1
|
Li X, Zhang J, Zhang Y, Guo L, Gao M, Wang Y, Qiu W, Yuan Y, Zhu J, Liu B, Xiong H, Xu T, Xu R. Conjugated therapy with coaxially printed neural stem cell-laden microfibers and umbilical cord mesenchymal stem cell derived exosomes on complete transactional spinal cord defects. Mater Today Bio 2025; 32:101639. [PMID: 40160243 PMCID: PMC11953994 DOI: 10.1016/j.mtbio.2025.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Motor function recovery after complete spinal cord injury remained as a challenge in medical field, while one of the key approaches is promoting the local microenvironments. In this research, we performed a conjugated therapy by transplantation of neural stem cell (NSC) scaffolds and umbilical cord mesenchymal stem cell derived exosomes (ucMSC-exos) for the treatment of complete transactional spinal cord injury (SCI). We first demonstrated the anti-inflammatory effects of ucMSC-exos in vitro and found that ucMSC-exos could regulate microglia polarization from M1 to M2, an anti-inflammatory phenotype. Besides, ucMSC-exos also promoted NSC proliferation and neural differentiation during in vitro culturing. On the other hand, core-shell hydrogel microfibers were used as transplantation scaffolds for both small and large SCI defects. The core-shell microfibers could carry large amounts of NSCs in the core portion and the shell portion is highly permeable for nutrient and metabolite transportation. In in vivo experiments, we found that conjugated transplantation of ucMSC-exos and NSC microfibers could decreased inflammatory cytokines at lesion sites, gave rise to more neurons and promoted angiogenesis, thus comprehensively improved the local microenvironment while compared with transplantation of NSC scaffolds only. These beneficial results were in accordance with those in vitro experiments and further led to better locomotor function recovery. In summary, this research has demonstrated that that conjugated transplantation of ucMSC-exos and NSC microfibers could make a potential tool for complete SCI repair.
Collapse
Affiliation(s)
- Xinda Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Jin Zhang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Yi Zhang
- Department of Research and Development, Huaqing Zhimei (Shenzhen) Biotechnology Co., Ltd., Shenzhen, 518107, People's Republic of China
| | - Lili Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Mingjun Gao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Yangyang Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Wenqiao Qiu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Ying Yuan
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Jianwei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Boxun Liu
- Department of Research and Development, Huaqing Zhimei (Shenzhen) Biotechnology Co., Ltd., Shenzhen, 518107, People's Republic of China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Tao Xu
- Center for Bio-intelligent Manufacturing and Living Matter Bioprinting, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, 518057, People's Republic of China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
2
|
Kang M, Choi J, Han J, Araki T, Kim SW, Ryu HH, Kim MG, Kim S, Jang H, Kim SY, Hwang KD, Kim S, Yoo M, Lee J, Kim K, Park P, Choi JE, Han DH, Kim Y, Kim J, Chang S, Kaang BK, Ko JM, Cheon KA, An JY, Kim SJ, Park H, Neel BG, Kim CH, Lee YS. Aberrant ERK signaling in astrocytes impairs learning and memory in RASopathy-associated BRAF mutant mouse models. J Clin Invest 2025; 135:e176631. [PMID: 39964758 PMCID: PMC11996877 DOI: 10.1172/jci176631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
RAS/MAPK pathway mutations often induce RASopathies with overlapping features, such as craniofacial dysmorphology, cardiovascular defects, dermatologic abnormalities, and intellectual disabilities. Although B-Raf proto-oncogene (BRAF) mutations are associated with cardio-facio-cutaneous (CFC) syndrome and Noonan syndrome, it remains unclear how these mutations impair cognition. Here, we investigated the underlying neural mechanisms using several mouse models harboring a gain-of-function BRAF mutation (K499E) discovered in RASopathy patients. We found expressing BRAF K499E (KE) in neural stem cells under the control of a Nestin-Cre promoter (Nestin;BRAFKE/+) induced hippocampal memory deficits, but expressing it in excitatory or inhibitory neurons did not. BRAF KE expression in neural stem cells led to aberrant reactive astrogliosis, increased astrocytic Ca2+ fluctuations, and reduced hippocampal long-term depression (LTD) in mice. Consistently, 3D human cortical spheroids expressing BRAF KE also showed reactive astrogliosis. Astrocyte-specific adeno-associated virus-BRAF KE (AAV-BRAF KE) delivery induced memory deficits and reactive astrogliosis and increased astrocytic Ca2+ fluctuations. Notably, reducing extracellular signal-regulated kinase (ERK) activity in astrocytes rescued the memory deficits and altered astrocytic Ca2+ activity of Nestin;BRAFKE/+ mice. Furthermore, reducing astrocyte Ca2+ activity rescued the spatial memory impairments of BRAF KE-expressing mice. Our results demonstrate that ERK hyperactivity contributes to astrocyte dysfunction associated with Ca2+ dysregulation, leading to the memory deficits of BRAF-associated RASopathies.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihye Choi
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeongho Han
- Research Group of Neurovascular Unit, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Toshiyuki Araki
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Soo-Whee Kim
- Department of Integrated Biomedical and Life Science, and
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | | | - Min-Gyun Kim
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyeon Kim
- Department of Integrated Biomedical and Life Science, and
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Hanbyul Jang
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun Yong Kim
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Doo Hwang
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soobin Kim
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myeongjong Yoo
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaegeon Lee
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kitae Kim
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pojeong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ja Eun Choi
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dae Hee Han
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yujin Kim
- Department of Integrated Biomedical and Life Science, and
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Jeongyeon Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Sunghoe Chang
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jung Min Ko
- Department of Pediatrics, Division of Clinical Genetics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Keun-Ah Cheon
- Department of Child and Adolescent Psychiatry, Severance Hospital, and
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, and
| | - Sang Jeong Kim
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyungju Park
- Research Group of Neurovascular Unit, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Chul Hoon Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Seok Lee
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Tan Y, Ren W, Zhou W, Qin X, Lei G, Zhou W, Liu B, Li Y, Hou Y, Kang J, Li X, Hong Y, He Z, Wei G, Zhu X. C19orf66 restricts Coxsackievirus B infection by inducing lysosomal degradation of the viral proteins 3D pol and 2A pro and exhibits neuroprotective effects in CVB-challenged mice. Int Immunopharmacol 2025; 151:114343. [PMID: 40024214 DOI: 10.1016/j.intimp.2025.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Coxsackievirus B (CVB) represents one of the significant human pathogens that have been linked to several central nervous system disorders, particularly common among newborns and children. The annual outbreaks of CVB infection, pose a significant public health challenge and burden due to the absence of specific antiviral drugs and vaccines. However, the neuropathology of CVB infection remains elusive. The type I interferon response is well characterized for its role in controlling virus-induced neuropathogenesis. C19orf66 is known to be a potent interferon-stimulated gene with broad-spectrum antiviral activity, exerting its effects through diverse underlying molecular mechanisms. In this work, our study demonstrated that CVB induces the upregulation of C19orf66 both in host cells and in mice. Knockdown and overexpression of C19orf66 in CVB3-infected cells suggested that this factor could significantly suppress CVB3 replication. Our findings further revealed an intriguing mechanism by which C19orf66 could interact with the non-structural proteins 3Dpol and 2Apro of CVB3, and promote the degradation of the viral 3Dpol and 2Apro through a lysosome-dependent pathway. Furthermore, the zinc finger domain and amino acids 164-199 of C19orf66 were crucial for the interaction between C19orf66 and 3Dpol and 2Apro of CVB3. In a mouse model of CVB neurological infection, C19orf66 knockout mice exhibited reduced survival, exacerbated neuropathological outcomes, and increased viral replication in the brain. Collectively, these findings demonstrated that C19orf66 is an important antiviral effector that contributes to host protection against CVB infection and CVB-induced neuropathological disease.
Collapse
Affiliation(s)
- Yongyao Tan
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weishu Ren
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiwei Zhou
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xingliang Qin
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Gewen Lei
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenle Zhou
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Baichen Liu
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangfan Li
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuming Hou
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaqi Kang
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinyan Li
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu Hong
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China.
| | - Zhenjian He
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guohong Wei
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Xun Zhu
- Key Laboratory of Tropical Disease Control, (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Jin L, Qin Y, Zhao Y, Zhou X, Zeng Y. Endothelial cytoskeleton in mechanotransduction and vascular diseases. J Biomech 2025; 182:112579. [PMID: 39938443 DOI: 10.1016/j.jbiomech.2025.112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
The cytoskeleton is an important structural component that regulates various aspects of cell morphology, movement, and intracellular signaling. It plays a pivotal role in the cellular response to biomechanical stimuli, particularly in endothelial cells, which are critical for vascular homeostasis and the pathogenesis of cardiovascular diseases. Mechanical forces, such as shear and tension, activate intracellular signaling cascades that regulate transcription, translation, and cellular behaviors. Despite extensive research into cytoskeletal functions, the precise mechanisms by which the cytoskeleton transduces mechanical signals remain incompletely understood. This review focuses on the role of cytoskeletal components in membrane, cytoplasm, and nucleus in mechanotransduction, with an emphasis on their structure, mechanical and biological behaviors, dynamic interactions, and response to mechanical forces. The collaboration between membrane cytoskeleton, cytoplasmic cytoskeleton, and nucleoskeleton is indispensable for endothelial cells to respond to mechanical stimuli. Understanding their mechanoresponsive mechanisms is essential for advancing therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Linlu Jin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China
| | - Yixue Qin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China
| | - Yunran Zhao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China
| | - Xintong Zhou
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China.
| |
Collapse
|
5
|
Mamilos A, Winter L, Wiedenroth CB, Niedermair T, Zimmer S, Schmitt VH, Keller K, Topolčan O, Karlíková M, Rupp M, Brochhausen C, Cotarelo C. Nestin as a Marker Beyond Angiogenesis-Expression Pattern in Haemangiomas and Lymphangiomas. Biomedicines 2025; 13:565. [PMID: 40149541 PMCID: PMC11940071 DOI: 10.3390/biomedicines13030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The intermediate filament nestin was first described in stem and progenitor cells of neural and mesenchymal origin. Additionally, it is expressed in endothelial cells during wound healing and tumorigenesis. Thus, nestin is widely regarded as a marker for proliferative endothelium. However, little is known about its role in lymphatic endothelium. Methods: Here, we analyzed the expression of nestin in the endothelium of ten human haemangiomas and ten lymphangiomas in situ by immunohistochemistry. This study aimed to investigate the expression of nestin in haemangiomas and lymphangiomas to determine its potential role as a vascular marker. Specifically, we aimed to assess whether nestin expression is restricted to proliferating endothelial cells or also present in non-proliferative blood vessels. Results: Immunohistochemically, haemangiomas were positive for CD31 but negative for D2-40. The endothelial cells within these lesions showed a homogeneous expression of nestin. In contrast, the endothelium of lymphangiomas reacted positively for D2-40 and CD31 but did not show any nestin expression. Additionally, only a few endothelial cells of capillary haemangiomas showed a Ki-67 positivity. Conclusions: The differential expression of nestin in haemangiomas and lymphangiomas indicates a specificity of nestin for the endothelium of blood vessels. The Ki-67 negativity in the majority of the endothelial cells reveals the proliferative quiescence of these cells. These findings indicate that nestin could be used as a marker to differentiate between blood and lymphatic vessels.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
- Department of Pathology, German Oncology Centre, 4108 Limassol, Cyprus
- Medical Faculty, European University of Cyprus, 2404 Nicosia, Cyprus
| | - Lina Winter
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | | | - Tanja Niedermair
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
| | - Stefanie Zimmer
- Institute of Pathology and Tissue Bank, University Medical Center Mainz, 55131 Mainz, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Karsten Keller
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Medical Clinic VII, Department of Sports Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ondrej Topolčan
- Central Laboratory for Immunoanalysis, Faculty of Medicine, Pilsen Charles University, 323 00 Pilsen, Czech Republic
| | - Marie Karlíková
- Central Laboratory for Immunoanalysis, Faculty of Medicine, Pilsen Charles University, 323 00 Pilsen, Czech Republic
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Cristina Cotarelo
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
6
|
Sutton PJ, Mosqueda N, Brownlee CW. Palmitoylated Importin α Regulates Mitotic Spindle Orientation Through Interaction with NuMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.25.620315. [PMID: 39484393 PMCID: PMC11527331 DOI: 10.1101/2024.10.25.620315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regulation of cell division orientation is a fundamental process critical to differentiation and tissue homeostasis. Microtubules emanating from the mitotic spindle pole bind a conserved complex of proteins at the cell cortex which orients the spindle and ultimately the cell division plane. Control of spindle orientation is of particular importance in developing tissues, such as the developing brain. Misorientation of the mitotic spindle and thus subsequent division plane misalignment can contribute to improper segregation of cell fate determinants in developing neuroblasts, leading to a rare neurological disorder known as microcephaly. We demonstrate that the nuclear transport protein importin α, when palmitoylated, plays a critical role in mitotic spindle orientation through localizing factors, such as NuMA, to the cell cortex. We also observe craniofacial developmental defects in Xenopus laevis when importin α palmitoylation is abrogated, including smaller head and brains, a hallmark of spindle misorientation and microcephaly. These findings characterize not only a role for importin α in spindle orientation, but also a broader role for importin α palmitoylation which has significance for many cellular processes.
