1
|
Luo F, Chen T, Chen S, Bai D, Li X. Regulation of osteoclast-mediated bone resorption by lipids. Bone 2025; 193:117423. [PMID: 39933643 DOI: 10.1016/j.bone.2025.117423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Hyperactivation of osteoclasts has been identified as a significant etiological factor in several bone resorption-related disorders, including osteoporosis, periodontitis, arthritis, and bone metastasis of tumors. It has been demonstrated that the severity of these diseases is influenced by lipids that regulate osteoclast differentiation and activity through specific signaling pathways and cytokine levels. The regulatory mechanisms of different types of lipids on osteoclastogenesis vary across diverse disease contexts in bone resorption regulated by osteoclasts. This review presents an overview of the mechanisms underlying osteoclast formation and summarizes the pathways through which various lipids regulate osteoclastogenesis in different pathological contexts. We also discuss effective therapeutic strategies for osteolytic diseases based on modulation of lipid metabolism.
Collapse
Affiliation(s)
- Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tianyi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Ye SY, Li JY, Li TH, Song YX, Sun JX, Chen XW, Zhao JH, Li Y, Wu ZH, Gao P, Huang XZ. The Efficacy and Safety of Celecoxib in Addition to Standard Cancer Therapy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr Oncol 2022; 29:6137-6153. [PMID: 36135051 PMCID: PMC9497539 DOI: 10.3390/curroncol29090482] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of this meta-analysis was to evaluate the efficacy and safety of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, in addition to standard anticancer therapy. Randomized controlled trials (RCTs) that evaluated the efficacy and safety of celecoxib-combined cancer therapy were systematically searched in PubMed and Embase databases. The endpoints were overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), objective response rate (ORR), disease control rate (DCR), pathological complete response (pCR), and adverse events (AEs). The results of 30 RCTs containing 9655 patients showed limited benefits in celecoxib-combined cancer therapy. However, celecoxib-combined palliative therapy prolonged PFS in epidermal growth factor receptor (EGFR) wild-type patients (HR = 0.57, 95%CI = 0.35–0.94). Moreover, despite a slight increase in thrombocytopenia (RR = 1.35, 95%CI = 1.08–1.69), there was no increase in other toxicities. Celecoxib combined with adjuvant therapy indicated a better OS (HR = 0.850, 95%CI = 0.725–0.996). Furthermore, celecoxib plus neoadjuvant therapy improved the ORR in standard cancer therapy, especially neoadjuvant therapy (overall: RR = 1.13, 95%CI = 1.03–1.23; neoadjuvant therapy: RR = 1.25, 95%CI = 1.09–1.44), but not pCR. Our study indicated that adding celecoxib to palliative therapy prolongs the PFS of EGFR wild-type patients, with good safety profiles. Celecoxib combined with adjuvant therapy prolongs OS, and celecoxib plus neoadjuvant therapy improves the ORR. Thus, celecoxib-combined cancer therapy may be a promising therapy strategy.
Collapse
Affiliation(s)
- Shi-Yu Ye
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Jia-Yi Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Teng-Hui Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Yong-Xi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Xiao-Wan Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Jun-Hua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Yuan Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Zhong-Hua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Correspondence: (P.G.); (X.-Z.H.); Tel.: +86-24-83283556 (P.G. & X.-Z.H.)
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Correspondence: (P.G.); (X.-Z.H.); Tel.: +86-24-83283556 (P.G. & X.-Z.H.)
| |
Collapse
|
3
|
Bjørklund G, Dadar M, Doşa MD, Chirumbolo S, Pen JJ. Insights into the Effects of Dietary Omega-6/Omega-3 Polyunsaturated Fatty Acid (PUFA) Ratio on Oxidative Metabolic Pathways of Oncological Bone Disease and Global Health. Curr Med Chem 2021; 28:1672-1682. [PMID: 32338204 DOI: 10.2174/0929867327666200427095331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
Various nutrients have been designated as antioxidants, with a possible effect on diseases like cancer. This is partly due to their effect on prostaglandins, thereby affecting local pathological metabolic acidosis. This paper aims to summarize the culprit pathophysiological mechanisms involved, with a focus on the bone microenvironment. The omega- 6/omega-3 PUFA ratio is particularly investigated for its antioxidative effects, countering these pathways to fight the disease. This feature is looked at concerning its impact on health in general, with a particular focus on malignant bone metastasis.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanta, Romania
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
4
|
The Skeletal Effects of Tanshinones: A Review. Molecules 2021; 26:molecules26082319. [PMID: 33923673 PMCID: PMC8073409 DOI: 10.3390/molecules26082319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Osteoporosis results from excessive bone resorption and reduced bone formation, triggered by sex hormone deficiency, oxidative stress and inflammation. Tanshinones are a class of lipophilic phenanthrene compounds found in the roots of Salvia miltiorrhiza with antioxidant and anti-inflammatory activities, which contribute to its anti-osteoporosis effects. This systematic review aims to provide an overview of the skeletal beneficial effects of tanshinones. Methods: A systematic literature search was conducted in January 2021 using Pubmed, Scopus and Web of Science from the inception of these databases. Original studies reporting the effects of tanshinones on bone through cell cultures, animal models and human clinical trials were considered. Results: The literature search found 158 unique articles on this topic, but only 20 articles met the inclusion criteria and were included in this review. The available evidence showed that tanshinones promoted osteoblastogenesis and bone formation while reducing osteoclastogenesis and bone resorption. Conclusions: Tanshinones modulates bone remodelling by inhibiting osteoclastogenesis and osteoblast apoptosis and stimulating osteoblastogenesis. Therefore, it might complement existing strategies to prevent bone loss.
Collapse
|
5
|
Kuang C, Zhu Y, Guan Y, Xia J, Ouyang J, Liu G, Hao M, Liu J, Guo J, Zhang W, Feng X, Li X, Zhang J, Wu X, Xu H, Li G, Xie L, Fan S, Qiu L, Zhou W. COX2 confers bone marrow stromal cells to promoting TNFα/TNFR1β-mediated myeloma cell growth and adhesion. Cell Oncol (Dordr) 2021; 44:643-659. [PMID: 33646559 DOI: 10.1007/s13402-021-00590-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Bone marrow stromal cells (BMSCs) have been implicated in multiple myeloma (MM) progression. However, the underlying mechanisms remain largely elusive. Therefore, we aimed to explore key factors in BMSCs that contribute to MM development. METHODS RNA-sequencing was used to perform gene expression profiling in BMSCs. Enzyme-linked immunosorbent assays (ELISAs) were performed to determine the concentrations of PGE2 and TNFα in sera and conditioned media (CM). Western blotting, qRT-PCR and IHC were used to examine the expression of cyclooxygenase 2 (COX2) in BMSCs and to analyze the regulation of TNFα by COX2. Cell growth and adhesion assays were employed to explore the function of COX2 in vitro. A 5T33MMvt-KaLwRij mouse model was used to study the effects of COX2 inhibition in vivo. RESULTS COX2 was found to be upregulated in MM patient-derived BMSCs and to play a critical role in BMSC-induced MM cell proliferation and adhesion. Administration of PGE2 to CM derived from BMSCs promoted MM cell proliferation and adhesion. Conversely, inhibition of COX2 in BMSCs greatly compromised BMSC-induced MM cell proliferation and adhesion. PCR array-based analysis of inflammatory cytokines indicated that COX2 upregulates the expression of TNFα. Subsequent rescue assays showed that an anti-TNFα monoclonal antibody could antagonize COX2-mediated MM cell proliferation and adhesion. Administration of NS398, a specific COX2 inhibitor, inhibited in vivo tumor growth and improved the survival of 5TMM mice. CONCLUSIONS Our results indicate that COX2 contributes to BMSC-induced MM proliferation and adhesion by increasing the secretion of PGE2 and TNFα. Targeting COX2 in BMSCs may serve as a potential therapeutic approach of treating MM.
Collapse
Affiliation(s)
- Chunmei Kuang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Yinghong Zhu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Yongjun Guan
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Jiliang Xia
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Jian Ouyang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Guizhu Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, 200030, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China
| | - Jiabin Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Jiaojiao Guo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Wenxia Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China
| | - Xiangling Feng
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, China
| | - Xin Li
- Department of hematology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jingyu Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Xuan Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Hang Xu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Guancheng Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China
| | - Wen Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
6
|
Mandal CC. Osteolytic metastasis in breast cancer: effective prevention strategies. Expert Rev Anticancer Ther 2020; 20:797-811. [PMID: 32772585 DOI: 10.1080/14737140.2020.1807950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Breast cancer is the most common cancer in women throughout the world. Patients who are diagnosed early generally have better prognosis and survivability. Indeed, advanced stage breast cancer often develops osteolytic metastases, leading to bone destruction. Although there are select drugs available to treat bone metastatic disease, these drugs have shown limited success. AREA COVERED This paper emphasizes updated mechanisms of bone remodeling and osteolytic bone metastases of breast cancer. This article also aims to explore the potential of novel natural and synthetic therapeutics in the effective prevention of breast cancer-induced osteolysis and osteolytic metastases of breast cancer. EXPERT OPINION Targeting TGFβ and BMP signaling pathways, along with osteoclast activity, appears to be a promising therapeutic strategy in the prevention of breast cancer-induced osteolytic bone destruction and metastatic growth at bone metastatic niches. Pilot studies in animal models suggest various natural and synthetic compounds and monoclonal antibodies as putative therapeutics in the prevention of breast cancer stimulated osteolytic activity. However, comprehensive pre-clinical studies demonstrating the PK/PD and in-depth understanding of molecular mechanism(s) by which these potential molecules exhibit anti-tumor growth and anti-osteolytic activity are still required to develop effective therapies against breast cancer-induced osteolytic bone disease.
