1
|
Liu Y, Li Z, Chen X, Cui X, Gao Z, Jiang R. INSTINCT: Multi-sample integration of spatial chromatin accessibility sequencing data via stochastic domain translation. Nat Commun 2025; 16:1247. [PMID: 39893190 PMCID: PMC11787322 DOI: 10.1038/s41467-025-56535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Recent advances in spatial epigenomic techniques have given rise to spatial assay for transposase-accessible chromatin using sequencing (spATAC-seq) data, enabling the characterization of epigenomic heterogeneity and spatial information simultaneously. Integrative analysis of multiple spATAC-seq samples, for which no method has been developed, allows for effective identification and elimination of unwanted non-biological factors within the data, enabling comprehensive exploration of tissue structures and providing a holistic epigenomic landscape, thereby facilitating the discovery of biological implications and the study of regulatory processes. In this article, we present INSTINCT, a method for multi-sample INtegration of Spatial chromaTIN accessibility sequencing data via stochastiC domain Translation. INSTINCT can efficiently handle the high dimensionality of spATAC-seq data and eliminate the complex noise and batch effects of samples through a stochastic domain translation procedure. We demonstrate the superiority and robustness of INSTINCT in integrating spATAC-seq data across multiple simulated scenarios and real datasets. Additionally, we highlight the advantages of INSTINCT in spatial domain identification, visualization, spot-type annotation, and various downstream analyses, including motif enrichment analysis, expression enrichment analysis, and partitioned heritability analysis.
Collapse
Affiliation(s)
- Yuyao Liu
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Zhen Li
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Xiaoyang Chen
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Xuejian Cui
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Zijing Gao
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Rui Jiang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Damuth DL, Cunningham DD, Silva EM. Sox21 homeologs autoregulate expression levels to control progression through neurogenesis. Genesis 2024; 62:e23612. [PMID: 39054872 PMCID: PMC11584151 DOI: 10.1002/dvg.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The SRY HMG box transcription factor Sox21 plays multiple critical roles in neurogenesis, with its function dependent on concentration and developmental stage. In the allotetraploid Xenopus laevis, there are two homeologs of sox21, namely sox21.S and sox21.L. Previous studies focused on Sox21.S, but its amino acid sequence is divergent, lacking conserved poly-A stretches and bearing more similarity with ancestral homologs. In contrast, Sox21.L shares higher sequence similarity with mouse and chick Sox21. To determine if Sox21.S and Sox21.L have distinct functions, we conducted gain and loss-of-function studies in Xenopus embryos. Our studies revealed that Sox21.S and Sox21.L are functionally redundant, but Sox21.L is more effective at driving changes than Sox21.S. These results also support our earlier findings in ectodermal explants, demonstrating that Sox21 function is dose-dependent. While Sox21 is necessary for primary neuron formation, high levels prevent their formation. Strikingly, these proteins autoregulate, with high levels of Sox21.L reducing sox21.S and sox21.L mRNA levels, and decreased Sox21.S promoting increased expression of sox21.L. Our findings shed light on the intricate concentration-dependent roles of Sox21 homeologs in Xenopus neurogenesis.
Collapse
Affiliation(s)
- Dillon L Damuth
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Elena M Silva
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
3
|
Akinyemi MO, Finucan J, Grytsay A, Osaiyuwu OH, Adegbaju MS, Ogunade IM, Thomas BN, Peters SO, Morenikeji OB. Molecular Evolution and Inheritance Pattern of Sox Gene Family among Bovidae. Genes (Basel) 2022; 13:genes13101783. [PMID: 36292668 PMCID: PMC9602320 DOI: 10.3390/genes13101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/04/2022] Open
Abstract
Sox genes are an evolutionarily conserved family of transcription factors that play important roles in cellular differentiation and numerous complex developmental processes. In vertebrates, Sox proteins are required for cell fate decisions, morphogenesis, and the control of self-renewal in embryonic and adult stem cells. The Sox gene family has been well-studied in multiple species including humans but there has been scanty or no research into Bovidae. In this study, we conducted a detailed evolutionary analysis of this gene family in Bovidae, including their physicochemical properties, biological functions, and patterns of inheritance. We performed a genome-wide cataloguing procedure to explore the Sox gene family using multiple bioinformatics tools. Our analysis revealed a significant inheritance pattern including conserved motifs that are critical to the ability of Sox proteins to interact with the regulatory regions of target genes and orchestrate multiple developmental and physiological processes. Importantly, we report an important conserved motif, EFDQYL/ELDQYL, found in the SoxE and SoxF groups but not in other Sox groups. Further analysis revealed that this motif sequence accounts for the binding and transactivation potential of Sox proteins. The degree of protein–protein interaction showed significant interactions among Sox genes and related genes implicated in embryonic development and the regulation of cell differentiation. We conclude that the Sox gene family uniquely evolved in Bovidae, with a few exhibiting important motifs that drive several developmental and physiological processes.