Collapse
|
7
|
Hosseini K, Cediel-Ulloa A, AL-Sabri MH, Forsby A, Fredriksson R. Assessing the Neurodevelopmental Impact of Fluoxetine, Citalopram, and Paroxetine on Neural Stem Cell-Derived Neurons. Pharmaceuticals (Basel) 2024; 17:1392. [PMID: 39459031 PMCID: PMC11510426 DOI: 10.3390/ph17101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Many pregnant women globally suffer from depression and are routinely prescribed selective serotonin reuptake inhibitors (SSRIs). These drugs function by blocking the re-uptake of serotonin by the serotonin transporter (SERT) into neurons, resulting in its accumulation in the presynaptic cleft. Despite a large amount of research suggesting a potential link to neurodevelopmental disorders in children whose mothers took these drugs during pregnancy, their possible adverse effects are still debated, and results are contradictory. On the other hand, there is an immediate need for improved cell-based models for developmental neurotoxicity studies (DNT) to minimize the use of animals in research. METHODS In this study, we aimed to assess the effects of clinically relevant concentrations of paroxetine (PAR), fluoxetine (FLX), and citalopram (CIT)-on maturing neurons derived from human neural stem cells using multiple endpoints. RESULTS Although none of the tested concentrations of FLX, CIT, or PAR significantly affected cell viability, FLX (10 µM) exhibited the highest reduction in viability compared to the other drugs. Regarding neurite outgrowth, CIT did not have a significant effect. However, FLX (10 µM) significantly reduced both mean neurite outgrowth and mean processes, PAR significantly reduced mean processes, and showed a trend of dysregulation of multiple genes associated with neuronal development at therapeutic-relevant serum concentrations. CONCLUSIONS Transcriptomic data and uptake experiments found no SERT activity in the system, suggesting that the adverse effects of FLX and PAR are independent of SERT.
Collapse
Affiliation(s)
- Kimia Hosseini
- Department of Pharmaceutical Bioscience, Uppsala University, 751 24 Uppsala, Sweden (R.F.)
| | - Andrea Cediel-Ulloa
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Mohamed H. AL-Sabri
- Department of Pharmaceutical Bioscience, Uppsala University, 751 24 Uppsala, Sweden (R.F.)
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Uppsala University, 751 24 Uppsala, Sweden (R.F.)
| |
Collapse
|
8
|
Shalannandia WA, Chou Y, Bashari MH, Khairani AF. Intermediate Filaments in Breast Cancer Progression, and Potential Biomarker for Cancer Therapy: A Narrative Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:689-704. [PMID: 39430570 PMCID: PMC11488350 DOI: 10.2147/bctt.s489953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Intermediate filaments are one of the three components of the cytoskeletons, along with actin and microtubules. The intermediate filaments consist of extensive variations of structurally related proteins with specific expression patterns in cell types. The expression pattern alteration of intermediate filaments is frequently correlated with cancer progression, specifically with the epithelial-to-mesenchymal transition process closely related to increasing cellular migration and invasion. This review will discuss the involvement of cytoplasmic intermediate filaments, specifically vimentin, nestin, and cytokeratin (CK5/CK6, CK7, CK8/CK18, CK17, CK19, CK20, CSK1), in breast cancer progression and as prognostic or diagnostic biomarkers. The potential for drug development targeting intermediate filaments in cancer will be reviewed.
Collapse
Affiliation(s)
- Widad Aghnia Shalannandia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Yoan Chou
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Astrid Feinisa Khairani
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| |
Collapse
|
9
|
Maytalman E, Nemutlu Samur D. Neuroendocrine modulation by metamizole and indomethacin: investigating the impact on neuronal markers and GnRH release. Endocrine 2024; 85:1327-1336. [PMID: 38625503 DOI: 10.1007/s12020-024-03822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Some evidence that non-steroidal anti-inflammatory drugs have neuroprotective effects indicates their potential for use in a new field. However, their effects on hormone secretion have yet to be adequately discovered. Therefore, we aimed to evaluate the effects of metamizole and indomethacin on neuronal markers as well as the GnRH expression in the GT1-7 cell line. METHODS The effects of these drugs on proliferation were evaluated by MTT analysis. The effect of 10-50-250 µM concentrations of the drugs also on the expression of neuronal factors and markers, including NGF, nestin and βIII Tubulin, and additionally GnRH, was determined by the RT-qPCR method. RESULTS NGF and nestin mRNA expressions were increased in all concentrations of both metamizole and indomethacin. No changes were detected in βIII Tubulin. While metamizole showed an increase in GnRH mRNA expression, there was no change at 10 and 50 µM concentrations of indomethacin, but a remarkable decrease was observed at 250 µM concentrations. CONCLUSIONS The results of our study showing an increase in the expression of neuronal factors reveal that metamizole and indomethacin may have possible neuroprotective effects. Moreover, the effects on the GnRH expression appear to be different. Animal models are required to confirm these effects of NSAIDs on neurons.
Collapse
Affiliation(s)
- Erkan Maytalman
- Department of Pharmacology, School of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey.
| | - Dilara Nemutlu Samur
- Department of Pharmacology, School of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| |
Collapse
|
10
|
Bálentová S, Hnilicová P, Kalenská D, Baranovičová E, Muríň P, Hajtmanová E. Radiation-induced bystander effect on the brain after fractionated spinal cord irradiation of aging rats. Neurochem Int 2024; 176:105726. [PMID: 38556052 DOI: 10.1016/j.neuint.2024.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
We investigated the influence of the so-called bystander effect on metabolic and histopathological changes in the rat brain after fractionated spinal cord irradiation. The study was initiated with adult Wistar male rats (n = 20) at the age of 9 months. The group designated to irradiation (n = 10) and the age-matched control animals (n = 10) were subjected to an initial measurement using in vivo proton magnetic resonance spectroscopy (1H MRS) and magnetic resonance imaging (MRI). After allowing the animals to survive until 12 months, they received fractionated spinal cord irradiation with a total dose of 24 Gy administered in 3 fractions (8 Gy per fraction) once a week on the same day for 3 consecutive weeks. 1H MRS and MRI of brain metabolites were performed in the hippocampus, corpus striatum, and olfactory bulb (OB) before irradiation (9-month-old rats) and subsequently 48 h (12-month-old) and 2 months (14-month-old) after the completion of irradiation. After the animals were sacrificed at the age of 14 months, brain tissue changes were investigated in two neurogenic regions: the hippocampal dentate gyrus (DG) and the rostral migratory stream (RMS). By comparing the group of 9-month-old rats and individuals measured 48 h (at the age of 12 months) after irradiation, we found a significant decrease in the ratio of total N-acetyl aspartate to total creatine (tNAA/tCr) and gamma-aminobutyric acid to tCr (GABA/tCr) in OB and hippocampus. A significant increase in myoinositol to tCr (mIns/tCr) in the OB persisted up to 14 months of age. Proton nuclear magnetic resonance (1H NMR)-based plasma metabolomics showed a significant increase in keto acids and decreased tyrosine and tricarboxylic cycle enzymes. Morphometric analysis of neurogenic regions of 14-month-old rats showed well-preserved stem cells, neuroblasts, and increased neurodegeneration. The radiation-induced bystander effect more significantly affected metabolite concentration than the distribution of selected cell types.
Collapse
Affiliation(s)
- Soňa Bálentová
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic.
| | - Petra Hnilicová
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4D, 036 01, Martin, Slovak Republic
| | - Dagmar Kalenská
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4D, 036 01, Martin, Slovak Republic
| | - Peter Muríň
- Department of Radiotherapy and Oncology, Martin University Hospital, Kollárova 2, 036 59, Martin, Slovak Republic
| | - Eva Hajtmanová
- Department of Radiotherapy and Oncology, Martin University Hospital, Kollárova 2, 036 59, Martin, Slovak Republic
| |
Collapse
|
11
|
Kakogiannis D, Kourla M, Dimitrakopoulos D, Kazanis I. Reversal of Postnatal Brain Astrocytes and Ependymal Cells towards a Progenitor Phenotype in Culture. Cells 2024; 13:668. [PMID: 38667283 PMCID: PMC11049274 DOI: 10.3390/cells13080668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Astrocytes and ependymal cells have been reported to be able to switch from a mature cell identity towards that of a neural stem/progenitor cell. Astrocytes are widely scattered in the brain where they exert multiple functions and are routinely targeted for in vitro and in vivo reprogramming. Ependymal cells serve more specialized functions, lining the ventricles and the central canal, and are multiciliated, epithelial-like cells that, in the spinal cord, act as bi-potent progenitors in response to injury. Here, we isolate or generate ependymal cells and post-mitotic astrocytes, respectively, from the lateral ventricles of the mouse brain and we investigate their capacity to reverse towards a progenitor-like identity in culture. Inhibition of the GSK3 and TGFβ pathways facilitates the switch of mature astrocytes to Sox2-expressing, mitotic cells that generate oligodendrocytes. Although this medium allows for the expansion of quiescent NSCs, isolated from live rats by "milking of the brain", it does not fully reverse astrocytes towards the bona fide NSC identity; this is a failure correlated with a concomitant lack of neurogenic activity. Ependymal cells could be induced to enter mitosis either via exposure to neuraminidase-dependent stress or by culturing them in the presence of FGF2 and EGF. Overall, our data confirm that astrocytes and ependymal cells retain a high capacity to reverse to a progenitor identity and set up a simple and highly controlled platform for the elucidation of the molecular mechanisms that regulate this reversal.
Collapse
Affiliation(s)
- Dimitrios Kakogiannis
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Michaela Kourla
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Dimitrakopoulos
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ilias Kazanis
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
- School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
12
|
Kim HY, Kang B, Lee PR, Kim K, Hong GS. Expression patterns of Piezo1 in the developing mouse forebrain. Brain Struct Funct 2024; 229:759-773. [PMID: 38411929 DOI: 10.1007/s00429-024-02759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/07/2024] [Indexed: 02/28/2024]
Abstract
Malformation during cortical development can disrupt the balance of excitatory and inhibitory neural circuits, contributing to various psychiatric and developmental disorders. One of the critical factors of cortical neural networks is the fine regulation of neurogenesis through mechanical cues, such as shear stress and substrate stiffness. Piezo1, a mechanically-activated channel, serves as a transducer for these mechanical cues, regulating embryogenesis. However, specific cell-type expression patterns of this channel during cortical development have not yet been characterized. In the present study, we conducted an RNAscope experiment to visualize the location of Piezo1 transcripts with embryonic neuronal/glial lineage cell markers. Our analysis covered coronal sections of the mouse forebrain on embryonic day 12.5 (E12.5), E14.5, E16.5, and E18.5. In addition, applying Yoda1, a specific Piezo1 agonist, evoked distinct calcium elevation in piriform cortices of E16.5 and E18.5 embryonic slices. Furthermore, pharmacological activation or inhibition of this channel significantly modulated the migration of neurosphere-derived cells in vitro. These findings contribute valuable insights to the field of mechanobiology and provide an understanding of the intricate processes underlying embryonic brain development.