Collapse
Affiliation(s)
- Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan , Ajmer, India
| |
Collapse
|
7
|
Xu S, Zhou W, Ge J, Zhang Z. Prostaglandin E2 receptor EP4 is involved in the cell growth and invasion of prostate cancer via the cAMP‑PKA/PI3K‑Akt signaling pathway. Mol Med Rep 2018; 17:4702-4712. [PMID: 29328471 DOI: 10.3892/mmr.2018.8415] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/19/2017] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent diagnosed malignancies globally. Previous studies have demonstrated that prostaglandin E2 (PGE2) is closely associated with the tumorigenesis and progression of PCa. However, the underlying molecular mechanisms remain unclear and require further investigation. Matrix metalloproteinases (MMPs), receptor activator of nuclear factor‑κB ligand (RANKL) and runt‑related transcription factor 2 (RUNX2), which are involved in cell growth and bone metastasis, are frequently activated or overexpressed in various types of cancer, including PCa. The present study was designed to investigate the associations between PGE2 and the PGE2 receptor EP4, and MMPs, RANKL and RUNX2 in PCa, and to define their roles in PCa cell proliferation and invasion in addition to understanding the molecular mechanisms. The results of western blotting and reverse transcription‑quantitative polymerase chain reaction demonstrated that the protein and the mRNA expression levels of MMP‑2, MMP‑9, RANKL and RUNX2 in PC‑3 cells were significantly upregulated by treatment with PGE2, respectively, and knockdown of these proteins blocked PGE2‑induced cell proliferation and invasion in PC‑3 cells, as determined by Cell Counting Kit‑8 and Matrigel invasion assays, respectively. The effect of PGE2 on the protein and mRNA expression levels was primarily regulated via the EP4 receptor. EP4 receptor signaling activates the cyclic (c)AMP‑protein kinase A (PKA) signaling pathway, and forskolin, an activator of adenylate cyclase (AC), exhibited similar effects to an EP4 receptor agonist on the protein expression, while SQ22536, an inhibitor of AC, inhibited the protein expression. These results confirmed that the AC/cAMP pathway may be involved in EP4 receptor‑mediated upregulation of protein expression. By using a specific inhibitor of PKA, it was also demonstrated that cAMP/PKA was also involved in the EP4 receptor‑mediated upregulation of protein expression. In addition to the signaling pathway involving PKA, the EP4 receptor also exerts activities through activation of Akt kinase. The results in the present study confirmed the hypothesis that EP4 receptor‑mediated protein expression in PCa cells that were pretreated with a specific inhibitor of phosphatidylinositol 3‑kinase (PI3K) was significantly inhibited. In conclusion, the results of the present study indicate that PGE2 significantly upregulated the mRNA and protein expression levels of the MMP‑2, MMP‑9, RANKL and RUNX2, and the EP4 receptor was involved in the cell proliferation and invasion of PCa via the cAMP‑PKA/PI3K‑Akt signaling pathway. These results may provide novel insight into potential therapeutic strategies for the prevention and treatment of PCa.
Collapse
Affiliation(s)
- Song Xu
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Wenquan Zhou
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhengyu Zhang
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
8
|
Heterogeneous nuclear ribonucleoprotein A1 regulates rhythmic synthesis of mouse Nfil3 protein via IRES-mediated translation. Sci Rep 2017; 7:42882. [PMID: 28220845 PMCID: PMC5318856 DOI: 10.1038/srep42882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/16/2017] [Indexed: 01/06/2023] Open
Abstract
Nuclear factor, interleukin 3, regulated (Nfil3, also known as E4 Promoter-Binding Protein 4 (E4BP4)) protein is a transcription factor that binds to DNA and generally represses target gene expression. In the circadian clock system, Nfil3 binds to a D-box element residing in the promoter of clock genes and contributes to their robust oscillation. Here, we show that the 5'-untranslated region (5'-UTR) of Nfil3 mRNA contains an internal ribosome entry site (IRES) and that IRES-mediated translation occurs in a phase-dependent manner. We demonstrate that heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) binds to a specific region of Nfil3 mRNA and regulates IRES-mediated translation. Knockdown of hnRNP A1 almost completely abolishes protein oscillation without affecting mRNA oscillation. Moreover, we observe that intracellular calcium levels, which are closely related to bone formation, depend on Nfil3 levels in osteoblast cell lines. We suggest that the 5'-UTR mediated cap-independent translation of Nfil3 mRNA contributes to the rhythmic expression of Nfil3 by interacting with the RNA binding protein hnRNP A1. These data provide new evidence that the posttranscriptional regulation of clock gene expression is important during bone metabolism.
Collapse
|
9
|
Wang WH, Chuang HY, Chen CH, Chen WK, Hwang JJ. Lupeol acetate ameliorates collagen-induced arthritis and osteoclastogenesis of mice through improvement of microenvironment. Biomed Pharmacother 2016; 79:231-40. [PMID: 27044833 DOI: 10.1016/j.biopha.2016.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022] Open
Abstract
Lupeol has been shown with anti-inflammation and antitumor capability, however, the poor bioavailability limiting its applications in living subjects. Lupeol acetate (LA), a derivative of lupeol, shows similar biological activities as lupeol but with better bioavailability. Here RAW 264.7 cells and bone marrow-derived macrophages (BMDMs) stimulated by lipopolysaccharide (LPS) were treated with 0-80μM of LA, and assayed for TNF-α, IL-1β, COX-2, MCP-1 using Western blotting. Moreover, osteoclatogenesis was examined with reverse transcription PCR (RT-PCR) and tartrate-resistant acid phosphatase (TRAP) staining. For in vivo study, collagen-induced arthritis (CIA)-bearing DBA/1J mice were randomly separated into three groups: vehicle, LA-treated (50mg/kg) and curcumin-treated (100mg/kg). Therapeutic efficacies were assayed by the clinical score, expression levels of serum cytokines including TNF-α and IL-1β, (18)F-fluorodeoxyglucose ((18)F-FDG) microPET/CT and histopathology. The results showed that LA could inhibit the activation, migration, and formation of osteoclastogenesis of macrophages in a dose-dependent manner. In RA-bearing mice, the expressions of inflammation-related cytokines were suppressed, and clinical symptoms and bone erosion were ameliorated by LA. The accumulation of (18)F-FDG in the joints of RA-bearing mice was also significantly decreased by LA. The results indicate that LA significantly improves the symptoms of RA by down-regulating expressions of inflammatory cytokines and osteoclastogenesis.
Collapse
Affiliation(s)
- Wei-Hsun Wang
- Dept of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Hui Chen
- Department of Radiation Oncology, Chang-Gung Memorial Hospital, Taoyen, Taiwan
| | - Wun-Ke Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Department of Radiation Oncology, Hsinchu Branch, Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Jeng-Jong Hwang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
10
|
Riquelme MA, Burra S, Kar R, Lampe PD, Jiang JX. Mitogen-activated Protein Kinase (MAPK) Activated by Prostaglandin E2 Phosphorylates Connexin 43 and Closes Osteocytic Hemichannels in Response to Continuous Flow Shear Stress. J Biol Chem 2015; 290:28321-28328. [PMID: 26442583 DOI: 10.1074/jbc.m115.683417] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/04/2023] Open
Abstract
Cx43 hemichannels serve as a portal for the release of prostaglandins, a critical process in mediating biological responses of mechanical loading on bone formation and remodeling. We have previously observed that fluid flow shear stress (FFSS) opens hemichannels; however, sustained FFSS results in hemichannel closure, as continuous opening of hemichannels is detrimental to cell viability and bone remodeling. However, the mechanism that regulates the closure of the hemichannels is unknown. Here, we show that activation of p44/42 ERK upon continuous FFSS leads to Cx43 phosphorylation at Ser(279)-Ser(282), sites known to be phosphorylated sites by p44/42 MAPK. Incubation of osteocytic MLO-Y4 cells with conditioned media (CM) collected after continuous FFSS increased MAPK-dependent phosphorylation of Cx43. CM treatment inhibited hemichannel opening and this inhibition was reversed when cells were pretreated with the MAPK pathway inhibitor. We found that prostaglandin E2 (PGE2) accumulates in the CM in a time-dependent manner. Treatment with PGE2 increased phospho-p44/42 ERK levels and also Cx43 phosphorylation at Ser(279)-Ser(282) sites. Depletion of PGE2 from CM, and pre-treatment with a p44/42 ERK pathway-specific inhibitor, resulted in a complete inhibition of ERK-dependent Cx43 phosphorylation and attenuated the inhibition of hemichannels by CM and PGE2. Consistently, the opening of hemichannels by FFSS was blocked by PGE2 and CM and this blockage was reversed by U0126 and the CM depleted of PGE2. A similar observation was also obtained in isolated primary osteocytes. Together, results from this study suggest that extracellular PGE2 accumulated after continuous FFSS is responsible for activation of p44/42 ERK signaling and subsequently, direct Cx43 phosphorylation by activated ERK leads to hemichannel closure.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Sirisha Burra
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Rekha Kar
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900.
| |
Collapse
|
11
|
Lee JH, Kim B, Jin WJ, Kim JW, Kim HH, Ha H, Lee ZH. Trolox inhibits osteolytic bone metastasis of breast cancer through both PGE2-dependent and independent mechanisms. Biochem Pharmacol 2014; 91:51-60. [DOI: 10.1016/j.bcp.2014.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 12/11/2022]
|
12
|
Mimicking breast cancer-induced bone metastasis in vivo: current transplantation models and advanced humanized strategies. Cancer Metastasis Rev 2014; 33:721-35. [DOI: 10.1007/s10555-014-9499-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Badraoui R, Ben-Nasr H, Amamou S, El-May MV, Rebai T. Walker 256/B malignant breast cancer cells disrupt osteoclast cytomorphometry and activity in rats: modulation by α-tocopherol acetate. Pathol Res Pract 2014; 210:135-41. [PMID: 24314812 DOI: 10.1016/j.prp.2013.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 09/18/2013] [Accepted: 11/06/2013] [Indexed: 01/24/2023]
Abstract
We examined the effects of vitamin E supplementation (VES) on osteoclast (OC) resorbing activity and cytomorphometry in Walker 256/B tumor osteolytic rats. Twenty-four aged male rats were randomized into 3 groups: 6 were sham operated; 9 were injected in the right hind limb with Walker 256/B cells (W256 group); and 9 were injected as above and supplemented with VE (45mg/kg BW) (W256VE group). Twenty days later, bone mass (BV/TV) and some microarchitectural parameters were assessed. Some histodynamic parameters, cellular and nuclear form factors (FFC and FFN), and nuclear-cytoplasmic ratio (N/C) of OC were measured for each group. W256 group exhibited osteolytic lesions in the operated femora. Walker 256/B induced trabecular perforation and decreased BV/TV associated with significant increases in OC numbering (N.Oc/B.Ar and Oc.N/B.Pm) and activity (ES/BS and Oc.S/BS). While FFN remain unchanged, the FFC and N/C ratio increased in the W256 group. W256VE showed less osteolytic lesions. Moreover, disruption of bone microarchitecture and OC activity in W256VE group decreased. VES reduced the malignant Walker 256/B-induced enhanced OC resorbing activity with cytoinhibition rate reaching 41%. The protective effect of VE may be due to its modulation of OC cytomorphometry and subsequently their activity.
