/NF-ĸB pathways interact with mechanics to control endochondral growth. To test this, murine embryonic metatarsals were incubated ex vivo in a hydrogel, allowing for the effects of quasi-static loading on longitudinal growth to be assessed. The results showed significant restriction of metatarsal growth under quasi-static loading during a 14-day period and concentration-dependent sensitivity to hydrogel-related restriction. This study also showed that hydrogel-treated metatarsals retain their viability and do not present with increased apoptosis. Metatarsals exhibited reversal of the growth-restriction when co-incubated with mTOR compounds, whilst it was found that these compounds showed no effects under basal culture conditions. Transcriptional changes linked to endochondral growth were assessed and downregulation of Col2 and Acan was observed in hydrogel-treated metatarsi at day 7. Furthermore, cell cycle analyses confirmed the presence of chondrocytes exhibiting S-G2/M arrest. These data indicate that quasi-static load provokes chondrocyte cell cycle arrest, which is partly overcome by mTOR, with a less marked interaction for NF-ĸB regulators.
Collapse
|
44
|
Wells KM, Kelley K, Baumel M, Vieira WA, McCusker CD. Neural control of growth and size in the axolotl limb regenerate. eLife 2021; 10:68584. [PMID: 34779399 PMCID: PMC8716110 DOI: 10.7554/elife.68584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/13/2021] [Indexed: 11/29/2022] Open
Abstract
The mechanisms that regulate growth and size of the regenerating limb in tetrapods such as the Mexican axolotl are unknown. Upon the completion of the developmental stages of regeneration, when the regenerative organ known as the blastema completes patterning and differentiation, the limb regenerate is proportionally small in size. It then undergoes a phase of regeneration that we have called the ‘tiny-limb’ stage, which is defined by rapid growth until the regenerate reaches the proportionally appropriate size. In the current study we have characterized this growth and have found that signaling from the limb nerves is required for its maintenance. Using the regenerative assay known as the accessory limb model (ALM), we have found that growth and size of the limb positively correlates with nerve abundance. We have additionally developed a new regenerative assay called the neural modified-ALM (NM-ALM), which decouples the source of the nerves from the regenerating host environment. Using the NM-ALM we discovered that non-neural extrinsic factors from differently sized host animals do not play a prominent role in determining the size of the regenerating limb. We have also discovered that the regulation of limb size is not autonomously regulated by the limb nerves. Together, these observations show that the limb nerves provide essential cues to regulate ontogenetic allometric growth and the final size of the regenerating limb. Humans’ ability to regrow lost or damaged body parts is relatively limited, but some animals, such as the axolotl (a Mexican salamander), can regenerate complex body parts, like legs, many times over their lives. Studying regeneration in these animals could help researchers enhance humans’ abilities to heal. One way to do this is using the Accessory Limb Model (ALM), where scientists wound an axolotl’s leg, and study the additional leg that grows from the wound. The first stage of limb regeneration creates a new leg that has the right structure and shape. The new leg is very small so the next phase involves growing the leg until its size matches the rest of the animal. This phase must be controlled so that the limb stops growing when it reaches the right size, but how this regulation works is unclear. Previous research suggests that the number of nerves in the new leg could be important. Wells et al. used a ALM to study how the size of regenerating limbs is controlled. They found that changing the number of nerves connected to the new leg altered its size, with more nerves leading to a larger leg. Next, Wells et al. created a system that used transplanted nerve bundles of different sizes to grow new legs in different sized axolotls. This showed that the size of the resulting leg is controlled by the number of nerves connecting it to the CNS. Wells et al. also showed that nerves can only control regeneration if they remain connected to the central nervous system. These results explain how size is controlled during limb regeneration in axolotls, highlighting the fact that regrowth is directly controlled by the number of nerves connected to a regenerating leg. Much more work is needed to reveal the details of this process and the signals nerves use to control growth. It will also be important to determine whether this control system is exclusive to axolotls, or whether other animals also use it.