Collapse
Affiliation(s)
- Hye Yoon Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| | - Bokeum Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Pa Reum Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Kyungmin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.
| |
Collapse
|
13
|
Łuczyńska K, Zhang Z, Pietras T, Zhang Y, Taniguchi H. NFE2L1/Nrf1 serves as a potential therapeutical target for neurodegenerative diseases. Redox Biol 2024; 69:103003. [PMID: 38150994 PMCID: PMC10788251 DOI: 10.1016/j.redox.2023.103003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023] Open
Abstract
The failure of the proper protein turnover in the nervous system is mainly linked to a variety of neurodegenerative disorders. Therefore, a better understanding of key protein degradation through the ubiquitin-proteasome system is critical for effective prevention and treatment of those disorders. The proteasome expression is tightly regulated by a CNC (cap'n'collar) family of transcription factors, amongst which the nuclear factor-erythroid 2-like bZIP factor 1 (NFE2L1, also known as Nrf1, with its long isoform TCF11 and short isoform LCR-F1) has been identified as an indispensable regulator of the transcriptional expression of the ubiquitin-proteasome system. However, much less is known about how the pivotal role of NFE2L1/Nrf1, as compared to its homologous NFE2L2 (also called Nrf2), is translated to its physiological and pathophysiological functions in the nervous system insomuch as to yield its proper cytoprotective effects against neurodegenerative diseases. The potential of NFE2L1 to fulfill its unique neuronal function to serve as a novel therapeutic target for neurodegenerative diseases is explored by evaluating the hitherto established preclinical and clinical studies of Alzheimer's and Parkinson's diseases. In this review, we have also showcased a group of currently available activators of NFE2L1, along with an additional putative requirement of this CNC-bZIP factor for healthy longevity based on the experimental evidence obtained from its orthologous SKN1-A in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Kamila Łuczyńska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Poland; The Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957, Warsaw, Poland
| | - Zhengwen Zhang
- Laboratory of Neuroscience, Institute of Cognitive Neuroscience and School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, England, United Kingdom
| | - Tadeusz Pietras
- The Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957, Warsaw, Poland; Department of Clinical Pharmacology, Medical University of Lodz, 90-153, Łódź, Poland
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering & Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Poland.
| |
Collapse
|
14
|
Hu J, Wang Z, Gong B, Feng L, Song Y, Zhang S, Wang L, Qu Y, Li G, Zhang L, Zheng C, Du F, Li P, Wang Y. IFN-γ promotes radioresistant Nestin-expressing progenitor regeneration in the developing cerebellum by augmenting Shh ligand production. CNS Neurosci Ther 2024; 30:e14485. [PMID: 37789668 PMCID: PMC10805445 DOI: 10.1111/cns.14485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Patients with brain tumors, especially pediatric brain tumors such as cerebellar medulloblastoma, always suffer from the severe side effects of radiotherapy. Regeneration of neural cells in irradiation-induced cerebellar injury has been reported, but the underlying mechanism remains elusive. METHODS We established an irradiation-induced developing cerebellum injury model in neonatal mice. Microarray, KEGG analysis and semi in vivo slice culture were performed for mechanistic study. RESULTS Nestin-expressing progenitors (NEPs) but not granule neuron precursors (GNPs) were resistant to irradiation and able to regenerate after irradiation. NEPs underwent less apoptosis but similar DNA damage following irradiation compared with GNPs. Subsequently, they started to proliferate and contributed to granule neurons regeneration dependent on the sonic hedgehog (Shh) pathway. In addition, irradiation increased Shh ligand provided by Purkinje cells. And microglia accumulated in the irradiated cerebellum producing more IFN-γ, which augmented Shh ligand production to promote NEP proliferation. CONCLUSIONS NEP was radioresistant and regenerative. IFN-γ was increased post irradiation to upregulate Shh ligand, contributing to NEP regeneration. Our study provides insight into the mechanisms of neural cell regeneration in irradiation injury of the developing cerebellum and will help to develop new therapeutic targets for minimizing the side effects of radiotherapy for brain tumors.
Collapse
Affiliation(s)
- Jian Hu
- Pediatric Cancer Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Zixuan Wang
- Pediatric Cancer Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Biao Gong
- Pediatric Cancer Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Liyuan Feng
- Department of Pharmacognosy and Traditional Chinese Pharmacology, College of PharmacyArmy Medical UniversityChongqingChina
| | - Yan Song
- Pediatric Cancer Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Shuo Zhang
- Pediatric Cancer Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Lin Wang
- Pediatric Cancer Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Yanghui Qu
- Pediatric Cancer Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Gen Li
- Pediatric Cancer Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Li Zhang
- Pediatric Cancer Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Chaonan Zheng
- Pediatric Cancer Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Fang Du
- Pediatric Cancer Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Peng Li
- Department of Pharmacognosy and Traditional Chinese Pharmacology, College of PharmacyArmy Medical UniversityChongqingChina
| | - Yuan Wang
- Pediatric Cancer Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| |
Collapse
|
15
|
Hong JY, Lee J, Kim H, Yeo C, Jeon WJ, Lee YJ, Ha IH. Shinbaro2 enhances axonal extension beyond the glial scar for functional recovery in rats with contusive spinal cord injury. Biomed Pharmacother 2023; 168:115710. [PMID: 37862963 DOI: 10.1016/j.biopha.2023.115710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event that often results in the inflammatory condition of glial scar tissue formation, impeding neural regeneration and recovery. Reducing the inflammatory response and inhibiting glial formation are promising strategies for improving SCI outcomes. Here, we introduce a new role for Shinbaro2 (Sh2), known for its anti-inflammatory and pain-reducing effects, in ameliorating glial scars formed in the damaged spinal cord and promoting axon growth after SCI. Sh2 was applied at various concentrations to cultivate primary spinal cord neurons. Concentrations of 1 and 2 mg/mL effectively enhanced cell viability and axonal outgrowth in spinal cord neurons subjected to hydrogen peroxide or laceration injury. Sh2 helped reduce neuroinflammation by increasing anti-inflammatory M2 macrophages (arginase 1) and decreasing inflammatory cells, ultimately reducing lesion size. In scar formation, Sh2 inhibited the expression of β-catenin and nestin in reactive astrocytes in the injured spinal cord. Moreover, Sh2 suppressed the expression of chondroitin sulfate proteoglycans and SOX9, which are involved in scar formation. Furthermore, Sh2 promoted the sprouting of serotonergic axons and the growth of neurofibrillary tangles, enhancing motor function recovery in SCI. These findings highlight the potential of Sh2 as an SCI therapeutic intervention, offering hope for neural and functional restoration in individuals with this debilitating condition.
Collapse
Affiliation(s)
- Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| |
Collapse
|
16
|
Kim H, Lee YJ, Kwon Y, Kim J. Efficient generation of brain organoids using magnetized gold nanoparticles. Sci Rep 2023; 13:21240. [PMID: 38040919 PMCID: PMC10692130 DOI: 10.1038/s41598-023-48655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023] Open
Abstract
Brain organoids, which are three-dimensional cell culture models, have the ability to mimic certain structural and functional aspects of the human brain. However, creating these organoids can be a complicated and difficult process due to various technological hurdles. This study presents a method for effectively generating cerebral organoids from human induced pluripotent stem cells (hiPSCs) using electromagnetic gold nanoparticles (AuNPs). By exposing mature cerebral organoids to magnetized AuNPs, we were able to cultivate them in less than 3 weeks. The initial differentiation and neural induction of the neurosphere occurred within the first week, followed by maturation, including regional patterning and the formation of complex networks, during the subsequent 2 weeks under the influence of magnetized AuNPs. Furthermore, we observed a significant enhancement in neurogenic maturation in the brain organoids, as evidenced by increased histone acetylation in the presence of electromagnetic AuNPs. Consequently, electromagnetic AuNPs offer a promising in vitro system for efficiently generating more advanced human brain organoids that closely resemble the complexity of the human brain.
Collapse
Affiliation(s)
- Hongwon Kim
- Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-Ro 1-Gil 30, Jung-Gu, Seoul, 04620, Republic of Korea
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yoo-Jung Lee
- Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-Ro 1-Gil 30, Jung-Gu, Seoul, 04620, Republic of Korea
| | - Youngeun Kwon
- Laboratory of Protein Engineering, Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jongpil Kim
- Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-Ro 1-Gil 30, Jung-Gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
17
|
Khasanov R, Svoboda D, Tapia-Laliena MÁ, Kohl M, Maas-Omlor S, Hagl CI, Wessel LM, Schäfer KH. Muscle hypertrophy and neuroplasticity in the small bowel in short bowel syndrome. Histochem Cell Biol 2023; 160:391-405. [PMID: 37395792 PMCID: PMC10624713 DOI: 10.1007/s00418-023-02214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
Short bowel syndrome (SBS) is a severe, life-threatening condition and one of the leading causes of intestinal failure in children. Here we were interested in changes in muscle layers and especially in the myenteric plexus of the enteric nervous system (ENS) of the small bowel in the context of intestinal adaptation. Twelve rats underwent a massive resection of the small intestine to induce SBS. Sham laparotomy without small bowel transection was performed in 10 rats. Two weeks after surgery, the remaining jejunum and ileum were harvested and studied. Samples of human small bowel were obtained from patients who underwent resection of small bowel segments due to a medical indication. Morphological changes in the muscle layers and the expression of nestin, a marker for neuronal plasticity, were studied. Following SBS, muscle tissue increases significantly in both parts of the small bowel, i.e., jejunum and ileum. The leading pathophysiological mechanism of these changes is hypertrophy. Additionally, we observed an increased nestin expression in the myenteric plexus in the remaining bowel with SBS. Our human data also showed that in patients with SBS, the proportion of stem cells in the myenteric plexus had risen by more than twofold. Our findings suggest that the ENS is tightly connected to changes in intestinal muscle layers and is critically involved in the process of intestinal adaptation to SBS.
Collapse
Affiliation(s)
- Rasul Khasanov
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Daniel Svoboda
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Martina Kohl
- Department of Pediatric and Adolescent Medicine, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Silke Maas-Omlor
- Enteric Nervous System Group, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibrücken, Germany
| | - Cornelia Irene Hagl
- Carl Remigius Medical School, Charles de Gaulle Str. 2, 81737, Munich, Germany
| | - Lucas M Wessel
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Karl-Herbert Schäfer
- Enteric Nervous System Group, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibrücken, Germany
| |
Collapse
|
18
|
Zheng L, Dai H, Sun H, Zhou M, Zheng E. JMJD1B mediates H4R3me2s reprogramming to maintain DNA demethylation status in neural progenitor cells during embryonic development. CELL INSIGHT 2023; 2:100114. [PMID: 37636829 PMCID: PMC10448266 DOI: 10.1016/j.cellin.2023.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Affiliation(s)
- Li Zheng
- Departments of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA, USA
| | | | - Haitao Sun
- Departments of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA, USA
| | - Mian Zhou
- Departments of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA, USA
| | | |
Collapse
|
19
|
Makrygianni EA, Chrousos GP. Neural Progenitor Cells and the Hypothalamus. Cells 2023; 12:1822. [PMID: 37508487 PMCID: PMC10378393 DOI: 10.3390/cells12141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and autonomic output. In the rodent postnatal/adult hypothalamus, NPCs mainly comprise different subtypes of tanycytes lining the wall of the 3rd ventricle. In the postnatal/adult human hypothalamus, the neurogenic niche is constituted by tanycytes at the floor of the 3rd ventricle, ependymal cells and ribbon cells (showing a gap-and-ribbon organization similar to that in the SVZ), as well as suprachiasmatic cells. We speculate that in the postnatal/adult human hypothalamus, neurogenesis occurs in a highly complex, exquisitely sophisticated neurogenic niche consisting of at least four subniches; this structure has a key role in the regulation of extrahypothalamic neurogenesis, and hypothalamic and extrahypothalamic neural circuits, partly through the release of neurotransmitters, neuropeptides, extracellular vesicles (EVs) and non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
20
|
Sritawan N, Sirichoat A, Aranarochana A, Pannangrong W, Wigmore P, Welbat JU. Protective effect of metformin on methotrexate induced reduction of rat hippocampal neural stem cells and neurogenesis. Biomed Pharmacother 2023; 162:114613. [PMID: 37001179 DOI: 10.1016/j.biopha.2023.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Adult neurogenesis is a process in which the adult neural stem cells produce newborn neurons that are implicated in terms of learning and memory. Methotrexate (MTX) is a chemotherapeutic drug, which has a negative effect on memory and hippocampal neurogenesis in animal models. Metformin is an antidiabetic drug with strong antioxidant capacities. We found that metformin ameliorates MTX induced deteriorations of memory and hippocampal neurogenesis in adult rats. In this study, we focus to investigate neural stem cells, biomarkers of apoptosis, and the protein for synaptogenesis, which involves in the transcription factors of the hippocampus in rats that received metformin and MTX. Male Sprague-Dawley rats were composed of control, MTX, metformin, and MTX+metformin groups. MTX (75 mg/kg, i.v.) was given on days 7 and 14, whereas metformin (200 mg/kg, i.p.) was given for 14 days. Hippocampal neural stem cells in the subgranular zone (SGZ) were quantified using immunofluorescence staining of Sox2 and nestin. Protein expression including PSD95, Casepase-3, Bax, Bcl-2, CREB, and pCREB were determined using Western blotting. MTX-treated rats displayed decreases in Sox2 and nestin-positive cells in the SGZ. Increases in Caspase-3 and Bax levels and decreases in PSD95, Bcl-2, CREB, and pCREB protein expressions in the hippocampus were also detected. However, these negative impacts of MTX were ameliorated by co-treatment with metformin. These consequences postulate that metformin has a potential to increase neural stem cells, synaptic plasticity, decreased apoptotic activities, and transcription factors, resulting in upregulation of hippocampal neurogenesis in MTX-treated rats.