Collapse
Affiliation(s)
- Mabel O. Akinyemi
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ 07940, USA
| | - Jessica Finucan
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ 07940, USA
| | - Anastasia Grytsay
- Division of Biological and Health Sciences, University of Pittsburgh, Bradford, PA 16701, USA
| | - Osamede H. Osaiyuwu
- Department of Animal Science, Faculty of Agriculture, University of Ibadan, Ibadan 200005, Nigeria
| | - Muyiwa S. Adegbaju
- Institute for Plant Biotechnology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Ibukun M. Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Sunday O. Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149, USA
| | - Olanrewaju B. Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh, Bradford, PA 16701, USA
- Correspondence: ; Tel.: +1-(585)-490-7271
| |
Collapse
|
4
|
Khalil BD, Sanchez R, Rahman T, Rodriguez-Tirado C, Moritsch S, Martinez AR, Miles B, Farias E, Mezei M, Nobre AR, Singh D, Kale N, Sproll KC, Sosa MS, Aguirre-Ghiso JA. An NR2F1-specific agonist suppresses metastasis by inducing cancer cell dormancy. J Exp Med 2022; 219:e20210836. [PMID: 34812843 PMCID: PMC8614154 DOI: 10.1084/jem.20210836] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/20/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023] Open
Abstract
We describe the discovery of an agonist of the nuclear receptor NR2F1 that specifically activates dormancy programs in malignant cells. The agonist led to a self-regulated increase in NR2F1 mRNA and protein and downstream transcription of a novel dormancy program. This program led to growth arrest of an HNSCC PDX line, human cell lines, and patient-derived organoids in 3D cultures and in vivo. This effect was lost when NR2F1 was knocked out by CRISPR-Cas9. RNA sequencing revealed that agonist treatment induces transcriptional changes associated with inhibition of cell cycle progression and mTOR signaling, metastasis suppression, and induction of a neural crest lineage program. In mice, agonist treatment resulted in inhibition of lung HNSCC metastasis, even after cessation of the treatment, where disseminated tumor cells displayed an NR2F1hi/p27hi/Ki-67lo/p-S6lo phenotype and remained in a dormant single-cell state. Our work provides proof of principle supporting the use of NR2F1 agonists to induce dormancy as a therapeutic strategy to prevent metastasis.
Collapse
Affiliation(s)
- Bassem D. Khalil
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Western Atlantic University School of Medicine, Plantation, FL
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tasrina Rahman
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Stefan Moritsch
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alba Rodriguez Martinez
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Brett Miles
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eduardo Farias
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Deepak Singh
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nupura Kale
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Karl Christoph Sproll
- Department of Oral, Maxillofacial and Plastic Facial Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Julio A. Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
5
|
Deryckere A, Styfhals R, Elagoz AM, Maes GE, Seuntjens E. Identification of neural progenitor cells and their progeny reveals long distance migration in the developing octopus brain. eLife 2021; 10:e69161. [PMID: 34425939 PMCID: PMC8384421 DOI: 10.7554/elife.69161] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 12/28/2022] Open
Abstract
Cephalopods have evolved nervous systems that parallel the complexity of mammalian brains in terms of neuronal numbers and richness in behavioral output. How the cephalopod brain develops has only been described at the morphological level, and it remains unclear where the progenitor cells are located and what molecular factors drive neurogenesis. Using histological techniques, we located dividing cells, neural progenitors and postmitotic neurons in Octopus vulgaris embryos. Our results indicate that an important pool of progenitors, expressing the conserved bHLH transcription factors achaete-scute or neurogenin, is located outside the central brain cords in the lateral lips adjacent to the eyes, suggesting that newly formed neurons migrate into the cords. Lineage-tracing experiments then showed that progenitors, depending on their location in the lateral lips, generate neurons for the different lobes, similar to the squid Doryteuthis pealeii. The finding that octopus newborn neurons migrate over long distances is reminiscent of vertebrate neurogenesis and suggests it might be a fundamental strategy for large brain development.