Collapse
Affiliation(s)
- Kaylee M Wells
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Kristina Kelley
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Mary Baumel
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Warren A Vieira
- Biology Department, University of Massachusetts Boston, Boston, United States
| | | |
Collapse
|
45
|
Gögele C, Wiltzsch S, Lenhart A, Civilleri A, Weiger TM, Schäfer-Eckart K, Minnich B, Forchheimer L, Hornfeck M, Schulze-Tanzil G. Highly porous novel chondro-instructive bioactive glass scaffolds tailored for cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112421. [PMID: 34702508 DOI: 10.1016/j.msec.2021.112421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
Cartilage injuries remain challenging since the regenerative capacity of cartilage is extremely low. The aim was to design a novel type of bioactive glass (BG) scaffold with suitable topology that allows the formation of cartilage-specific extracellular matrix (ECM) after colonization with chondrogenic cells for cartilage repair. Highly porous scaffolds with interconnecting pores consisting of 100 % BG were manufactured using a melting, milling, sintering and leaching technique. Scaffolds were colonized with porcine articular chondrocytes (pAC) and undifferentiated human mesenchymal stromal cells (hMSC) for up to 35 days. Scaffolds displayed high cytocompatibility with no major pH shift. Scanning electron microscopy revealed the intimate pAC-scaffold interaction with typical cell morphology. After 14 days MSCs formed cell clusters but still expressed cartilage markers. Both cell types showed aggrecan, SOX9 gene and protein expression, cartilage proteoglycan and sulfated glycosaminoglycan synthesis for the whole culture time. Despite type II collagen gene expression could not anymore be detected at day 35, protein synthesis was visualized for both cell types during the whole culturing period, increasing in pAC and declining after day 14 in hMSC cultures. The novel BG scaffold was stable, cytocompatible and cartilage-specific protein synthesis indicated maintenance of pAC's differentiated phenotype and chondro-instructive effects on hMSCs.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany; Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Sven Wiltzsch
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Armin Lenhart
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Aurelio Civilleri
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany; Department of Civil, Environmental, Aerospace, Materials Engineering, Universita' di Palermo, Palermo, Italy.
| | - Thomas Martin Weiger
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Kerstin Schäfer-Eckart
- Bone marrow Transplantation Unit, Medizinische Klinik 5, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Nuremberg, Germany.
| | - Bernd Minnich
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Lukas Forchheimer
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany
| | - Markus Hornfeck
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany.
| |
Collapse
|
46
|
Alazawi S, Hendriksz T. Analysis of the effects of isotretinoin on the premature epiphyseal closure in pediatric populations: a literature review. J Osteopath Med 2021; 122:45-53. [PMID: 34626532 DOI: 10.1515/jom-2021-0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022]
Abstract
CONTEXT Oral isotretinoin, a systemic retinoid and a vitamin A derivative, has been widely utilized to treat acne in both adult and pediatric populations. Additionally, systemic retinoids have also been utilized to treat neuroblastoma in pediatric patients. Common side effects associated with oral isotretinoin include dry eyes, dry mouth, elevated liver enzymes, depression, and arthralgia. Less common side effects of isotretinoin include hearing loss, pseudotumor cerebri, anaphylaxis, and skeletal abnormalities including growth arrest. The U.S. Food and Drug Administration (FDA) has received reports of premature epiphyseal closure in patients treated with isotretinoin retinoids, which are commonly prescribed by primary care providers as a treatment for acne. It is important to raise awareness of the potential side effects of isotretinoin to enable informed treatment decisions before beginning an isotretinoin regimen. OBJECTIVES This chapter aims to elucidate that isotretinoin, given at various doses and durations, has been associated with growth plate abnormalities, which can lead to premature epiphyseal closure. METHODS Two databases were utilized for the literature review and were conducted at different time periods. Our literature review was conducted between December 2020 and June 2021, utilizing PubMed with the following search terms: "isotretinoin" and "isotretinoin and premature epiphyseal closure." In April 2021, we searched the FDA's "Drug Data and Adverse Event Report System" utilizing the terms "isotretinoin" and "epiphysis premature fusion." We included in our query reports of patients worldwide under 18 years of age with premature epiphyseal closure or growth plate damage secondary to isotretinoin. Studies published in English between 1980 and 2020 were also included, as well as background sources relating to an isotretinoin profile with side effects and dosing. We narrowed our search to exclude patients with a history of growth plate disorders due to trauma, malignancy, or other pathological processes, as well as patients with growth arrest due to endocrine factors. Growth plate abnormalities associated with retinoid derivatives other than isotretinoin were also excluded. RESULTS A total of 28 items were selected for our literature review including: one FDA drug label, one FDA website of adverse reactions, 19 supplemental articles, six case reports, and one case series of premature epiphyseal closure secondary to isotretinoin. The FDA received 41 reports worldwide of premature epiphyseal closure related to isotretinoin in patients under 18 years of age. Additionally, premature epiphyseal closure and growth plate abnormalities occurred in nine patients with various durations and doses of isotretinoin ranging from the lowest dose of 0.5 mg/kg/day for a few months to 3.5 mg/kg/day for years. CONCLUSIONS Isotretinoin-induced premature epiphyseal closure and growth plate deformities seem to be linked to higher doses of isotretinoin for the duration of months to years. There have been reported cases of premature epiphyseal closure in individuals receiving therapeutic doses of isotretinoin for acne treatment, which are much lower compared to the high doses utilized for neuroblastoma. Based on this study, isotretinoin appears to impact the growth plates of proximal tibia and distal femur. A cause-and-effect relationship between isotretinoin and premature epiphyseal closure cannot be concluded.