Collapse
Affiliation(s)
- Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
21
|
Biglari N, Mehdizadeh A, Vafaei Mastanabad M, Gharaeikhezri MH, Gol Mohammad Pour Afrakoti L, Pourbala H, Yousefi M, Soltani-Zangbar MS. Application of mesenchymal stem cells (MSCs) in neurodegenerative disorders: History, findings, and prospective challenges. Pathol Res Pract 2023; 247:154541. [PMID: 37245265 DOI: 10.1016/j.prp.2023.154541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
Over the past few decades, the application of mesenchymal stem cells has captured the attention of researchers and practitioners worldwide. These cells can be obtained from practically every tissue in the body and are used to treat a broad variety of conditions, most notably neurological diseases such as Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. Studies are still being conducted, and the results of these studies have led to the identification of several different molecular pathways involved in the neuroglial speciation process. These molecular systems are closely regulated and interconnected due to the coordinated efforts of many components that make up the machinery responsible for cell signaling. Within the scope of this study, we compared and contrasted the numerous mesenchymal cell sources and their cellular features. These many sources of mesenchymal cells included adipocyte cells, fetal umbilical cord tissue, and bone marrow. In addition, we investigated whether these cells can potentially treat and modify neurodegenerative illnesses.
Collapse
Affiliation(s)
- Negin Biglari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Vafaei Mastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | - Hooman Pourbala
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Barachini S, Ghelardoni S, Madonna R. Vascular Progenitor Cells: From Cancer to Tissue Repair. J Clin Med 2023; 12:jcm12062399. [PMID: 36983398 PMCID: PMC10059009 DOI: 10.3390/jcm12062399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Vascular progenitor cells are activated to repair and form a neointima following vascular damage such as hypertension, atherosclerosis, diabetes, trauma, hypoxia, primary cancerous lesions and metastases as well as catheter interventions. They play a key role not only in the resolution of the vascular lesion but also in the adult neovascularization and angiogenesis sprouting (i.e., the growth of new capillaries from pre-existing ones), often associated with carcinogenesis, favoring the formation of metastases, survival and progression of tumors. In this review, we discuss the biology, cellular plasticity and pathophysiology of different vascular progenitor cells, including their origins (sources), stimuli and activated pathways that induce differentiation, isolation and characterization. We focus on their role in tumor-induced vascular injury and discuss their implications in promoting tumor angiogenesis during cancer proliferation and migration.
Collapse
Affiliation(s)
- Serena Barachini
- Laboratory for Cell Therapy, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Sandra Ghelardoni
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56126 Pisa, Italy
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
23
|
Polo Y, Luzuriaga J, Gonzalez de Langarica S, Pardo-Rodríguez B, Martínez-Tong DE, Tapeinos C, Manero-Roig I, Marin E, Muñoz-Ugartemendia J, Ciofani G, Ibarretxe G, Unda F, Sarasua JR, Pineda JR, Larrañaga A. Self-assembled three-dimensional hydrogels based on graphene derivatives and cerium oxide nanoparticles: scaffolds for co-culture of oligodendrocytes and neurons derived from neural stem cells. NANOSCALE 2023; 15:4488-4505. [PMID: 36753326 DOI: 10.1039/d2nr06545b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stem cell-based therapies have shown promising results for the regeneration of the nervous system. However, the survival and integration of the stem cells in the neural circuitry is suboptimal and might compromise the therapeutic outcomes of this approach. The development of functional scaffolds capable of actively interacting with stem cells may overcome the current limitations of stem cell-based therapies. In this study, three-dimensional hydrogels based on graphene derivatives and cerium oxide (CeO2) nanoparticles are presented as prospective supports allowing neural stem cell adhesion, migration and differentiation. The morphological, mechanical and electrical properties of the resulting hydrogels can be finely tuned by controlling several parameters of the self-assembly of graphene oxide sheets, namely the amount of incorporated reducing agent (ascorbic acid) and CeO2 nanoparticles. The intrinsic properties of the hydrogels, as well as the presence of CeO2 nanoparticles, clearly influence the cell fate. Thus, stiffer adhesion substrates promote differentiation to glial cell lineages, while softer substrates enhance mature neuronal differentiation. Remarkably, CeO2 nanoparticle-containing hydrogels support the differentiation of neural stem cells to neuronal, astroglial and oligodendroglial lineage cells, promoting the in vitro generation of nerve tissue grafts that might be employed in neuroregenerative cell therapies.
Collapse
Affiliation(s)
| | - Jon Luzuriaga
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Sergio Gonzalez de Langarica
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Beatriz Pardo-Rodríguez
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Daniel E Martínez-Tong
- Polymers and advanced materials: Physics, Chemistry and Technology, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain & Centro de Física de Materiales (UPV/EHU-CSIC), Donostia-San Sebastian, Spain
| | - Christos Tapeinos
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, PI, Italy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Irene Manero-Roig
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
- Université de Bordeaux IINS - UMR 5297, Bordeaux, France
| | - Edurne Marin
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Jone Muñoz-Ugartemendia
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, PI, Italy
| | - Gaskon Ibarretxe
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Fernando Unda
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Jose-Ramon Sarasua
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Jose Ramon Pineda
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
- Achucarro Basque Center for Neuroscience Fundazioa, Leioa, Spain
| | - Aitor Larrañaga
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
24
|
Chen YS, Ng HY, Chen YW, Cho DY, Ho CC, Chen CY, Chiu SC, Jhong YR, Shie MY. Additive manufacturing of Schwann cell-laden collagen/alginate nerve guidance conduits by freeform reversible embedding regulate neurogenesis via exosomes secretion towards peripheral nerve regeneration. BIOMATERIALS ADVANCES 2023; 146:213276. [PMID: 36640522 DOI: 10.1016/j.bioadv.2022.213276] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Peripheral nerve injury is a common clinical problem that could be debilitating to one's quality of life. The complex nerve guidance conduits (NGCs) with cells in order to improve nerve regeneration. Therefore, we used freeform reversible embedding of suspended hydrogels to fabricate Schwann cells (SCs)-laden collagen/alginate (Col/Alg) NGCs. First, we evaluated Col influence on the characteristics of NGCs. After which, Wharton's jelly mesenchymal stem cells (WJMSC) are seeded onto the inner channel of NGCs and evaluated neural regeneration behaviors. Results indicated the SCs-laden NGCs with 2.5 % Col found the highest proliferation and secretion of neurotrophic protein. Furthermore, co-culture of SCs promoted differentiation of WJMSC as seen from the increased neurogenic-related protein in NGCs. To determine the molecular mechanism between SCs and WJMSC, we demonstrated the neurotrophic factors secreted by SCs act on tropomyosin receptor kinase A (TrkA) receptors of WJMSC to promote nerve regeneration. In addition, our study demonstrated SCs-derived exosomes had a critical role in regulating neural differentiation of WJMSC. Taken together, this study demonstrates the fabrication of SCs-laden Col/Alg NGCs for nerve regeneration and understanding regarding the synergistic regenerative mechanisms of different cells could bring us a step closer for clinical treatment of large nerve defects.
Collapse
Affiliation(s)
- Yueh-Sheng Chen
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan
| | - Hooi Yee Ng
- Department of Education, China Medical University Hospital, Taichung 404332, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan; x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Der-Yang Cho
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan; Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan; Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Che Ho
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan; High Performance Materials Institute for x-Dimensional Printing, Asia University, Taichung City 41354, Taiwan
| | - Cheng-Yu Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan; Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Rong Jhong
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Ming-You Shie
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan; x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan; School of Dentistry, China Medical University, Taichung City 406040, Taiwan.
| |
Collapse
|
25
|
Koerber RM, Schneider RK, Pritchard JE, Teichmann LL, Schumacher U, Brossart P, Gütgemann I. Nestin expression in osteocytes following myeloablation and during bone marrow metastasis. Br J Haematol 2023; 200:643-651. [PMID: 36382360 DOI: 10.1111/bjh.18563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
Nestin is an intermediate filament protein, which was originally detected in neuroepithelial stem cells. Besides its use as a phenotypic marker of mesenchymal stem cells in the hematopoeitic stem cell niche, the functional interpretation of nestin+ cells remains elusive. We investigated the cellular expression of nestin in bone marrow trephine biopsies of MPN patients, following myeloablation at a stage of hypocellularity during early regeneration. Here, nestin is highly expressed in mature osteocytes, arteriolar endothelial and perivascular cells and small capillaries within the bone marrow space, but not in sinusoid lining cells. This is in stark contrast to nestin expression pattern in myeloproliferative neoplasms that show hypercellularity due to oncogenic driver mutations. Here, nestin is expressed exclusively in endothelial cells of arterioles, but not in osteocytes or small capillaries. Thus, the pattern of nestin expression following myeloablation inversely correlates with cellularity in the bone marrow. This nestin expression pattern is mimicking early postnatal transcriptional programming during bone marrow development. We show that nestin expression in osteocytes occurs across different species following transplant and also in bone marrow metastasis.