Collapse
Affiliation(s)
- Riadh Badraoui
- Laboratory of Histology-Embryology, Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia; Laboratory of Cytology-Histology, Faculty of Medicine, University of Tunis El-Manar, 1007 Tunis, Tunisia.
| | - Hmed Ben-Nasr
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| | - Selma Amamou
- Laboratory of Histology-Embryology, Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| | - Michèle Véronique El-May
- Laboratory of Cytology-Histology, Faculty of Medicine, University of Tunis El-Manar, 1007 Tunis, Tunisia
| | - Tarek Rebai
- Laboratory of Histology-Embryology, Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| |
Collapse
|
14
|
Hayashi S, Ueno N, Murase A, Takada J. Design, synthesis and structure-activity relationship studies of novel and diverse cyclooxygenase-2 inhibitors as anti-inflammatory drugs. J Enzyme Inhib Med Chem 2014; 29:846-67. [PMID: 24517373 DOI: 10.3109/14756366.2013.864650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Because of the pivotal role of cyclooxygenase (COX) in the inflammatory processes, non-steroidal anti-inflammatory drugs (NSAIDs) that suppress COX activities have been used clinically for the treatment of inflammatory diseases/syndromes; however, traditional NSAIDs exhibit serious side-effects such as gastrointestinal damage and hyper sensitivity owing to their COX-1 inhibition. Also, COX-2 inhibition-derived suppressive or preventive effects against initiation/proliferation/invasion/motility/recurrence/metastasis of various cancers/tumours such as colon, gastric, skin, lung, liver, pancreas, breast, prostate, cervical and ovarian cancers are significant. In this study, design, synthesis and structure-activity relationship (SAR) of various novel {2-[(2-, 3- and/or 4-substituted)-benzoyl, (bicyclic heterocycloalkanophenyl)carbonyl or cycloalkanecarbonyl]-(5- or 6-substituted)-1H-indol-3-yl}acetic acid analogues were investigated to seek and identify various chemotypes of potent and selective COX-2 inhibitors for the treatment of inflammatory diseases, resulting in the discovery of orally potent agents in the peripheral-inflammation model rats. The SARs and physicochemical properties for the analogues are described as significant findings. For graphical abstract: see Supplementary Material. ( www.informahealthcare.com/enz ).
Collapse
Affiliation(s)
- Shigeo Hayashi
- Pfizer Global Research & Development, Nagoya Laboratories, Pfizer Japan Inc. , Taketoyo, Aichi , Japan
| | | | | | | |
Collapse
|
15
|
Kawashima M, Fujikawa Y, Itonaga I, Takita C, Tsumura H. The effect of selective cyclooxygenase-2 inhibitor on human osteoclast precursors to influence osteoclastogenesis in vitro. Mod Rheumatol 2014. [DOI: 10.3109/s10165-008-0149-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Masayuki Kawashima
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University,
1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Yosuke Fujikawa
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University,
1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Ichiro Itonaga
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University,
1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Chikahiro Takita
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University,
1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University,
1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| |
Collapse
|
16
|
Hou GQ, Guo C, Song GH, Fang N, Fan WJ, Chen XD, Yuan L, Wang ZQ. Lipopolysaccharide (LPS) promotes osteoclast differentiation and activation by enhancing the MAPK pathway and COX-2 expression in RAW264.7 cells. Int J Mol Med 2013; 32:503-10. [PMID: 23740407 DOI: 10.3892/ijmm.2013.1406] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/29/2013] [Indexed: 11/06/2022] Open
Abstract
Bone degradation is a serious complication of chronic inflammatory diseases such as septic arthritis, osteomyelitis and infected orthopedic implant failure. At present, effective therapeutic treatments for lipopolysaccharide (LPS)-induced bone destruction are limited to antibiotics and surgical repair in chronic inflammatory diseases. The present study aimed to evaluate the mechanism of LPS on osteoclast differentiation and activation. RAW264.7 cells were non-induced, or induced by the receptor activator of nuclear factor-κB (RANK) ligand (RANKL) and macrophage-colony stimulating factor (M-CSF), and then treated with LPS. Following treatment, the number of osteoclasts and cell viability were measured. The expression of osteoclast-related genes including tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinase-9 (MMP-9), cathepsin K (CK), carbonic anhydrase II (CAII) and cyclooxygenase-2 (COX-2) was determined by RT-PCR. Protein levels of RANK, tumor necrosis factor receptor-associated factor 6 (TRAF6), COX-2 and mitogen-activated protein kinases (MAPK) were measured using western blotting assays. LPS promoted osteoclast differentiation of RAW264.7 cells and differentiated osteoclasts. LPS significantly increased mRNA expression of osteoclast-related genes in RAW264.7 cells. Differentiated osteoclasts were treated with LPS (100 ng/ml) and the results showed a significantly increased mRNA expression of osteoclast-related genes and protein levels of RANK, TRAF6 and COX-2. Furthermore, LPS at 100 ng/ml significantly promoted the MAPK pathway including increasing the phosphorylation of c-Jun N-terminal kinases (JNK) and the phosphorylation of the extracellular signal-regulated kinase (ERK1/2). In conclusion, LPS promoted osteoclast differentiation and activation by enhancing RANK signaling and COX-2 expression. LPS also promoted osteoclast differentiation via activation of the JNK and ERK1/2 cell proliferation pathways.
Collapse
Affiliation(s)
- Guo-Qing Hou
- First Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yoon WJ, Heo SJ, Han SC, Lee HJ, Kang GJ, Yang EJ, Park SS, Kang HK, Yoo ES. Sargachromanol G regulates the expression of osteoclastogenic factors in human osteoblast-like MG-63 cells. Food Chem Toxicol 2012; 50:3273-9. [PMID: 22727857 DOI: 10.1016/j.fct.2012.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 05/16/2012] [Accepted: 06/13/2012] [Indexed: 01/17/2023]
Abstract
Bone diseases are characterized by the presence of pro-inflammatory cytokines that regulate bone turnover. The receptor activator of NF-κB ligand (RANKL) is a soluble osteoblast-derived protein that induces bone resorption through osteoclast differentiation and activation. Sargachromanol G (SG) was isolated from the brown algae Sargassum siliquastrum; SG has anti-osteoclastogenic activity, but its mechanism of action and its active components remain largely unknown. In the present study, we investigated the anti-osteoclastogenic effects of SG on the expression of interleukin-1β (IL-1β)-induced osteoclastogenic factors (PGE(2), COX-2, IL-6, OPG, and RANKL) in the human osteoblast cell line MG-63. We also examined the role of the nuclear factor-κB (NF-κB) and the mitogen-activated protein kinase (MAPK) signaling pathways in IL-1β-stimulated MG-63 cells. SG dose-dependently inhibited the production of osteoclastogenic factors in MG-63 cells. SG also inhibited phosphorylation of MAPK (ERK1/2, p38, and JNK) and NF-κB (p65, p50, and IκB-α). These results suggest that the anti-osteoporotic effect of SG may be because of the modulation of osteoclastogenic factors via suppression of MAPK and NF-κB activation.
Collapse
Affiliation(s)
- Weon-Jong Yoon
- Department of Pharmacology, College of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Di Francesco S, Castellan P, Manco R, Tenaglia RL. Reciprocal cross-talk between Prostaglandin E2 and bone in prostate cancer: a current review. Cent European J Urol 2011; 64:201-4. [PMID: 24578893 PMCID: PMC3921745 DOI: 10.5173/ceju.2011.04.art2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 08/10/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023] Open
Abstract
In this review we analyzed the role of PGE2 as a possible regulator of bone metabolism and bone metastases in prostate cancer. Published studies were identified by searching computerized bibliographic systems from January 1st, 2000 to July 1st, 2011. PGE2 represents a key factor in the modulation of bone metabolism and bone metastatic disease in prostate cancer interacting with bone regulatory signals including the RANK/RANKL/OPG system and Wnt pathways. A high concentration of PGE2 exerts a prevalent stimulatory effect on osteoclastogenesis via OPG/RANK/RANKL axis activation and a inhibitory effect on osteoblastogenesis trough inhibition of Wnt pathway. An inversely low level of PGE2 exerts a stimulatory effect on osteoblastogenesis via activation of the Wnt pathway. Our finding suggests that PGE2 acts as a regulator in maintaining normal bone mass and indicate a mechanism whereby chemical manipulation of PGE2 levels or signaling may be therapeutically beneficial for prostate cancer treatment.
Collapse
Affiliation(s)
- Simona Di Francesco
- Department of Medicine and Aging Science, Section of Clinical Urology, ''G. D'Annunzio'' University, Chieti, Italy
| | - Pietro Castellan
- Department of Medicine and Aging Science, Section of Clinical Urology, ''G. D'Annunzio'' University, Chieti, Italy
| | - Rossella Manco
- Department of Medicine and Aging Science, Section of Clinical Urology, ''G. D'Annunzio'' University, Chieti, Italy
| | - Raffaele L Tenaglia
- Department of Medicine and Aging Science, Section of Clinical Urology, ''G. D'Annunzio'' University, Chieti, Italy
| |
Collapse
|
19
|
Valcárcel M, Mendoza L, Hernández JJ, Carrascal T, Salado C, Crende O, Vidal-Vanaclocha F. Vascular endothelial growth factor regulates melanoma cell adhesion and growth in the bone marrow microenvironment via tumor cyclooxygenase-2. J Transl Med 2011; 9:142. [PMID: 21867538 PMCID: PMC3189126 DOI: 10.1186/1479-5876-9-142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 08/25/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Human melanoma frequently colonizes bone marrow (BM) since its earliest stage of systemic dissemination, prior to clinical metastasis occurrence. However, how melanoma cell adhesion and proliferation mechanisms are regulated within bone marrow stromal cell (BMSC) microenvironment remain unclear. Consistent with the prometastatic role of inflammatory and angiogenic factors, several studies have reported elevated levels of cyclooxygenase-2 (COX-2) in melanoma although its pathogenic role in bone marrow melanoma metastasis is unknown. METHODS Herein we analyzed the effect of cyclooxygenase-2 (COX-2) inhibitor celecoxib in a model of generalized BM dissemination of left cardiac ventricle-injected B16 melanoma (B16M) cells into healthy and bacterial endotoxin lipopolysaccharide (LPS)-pretreated mice to induce inflammation. In addition, B16M and human A375 melanoma (A375M) cells were exposed to conditioned media from basal and LPS-treated primary cultured murine and human BMSCs, and the contribution of COX-2 to the adhesion and proliferation of melanoma cells was also studied. RESULTS Mice given one single intravenous injection of LPS 6 hour prior to cancer cells significantly increased B16M metastasis in BM compared to untreated mice; however, administration of oral celecoxib reduced BM metastasis incidence and volume in healthy mice, and almost completely abrogated LPS-dependent melanoma metastases. In vitro, untreated and LPS-treated murine and human BMSC-conditioned medium (CM) increased VCAM-1-dependent BMSC adherence and proliferation of B16M and A375M cells, respectively, as compared to basal medium-treated melanoma cells. Addition of celecoxib to both B16M and A375M cells abolished adhesion and proliferation increments induced by BMSC-CM. TNFα and VEGF secretion increased in the supernatant of LPS-treated BMSCs; however, anti-VEGF neutralizing antibodies added to B16M and A375M cells prior to LPS-treated BMSC-CM resulted in a complete abrogation of both adhesion- and proliferation-stimulating effect of BMSC on melanoma cells. Conversely, recombinant VEGF increased adherence to BMSC and proliferation of both B16M and A375M cells, compared to basal medium-treated cells, while addition of celecoxib neutralized VEGF effects on melanoma. Recombinant TNFα induced B16M production of VEGF via COX-2-dependent mechanism. Moreover, exogenous PGE2 also increased B16M cell adhesion to immobilized recombinant VCAM-1. CONCLUSIONS We demonstrate the contribution of VEGF-induced tumor COX-2 to the regulation of adhesion- and proliferation-stimulating effects of TNFα, from endotoxin-activated bone marrow stromal cells, on VLA-4-expressing melanoma cells. These data suggest COX-2 neutralization as a potential anti-metastatic therapy in melanoma patients at high risk of systemic and bone dissemination due to intercurrent infectious and inflammatory diseases.