Collapse
Affiliation(s)
- Sama Alazawi
- Touro University College of Osteopathic Medicine, Vallejo, CA, USA
| | - Tami Hendriksz
- Department of Pediatrics, Touro University College of Osteopathic Medicine, Vallejo, CA, USA
| |
Collapse
|
47
|
Bo H, Jiang L, Zheng J, Sun J. Floating-Harbor Syndrome Treated With Recombinant Human Growth Hormone: A Case Report and Literature Review. Front Pediatr 2021; 9:747353. [PMID: 34805044 PMCID: PMC8602871 DOI: 10.3389/fped.2021.747353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction: We aimed to summarize the clinical characteristics of Floating-Harbor syndrome (FHS) and the effect of recombinant human growth hormone (rhGH) to increase height. Methods: The clinical manifestations, gene sequencing results, treatment, and regression of one child with FHS were reported at the Department of Pediatrics, General Hospital of Tianjin Medical University, in July 2020. PubMed was searched using the keyword "Floating-Harbor Syndrome" up to March 2021 to obtain clinical information on children with FHS for review. Results: The child, who was a male aged 6 years and 9 months, presented to the clinic with main complaints of delayed language development since childhood and a short stature for 4 years. The child's short stature, peculiar facial features, delayed language development, and delayed bone development were considered alongside genetic testing and Sanger sequencing to verify the results. A heterozygous mutation (c.7401delC; p.Ile2468Phefs*7) was identified in exon 34 of the SRCAP gene, which was a frameshift mutation, and Sanger verification showed that neither parent had this mutation. The child was administered subcutaneous injection of rhGH (0.13 U/kg/day) and was followed up regularly. At the time of writing, the child had been treated for 6 months and was 7 years and 3 months old with a height of 106.3 cm (-3.69 SDS), which was a height increase of 6.3 cm. The patient did not complain of discomfort during treatment and presented normal laboratory tests results. Twenty-two children with FHS treated with rhGH were included in the literature review, and most of these patients demonstrated an increase in height SDS without adverse effects. Conclusion: Short stature, delayed skeletal maturation, impaired language expression, intellectual deficits, and peculiar facial features are the main clinical features of FHS. rhGH can be used as a treatment to increase height in patients with FHS, but its effectiveness and safety still need to be monitored in larger sample sizes over longer periods of time.
Collapse
Affiliation(s)
- Hui Bo
- Jinghai Clinical College of Tianjin Medical University, Tianjin, China.,Department of Pediatrics, Jinghai District Hospital, Tianjin, China
| | - Lihong Jiang
- Department of Pediatrics, General Hospital of Tianjin Medical University, Tianjin, China
| | - Jiaqi Zheng
- Department of Pediatrics, General Hospital of Tianjin Medical University, Tianjin, China
| | - Jie Sun
- Department of Pediatrics, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
48
|
Jin LY, Guo C, Xu S, Liu HY, Li XF. The Role of Estrogen Receptor α in Response to Longitudinal Bone Growth in ob/ob Mice. Front Endocrinol (Lausanne) 2021; 12:749449. [PMID: 34925230 PMCID: PMC8671758 DOI: 10.3389/fendo.2021.749449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
The absence of leptin results in contrasting growth pattern of appendicular and axial bone growth in ob/ob mice. Endochondral bone formation is an important procedure of growth plate determining the bone growth, where this procedure is also regulated by estrogen and its receptor (ER) signaling pathway. The present study is undertaken to explore the roles of ERs in regulating the different growth patterns in ob/ob mice. In this study, C57BL/6 female mice were used as wild-type (WT) mice; ob/ob mice and WT mice were age-matched fed, and bone length is analyzed by X-ray plain film at the 12 weeks old. We confirm that ob/ob mice have shorter femoral length and longer spine length than WT mice (p < 0.05). The contrasting expression patterns of chondrocyte proliferation proteins and hypertrophic marker proteins are also observed from the femur and spinal growth plate of ob/ob mice compared with WT mice (p < 0.01). Spearman's analysis showed that body length (axial and appendicular length) is positively related to the expression level of ERα in growth plate. Three-week-old female ob/ob mice are randomized divided into three groups: 1) ob/ob + ctrl, 2) ob/ob + ERα antagonist (MPP), and 3) ob/ob + ERβ antagonist (PHTPP). Age-matched C57BL/6 mice were also divided into three groups, same as the groups of ob/ob mice. MPP and PHTPP were administered by intraperitoneal injection for 6 weeks. However, the results of X-ray and H&E staining demonstrate that leptin deficiency seems to disturb the regulating effects of ER antagonists on longitudinal bone growth. These findings suggested that region-specific expression of ERα might be associated with contrasting phenotypes of axial and appendicular bone growth in ob/ob mice. However, ER signaling on longitudinal bone growth was blunted by leptin deficiency in ob/ob mice, and the underlying association between ERs and leptin needs to be explored in future work.
Collapse
Affiliation(s)
- Lin-Yu Jin
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Chen Guo
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Shuai Xu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Hai-Ying Liu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Xin-Feng Li
- Department of Spinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|