Collapse
Affiliation(s)
- Ruth-Miriam Koerber
- Department of Medicine III, University Hospital Bonn, Bonn, Germany.,Mildred Scheel School of Oncology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Rebekka K Schneider
- Department of Cell Biology, Institute for Biomedical Engineering, Aachen, Germany
| | | | - Lino L Teichmann
- Department of Medicine III, University Hospital Bonn, Bonn, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Brossart
- Department of Medicine III, University Hospital Bonn, Bonn, Germany
| | - Ines Gütgemann
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
26
|
Shen D, Wang H, Zhu H, Jiang C, Xie F, Zhang H, Lv Q, Liu Q, Wang Z, Qi N, Wang H. Pre-clinical efficacy evaluation of human umbilical cord mesenchymal stem cells for ischemic stroke. Front Immunol 2023; 13:1095469. [PMID: 36726973 PMCID: PMC9885855 DOI: 10.3389/fimmu.2022.1095469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Objective This study explored the underlying therapeutic mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) for ischemic stroke (IS), and determined the optimal administration time windows and dose-effect relationship. Methods The levels of SDF-1α, IL-10, IL-6, TNF-α, BDNF, IL-1β, and VEGF-A factors in serum and brain tissue lysate were measured by ELISA. The pathological status of brain tissues was evaluated by Hematoxylin-Eosin (HE) staining, and apoptosis of nerve cells was detected by tunel. The protein expression of CXCR-4, NeuN, and Nestin in the brain tissues was assessed through immunofluorescence. The balance beam, forelimb muscle strength, and limb placement were tested on MCAO rats at different time points and doses. The infarct area of the rat brain tissues was measured at the end of the experiment. Results The hUCMSC treatment during the acute phase of MCAO significantly reduced the secretion of IL-6, TNF-α, IL-1β but increased IL-10 in serum, and the levels of SDF-α and BDNF in serum and brain tissues lysate were also increased. The pathological results showed that there were more neurons in the treatment group compared to the model group. Immunofluorescence assays showed that the expression of CXCR4、Nestin、NeuN was relatively higher than that in the model group. The d4 and d7 treatment significantly improves the motor function, promotes the recovery of forelimb muscle strength, increases the forelimb placement rate and reduces the scope of cerebral infarction, but the d14 treatment group has less therapeutic effect compared to the d4 and d7 treatment. The 2×107/kg treatment showed the best therapeutic effect, followed by the 1×107/kg treatment, and the worst is 0.5×107/kg treatment from the test of balance beam, forelimb muscle strength, limb placement and the infarct area of the rat brain tissues. Conclusion The hUCMSCs can inhibit the infiltration of inflammatory cells in the brain tissue, and promote the repair of brain tissue structure and function. Early intervention by injecting high-dose of hUCMSCs can significantly improve the recovery of neurological/motor function and reduce the size of cerebral infarction in rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nianmin Qi
- *Correspondence: Hao Wang, ; Nianming Qi,
| | - Hao Wang
- *Correspondence: Hao Wang, ; Nianming Qi,
| |
Collapse
|
27
|
Implications of Cellular Immaturity in Necrosis and Microvascularization in Glioblastomas IDH-Wild-Type. Clin Pract 2022; 12:1054-1068. [PMID: 36547116 PMCID: PMC9777267 DOI: 10.3390/clinpract12060108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Necrosis and increased microvascular density in glioblastoma IDH-wild-type are the consequence of both hypoxia and cellular immaturity. Our study aimed to identify the main clinical-imaging and morphogenetic risk factors associated with tumor necrosis and microvascular in the prognosis of patient survival. We performed a retrospective study (10 years) in which we identified 39 cases. We used IDH1, Ki-67 and Nestin immunomarkers, as well as CDKN2A by FISH. The data were analyzed using SPSS Statistics. The clinical characterization identified only age over 50 years as a risk factor (HR = 3.127). The presence of the tumor residue, as well as the absence of any therapeutic element from the trimodal treatment, were predictive factors of mortality (HR = 1.024, respectively HR = 7.460). Cellular immaturity quantified by Nestin was associated with reduced overall survival (p = 0.007). Increased microvascular density was associated with an increased proliferative index (p = 0.009) as well as alterations of the CDKN2A gene (p < 0.001). CDKN2A deletions and cellular immaturity were associated with an increased percentage of necrosis (p < 0.001, respectively, p = 0.017). The main risk factors involved in the unfavorable prognosis are moderate and increased Nestin immunointensity, as well as the association of increased microvascular density with age over 50 years. Necrosis was not a risk factor.
Collapse
|
28
|
Emerging biomarker in carcinogenesis. Focus on Nestin. Postepy Dermatol Alergol 2022; 39:1001-1007. [PMID: 36686021 PMCID: PMC9837589 DOI: 10.5114/ada.2022.122599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Nestin is a protein belonging to class VI intermediate filaments, which is involved in organogenesis, cellular metabolism and cytoskeletal organisation. Originally found to be expressed in neuroepithelial stem cells, nestin is also expressed in other tissues. It plays an important role in the carcinogenesis and angiogenesis. Its increased expression in melanoma is associated with an aggressive course of the disease and poor prognosis. Research findings for non-melanocytic skin neoplasms are inconclusive. The aim of this paper was to systematize knowledge on the role of nestin in cancerogenesis. The authors focused in particular on the expression of nestin in skin malignancies, as well as on the potential role of nestin in the pathogenesis, prognosis and treatment of cutaneous neoplasms.
Collapse
|
29
|
Spice DM, Cooper TT, Lajoie GA, Kelly GM. Never in Mitosis Kinase 2 regulation of metabolism is required for neural differentiation. Cell Signal 2022; 100:110484. [PMID: 36195199 DOI: 10.1016/j.cellsig.2022.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Wnt and Hh are known signalling pathways involved in neural differentiation and recent work has shown the cell cycle regulator, Never in Mitosis Kinase 2 (Nek2) is able to regulate both pathways. Despite its known function in pathway regulation, few studies have explored Nek2 within embryonic development. The P19 embryonal carcinoma cell model was used to investigate Nek2 and neural differentiation through CRISPR knockout and overexpression studies. Loss of Nek2 reduced cell proliferation in the undifferentiated state and during directed differentiation, while overexpression increased cell proliferation. Despite these changes in proliferation rates, Nek2 deficient cells maintained pluripotency markers after neural induction while Nek2 overexpressing cells lost these markers in the undifferentiated state. Nek2 deficient cells lost the ability to differentiate into both neurons and astrocytes, although Nek2 overexpressing cells enhanced neuron differentiation at the expense of astrocytes. Hh and Wnt signalling were explored, however there was no clear connection between Nek2 and these pathways causing the observed changes to differentiation phenotypes. Mass spectrometry was also used during wildtype and Nek2 knockout cell differentiation and we identified reduced electron transport chain components in the knockout population. Immunoblotting confirmed the loss of these components and additional studies showed cells lacking Nek2 were exclusively glycolytic. Interestingly, hypoxia inducible factor 1α was stabilized in these Nek2 knockout cells despite culturing them under normoxic conditions. Since neural differentiation requires a metabolic switch from glycolysis to oxidative phosphorylation, we propose a mechanism where Nek2 prevents HIF1α stabilization, thereby allowing cells to use oxidative phosphorylation to facilitate neuron and astrocyte differentiation.
Collapse
Affiliation(s)
- Danielle M Spice
- Department of Biology, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada.
| | - Tyler T Cooper
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada.
| | - Gilles A Lajoie
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; Don Rix Protein Identification Facility, University of Western, Ontario, London, ON N6G 2V4, Canada.
| | - Gregory M Kelly
- Department of Biology, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada; Child Health Research Institute, 345 Westminster Ave, London, ON N6C 4V3, Canada.
| |
Collapse
|
30
|
Koh YE, Choi EH, Kim JW, Kim KP. The Kleisin Subunits of Cohesin are Involved in the Fate Determination of Embryonic Stem Cells. Mol Cells 2022; 45:820-832. [PMID: 36172976 PMCID: PMC9676991 DOI: 10.14348/molcells.2022.2042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022] Open
Abstract
As a potential candidate to generate an everlasting cell source to treat various diseases, embryonic stem cells are regarded as a promising therapeutic tool in the regenerative medicine field. Cohesin, a multi-functional complex that controls various cellular activities, plays roles not only in organizing chromosome dynamics but also in controlling transcriptional activities related to self-renewal and differentiation of stem cells. Here, we report a novel role of the α-kleisin subunits of cohesin (RAD21 and REC8) in the maintenance of the balance between these two stem-cell processes. By knocking down REC8, RAD21, or the non-kleisin cohesin subunit SMC3 in mouse embryonic stem cells, we show that reduction in cohesin level impairs their self-renewal. Interestingly, the transcriptomic analysis revealed that knocking down each cohesin subunit enables the differentiation of embryonic stem cells into specific lineages. Specifically, embryonic stem cells in which cohesin subunit RAD21 were knocked down differentiated into cells expressing neural alongside germline lineage markers. Thus, we conclude that cohesin appears to control the fate determination of embryonic stem cells.
Collapse
Affiliation(s)
- Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- Genexine Inc., Bio Innovation Park, Seoul 07789, Korea
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Jung-Woong Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
31
|
Rastoldo G, Watabe I, Lapotre A, Tonetto A, López-Juárez A, Tighilet B. Vestibular Nuclei: A New Neural Stem Cell Niche? Cells 2022; 11:cells11223598. [PMID: 36429025 PMCID: PMC9688605 DOI: 10.3390/cells11223598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
We previously reported adult reactive neurogliogenesis in the deafferented vestibular nuclei following unilateral vestibular neurectomy (UVN) in the feline and the rodent model. Recently, we demonstrated that UVN induced a significant increase in a population of cells colocalizing the transcription factor sex determining region Y-box 2 (SOX2) and the glial fibrillary acidic protein (GFAP) three days after the lesion in the deafferented medial vestibular nucleus. These two markers expressed on the same cell population could indicate the presence of lesion-reactive multipotent neural stem cells in the vestibular nuclei. The aim of our study was to provide insight into the potential neurogenic niche status of the vestibular nuclei in physiological conditions by using specific markers of stem cells (Nestin, SOX2, GFAP), cell proliferation (BrdU) and neuronal differentiation (NeuN). The present study confirmed the presence of quiescent and activated adult neural stem cells generating some new neurons in the vestibular nuclei of control rats. These unique features provide evidence that the vestibular nuclei represent a novel NSC site for the generation of neurons and/or glia in the adult rodent under physiological conditions.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Isabelle Watabe
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Agnes Lapotre
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Alain Tonetto
- Fédération de Recherche Sciences Chimiques Marseille FR 1739, Pôle PRATIM, 13331 Marseille, France
| | - Alejandra López-Juárez
- Department of Chemical, Electronic and Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato, Guanajuato 38116, Mexico
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
- GDR Physiopathologie Vestibulaire-Unité GDR2074 CNRS, 13331 Marseille, France
- Correspondence: ; Tel.: +33-413550881; Fax: +33-413550869
| |
Collapse
|
32
|
Namiki J, Suzuki S, Shibata S, Kubota Y, Kaneko N, Yoshida K, Yamaguchi R, Matsuzaki Y, Masuda T, Ishihama Y, Sawamoto K, Okano H. Chitinase-like protein 3: A novel niche factor for mouse neural stem cells. Stem Cell Reports 2022; 17:2704-2717. [PMID: 36368330 PMCID: PMC9768575 DOI: 10.1016/j.stemcr.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
The concept of a perivascular niche has been proposed for neural stem cells (NSCs). This study examined endothelial colony-forming cell (ECFC)-secreted proteins as potential niche factors for NSCs. Intraventricle infusion with ECFC-secreted proteins increased the number of NSCs. ECFC-secreted proteins were more effective in promoting NSC self-renewal than marrow stromal cell (MSC)-secreted proteins. Differential proteomics analysis of MSC-secreted and ECFC-secreted proteins was performed, which revealed chitinase-like protein 3 (CHIL3; also called ECF-L or Ym1) as a candidate niche factor for NSCs. Experiments with recombinant CHIL3, small interfering RNA, and neutralizing antibodies demonstrated that CHIL3 stimulated NSC self-renewal with neurogenic propensity. CHIL3 was endogenously expressed in the neurogenic niche of the brain and retina as well as in the injured brain and retina. Transcriptome and phosphoproteome analyses revealed that CHIL3 activated various genes and proteins associated with NSC maintenance or neurogenesis. Thus, CHIL3 is a novel niche factor for NSCs.