Collapse
Affiliation(s)
- María Valcárcel
- CEU-San Pablo University School of Medicine and Hospital of Madrid Scientific Foundation, Institute of Applied Molecular Medicine, IMMA, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Geng D, Mao H, Wang J, Zhu X, Huang C, Chen L, Yang H, Xu Y. Protective effects of COX-2 inhibitor on titanium-particle-induced inflammatory osteolysis via the down-regulation of RANK/RANKL. Acta Biomater 2011; 7:3216-21. [PMID: 21601661 DOI: 10.1016/j.actbio.2011.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 11/16/2022]
Abstract
Particle-wear-induced inflammatory osteolysis remains a major problem for the long-term success of total joint arthroplasty. Previous studies have demonstrated that cyclooxygenase-2 (COX-2) is expressed abundantly in the tissue around a failed implant. However, the role of COX-2 in the development of particle-wear-induced osteoclastogenesis remains unclear. The aim of the study was to test the hypothesis that Dynastat, a COX-2 inhibitor, ameliorates particle-wear-induced inflammatory osteoclastogenesis through the down-regulation of the receptor activators of nuclear factor-κB (RANK) and nuclear factor-κB ligand (RANKL) expression in a murine osteolysis model. Titanium (Ti) particles were introduced into established air pouches in BALB/c mice, followed by the implantation of calvaria bone from syngeneic littermates. Dynastat was given to mice intraperitoneally 2 days before the introduction of Ti particles and maintained until the mice were sacrificed. Pouch tissues were collected 14 days after Ti inoculation for molecular and histological analysis. The results showed that Dynastat has more impact on Ti-particle-induced prostaglandin E(2) expression and less on the expression of interleukin-1β and tumor necrosis factor-α. Dynastat inhibited Ti-particle-induced osteoclastogenesis by reducing the gene activation of RANK and RANKL, and diminishing the RANKL expression in Ti-particle-charged pouches. Dynastat markedly reduced the number of tartrate-resistant acid-phosphatase-positive cells in pouch tissues stimulated by Ti particles. In conclusion, this study provides evidence that Dynastat can markedly inhibit Ti-particle-induced osteoclastogenesis by the down-regulation of RANK/RANKL in a murine air pouch model, and is a promising therapeutic candidate for the treatment of inflammatory osteolysis induced by wear particles.
Collapse
Affiliation(s)
- Dechun Geng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
KATANO M, NARUSE K, UCHIDA K, MIKUNI-TAKAGAKI Y, TAKASO M, ITOMAN M, URABE K. Low Intensity Pulsed Ultrasound Accelerates Delayed Healing Process by Reducing the Time Required for the Completion of Endochondral Ossification in the Aged Mouse Femur Fracture Model. Exp Anim 2011; 60:385-95. [DOI: 10.1538/expanim.60.385] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Motoaki KATANO
- Departments of Orthopedic Surgery, Kitasato University School of Medicine
| | - Kouji NARUSE
- Departments of Orthopedic Surgery, Kitasato University School of Medicine
| | - Kentaroo UCHIDA
- Departments of Orthopedic Surgery, Kitasato University School of Medicine
| | - Yuko MIKUNI-TAKAGAKI
- Department of Maxillofacial Diagnostic Science and Functional Biology, Kanagawa Dental College
| | - Masashi TAKASO
- Departments of Orthopedic Surgery, Kitasato University School of Medicine
| | | | - Ken URABE
- Departments of Orthopedic Surgery, Kitasato University School of Medicine
| |
Collapse
|
22
|
Guan SM, Fu SM, He JJ, Zhang M. Prevotella intermedia induces prostaglandin E2 via multiple signaling pathways. J Dent Res 2010; 90:121-7. [PMID: 21057037 DOI: 10.1177/0022034510382545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Prostaglandin E(2) (PGE(2)) plays important roles in the bone resorption of inflammatory diseases such as rheumatoid arthritis and periodontitis via specific prostaglandin receptors (i.e., EP1-EP4). In this study, the authors examined whether Prevotella intermedia regulates PGE(2) production and EP expression in human periodontal ligament fibroblasts (hPDLs); they also explored the potential signaling pathways involved in PGE(2) production. P. intermedia induced PGE(2) production and cyclooxygenase-2 (COX-2) expression in a dose- and time-dependent manner. Indomethacin and NS-398 completely abrogated the P. intermedia-induced PGE(2) production without modulating COX-2 expression. Specific inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, phosphatidylinositol 3-kinase, and protein kinase C--but not c-AMP and protein kinase A--significantly attenuated the P. intermedia-induced COX-2 and PGE(2) expression. P. intermedia reduced EP1 expression in a concentration- and time-dependent manner. The results indicate that the COX-2-dependent induction of PGE(2) by P. intermedia in hPDLs is mediated by multiple signaling pathways.
Collapse
Affiliation(s)
- S-M Guan
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| | | | | | | |
Collapse
|
23
|
Liu XH, Kirschenbaum A, Weinstein BM, Zaidi M, Yao S, Levine AC. Prostaglandin E2 modulates components of the Wnt signaling system in bone and prostate cancer cells. Biochem Biophys Res Commun 2010; 394:715-20. [PMID: 20227393 DOI: 10.1016/j.bbrc.2010.03.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/09/2010] [Indexed: 12/19/2022]
Abstract
Both Wnt signaling and prostaglandin E(2) (PGE(2)) play pivotal roles in bone development, remodeling, osteoporosis and prostate cancer (PCa) bone metastases. We investigated the effects of PGE(2) on Wnt signaling in osteoblast-lineage cells and Wnt-inhibitor expression in PCa cells. We demonstrate that low dose PGE(2) (0.1 microM) promotes Wnt signaling while higher doses of PGE(2) (1.0-10 microM) inhibit these same parameters in osteoblast-lineage cells. The differential effects of low vs high-dose PGE(2) on pre-osteoblasts may be attributed to dose-dependent modulation of prostaglandin receptor (EP) subtype expression; with lower doses increasing the expression the cAMP-stimulatory EP4 receptor subtype and higher doses increasing the expression of the cAMP-inhibitory EP3 receptor subtype. Moreover, we demonstrate that high expression levels of COX-2 and PGE(2) promote the secretion of Wnt inhibitors from prostate cancer cells. These data demonstrate that there are dose-dependent effects of PGE(2) on Wnt activation in osteoblast-lineage cells and Wnt-inhibitor expression in PCa cells which may have clinical implications in the management.
Collapse
Affiliation(s)
- Xin-Hua Liu
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
24
|
Qamri Z, Preet A, Nasser MW, Bass CE, Leone G, Barsky SH, Ganju RK. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther 2009; 8:3117-29. [PMID: 19887554 DOI: 10.1158/1535-7163.mct-09-0448] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cannabinoids have been reported to possess antitumorogenic activity. Not much is known, however, about the effects and mechanism of action of synthetic nonpsychotic cannabinoids on breast cancer growth and metastasis. We have shown that the cannabinoid receptors CB1 and CB2 are overexpressed in primary human breast tumors compared with normal breast tissue. We have also observed that the breast cancer cell lines MDA-MB231, MDA-MB231-luc, and MDA-MB468 express CB1 and CB2 receptors. Furthermore, we have shown that the CB2 synthetic agonist JWH-133 and the CB1 and CB2 agonist WIN-55,212-2 inhibit cell proliferation and migration under in vitro conditions. These results were confirmed in vivo in various mouse model systems. Mice treated with JWH-133 or WIN-55,212-2 showed a 40% to 50% reduction in tumor growth and a 65% to 80% reduction in lung metastasis. These effects were reversed by CB1 and CB2 antagonists AM 251 and SR144528, respectively, suggesting involvement of CB1 and CB2 receptors. In addition, the CB2 agonist JWH-133 was shown to delay and reduce mammary gland tumors in the polyoma middle T oncoprotein (PyMT) transgenic mouse model system. Upon further elucidation, we observed that JWH-133 and WIN-55,212-2 mediate the breast tumor-suppressive effects via a coordinated regulation of cyclooxygenase-2/prostaglandin E2 signaling pathways and induction of apoptosis. These results indicate that CB1 and CB2 receptors could be used to develop novel therapeutic strategies against breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Zahida Qamri
- Department of Pathology, Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Wei P. Effects of berberine on differentiation and bone resorption of osteoclasts derived from rat bone marrow cells. ACTA ACUST UNITED AC 2009; 7:342-8. [DOI: 10.3736/jcim20090408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage 2009; 17:473-81. [PMID: 18974013 DOI: 10.1016/j.joca.2008.09.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 09/12/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVES In osteoarthritis (OA), mechanical factors play a key role, not only in cartilage degradation, but also in subchondral bone sclerosis. The aim of this study was to develop on original compression model for studying the effect of mechanical stress on osteoblasts. MATERIALS AND METHODS We investigate the effects of compression on primary calvaria osteoblasts isolated from newborn mice and cultured for 28 days in monolayer. At the end of this period, osteoblasts were embedded in a newly synthesized extracellular matrix which formed a three-dimensional membrane. This membrane was then submitted to compression in Biopress Flexercell plates (1-1.7 MPa compressions at 1 Hz frequency) during 1-8h. The expression of 20 genes was investigated by real time reverse transcriptase polymerase chain reaction. Interleukin (IL)-6, matrix metalloproteinase (MMP)-3 and prostaglandin (PG)E(2) were assayed in the culture medium by specific immunoassays. RESULTS The compression highly increased IL-6 and cyclooxygenase (COX)-2 mRNA levels in osteoblasts. In parallel, increased amount of IL-6 and PGE(2) was found in the supernatant of loaded osteoblasts. This stimulation reached a maximum after 4h of 10% compression. MMP-2, MMP-3, and MMP-13 mRNA levels were also increased by compressive stress, while 15-hydroxyprostaglandin-dehydrogenase and osteoprotegerin (OPG) start to decrease at hour 4. COX-1, microsomial PG E synthase-1 (mPGES1), mPGES2 and cytosolic PGES and receptor activator of nuclear factor ligand (RANKL) were unmodified. Finally, we observed that alpha 5 beta 1 integrin, intracellular Ca(++), nuclear factor-kappaB and extracellular signal-regulated kinase 1/2 pathways were involved in the compression-induced IL-6 and PGE(2) production. IL-6 neutralizing antibodies and piroxicam inhibited the decrease OPG expression, but did not modify RANKL mRNA level, indicating that IL-6 and PGE(2) induce a decrease of the OPG/RANKL ratio. CONCLUSION This work demonstrates that IL-6 is mechano-sensitive cytokine and probably a key factor in the biomechanical control of bone remodeling in OA.