Collapse
Affiliation(s)
- Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| | - Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaplesItaly
| | - Ali Murat Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| | - Gregory E Maes
- Center for Human Genetics, Genomics Core, UZ-KU LeuvenLeuvenBelgium
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook UniversityTownsvilleAustralia
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU LeuvenLeuvenBelgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| |
Collapse
|
6
|
Lee WJ, Lee JE, Hong YJ, Yoon SH, Song H, Park C, Hong K, Choi Y, Do JT. Generation of brain organoids from mouse ESCs via teratoma formation. Stem Cell Res 2020; 49:102100. [PMID: 33260068 DOI: 10.1016/j.scr.2020.102100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs), can differentiate into all cell types in the body; therefore, they are used in the study of development and regenerative medicine. Neural lineage differentiation from PSCs is the initial step to study neurodevelopment and in vitro disease modeling. Brain organoids, which are composed of neural stem cells (NSCs) and differentiated neural lineage cell population, are a powerful in vitro system to mimic the brain tissue. Here, we aimed to establish a new method to generate brain organoids efficiently in a mouse model. We applied the in vivo teratoma formation method as a new approach to generate brain organoids. We induced teratoma formation using Sox1-GFP transgenic ESCs, in which green fluorescence protein (GFP) is expressed under the control of the early NSC marker Sox1. Sox1-GFP-expressing early NSCs were isolated as clumps and further cultured to generate brain organoids. Sox1-GFP ESC-derived brain organoids, composed of multiple layers of distinct cellular components (ventricle, ventricular zone, and cortical layer), were formed within 3 weeks of in vitro culture. We also found that neighboring cells (Sox1-GFP-) surrounding the Sox1-GFP+ clumps are essential for the formation of brain organoids. Thus, in vivo and in vitro conjugated systems-initial commitment in vivo and further specialization in vitro-could be one of the promising platforms for organoid formation that are universally applicable.
Collapse
Affiliation(s)
- Won Ji Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeong Eon Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yean Ju Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Hoon Yoon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
Ahmad A, Strohbuecker S, Scotti C, Tufarelli C, Sottile V. In Silico Identification of SOX1 Post-Translational Modifications Highlights a Shared Protein Motif. Cells 2020; 9:E2471. [PMID: 33202879 PMCID: PMC7696889 DOI: 10.3390/cells9112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/02/2022] Open
Abstract
The transcription factor SOX1 is a key regulator of neural stem cell development, acting to keep neural stem cells (NSCs) in an undifferentiated state. Postnatal expression of Sox1 is typically confined to the central nervous system (CNS), however, its expression in non-neural tissues has recently been implicated in tumorigenesis. The mechanism through which SOX1 may exert its function is not fully understood, and studies have mainly focused on changes in SOX1 expression at a transcriptional level, while its post-translational regulation remains undetermined. To investigate this, data were extracted from different publicly available databases and analysed to search for putative SOX1 post-translational modifications (PTMs). Results were compared to PTMs associated with SOX2 in order to identify potentially key PTM motifs common to these SOXB1 proteins, and mapped on SOX1 domain structural models. This approach identified several putative acetylation, phosphorylation, glycosylation and sumoylation sites within known functional domains of SOX1. In particular, a novel SOXB1 motif (xKSExSxxP) was identified within the SOX1 protein, which was also found in other unrelated proteins, most of which were transcription factors. These results also highlighted potential phospho-sumoyl switches within this SOXB1 motif identified in SOX1, which could regulate its transcriptional activity. This analysis indicates different types of PTMs within SOX1, which may influence its regulatory role as a transcription factor, by bringing changes to its DNA binding capacities and its interactions with partner proteins. These results provide new research avenues for future investigations on the mechanisms regulating SOX1 activity, which could inform its roles in the contexts of neural stem cell development and cancer.