Collapse
Affiliation(s)
- Jun Namiki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan,Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan,Corresponding author
| | - Sayuri Suzuki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan,Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kenji Yoshida
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan,Sumitomo Pharma Co. Ltd., Osaka, Osaka 541-0045, Japan
| | - Ryo Yamaguchi
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan,Sumitomo Pharma Co. Ltd., Osaka, Osaka 541-0045, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Yasushi Ishihama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan,Corresponding author
| |
Collapse
|
33
|
Lemmer D, Schmidt J, Kummer K, Lemmer B, Wrede A, Seitz C, Balcarek P, Schwarze K, Müller GA, Patschan D, Patschan S. Impairment of muscular endothelial cell regeneration in dermatomyositis. Front Neurol 2022; 13:952699. [PMID: 36330424 PMCID: PMC9623165 DOI: 10.3389/fneur.2022.952699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background and aim Inflammatory myopathies are heterogeneous in terms of etiology, (immuno)pathology, and clinical findings. Endothelial cell injury, as it occurs in DM, is a common feature of numerous inflammatory and non-inflammatory vascular diseases. Vascular regeneration is mediated by both local and blood-derived mechanisms, such as the mobilization and activation of so-called proangiogenic cells (PACs) or early endothelial progenitor cells (eEPCs). The current study aimed to evaluate parameters of eEPC integrity in dermatomyositis (DM), compared to necrotizing myopathy (NM) and to non-myopathic controls. Methods Blood samples from DM and NM patients were compared to non-myositis controls and analyzed for the following parameters: circulating CD133+/VEGFR-2+ cells, number of colony-forming unit endothelial cells (CFU-ECs), concentrations of angiopoietin 1, vascular endothelial growth factor (VEGF), and CXCL-16. Muscle biopsies from DM and NM subjects underwent immunofluorescence analysis for CXCR6, nestin, and CD31 (PECAM-1). Finally, myotubes, derived from healthy donors, were stimulated with serum samples from DM and NM patients, subsequently followed by RT-PCR for the following candidates: IL-1β, IL-6, nestin, and CD31. Results Seventeen (17) DM patients, 7 NM patients, and 40 non-myositis controls were included. CD133+/VEGFR-2+ cells did not differ between the groups. Both DM and NM patients showed lower CFU-ECs than controls. In DM, intramuscular CD31 abundances were significantly reduced, which indicated vascular rarefaction. Muscular CXCR6 was elevated in both diseases. Circulating CXCL-16 was higher in DM and NM in contrast, compared to controls. Serum from patients with DM but not NM induced a profound upregulation of mRNS expression of CD31 and IL-6 in cultured myotubes. Conclusion Our study demonstrates the loss of intramuscular microvessels in DM, accompanied by endothelial activation in DM and NM. Vascular regeneration was impaired in DM and NM. The findings suggest a role for inflammation-associated vascular damage in the pathogenesis of DM.
Collapse
Affiliation(s)
- D. Lemmer
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
- Immanuel Krankenhaus Berlin, Medical Center of Rheumatology Berlin-Buch, Berlin, Germany
| | - J. Schmidt
- Department of Neurology and Pain Treatment, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Neurology, Neuromuscular Center, University Medical Center Göttingen, Göttingen, Germany
| | - K. Kummer
- Department of Neurology, Neuromuscular Center, University Medical Center Göttingen, Göttingen, Germany
| | - B. Lemmer
- Department of Physics, Georg-August-University Göttingen, Göttingen, Germany
| | - A. Wrede
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - C. Seitz
- Department of Dermatology, Allergology and Venereology, University Medical Center Göttingen, Göttingen, Germany
| | - P. Balcarek
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
- Arcus Klinik, Pforzheim, Germany
| | - K. Schwarze
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - G. A. Müller
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - D. Patschan
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Medicine 1, Cardiology, Angiology, and Nephrology, University Hospital Brandenburg of the Brandenburg Medical School Theodor Fontane, Branderburg, Germany
| | - S. Patschan
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Medicine 1, Cardiology, Angiology, and Nephrology, University Hospital Brandenburg of the Brandenburg Medical School Theodor Fontane, Branderburg, Germany
- *Correspondence: S. Patschan
| |
Collapse
|
34
|
An Alzheimer’s Disease Patient-Derived Olfactory Stem Cell Model Identifies Gene Expression Changes Associated with Cognition. Cells 2022; 11:cells11203258. [PMID: 36291125 PMCID: PMC9601087 DOI: 10.3390/cells11203258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
An early symptom of Alzheimer’s disease (AD) is an impaired sense of smell, for which the molecular basis remains elusive. Here, we generated human olfactory neurosphere-derived (ONS) cells from people with AD and mild cognitive impairment (MCI), and performed global RNA sequencing to determine gene expression changes. ONS cells expressed markers of neuroglial differentiation, providing a unique cellular model to explore changes of early AD-associated pathways. Our transcriptomics data from ONS cells revealed differentially expressed genes (DEGs) associated with cognitive processes in AD cells compared to MCI, or matched healthy controls (HC). A-Kinase Anchoring Protein 6 (AKAP6) was the most significantly altered gene in AD compared to both MCI and HC, and has been linked to cognitive function. The greatest change in gene expression of all DEGs occurred between AD and MCI. Gene pathway analysis revealed defects in multiple cellular processes with aging, intellectual deficiency and alternative splicing being the most significantly dysregulated in AD ONS cells. Our results demonstrate that ONS cells can provide a cellular model for AD that recapitulates disease-associated differences. We have revealed potential novel genes, including AKAP6 that may have a role in AD, particularly MCI to AD transition, and should be further examined.
Collapse
|
35
|
Alsaqati M, Davis BA, Wood J, Jones MM, Jones L, Westwood A, Petter O, Isles AR, Linden D, Van den Bree M, Owen M, Hall J, Harwood AJ. NRSF/REST lies at the intersection between epigenetic regulation, miRNA-mediated gene control and neurodevelopmental pathways associated with Intellectual disability (ID) and Schizophrenia. Transl Psychiatry 2022; 12:438. [PMID: 36216811 PMCID: PMC9551101 DOI: 10.1038/s41398-022-02199-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic evidence indicates disrupted epigenetic regulation as a major risk factor for psychiatric disorders, but the molecular mechanisms that drive this association remain to be determined. EHMT1 is an epigenetic repressor that is causal for Kleefstra Syndrome (KS), a genetic disorder linked with neurodevelopmental disorders and associated with schizophrenia. Here, we show that reduced EHMT1 activity decreases NRSF/REST protein leading to abnormal neuronal gene expression and progression of neurodevelopment in human iPSC. We further show that EHMT1 regulates NRSF/REST indirectly via repression of miRNA and leads to aberrant neuronal gene regulation and neurodevelopment timing. Expression of a NRSF/REST mRNA that lacks the miRNA-binding sites restores neuronal gene regulation to EHMT1 deficient cells. Significantly, the EHMT1-regulated miRNA gene set not only controls NRSF/REST but is enriched for association for Intellectual Disability (ID) and schizophrenia. This reveals a broad molecular interaction between H3K9 demethylation, NSRF/REST regulation and risk for ID and Schizophrenia.
Collapse
Affiliation(s)
- Mouhamed Alsaqati
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK.,School of Pharmacy, KGVI Building, Newcastle University, Newcastle Upon Tyne, NE1 4LF, UK
| | - Brittany A Davis
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,Lieber Institute for Brain Development, Johns Hopkins Medical Campus & Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jamie Wood
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Megan M Jones
- School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Lora Jones
- School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Aishah Westwood
- School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Olena Petter
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - Anthony R Isles
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - David Linden
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Marianne Van den Bree
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Michael Owen
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Adrian J Harwood
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK. .,School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK.
| |
Collapse
|
36
|
Stem cell membrane-coated abiotic nanomaterials for biomedical applications. J Control Release 2022; 351:174-197. [PMID: 36103910 DOI: 10.1016/j.jconrel.2022.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
Nanoscale materials have been extensively employed for diagnostic and therapeutic purposes. However, the developed nanosystems still suffer from some limitations, namely the rapid elimination by the immune system, lack of targeting to specific cells, and insufficient biocompatibility. Therefore, novel strategies based upon a biomimetic approach have received attention to improving the pharmacokinetics and safety profile of nanosystems. One promising strategy is the application of a biomimetic coating consisting of cell membranes derived from different cell types onto nanoparticle cores. Stem cells have been investigated to develop targeted nanodevices owing to their excellent intrinsic tissue-specific homing features, protecting them from the immune system to reach the sites of inflammation. This targeting ability is conferred by a surface repertoire of stem cell-associated biomolecules. Such nanoscopical materials offer sustained circulation and boosted drug accumulation at target sites, augmenting therapeutic efficacy and safety. Additionally, the coating of nanoparticles with cell membranes acts as a camouflage mechanism to increase their circulation time. The current review explores the particular features of stem cell membrane coating as multifunctional biomimetic surface functionalization agents to camouflage nanoparticle cores. Biomedical applications of engineered stem cell membrane-coated nanoparticles, challenges in clinical translation, and their future prospects are addressed.
Collapse
|
37
|
Dicks LMT. Gut Bacteria and Neurotransmitters. Microorganisms 2022; 10:1838. [PMID: 36144440 PMCID: PMC9504309 DOI: 10.3390/microorganisms10091838] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Gut bacteria play an important role in the digestion of food, immune activation, and regulation of entero-endocrine signaling pathways, but also communicate with the central nervous system (CNS) through the production of specific metabolic compounds, e.g., bile acids, short-chain fatty acids (SCFAs), glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine (NE), serotonin (5-HT) and histamine. Afferent vagus nerve (VN) fibers that transport signals from the gastro-intestinal tract (GIT) and gut microbiota to the brain are also linked to receptors in the esophagus, liver, and pancreas. In response to these stimuli, the brain sends signals back to entero-epithelial cells via efferent VN fibers. Fibers of the VN are not in direct contact with the gut wall or intestinal microbiota. Instead, signals reach the gut microbiota via 100 to 500 million neurons from the enteric nervous system (ENS) in the submucosa and myenteric plexus of the gut wall. The modulation, development, and renewal of ENS neurons are controlled by gut microbiota, especially those with the ability to produce and metabolize hormones. Signals generated by the hypothalamus reach the pituitary and adrenal glands and communicate with entero-epithelial cells via the hypothalamic pituitary adrenal axis (HPA). SCFAs produced by gut bacteria adhere to free fatty acid receptors (FFARs) on the surface of intestinal epithelial cells (IECs) and interact with neurons or enter the circulatory system. Gut bacteria alter the synthesis and degradation of neurotransmitters. This review focuses on the effect that gut bacteria have on the production of neurotransmitters and vice versa.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
38
|
Karpenko D, Kapranov N, Bigildeev A. Nestin-GFP transgene labels immunoprivileged bone marrow mesenchymal stem cells in the model of ectopic foci formation. Front Cell Dev Biol 2022; 10:993056. [PMID: 36133916 PMCID: PMC9483855 DOI: 10.3389/fcell.2022.993056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Immune privileges are demonstrated for different types of quiescent stem cells of adult mammalian organisms. Mesenchymal stem cells (MSCs) are believed to have immune privileges; however, an accurate experimental confirmation hasn’t been presented. Here, we provide direct experimental evidence that MSCs of C57Black/6J murine bone marrow (BM) are immune privileged in vivo and retain their functionality after prolonged exposure to the uncompromised immune system. The BM of Nes-Gfp transgenic mice was implanted as a tissue fragment under the kidney capsule in isogenic C57Black/6J immunocompetent recipients. Nestin-Gfp strain provides a fluorescent immunogenic marker for a small fraction of BM cells, including GFP+CD45– MSCs. Despite the exposure of xenogenically marked MSCs to the fully-functional immune system, primary ectopic foci of hematopoiesis formed. Six weeks after implantation, multicolor fluorescence cytometry revealed both GFP+CD45– and GFP+CD45+ cells within the foci. GFP+CD45– cells proportion was 2.0 × 10–5 ×÷9 and it didn’t differ significantly from syngenic Nes-GFP transplantation control. According to current knowledge, the immune system of the recipients should eliminate GFP+ cells, including GFP+ MSCs. These results show that MSCs evade immunity. Primary foci were retransplanted into secondary Nes-GFP recipients. The secondary foci formed, in which CD45–GFP+ cells proportion was 6.7 × 10–5 ×÷2.2, and it didn’t differ from intact Nes-GFP BM. The results demonstrate that MSCs preserve self-renewal and retain their functionality after prolonged immune exposure. The success of this study relied on the implantation of BM fragments without prior dissociation of cells and the fact that the vast majority of implanted cells were immunologically equivalent to the recipients.