Collapse
Affiliation(s)
- C Sanchez
- Bone and Cartilage Metabolism Research Unit, University of Liège, Belgium
| | | | | | | | | |
Collapse
|
27
|
The effect of selective cyclooxygenase-2 inhibitor on human osteoclast precursors to influence osteoclastogenesis in vitro. Mod Rheumatol 2009; 19:192-8. [PMID: 19198759 DOI: 10.1007/s10165-008-0149-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
The inducible prostaglandin synthesis enzyme, cyclooxygenase-2 (COX-2), is involved in bone resorption and osteoclastogenesis, and acts indirectly through prostaglandin E2 (PG E2) produced by osteoblastic cells. This study was undertaken to investigate whether celecoxib (a selective COX-2 inhibitor) has a direct effect on human osteoclast precursors to influence osteoclastogenesis in vitro. Human peripheral blood mononuclear cells (PBMCs) were cultured on glass coverslips and dentine slices with soluble receptor activator of NF-kB ligand (sRANKL) and macrophage colony stimulating factor (M-CSF). COX inhibitors including celecoxib were added to the cultures. Osteoclast formation was assessed as the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), and the functional evidence of lacunar resorption pits on dentine slices was assessed. Celecoxib and indomethacin inhibited osteoclast formation and the extent of lacunar resorption in a dose-dependent manner, but the effect of indomethacin was less than that of celecoxib. Mofezolac affected neither the number of TRAP-positive MNCs nor the extent of lacunar resorption pits. These results indicate that celecoxib influences not only osteoclast formation through osteoblastic cells but also acts directly on circulating osteoclast precursors to influence human osteoclast differentiation. The effect of celecoxib on osteoclast precursors may be related to the COX-2 signal pathway.
Collapse
|
28
|
Idris AI, Ralston SH, van't Hof RJ. The nitrosylated flurbiprofen derivative HCT1026 inhibits cytokine-induced signalling through a novel mechanism of action. Eur J Pharmacol 2008; 602:215-22. [PMID: 19046964 DOI: 10.1016/j.ejphar.2008.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 10/23/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
We have previously shown that the nitrosylated flurbiprofen derivative HCT1026 inhibits bone resorption, both in vivo and in vitro, and that its mechanism of action is independent of nitric oxide release and prostaglandin synthesis inhibition. Here we describe the effects of HCT1026 on osteoclast formation, activity, survival and cell signalling in vitro. HCT1026 strongly inhibited osteoclast formation, activity and survival in murine osteoclast cultures, whereas macrophages and osteoblasts were unaffected. HCT1026 induced osteoclast apoptosis, and this was partially prevented by increasing the concentration of receptor activator of nuclear factor kappa B ligand (RANKL). This suggests that HCT1026 inhibits bone resorption by inhibiting the effects of RANKL. In agreement with this we found that HCT1026 inhibited RANKL-induced activation of the nuclear factor kappa B (NFkappaB) and extracellular signal-regulated kinase (ERK) pathways in both osteoclast and macrophage cultures, whereas its parent compound flurbiprofen did not. In addition, HCT1026 also inhibited tumor necrosis factor (TNF)-, interleukin-1 (IL1)- and LPS-induced signalling, but not macrophage colony stimulating factor induced signalling. The pathways that are inhibited by HCT1026 all share a similar kinase complex upstream of the NFkappaB and ERK pathways, and this is the most likely target for the actions of HCT1026. Although the rationale for the modification of flurbiprofen with a nitric oxide donor group was to prevent gastro-intestinal toxicity, the resulting compound HCT1026 gained unexpected additional cytokine-inhibitory properties. As RANKL, TNF and IL1 are all important mediators of inflammation and joint destruction, compounds like HCT1026 could represent a novel class of anti-inflammatory compounds.
Collapse
Affiliation(s)
- Aymen I Idris
- Rheumatic Diseases Unit, Molecular Medicine Centre, University of Edinburgh, General Western Hospital, Edinburgh, UK
| | | | | |
Collapse
|
29
|
A role for leukemia inhibitory factor in melanoma-induced bone metastasis. Clin Exp Metastasis 2008; 26:133-41. [PMID: 18953658 DOI: 10.1007/s10585-008-9223-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
Melanoma is commonly associated with multi-organ metastasis, and bone is a frequent metastatic site for melanoma. However, the mechanism responsible for such melanoma-induced bone metastasis is still poorly understood. In the present study, the intracardiac inoculation of leukemia inhibitory factor (LIF)-producing human melanoma-derived cells (SEKI) developed osteolytic bone destruction in male BALB/cA-nu/nu nude mice. To elucidate the role of LIF in melanoma-induced osteolysis, cells were prepared in which the expression of LIF was reduced using a siRNA technique from the parent SEKI cells. Osteoclastogenesis was induced in the co-culture of LIF and/or SEKI cells with osteoblastic stromal cells in vitro, whereas the LIF-reduced SEKI cells did not induce osteoclastogenesis. The intracardiac inoculation of LIF-reduced SEKI cells resulted in a significant reduction in the incidence and number of bone metastasis in comparison to those in the mice inoculated with the parent SEKI cells. The expression of LIF was found in seven of nine human melanoma-derived cell lines, suggesting that LIF expression is a universal event in melanoma. These findings suggest that a potential role for LIF in the melanoma-induced bone metastasis possibly through the stimulation of osteoclastogenesis. LIF might therefore be a potentially effective drug target in the treatment of bone metastasis in melanoma.
Collapse
|
30
|
Takahashi T, Uehara H, Bando Y, Izumi K. Soluble EP2 neutralizes prostaglandin E2-induced cell signaling and inhibits osteolytic tumor growth. Mol Cancer Ther 2008; 7:2807-16. [PMID: 18790761 DOI: 10.1158/1535-7163.mct-08-0153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostaglandin E2 (PGE2) plays a key role in osteolytic bone metastasis as well as roles in inflammation, cell growth, and tumor development. PGE2 exerts its effects by binding and activating E-prostanoid receptor (EP). In this study, we propose a new approach for blocking EP-mediated cell signaling using a soluble chimeric EP2 fragment. Mammalian expression vectors encoding several human EP2 cDNAs were introduced into 293 cells and the culture medium was tested for their function as a decoy receptor for PGE2. PGE2 binding assays revealed that culture medium containing the second extracellular region of EP2 (FuEP2/Ex2) had binding activity. FuEP2/Ex2 neutralized PGE2-induced cyclic AMP production, cyclic AMP-responsive element binding protein phosphorylation, and subsequent induction of cyclooxygenase-2, interleukin (IL)-1beta, and IL-6 mRNAs. In human osteoblasts, this culture medium neutralized the induction of receptor activator of nuclear factor-kappaB ligand mRNA. A stable transfectant expressing FuEP2/Ex2 was established from human prostate cancer PC-3 cells (PC3-FuEP2/Ex2). PC3-FuEP2/Ex2 cells grew at similar rates to vector control cells under normal culture conditions, although PGE2-induced growth stimulation was suppressed. Intraosseous injection of PC3-FuEP2/Ex2 cells into the tibia of athymic nude mice revealed that the degrees of tumor growth and osteolysis were decreased compared with control cell-injected mice, with decreased osteoclasts and increased apoptotic cells. Furthermore, the cyclooxygenase-2, IL-1beta, and IL-6 mRNA levels were reduced in the tumor lesions. These data suggest that FuEP2/Ex2 is useful for treating osteolytic bone metastasis and cancers that depend on EP signaling for their growth and development.
Collapse
Affiliation(s)
- Tetsuyuki Takahashi
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Tokushima-shi, Tokushima, Japan
| | | | | | | |
Collapse
|
31
|
Zou X, Zou L, He Y, Bünger C. Molecular treatment strategies and surgical reconstruction for metastatic bone diseases. Cancer Treat Rev 2008; 34:527-38. [DOI: 10.1016/j.ctrv.2008.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 03/19/2008] [Accepted: 03/24/2008] [Indexed: 01/06/2023]
|
32
|
Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 2008; 29:155-92. [PMID: 18057140 PMCID: PMC2528846 DOI: 10.1210/er.2007-0014] [Citation(s) in RCA: 567] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 11/15/2007] [Indexed: 12/13/2022]
Abstract
Osteoclasts and osteoblasts dictate skeletal mass, structure, and strength via their respective roles in resorbing and forming bone. Bone remodeling is a spatially coordinated lifelong process whereby old bone is removed by osteoclasts and replaced by bone-forming osteoblasts. The refilling of resorption cavities is incomplete in many pathological states, which leads to a net loss of bone mass with each remodeling cycle. Postmenopausal osteoporosis and other conditions are associated with an increased rate of bone remodeling, which leads to accelerated bone loss and increased risk of fracture. Bone resorption is dependent on a cytokine known as RANKL (receptor activator of nuclear factor kappaB ligand), a TNF family member that is essential for osteoclast formation, activity, and survival in normal and pathological states of bone remodeling. The catabolic effects of RANKL are prevented by osteoprotegerin (OPG), a TNF receptor family member that binds RANKL and thereby prevents activation of its single cognate receptor called RANK. Osteoclast activity is likely to depend, at least in part, on the relative balance of RANKL and OPG. Studies in numerous animal models of bone disease show that RANKL inhibition leads to marked suppression of bone resorption and increases in cortical and cancellous bone volume, density, and strength. RANKL inhibitors also prevent focal bone loss that occurs in animal models of rheumatoid arthritis and bone metastasis. Clinical trials are exploring the effects of denosumab, a fully human anti-RANKL antibody, on bone loss in patients with osteoporosis, bone metastasis, myeloma, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Ann E Kearns
- Endocrine Research Unit, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
33
|
Increased COX2 expression enhances tumor-induced osteoclastic lesions in breast cancer bone metastasis. Clin Exp Metastasis 2007; 25:389-400. [PMID: 17965942 DOI: 10.1007/s10585-007-9117-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
Metastasis is a complicated process that depends largely on the interaction of primary tumors and the local host environment. In this study, we have established a new mouse model to mimic the process of tumor metastasis in breast cancer patients. TM40D-MB mouse mammary tumor cells were transplanted to the mammary glands of syngeneic mice. Mammary tumors developed in the glands in situ and were metastatic to bone with over 53% efficiency. We compared the gene expression profile of high (TM40D-MB) vs. low metastatic (TM40D) tumor cells using Affymetrix microarray chips. Microarray analysis revealed a list of genes that were consistently up-/down-regulated in TM40D-MB tumor cells. One of the genes, COX2 was selected for functional study. Injection of TM40D-COX2 cells to mouse femur caused a significant increase in bone destruction compared to TM40D-C control, as measured by the micro-computed tomography (microCT) scanning for the trabecular bone volume. In vitro assays showed that COX2 significantly increased the rate of osteoclast formation, and this effect was reversible by the specific COX2 inhibitor NS-398. These data indicate that COX2 is one gene important for breast cancer bone metastasis. The availability of this mouse model and the comparative study of gene expression signatures between TM40D and other bone metastasis models will likely generate important information about common pathways for breast cancer bone metastasis. Further functional studies of metastasis signature genes should help to develop means to curb the metastasis process.
Collapse
|
34
|
Li M, Sasaki T, Ono K, de Freitas PHL, Sobhan U, Kojima T, Shimomura J, Oda K, Amizuka N. Distribution of macrophages, osteoclasts and the B-lymphocyte lineage in osteolytic metastasis of mouse mammary carcinoma. ACTA ACUST UNITED AC 2007; 28:127-37. [PMID: 17625345 DOI: 10.2220/biomedres.28.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to examine the localization of macrophages, B-lymphocytes and osteoclasts in tumoral lesions of mammary carcinoma metastasized to bone of non-immunocompromised mice. Mouse mammary carcinoma cells (BALB/c-MC) were injected through the left cardiac ventricle into 5-week-old female wild-type Balb/c mice. The femora and tibiae of mice with metastasized cancer were extracted, and thereafter processed for histochemical analyses. The foci of metastasized tumor cells occupied the metaphyseal area, and the cell death zones could be identified within the tumor mass. Abundant tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts were found among the alkaline phosphatase (ALP)-reactive osteoblastic cell layer that covered the bone surface neighboring the metastatic lesion. In contrast, F4/80-positive macrophages/monocytes were localized adjacent to, or invading the metastatic tissue. In addition, some F4/80-positive cells were found in the aforementioned cell death zones. Unlike F4/80-positive cells, CD45R-positive B-lymphocytes did not accumulate at the surfaces of the tumor lesions, nor infiltrate into them, but were found scattered over bone marrow. Interestingly, some CD45R-positive cells were observed close to TRAP-positive osteoclasts in the stromal tissue surrounding the tumor lesion. Our findings suggest that, in the bone metastatic lesions of non-immunocompromised mice, F4/80-positive macrophages/monocytes accumulated on and/or infiltrated into the tumor nests, while CD45R-positive B-lymphocytes were associated with osteoclasts, rather than attacking metastatic tumor cells.
Collapse
Affiliation(s)
- Minqi Li
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kiji M, Nagasawa T, Hormdee D, Yashiro R, Kobayashi H, Noguchi K, Nitta H, Izumi Y, Ishikawa I. Internal prostaglandin synthesis augments osteoprotegerin production in human gingival fibroblasts stimulated by lipopolysaccharide. Clin Exp Immunol 2007; 149:327-34. [PMID: 17550374 PMCID: PMC1941953 DOI: 10.1111/j.1365-2249.2007.03414.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2007] [Indexed: 11/30/2022] Open
Abstract
Periodontitis is an inflammatory bone disease caused by Gram-negative anaerobic bacteria. Osteoclast differentiation is regulated by the balance between receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG). The purpose of this study was to examine the mechanism of OPG production in human gingival fibroblasts (HGF) stimulated by lipopolysaccharide (LPS) from periodontopathic bacteria. The expressions of Toll-like receptor 2 (TLR-2) and TLR-4 in HGF were examined using flow-cytometry. HGF were stimulated with whole cell extracts or LPS from Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis with or without polymyxin B, a LPS inhibitor. In addition, HGF were stimulated with LPS, prostaglandin E(2) (PGE(2)), various agonists of PGE receptors (EP1, EP2, EP3 and EP4 agonists) with or without indomethacin (IND), a prostaglandin synthesis inhibitor. OPG and PGE(2) production was measured using an enzyme-linked immunosorbent assay (ELISA). HGF expressed both TLR-2 and TLR-4. Both A. actinomycetemcomitans and P. gingivalis LPS augmented OPG expression in HGF. Whole cell extracts from A. actinomycetemcomitans and P. gingivalis augmented OPG production by HGF; the augmentation was suppressed by polymyxin B. IND suppressed OPG production in LPS-stimulated HGF. PGE(2) stimulated HGF to produce OPG. EP1 and EP2 agonists, but not EP3 and EP4 agonists, increased OPG production by HGF. These results suggest that LPS-induced OPG production by HGF is regulated via EP1 and/or EP2 receptors by endogenously generated PGE(2).
Collapse
Affiliation(s)
- M Kiji
- Periodontology, Department of Hard Tissue Engineering, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Krieger NS, Frick KK, LaPlante Strutz K, Michalenka A, Bushinsky DA. Regulation of COX-2 mediates acid-induced bone calcium efflux in vitro. J Bone Miner Res 2007; 22:907-17. [PMID: 17352658 DOI: 10.1359/jbmr.070316] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Chronic metabolic acidosis induces net Ca efflux from bone; this osteoclastic bone resorption is mediated by increased osteoblastic prostaglandin synthesis. Cyclooxygenase, the rate-limiting enzyme in prostaglandin synthesis, is present in both constitutive (COX-1) and inducible (COX-2) forms. We report here that acidosis increases both osteoblastic RNA and protein levels for COX-2 and that genetic deficiency or pharmacologic inhibition of COX-2 significantly reduces acid-induced Ca efflux from bone. INTRODUCTION Incubation of neonatal mouse calvariae in medium simulating physiologic metabolic acidosis induces an increase in osteoblastic prostaglandin E2 (PGE2) release and net calcium (Ca) efflux from bone. Increased PGE2 is necessary for acid-induced bone resorption, because inhibition of cyclooxygenase activity with indomethacin significantly decreases not only PGE2 production but also Ca release. Cyclooxygenase is present in both constitutive (COX-1) and inducible (COX-2) forms. Because COX-2 activity has been implicated in several forms of pathological bone resorption, we tested the hypothesis that COX-2 is critical for acid-induced, cell-mediated bone Ca efflux. MATERIALS AND METHODS To determine the effect of metabolic acidosis on COX-2 RNA and protein, primary cells isolated from neonatal CD-1 mouse calvariae were cultured in neutral (Ntl) or physiologically acidic medium (Met). RNA levels for COX-2 and COX-1 were measured by quantitative real-time PCR. Levels of COX-2 and COX-1 protein were measured by immunoblot analysis. To determine the effect of acidosis on bone Ca efflux in genetically deficient COX-2 mice, mice heterozygous for the COX-2 knockout (strain B6;129S7-Ptgs2(tm1Jed)/J) were used as breeders, and neonatal calvariae were cultured in Ntl or Met. To determine the effects of the specific COX-2 inhibitor, NS398, on acid-induced bone resorption, CD-1 calvariae were incubated in Ntl or Met with or without NS398 (1 microM). Medium PGE2 was assayed by ELISA. RESULTS Incubation of mouse calvarial cells in Met significantly increased COX-2 RNA and protein levels without a change in COX-1. Increased COX-2 protein levels in response to Met were also observed in cultured calvariae. Acid-induced, cell-mediated Ca efflux from B6;129S7-Ptgs2(tm1Jed)/J calvariae was dependent on genotype. From 0 to 24 h, when physicochemical Ca efflux predominates, Met significantly increased net Ca efflux in all genotypes. After 24 h, when cell-mediated Ca efflux predominates, Met induced greater Ca efflux from (+/+) than from (+/-), and there was no increase from (-/-). In calvariae from CD-1 mice, NS398 significantly inhibited both the acid-induced increase in PGE2 and Ca release. CONCLUSIONS The specific acid-induced increase in COX-2 RNA and protein levels and the dependency of the increased Ca efflux on COX-2 activity, as determined by both genetic deficiency and pharmacologic inhibition, show that COX-2 is critical for acid-induced, cell-mediated bone resorption.
Collapse
Affiliation(s)
- Nancy S Krieger
- Department of Medicine, Division of Nephrology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
37
|
Liu F, Lee SK, Adams DJ, Gronowicz GA, Kream BE. CREM deficiency in mice alters the response of bone to intermittent parathyroid hormone treatment. Bone 2007; 40:1135-43. [PMID: 17275432 PMCID: PMC1995436 DOI: 10.1016/j.bone.2006.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 11/06/2006] [Accepted: 12/04/2006] [Indexed: 01/31/2023]
Abstract
CREM belongs to the ATF/CREB family of basic leucine zipper transcription factors. We previously showed that PTH induces ICER (inducible cAMP early repressor) in osteoblasts. ICER proteins, which are transcribed from the P2 promoter of the Crem gene, act as transcriptional attenuators. The objective of this study was to determine whether the Crem gene plays a role in the response of bone to intermittent PTH. Adult Crem knockout (KO) and wild type (WT) male mice were given daily subcutaneous injections of vehicle or hPTH(1-34) (160 mug/kg) for 10 days. Bone mineral content and density (BMC and BMD, respectively) were measured in femur and tibia by dual energy X-ray absorptiometry (DEXA). Bone morphometry was analyzed by X-ray computed microtomography (microCT) and histomorphometry. Serum bone turnover markers were measured. In vitro osteoclast formation assays were performed in bone marrow cultures treated with PTH or the combination of RANKL and M-CSF. KO mice had slightly higher basal bone mass than wild type mice. PTH treatment increased tibial BMC and BMD to a greater extent in WT mice compared to KO mice. PTH increased both cortical area and trabecular bone area in WT but not in KO femurs. PTH increased the bone formation rate and percent osteoblast surface to the same extent in femurs of WT and KO mice but increased osteoclast parameters and calvarial porosity to a greater extent in KO mice. PTH increased serum osteocalcin levels to the same extent in WT and KO mice. PTH-induced osteoclast formation was 2-fold greater in bone marrow cultures from KO mice. Collectively, our data suggest that the CREM deficiency in mice alters the response of bone to intermittent PTH treatment such that osteoclastogenesis is increased. Crem gene may specify the anabolic response to intermittent PTH treatment by restraining PTH-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Fei Liu
- Department of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030
| | - Sun-Kyeong Lee
- Department of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030
| | - Douglas J. Adams
- Department of Orthopaedic Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030
| | - Gloria A. Gronowicz
- Department of Orthopaedic Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030
| | - Barbara E. Kream
- Department of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030
| |
Collapse
|
38
|
Takita M, Inada M, Maruyama T, Miyaura C. Prostaglandin E receptor EP4 antagonist suppresses osteolysis due to bone metastasis of mouse malignant melanoma cells. FEBS Lett 2007; 581:565-71. [PMID: 17254571 DOI: 10.1016/j.febslet.2007.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/30/2006] [Accepted: 01/06/2007] [Indexed: 11/29/2022]
Abstract
We examined the effects of prostaglandin E (PGE) receptor subtype EP4 antagonist on bone metastasis of cancer to clarify PGE's role in bone metastasis. Metastatic regions were detected in femurs accompanying severe bone loss in mice injected with B16 malignant melanoma cells. Administration of EP4 antagonist restored the bone loss induced by B16 melanoma. Adding B16 cells induced osteoclast formation in the coculture of bone marrow cells and osteoblasts without any exogenous bone-resorbing factor, and EP4 antagonist completely suppressed the osteoclast formation induced by B16 cells. Therefore, EP4 antagonist is a possible candidate for the therapy of bone metastasis of cancer.