Collapse
Affiliation(s)
- Dmitriy Karpenko
- Laboratory of Physiology of Hematopoiesis, National Medical Research Center for Hematology, Moscow, Russia
- *Correspondence: Aleksei Bigildeev, ; Karpenko Dmitriy,
| | - Nikolay Kapranov
- Immunophenotyping Department, National Medical Research Center for Hematology, Moscow, Russia
| | - Aleksei Bigildeev
- Laboratory of Physiology of Hematopoiesis, National Medical Research Center for Hematology, Moscow, Russia
- *Correspondence: Aleksei Bigildeev, ; Karpenko Dmitriy,
| |
Collapse
|
39
|
Miloudi S, Valensi M, El Sanharawi M, Abitbol MM, Behar-Cohen F, Versaux-Botteri C. Nestin contributes to laser choroidal and retinal neovascularization. Mol Vis 2022; 28:280-299. [PMID: 36284669 PMCID: PMC9514549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Choroidal and retinal neovascularization plays an essential role in various ocular diseases. In this study, we examined the role of nestin in this process. Nestin is an intermediate filament protein known to play several roles, including as a marker of neural progenitor and proliferating endothelial cells. METHODS We used Brown Norway rats, in which choroidal and retinal neovascularization was induced using intraocular laser impacts. The role of nestin was examined using angiography, western blot from the second to the 14th day after laser impacts, and intraocular injection of nestin siRNA. The localization of the protein was specified by co-immunoreactivity with glial fibrillary protein (GFAP), glutamine synthetase (GS), and von Willebrand factor (vWF). RESULTS In the control retina, nestin was found principally in glial structures in the ganglion cell layer, as confirmed by nestin/GFAP immunolabeling. Two days after the laser impacts, the nestin expression extended to numerous radial processes at the site of the impacts. With Bruch's membrane ruptured, these processes penetrated into the choroid. Nestin immunolabeling remained high from the third to the seventh day but appeared reduced on the 14th day. The nature of these processes was not clearly defined, but co-immunolabeling with GFAP suggested that they were principally in activated Müller cells from the third day after the laser impacts. However, the co-immunoreactivity of nestin and GS, a marker of mature functional Müller cells, could be observable only from the seventh day. Nestin was also observed in some vascular cells, as demonstrated by the co-immunoreactivity of the protein with vWF in the choroid and retina. As observed on angiography, the numbers of choroidal and retinal blood vessels were significantly increased (principally on the seventh day) after the laser impacts. An intraocular injection of nestin siRNAs led to a significant decrease in the number of blood vessels. CONCLUSIONS Our results confirmed the presence of nestin in glial (e.g., astrocytes), reactive Müller, and endothelial cells. They demonstrated their critical involvement in a rat model of retinal and choroidal neovascularization experimentally induced using ocular laser impacts.
Collapse
Affiliation(s)
- Sofiane Miloudi
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Équipe 17, Université Paris Cité, Université Paris Sorbonne Cité, Paris, France
| | - Maud Valensi
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Équipe 17, Université Paris Cité, Université Paris Sorbonne Cité, Paris, France
| | - Mohamed El Sanharawi
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Équipe 17, Université Paris Cité, Université Paris Sorbonne Cité, Paris, France
| | - Marc M. Abitbol
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Équipe 17, Université Paris Cité, Université Paris Sorbonne Cité, Paris, France,APHP, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Francine Behar-Cohen
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Équipe 17, Université Paris Cité, Université Paris Sorbonne Cité, Paris, France,APHP, Hôpital Universitaire Cochin-Hôtel Dieu, Paris, France
| | - Claudine Versaux-Botteri
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Équipe 17, Université Paris Cité, Université Paris Sorbonne Cité, Paris, France
| |
Collapse
|
40
|
Wang Y, Tan Z, Zhang Z, Zhu P, Tam SW, Zhang Z, Jiang X, Lin K, Tian L, Huang Z, Zhang S, Peng YK, Yung KKL. Facet-Dependent Activity of CeO 2 Nanozymes Regulate the Fate of Human Neural Progenitor Cell via Redox Homeostasis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35423-35433. [PMID: 35905295 DOI: 10.1021/acsami.2c09304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neural progenitor cells (NPCs) therapy, a promising therapeutic strategy for neurodegenerative diseases, has a huge challenge to ensure high survival rate and neuronal differentiation rate. Cerium oxide (CeO2) nanoparticles exhibit multienzyme mimetic activities and have shown the capability of regulating reactive oxygen species (ROS), which is a pivotal mediator for intracellular redox homeostasis in NPCs, regulating biological processes including differentiation, proliferation, and apoptosis. In the present study, the role of facet-dependent CeO2-mediated redox homeostasis in regulating self-renewal and differentiation of NPCs is reported for the first time. The cube-, rod-, and octahedron-shaped CeO2 nanozymes with different facets are prepared. Among the mentioned nanozymes, the cube enclosed by the (100) facet exhibits the highest CAT-like activity, causing it to provide superior protection to NPCs from oxidative stress induced by H2O2; meanwhile, the octahedron enclosed by the (111) facet with the lowest CAT-like activity induces the most ROS production in ReNcell CX cells, which promotes neuronal differentiation by activated AKT/GSK-3β/β-catenin pathways. A further mechanistic study indicated that the electron density of the surface Ce atoms changed continuously with different crystal facets, which led to their different CAT-like activity and modulation of redox homeostasis in NPCs. Altogether, the different surface chemistry and atomic architecture of active sites on CeO2 exert modulation of redox homeostasis and the fate of NPCs.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Zicong Tan
- Department of Chemistry, City University of Hong Kong, HKSAR 999077, China
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Peili Zhu
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Sze Wah Tam
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Zhang Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Xiaoli Jiang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Linyuan Tian
- Department of Chemistry, City University of Hong Kong, HKSAR 999077, China
| | - Zhifeng Huang
- Department of Physics, Hong Kong Baptist University, HKSAR 999077, China
| | - Shiqing Zhang
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, HKSAR 999077, China
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| |
Collapse
|
41
|
Reis L, Raciti M, Rodriguez PG, Joseph B, Al Rayyes I, Uhlén P, Falk A, da Cunha Lima ST, Ceccatelli S. Glyphosate-based herbicide induces long-lasting impairment in neuronal and glial differentiation. ENVIRONMENTAL TOXICOLOGY 2022; 37:2044-2057. [PMID: 35485992 PMCID: PMC9541419 DOI: 10.1002/tox.23549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 05/09/2023]
Abstract
Glyphosate-based herbicides (GBH) are among the most sold pesticides in the world. There are several formulations based on the active ingredient glyphosate (GLY) used along with other chemicals to improve the absorption and penetration in plants. The final composition of commercial GBH may modify GLY toxicological profile, potentially enhancing its neurotoxic properties. The developing nervous system is particularly susceptible to insults occurring during the early phases of development, and exposure to chemicals in this period may lead to persistent impairments on neurogenesis and differentiation. The aim of this study was to evaluate the long-lasting effects of a sub-cytotoxic concentration, 2.5 parts per million of GBH and GLY, on the differentiation of human neuroepithelial stem cells (NES) derived from induced pluripotent stem cells (iPSC). We treated NES cells with each compound and evaluated the effects on key cellular processes, such as proliferation and differentiation in daughter cells never directly exposed to the toxicants. We found that GBH induced a more immature neuronal profile associated to increased PAX6, NESTIN and DCX expression, and a shift in the differentiation process toward glial cell fate at the expense of mature neurons, as shown by an increase in the glial markers GFAP, GLT1, GLAST and a decrease in MAP2. Such alterations were associated to dysregulation of key genes critically involved in neurogenesis, including PAX6, HES1, HES5, and DDK1. Altogether, the data indicate that subtoxic concentrations of GBH, but not of GLY, induce long-lasting impairments on the differentiation potential of NES cells.
Collapse
Affiliation(s)
- Luã Reis
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Marilena Raciti
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | | | - Bertrand Joseph
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Per Uhlén
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Anna Falk
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Suzana Telles da Cunha Lima
- Laboratório de Bioprospecção e Biotecnologia, Instituto de BiologiaUniversidade Federal da Bahia (UFBA)SalvadorBrazil
| | | |
Collapse
|
42
|
Prutton KM, Marentette JO, Leifheit BA, Esquer H, LaBarbera DV, Anderson CC, Maclean KN, Roede JR. Oxidative stress as a candidate mechanism for accelerated neuroectodermal differentiation due to trisomy 21. Free Radic Biol Med 2022; 186:32-42. [PMID: 35537597 DOI: 10.1016/j.freeradbiomed.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
The ubiquity of cognitive deficits and early onset Alzheimer's disease in Down syndrome (DS) has focused much DS iPSC-based research on neuron degeneration and regeneration. Despite reports of elevated oxidative stress in DS brains, few studies assess the impact of this oxidative burden on iPSC differentiation. Here, we evaluate cellular specific redox differences in DS and euploid iPSCs and neural progenitor cells (NPCs) during critical intermediate stages of differentiation. Despite successful generation of NPCs, our results indicate accelerated neuroectodermal differentiation of DS iPSCs compared to isogenic, euploid controls. Specifically, DS embryoid bodies (EBs) and neural rosettes prematurely develop with distinct morphological differences from controls. Additionally, we observed developmental stage-specific alterations in mitochondrial superoxide production and SOD1/2 abundance, coupled with modulations in thioredoxin, thioredoxin reductase, and peroxiredoxin isoforms. Disruption of intracellular redox state and its associated signaling has the potential to disrupt cellular differentiation and development in DS lending to DS-specific phenotypes.
Collapse
Affiliation(s)
- Kendra M Prutton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA; Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA
| | - John O Marentette
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA; Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA
| | - Brice A Leifheit
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA
| | - Hector Esquer
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA; Center for Drug Discovery, University of Colorado, Aurora, CO, 80045, USA
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA; Center for Drug Discovery, University of Colorado, Aurora, CO, 80045, USA
| | - Colin C Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA; Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA
| | - Kenneth N Maclean
- Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA; Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, 80045, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA; Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA.
| |
Collapse
|
43
|
Choi JK, Kwak IS, Yoon SB, Cho H, Moon BS. A Small Molecule Promoting Neural Differentiation Suppresses Cancer Stem Cells in Colorectal Cancer. Biomedicines 2022; 10:biomedicines10040859. [PMID: 35453609 PMCID: PMC9025482 DOI: 10.3390/biomedicines10040859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer stem cells (CSCs) are a tumor cell subpopulation that drives tumor progression and metastasis, leading to a poor overall survival of patients. In colorectal cancer (CRC), the hyper-activation of Wnt/β-catenin signaling by a mutation of both adenomatous polyposis coli (APC) and K-Ras increases the size of the CSC population. We previously showed that CPD0857 inactivates Wnt/β-catenin signaling by promoting the ubiquitin-dependent proteasomal degradation of β-catenin and Ras proteins, thereby decreasing proliferation and increasing the apoptosis of CRC lines. CPD0857 also decreased the growth and invasiveness of CRC cells harboring mutant K-Ras resistant to EGFR mAb therapy. Here, we show that CPD0857 treatment decreases proliferation and increases the neuronal differentiation of neural progenitor cells (NPCs). CDP0857 effectively reduced the expression of CSC markers and suppressed self-renewal capacity. CPD0857 treatment also inhibited the proliferation and expression of CSC markers in D-K-Ras MT cells carrying K-Ras, APC and PI3K mutations, indicating the inhibition of PI3K/AKT signaling. Moreover, CPD0857-treated xenograft mice showed a regression of tumor growth and decreased numbers of CSCs in tumors. We conclude that CPD0857 could serve as the basis of a drug development strategy targeting CSCs activated through Wnt/β-catenin-Ras MAPK-PI3K/AKT signaling in CRCs.