Collapse
Affiliation(s)
- Morichika Takita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | | | | | | |
Collapse
|
39
|
Singh B, Berry JA, Shoher A, Ayers GD, Wei C, Lucci A. COX-2 involvement in breast cancer metastasis to bone. Oncogene 2007; 26:3789-96. [PMID: 17213821 DOI: 10.1038/sj.onc.1210154] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclooxygenase-2 (COX-2) is expressed in 40% of human invasive breast cancers. Bone is the predominant site of metastasis in case of breast cancer. We investigated the role of COX-2 in a suitable mouse model of breast cancer metastasis to bone using the whole-body luciferase imaging of cancer cells. We provide several lines of evidence that COX-2 produced in breast cancer cells is important for bone metastasis in this model including (1) COX-2 transfection enhanced the bone metastasis of MDA-435S cells and (2) breast cancer cells isolated and cultured from the bone metastases produced significantly more prostaglandin E(2) (an important mediator of COX-2) than the parental injected cell populations of breast cancer cells. Next, we found that a COX-2 inhibitor, MF-tricyclic, inhibited bone metastasis caused by a bone-seeking clone both in prevention regimen (in which case mice started receiving MF-tricyclic 1 week before the injection of cancer cells) and in treatment regimen (in which case mice received MF-tricyclic after the development of bone metastasis). These studies indicate that COX-2 produced in breast cancer cells may be vital to the development of osteolytic bone metastases in patients with breast cancer, and that COX-2 inhibitors may be useful in halting this process.
Collapse
Affiliation(s)
- B Singh
- Department of Surgical Oncology and Advanced Research Center for Microscopic Disease, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
40
|
Feng R, Anderson G, Xiao G, Elliott G, Leoni L, Mapara MY, Roodman GD, Lentzsch S. SDX-308, a nonsteroidal anti-inflammatory agent, inhibits NF-kappaB activity, resulting in strong inhibition of osteoclast formation/activity and multiple myeloma cell growth. Blood 2006; 109:2130-8. [PMID: 17095620 DOI: 10.1182/blood-2006-07-027458] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple myeloma is characterized by increased osteoclast activity that results in bone destruction and lytic lesions. With the prolonged overall patient survival achieved by new treatment modalities, additional drugs are required to inhibit bone destruction. We focused on a novel and more potent structural analog of the nonsteroidal anti-inflammatory drug etodolac, known as SDX-308, and its effects on osteoclastogenesis and multiple myeloma cells. SDX-101 is another structural analog of etodolac that is already used in clinical trials for the treatment of B-cell chronic lymphocytic leukemia (B-CLL). Compared with SDX-101, a 10-fold lower concentration of SDX-308 induced potent (60%-80%) inhibition of osteoclast formation, and a 10- to 100-fold lower concentration inhibited multiple myeloma cell proliferation. Bone resorption was completely inhibited by SDX-308, as determined in dentin-based bone resorption assays. SDX-308 decreased constitutive and RANKL-stimulated NF-kappaB activation and osteoclast formation in an osteoclast cellular model, RAW 264.7. SDX-308 effectively suppressed TNF-alpha-induced IKK-gamma and IkappaB-alpha phosphorylation and degradation and subsequent NF-kappaB activation in human multiple myeloma cells. These results indicate that SDX-308 effectively inhibits multiple myeloma cell proliferation and osteoclast activity, potentially by controlling NF-kappaB activation signaling. We propose that SDX-308 is a promising therapeutic candidate to inhibit multiple myeloma growth and osteoclast activity and that it should receive attention for further study.
Collapse
Affiliation(s)
- Rentian Feng
- Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, PA 15232, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Makrygiannakis D, af Klint E, Catrina SB, Botusan IR, Klareskog E, Klareskog L, Ulfgren AK, Catrina AI. Intraarticular corticosteroids decrease synovial RANKL expression in inflammatory arthritis. ACTA ACUST UNITED AC 2006; 54:1463-72. [PMID: 16646024 DOI: 10.1002/art.21767] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Intraarticular corticosteroids are frequently used as successful adjuvant therapy for inflammatory arthritides, but little is known about their effects on molecules that regulate bone biology. We undertook this study to investigate the effect of intraarticular corticosteroids on the synovial expression of RANKL and osteoprotegerin (OPG). METHODS We evaluated RANKL, OPG, and surface marker expression by immunohistochemical methods in synovial knee biopsy samples obtained from 13 patients with inflammatory arthritis before and 2 weeks following intraarticular injection of triamcinolone hexacetonide. We further investigated the effect of dexamethasone (DEX) on RANKL expression by lymphocytes from rheumatoid arthritis synovial fluids (RA SF), using flow cytometric analysis. Finally, we evaluated the in vitro effect of DEX on RANKL and OPG expression in osteoblast-like cells, by Western blotting. RESULTS Intraarticular corticosteroids induced a decrease in the number of synovial T cells without influencing the number of macrophages, evaluated as both CD68+ and CD163+ cells. This change was paralleled by a decrease of synovial RANKL expression with a concomitant reduction of the RANKL:OPG ratio. DEX down-regulated RANKL expression on lymphocytes derived from RA SF. Moreover, in vitro pretreatment of osteoblast-like cells with tumor necrosis factor favored an antiresorptive effect of DEX treatment through a similar down-regulation of RANKL expression. CONCLUSION The decrease in inflammation attributed to intraarticular corticosteroids is accompanied by down-modulation of bone destruction markers. These findings offer a rationale for the beneficial effect of corticosteroids on joint erosion in arthritis.
Collapse
|
42
|
Ono K, Kamiya S, Akatsu T, Nakamura C, Li M, Amizuka N, Matsumoto K, Nakamura T, Kugai N, Wada S. Involvement of hepatocyte growth factor in the development of bone metastasis of a mouse mammary cancer cell line, BALB/c-MC. Bone 2006; 39:27-34. [PMID: 16459153 DOI: 10.1016/j.bone.2005.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 11/29/2005] [Accepted: 12/07/2005] [Indexed: 12/27/2022]
Abstract
Some cancers frequently affect the skeleton, and the bone microenvironment supports growth of certain cancer cells. After tumors metastasize to bone, they stimulate osteoclastogenesis and expand in the bone tissue. Hepatocyte growth factor (HGF), which was originally identified as a potent mitogen for hepatocytes, promotes tumor growth, invasion and metastasis. HGF is mainly produced by cells of mesenchymal origin, and osteoblasts/osteocytes and bone marrow stromal cells originate from mesenchymal cells. However, it is not clear what effect HGF has on tumor progression in bone metastasis. In the present study, we investigated the roles of HGF in bone metastasis using the mouse mammary cancer cell line BALB/c-MC. Cancer cells injected into hearts of mice metastasized to bone in their hind limbs. HGF immunoreactivity was detected in the stroma surrounding the tumor nests, and blood vessels expressing CD31 (a marker of endothelial cells) were observed in the HGF-positive area. To identify the cells producing HGF, we measured concentration of HGF in culture media. HGF concentration was elevated in osteoblast cultures (3.13+/-0.25 ng/ml), whereas HGF was undetectable (<0.4 ng/ml) in BALB/c-MC and bone marrow cell cultures. HGF concentration in osteoblast cultures increased 2.5-fold in response to 10(-6) M PGE(2). Addition of HGF to BALB/c-MC cultures caused doubling of the cell number. Moreover, Western blot analysis revealed expression of c-Met/HGF receptor by BALB/c-MC. In the Matrigel invasion chamber assay, addition of HGF to the bottom well increased the rate at which BALB/c-MC invaded the bottom well through the membrane. Furthermore, when osteoblasts were cultured in the bottom well, the number of BALB/c-MC cells that invaded the bottom well through the membrane increased 3.7-fold, compared to assays without osteoblasts. Addition of NK4, an inhibitor of HGF, completely abolished the enhancement of the invasive potential of the BALB/c-MC cells in the presence of osteoblasts. These findings suggest that HGF produced by osteoblasts induces migration of cancer cells from sinusoidal capillaries to bone marrow space and stimulates growth of cancer cells in the bone microenvironment. Thus, osteoblasts appear to promote bone metastasis of some cancers via HGF-c-Met signaling.
Collapse
Affiliation(s)
- Katsuhiro Ono
- Department of Clinical Sciences, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu XH, Kirschenbaum A, Yao S, Levine AC. The role of the interleukin-6/gp130 signaling pathway in bone metabolism. VITAMINS AND HORMONES 2006; 74:341-55. [PMID: 17027522 DOI: 10.1016/s0083-6729(06)74014-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xin-Hua Liu
- Department of Medicine, Division of Endocrinology, Diabetes and Bone Diseases, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Some of the most common human cancers, including breast cancer, prostate cancer, and lung cancer, metastasize with avidity to bone. What is the basis for their preferential growth within the bone microenvironment? Bidirectional interactions between tumor cells and cells that make up bone result in a selective advantage for tumor growth and can lead to bone destruction or new bone matrix deposition. This review discusses our current understanding of the molecular components and mechanisms that are responsible for those interactions.
Collapse
Affiliation(s)
- Juan Juan Yin
- Cell and Cancer Biology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
45
|
Liu XH, Kirschenbaum A, Yao S, Levine AC. Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Endocrinology 2005; 146:1991-8. [PMID: 15618359 DOI: 10.1210/en.2004-1167] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The osteoprotegerin (OPG)/receptor activator of nuclear factor-kappaB ligand (RANKL)/receptor activator of nuclear factor-kappaB (RANK) system is the dominant and final mediator of osteoclastogenesis. Abnormalities of this system have been implicated in the pathogenesis of many skeletal diseases. Cyclooxygenase (COX)-2 and prostaglandin (PG)E(2), a major eicosanoid product of the COX-2-catalyzed pathway, play key roles in normal bone tissue remodeling. PGE(2) exerts its actions by binding and activating the E series of prostaglandin (EP) receptor. Activation of EP(2) and EP(4) receptors is associated with PGE(2)-induced osteoclast differentiation. IL-6, a major proinflammatory cytokine, has also been reported to induce osteoclast differentiation. Although interactions between the COX-2/PGE(2) and IL-6 systems have been described in bone cells, the mechanisms underlying these cooperative signaling pathways and the possible involvement of the OPG/RANKL/RANK system have not been fully elucidated. We demonstrate that COX-2, PGE(2), and IL-6 stimulate osteoblast growth and osteoclast differentiation. Effects on osteoclast differentiation, particularly with IL-6, were most marked when osteoclast precursor cells were grown in coculture with osteoblasts, indicating a possible role of the RANK/RANKL/OPG system. COX-2 and PGE(2) stimulated osteoclastogenesis through inhibition of OPG secretion, stimulation of RANKL production by osteoblasts, and up-regulation of RANK expression in osteoclasts. PGE(2) stimulated IL-6 secretion by bone cells, whereas COX-2 inhibitors decreased this same parameter. IL-6, in turn, increased PGE(2) secretion, COX-2, and EP receptor subtype expression in bone cells. Finally, IL-6 was the mediator of PGE(2)-induced suppression of OPG production by osteoblasts. These findings provide evidence for cross-talk between the PGE(2) and IL-6 signaling enhance osteoclast differentiation via effects on the OPG/RANKL/RANK system in bone cells.
Collapse
Affiliation(s)
- Xin-Hua Liu
- Department of Medicine, Box 1055, Annenberg Building, Room 23-78, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA.
| | | | | | | |
Collapse
|
46
|
Inoue D, Kido S, Matsumoto T. Transcriptional induction of FosB/DeltaFosB gene by mechanical stress in osteoblasts. J Biol Chem 2004; 279:49795-803. [PMID: 15383527 DOI: 10.1074/jbc.m404096200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mechanical stress to bone plays a critical role in maintaining bone mass and strength. However, the molecular mechanism of mechanical stress-induced bone formation is not fully understood. In the present study, we demonstrate that FosB and its spliced variant DeltaFosB, which is known to increase bone mass by stimulating bone formation in vivo, is rapidly induced by mechanical loading in mouse hind limb bone in vivo and by fluid shear stress (FSS) in mouse calvarial osteoblasts in vitro both at the mRNA and protein levels. FSS induction of FosB/DeltaFosB gene expression was dependent on gadlinium-sensitive Ca(2+) influx and subsequent activation of ERK1/2. Analysis of the mouse FosB/DeltaFosB gene upstream regulatory region with luciferase reporter gene assays revealed that the FosB/DeltaFosB induction by FSS occurred at the transcriptional level and was conferred by a short fragment from -603 to -327. DNA precipitation assays and DNA decoy experiments indicated that ERK-dependent activation of CREB binding to a CRE/AP-1 like element (designated "CRE2") at the position of -413 largely contributed to the transcriptional effects of FSS. These results suggest that DeltaFosB participates in mechanical stress-induced intracellular signaling cascades that activate the osteogenic program in osteoblasts.
Collapse
Affiliation(s)
- Daisuke Inoue
- Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Medicine, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | | | | |
Collapse
|
47
|
Petersson U, Somogyi E, Reinholt FP, Karlsson T, Sugars RV, Wendel M. Nucleobindin is produced by bone cells and secreted into the osteoid, with a potential role as a modulator of matrix maturation. Bone 2004; 34:949-60. [PMID: 15193541 DOI: 10.1016/j.bone.2004.01.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 12/19/2003] [Accepted: 01/14/2004] [Indexed: 11/20/2022]
Abstract
Nucleobindin (Nuc), also known as CALNUC, is a Ca(2+)-binding protein, located in the nucleus, the Golgi apparatus and the endoplasmic reticulum (ER). The presence of a signal sequence in Nuc suggests secretion from the cell and it has been found in bone extracellular matrix. Within the present study, molecular biological and morphological methods were combined to evaluate the synthesis and distribution of Nuc in and around cells of rat metaphyseal and calvarial bone. Northern blot analysis and in situ hybridization of bone tissues confirmed that the protein was a product of bone cells. By electron microscopy, immunolabeling for Nuc was seen in osteoid of newly formed bone, on all surfaces facing the various bone cells and also in compact bone. Intracellularly, the gold particles were found in the rough ER of osteoblasts, which suggested synthesis of the protein by these cells. Compared to bone sialoprotein and osteopontin, Nuc demonstrated different localization pattern in bone trabeculae, with the majority of labeling restricted to nonmineralized osteoid. Moreover, the role of Nuc during the mineralization process was investigated in rat calvaria-derived primary osteoblasts grown under osteogenic conditions. Semiquantitative RT-PCR and Northern blot analysis showed Nuc expression to be low during cell proliferation, upregulated during differentiation and matrix maturation, but subsequently downregulated during mineralization. In summary, our data show that Nuc was synthesized by osteoblasts and osteocytes, and secreted into the osteoid, suggesting a role as a modulator of matrix maturation in the mineralization process in bone.
Collapse
Affiliation(s)
- Ulrika Petersson
- Center for Oral Biology, Institute of Odontology, Karolinska Institutet, SE-141 04 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Watkins BA, Li Y, Lippman HE, Reinwald S, Seifert MF. A test of Ockham's razor: implications of conjugated linoleic acid in bone biology. Am J Clin Nutr 2004; 79:1175S-1185S. [PMID: 15159254 DOI: 10.1093/ajcn/79.6.1175s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The philosopher William of Ockham is recognized for the maxim that an assumption introduced to explain a phenomenon must not be multiplied beyond necessity, or that the simplest explanation is probably the correct explanation. The general truth is that conjugated linoleic acids (CLAs) are nutrients. However, the demonstration that these isomers of octadecadienoic acid protect against cancers in rodents stimulated curiosity that directed significant resources to characterize the biological functions of these fatty acids in cell and animal models. The benefits to human subjects given supplements of CLA were at best modest. The disappointing results in humans should be taken as an opportunity to critically evaluate all findings of CLA use and to consolidate the common actions of this nutrient so that future investigations focus on specific isomers and the most reasonable mechanisms. As such, the principal and consistently reported benefits of CLA have been in improving cancer outcomes, reducing body fat in growing animals, and modulating cell functions. Recognizing where related actions of CLA converge in specific disease conditions and physiologic states is how research efforts should be directed to minimize the pursuit of superfluous theories. Here, we briefly review the current biological effects of CLA and attempt to integrate their potential effect on the physiology and health of the skeletal system. Thus, the purpose of this review is to advance the science of CLA and to identify areas of research in which these nutrients affect bone metabolism and skeletal health.
Collapse
Affiliation(s)
- Bruce A Watkins
- Department of Food Science, Lipid Chemistry and Molecular Biology Laboratory, Purdue University, West Lafayette, IN 47907-2009, USA.
| | | | | | | | | |
Collapse
|
49
|
Ono K, Akatsu T, Kugai N, Pilbeam CC, Raisz LG. The effect of deletion of cyclooxygenase-2, prostaglandin receptor EP2, or EP4 in bone marrow cells on osteoclasts induced by mouse mammary cancer cell lines. Bone 2003; 33:798-804. [PMID: 14623055 DOI: 10.1016/s8756-3282(03)00264-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The inducible prostaglandin (PG) synthesis enzyme, cyclooxygenase-2 (COX-2), is involved in osteoclast (OC) formation in cocultures of mouse mammary cancer cell lines (MMT060562 or BALB/c-MC) and bone marrow cells through production of PGE(2). There are four PGE(2) receptors but only the EP2 and EP4 receptors are reported to be important for OC formation. We have investigated the role of COX-2, EP2 receptor, and EP4 receptor in marrow cells for osteoclastogenesis in cocultures of cancer cells and bone marrow cells. We cocultured cancer cell lines with bone marrow cells from COX-2 knockout (-/-), EP2 -/- or EP4 -/- mice compared to wild-type mice. In addition, an EP4 receptor antagonist (EP4 RA) was added in some cocultures. Disruption of COX-2 gene in bone marrow cells had no effect on PGE(2) production and OC formation in cocultures with MMT060562, while it abrogated PGE(2) production and OC formation in cocultures with BALB/c-MC. Disruption of the EP2 gene in bone marrow cells had no effect on OC formation in the cocultures, while disruption of the EP4 gene in bone marrow cells abrogated OC formation in the cocultures. Furthermore, EP4 RA suppressed OC formation and prevented the increase in receptor activator of nuclear factor kappaB ligand (RANKL) mRNA levels in the cocultures. We conclude that COX-2 in cancer cells is responsible for PGE(2) and OC production in cocultures with MMT060562, while COX-2 in bone marrow cells, not cancer cells, is responsible for PGE(2) and OC production in cocultures with BALB/c-MC, and EP4 receptors are essential for OC formation in both cocultures.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Cell Line, Tumor
- Coculture Techniques/methods
- Cyclooxygenase 2
- Gene Deletion
- Isoenzymes/deficiency
- Isoenzymes/genetics
- Male
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Osteoclasts/metabolism
- Prostaglandin-Endoperoxide Synthases/deficiency
- Prostaglandin-Endoperoxide Synthases/genetics
- Receptors, Prostaglandin E/deficiency
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
Collapse
Affiliation(s)
- Katsuhiro Ono
- Department of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | | | | | | | |
Collapse
|
50
|
Denoyelle C, Hong L, Vannier JP, Soria J, Soria C. New insights into the actions of bisphosphonate zoledronic acid in breast cancer cells by dual RhoA-dependent and -independent effects. Br J Cancer 2003; 88:1631-40. [PMID: 12771933 PMCID: PMC2377117 DOI: 10.1038/sj.bjc.6600925] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Revised: 03/03/2003] [Accepted: 03/04/2003] [Indexed: 12/02/2022] Open
Abstract
Zoledronic acid (ZOL) is a nitrogen-containing bisphosphonate and its use in reducing osteoporosis and cancer-induced osteolysis is increasing. Recent findings indicated that ZOL has a direct effect on cancer cells. In this study, the effect of ZOL was examined on the aggressive MDA-MB-231 breast cancer cell line. ZOL induces an important inhibition of cell invasion at low concentrations (1 microM). This is not explained by modifications of proteases involved in cell invasiveness (matrix metalloproteinases and urokinase-type plasminogen activator), but by a disorganisation of actin cytoskeleton due to RhoA inhibition related to its defective prenylation as it was reversed by geranylgeraniol (GGOH) and mimicked by the Rho selective inhibitor C3 exoenzyme. In addition, ZOL inhibits the chemotactic effect induced by stromal cell-derived factor 1(SDF-1), a chemokine greatly involved in cancer metastasis to bone. This effect is related to both reduction of cell motility induced by RhoA inhibition and to a decreased expression of CXCR-4, the SDF-1 receptor. Finally, ZOL reduces Cox-2 expression and, consequently, the secretion of prostaglandins E2 (PGE2) in a RhoA-independent manner. This inhibition could contribute to bone protection in breast cancers because PGE2 stimulates osteoclast-mediated bone resorption. In summary, new insights in the mechanism of ZOL action on aggressive breast cancer cells are demonstrated and could explain its beneficial action in both the reduction of osteolysis and prevention of metastasis.
Collapse
Affiliation(s)
- C Denoyelle
- Laboratoire DIFEMA, Groupe de Recherche MERCI, UFR de Medecine et de Pharmacie, 76183 Rouen, France
| | - L Hong
- Laboratoire DIFEMA, Groupe de Recherche MERCI, UFR de Medecine et de Pharmacie, 76183 Rouen, France
| | - J-P Vannier
- Laboratoire DIFEMA, Groupe de Recherche MERCI, UFR de Medecine et de Pharmacie, 76183 Rouen, France
| | - J Soria
- Laboratoire de Biochimie Sainte Marie, Hôtel Dieu, 75004 Paris, France
| | - C Soria
- Laboratoire DIFEMA, Groupe de Recherche MERCI, UFR de Medecine et de Pharmacie, 76183 Rouen, France
- INSERM U.553, Hôpital St Louis, 75010 Paris, France
| |
Collapse
|