Collapse
Affiliation(s)
- Jung Kyu Choi
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea;
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea;
| | - Sae-Bom Yoon
- Therapeutics and Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (S.-B.Y.); (H.C.)
| | - Heeyeong Cho
- Therapeutics and Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (S.-B.Y.); (H.C.)
| | - Byoung-San Moon
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea
- Correspondence: ; Tel.: +82-61-659-7307; Fax: +82-61-659-7309
| |
Collapse
|
44
|
Kayir H, Jenkins BW, Alural B, Khokhar JY. Clozapine Increases Nestin Concentration in the Adult Male Rat Hippocampus: A Preliminary Study. Int J Mol Sci 2022; 23:ijms23073436. [PMID: 35408792 PMCID: PMC8998718 DOI: 10.3390/ijms23073436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Patients with schizophrenia, and rodent models of the disease, both exhibit suppressed neurogenesis, with antipsychotics possibly enhancing neurogenesis in pre-clinical models. Nestin, a cytoskeletal protein, is implicated in neuronal differentiation and adult neurogenesis. We hypothesized that schizophrenia pathogenesis involves nestin downregulation; however, few studies have related nestin to schizophrenia. We assessed nestin protein concentration, prepulse inhibition (PPI), and social interaction in the MK-801 model of schizophrenia, with or without antipsychotic (clozapine) treatment. Adult male Sprague–Dawley rats were intraperitoneally administered saline or MK-801 (0.1 mg/kg) to produce a schizophrenia-like phenotype, with concomitant subcutaneous injections of vehicle or clozapine (5 mg/kg). PPI was assessed on days 1, 8, and 15, and social interaction was assessed on day 4. Hippocampus tissue samples were dissected for Western blotting of nestin concentration. MK-801 alone did not alter nestin concentration, while clozapine alone enhanced hippocampal nestin concentration; this effect was not apparent in animals with MK-801 and clozapine co-administration. MK-801 also produced schizophrenia-like PPI disruptions, some of which were reversed by clozapine. Social interaction deficits were not detected in this model. This is the first report of clozapine-induced enhancements of hippocampal nestin concentration that might be mediated by NMDA receptors. Future studies will explore the impact of neurodevelopmental nestin concentration on symptom onset and antipsychotic treatment.
Collapse
Affiliation(s)
- Hakan Kayir
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (H.K.); (B.W.J.)
| | - Bryan W. Jenkins
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (H.K.); (B.W.J.)
| | - Begüm Alural
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Jibran Y. Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (H.K.); (B.W.J.)
- Correspondence: ; Tel.: +1-(519)-824-4120 (ext. 54239)
| |
Collapse
|
45
|
Liu J, Wu X, Lu Q. Molecular divergence of mammalian astrocyte progenitor cells at early gliogenesis. Development 2022; 149:dev199985. [PMID: 35253855 PMCID: PMC8959143 DOI: 10.1242/dev.199985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022]
Abstract
During mammalian brain development, how different astrocytes are specified from progenitor cells is not well understood. In particular, whether astrocyte progenitor cells (APCs) start as a relatively homogenous population or whether there is early heterogeneity remains unclear. Here, we have dissected subpopulations of embryonic mouse forebrain progenitors using single-cell transcriptome analyses. Our sequencing data revealed two molecularly distinct APC subgroups at the start of gliogenesis from both dorsal and ventral forebrains. The two APC subgroups were marked, respectively, by specific expression of Sparc and Sparcl1, which are known to function in mature astrocytes with opposing activities for regulating synapse formation. Expression analyses showed that SPARC and SPARCL1 mark APC subgroups that display distinct temporal and spatial patterns, correlating with major waves of astrogliogenesis during development. Our results uncover an early molecular divergence of APCs in the mammalian brain and provide a useful transcriptome resource for the study of glial cell specification.
Collapse
Affiliation(s)
- Jiancheng Liu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Qiang Lu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
46
|
Shaw K, Boyd K, Anderle S, Hammond-Haley M, Amin D, Bonnar O, Hall CN. Gradual Not Sudden Change: Multiple Sites of Functional Transition Across the Microvascular Bed. Front Aging Neurosci 2022; 13:779823. [PMID: 35237142 PMCID: PMC8885127 DOI: 10.3389/fnagi.2021.779823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/20/2021] [Indexed: 01/03/2023] Open
Abstract
In understanding the role of the neurovascular unit as both a biomarker and target for disease interventions, it is vital to appreciate how the function of different components of this unit change along the vascular tree. The cells of the neurovascular unit together perform an array of vital functions, protecting the brain from circulating toxins and infection, while providing nutrients and clearing away waste products. To do so, the brain's microvasculature dilates to direct energy substrates to active neurons, regulates access to circulating immune cells, and promotes angiogenesis in response to decreased blood supply, as well as pulsating to help clear waste products and maintain the oxygen supply. Different parts of the cerebrovascular tree contribute differently to various aspects of these functions, and previously, it has been assumed that there are discrete types of vessel along the vascular network that mediate different functions. Another option, however, is that the multiple transitions in function that occur across the vascular network do so at many locations, such that vascular function changes gradually, rather than in sharp steps between clearly distinct vessel types. Here, by reference to new data as well as by reviewing historical and recent literature, we argue that this latter scenario is likely the case and that vascular function gradually changes across the network without clear transition points between arteriole, precapillary arteriole and capillary. This is because classically localized functions are in fact performed by wide swathes of the vasculature, and different functional markers start and stop being expressed at different points along the vascular tree. Furthermore, vascular branch points show alterations in their mural cell morphology that suggest functional specializations irrespective of their position within the network. Together this work emphasizes the need for studies to consider where transitions of different functions occur, and the importance of defining these locations, in order to better understand the vascular network and how to target it to treat disease.
Collapse
Affiliation(s)
- Kira Shaw
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Katie Boyd
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Silvia Anderle
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| | | | - Davina Amin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Orla Bonnar
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown Navy Yard, MA, United States
| | - Catherine N. Hall
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| |
Collapse
|
47
|
Stratified-structural hydrogel incorporated with magnesium-ion-modified black phosphorus nanosheets for promoting neuro-vascularized bone regeneration. Bioact Mater 2022; 16:271-284. [PMID: 35386320 PMCID: PMC8965728 DOI: 10.1016/j.bioactmat.2022.02.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis and neurogenesis play irreplaceable roles in bone repair. Although biomaterial implantation that mimics native skeletal tissue is extensively studied, the nerve-vascular network reconstruction is neglected in the design of biomaterials. Our goal here is to establish a periosteum-simulating bilayer hydrogel and explore the efficiency of bone repair via enhancement of angiogenesis and neurogenesis. In this contribution, we designed a bilayer hydrogel platform incorporated with magnesium-ion-modified black phosphorus (BP) nanosheets for promoting neuro-vascularized bone regeneration. Specifically, we incorporated magnesium-ion-modified black phosphorus (BP@Mg) nanosheets into gelatin methacryloyl (GelMA) hydrogel to prepare the upper hydrogel, whereas the bottom hydrogel was designed as a double-network hydrogel system, consisting of two interpenetrating polymer networks composed of GelMA, PEGDA, and β-TCP nanocrystals. The magnesium ion modification process was developed to enhance BP nanosheet stability and provide a sustained release platform for bioactive ions. Our results demonstrated that the upper layer of hydrogel provided a bionic periosteal structure, which significantly facilitated angiogenesis via induction of endothelial cell migration and presented multiple advantages for the upregulation of nerve-related protein expression in neural stem cells (NSCs). Moreover, the bottom layer of the hydrogel significantly promoted bone marrow mesenchymal stem cells (BMSCs) activity and osteogenic differentiation. We next employed the bilayer hydrogel structure to correct rat skull defects. Based on our radiological and histological examinations, the bilayer hydrogel scaffolds markedly enhanced early vascularization and neurogenesis, which prompted eventual bone regeneration and remodeling. Our current strategy paves way for designing nerve-vascular network biomaterials for bone regeneration. Developing a periosteum-simulating bilayer hydrogel to improve the efficiency of neuro-vascularized bone repair. A magnesium-ion-modified black phosphorus (BP) nanosheets incorporated hydrogel platform was designed. Designing nerve-vascular network biomaterials for bone regeneration.
Collapse
|
48
|
Roy RR, Shimada K, Hasegawa H. A Case of Oral Glomeruloid Hemangioma Without Systemic Conditions. Cureus 2022; 14:e21705. [PMID: 35145824 PMCID: PMC8803383 DOI: 10.7759/cureus.21705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 11/05/2022] Open
Abstract
Glomeruloid hemangioma is a rare variant of hemangioma that is accompanied by polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin abnormalities (POEMS) syndrome and, rarely, by thrombocytopenia, anasarca, fever, reticulin fibrosis, and organomegaly (TAFRO) syndrome. This report presents the case of a 78-year-old male who presented with a hemorrhagic nodule on the tongue without any other systemic diseases. Microscopically, the lesion was a lobular proliferation extending from the lamina propria to muscular tissue. Some intravascular nodules with irregular vascular lumens closely resembled renal glomeruli. Each nodule consisted of plump endothelial and stromal cells that partially showed vacuolated cytoplasm containing eosinophilic and periodic acid-Schiff (PAS)-positive globules. Immunohistochemically, IgG-positive deposition was noted within CD31-positive cells. Many plump stromal cells were positive for CD31, CD146, nestin, and type IV collagen but not α-smooth muscle actin (αSMA). These results reflect the proliferation of immature endothelial cells and pericytes, which might characterize this unique lesion. Microscopically, this case revealed glomeruloid hemangioma without systemic conditions related to POEMS, and composed of an intravascular proliferation of immature endothelial and pericytic stromal cells.
Collapse
|
49
|
IL-1 reprogramming of adult neural stem cells limits neurocognitive recovery after viral encephalitis by maintaining a proinflammatory state. Brain Behav Immun 2022; 99:383-396. [PMID: 34695572 DOI: 10.1016/j.bbi.2021.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Innate immune responses to emerging RNA viruses are increasingly recognized as having significant contributions to neurologic sequelae, especially memory disorders. Using a recovery model of West Nile virus (WNV) encephalitis, we show that, while macrophages deliver the antiviral and anti-neurogenic cytokine IL-1β during acute infection; viral recovery is associated with continued astrocyte inflammasome-mediated production of inflammatory levels of IL-1β, which is maintained by hippocampal astrogenesis via IL-1R1 signaling in neural stem cells (NSC). Accordingly, aberrant astrogenesis is prevented in the absence of IL-1 signaling in NSC, indicating that only newly generated astrocytes exert neurotoxic effects, preventing synapse repair and promoting spatial learning deficits. Ex vivo evaluation of IL-1β-treated adult hippocampal NSC revealed the upregulation of developmental differentiation pathways that derail adult neurogenesis in favor of astrogenesis, following viral infection. We conclude that NSC-specific IL-1 signaling within the hippocampus during viral encephalitis prevents synapse recovery and promotes spatial learning defects via altered fates of NSC progeny that maintain inflammation.
Collapse
|
50
|
Samanipour R, Tahmooressi H, Rezaei Nejad H, Hirano M, Shin SR, Hoorfar M. A review on 3D printing functional brain model. BIOMICROFLUIDICS 2022; 16:011501. [PMID: 35145569 PMCID: PMC8816519 DOI: 10.1063/5.0074631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/31/2021] [Indexed: 05/08/2023]
Abstract
Modern neuroscience increasingly relies on 3D models to study neural circuitry, nerve regeneration, and neural disease. Several different biofabrication approaches have been explored to create 3D neural tissue model structures. Among them, 3D bioprinting has shown to have great potential to emerge as a high-throughput/high precision biofabrication strategy that can address the growing need for 3D neural models. Here, we have reviewed the design principles for neural tissue engineering. The main challenge to adapt printing technologies for biofabrication of neural tissue models is the development of neural bioink, i.e., a biomaterial with printability and gelation properties and also suitable for neural tissue culture. This review shines light on a vast range of biomaterials as well as the fundamentals of 3D neural tissue printing. Also, advances in 3D bioprinting technologies are reviewed especially for bioprinted neural models. Finally, the techniques used to evaluate the fabricated 2D and 3D neural models are discussed and compared in terms of feasibility and functionality.
Collapse
Affiliation(s)
| | - Hamed Tahmooressi
- Department of Mechanical Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Hojatollah Rezaei Nejad
- Department of Electrical and Computer Engineering, Tufts University, 161 College Avenue, Medford, Massachusetts 02155, USA
| | | | - Su-Royn Shin
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, USA
- Authors to whom correspondence should be addressed: and
| | - Mina Hoorfar
- Faculty of Engineering, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Authors to whom correspondence should be addressed: and
| |
Collapse
|