Collapse
Affiliation(s)
- Azaz Ahmad
- School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK; (A.A.); (S.S.)
| | - Stephanie Strohbuecker
- School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK; (A.A.); (S.S.)
| | - Claudia Scotti
- Department of Molecular Medicine, The University of Pavia, 27100 Pavia, Italy;
| | - Cristina Tufarelli
- Department of Genetics and Genome Biology/Leicester Cancer Research Centre, The University of Leicester, Leicester LE2 7LX, UK;
| | - Virginie Sottile
- School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK; (A.A.); (S.S.)
- Department of Molecular Medicine, The University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
8
|
Huang J, Gao H, Tan HZ. SOX1 Promoter Hypermethylation as a Potential Biomarker for High-Grade Squamous Intraepithelial Neoplasia Lesion and Cervical Carcinoma: A Meta-Analysis With Trial Sequential Analysis. Front Genet 2020; 11:633. [PMID: 32849763 PMCID: PMC7411256 DOI: 10.3389/fgene.2020.00633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Background: DNA methylation has been widely assessed as a potential biomarker for the early detection of cervical cancer (CC). Herein, we assessed the associations of SOX1 promoter hypermethylation with squamous intraepithelial lesion and CC. Methods: Published studies and genome-wide methylation datasets were searched from electronic databases (up to April 2019). The associations of SOX1 hypermethylation with high-grade squamous intraepithelial lesion (HSIL) and CC risks were evaluated by odds ratios (ORs) and 95% confidence intervals (CIs). The summary receiver operator characteristic test was used to assess the diagnostic value of the SOX1 promoter hypermethylation of CC and intraepithelial neoplasia type III or worse (CIN3+). Trial sequential analysis (TSA) was performed to evaluate the stability of results and estimate the required information size (RIS). Results: In this meta-analysis of 17 published studies, the SOX1 methylation rates increased among low-grade SIL (LSIL, 27.27%), HSIL (40.75%), and CC (84.56%) specimens. Compared with control specimens, SOX1 promoter hypermethylation progressively increased the risk of HSIL by 4.20-fold (p < 0.001) and CC by 41.26-fold (p < 0.001). The pooled sensitivity of SOX1 methylation was estimated to be 0.85 (95% CI: 0.81–0.88) in differentiating patients with CC, corresponding to a specificity of 0.72 (95% CI: 0.69–0.75) and an area under the curve (AUC) of 0.93. Furthermore, the pooled sensitivity of SOX1 methylation was estimated to be 0.75 (95% CI: 0.72–0.78) in differentiating patients with CIN3+, corresponding to a specificity of 0.71 (95% CI: 0.69–0.73) and an AUC of 0.84. The pooled results of TCGA and GEO datasets showed that all CpG sites in SOX1 were associated with CC and 16 of 19 CpG sites were associated with HSIL. The results of TSA illustrated that the size was sufficient and significant associations were observed. Conclusion: This meta-analysis indicated that SOX1 promoter hypermethylation might have a potential value in the clinical diagnosis of CC and CIN3+.
Collapse
Affiliation(s)
- Jin Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, China
| | - Hong Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, China.,School of Nursing, University of South China, Hengyang, China
| | - Hong-Zhuan Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, China
| |
Collapse
|
9
|
Sur A, Renfro A, Bergmann PJ, Meyer NP. Investigating cellular and molecular mechanisms of neurogenesis in Capitella teleta sheds light on the ancestor of Annelida. BMC Evol Biol 2020; 20:84. [PMID: 32664907 PMCID: PMC7362552 DOI: 10.1186/s12862-020-01636-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diverse architectures of nervous systems (NSs) such as a plexus in cnidarians or a more centralized nervous system (CNS) in insects and vertebrates are present across Metazoa, but it is unclear what selection pressures drove evolution and diversification of NSs. One underlying aspect of this diversity lies in the cellular and molecular mechanisms driving neurogenesis, i.e. generation of neurons from neural precursor cells (NPCs). In cnidarians, vertebrates, and arthropods, homologs of SoxB and bHLH proneural genes control different steps of neurogenesis, suggesting that some neurogenic mechanisms may be conserved. However, data are lacking for spiralian taxa. RESULTS To that end, we characterized NPCs and their daughters at different stages of neurogenesis in the spiralian annelid Capitella teleta. We assessed cellular division patterns in the neuroectoderm using static and pulse-chase labeling with thymidine analogs (EdU and BrdU), which enabled identification of NPCs that underwent multiple rounds of division. Actively-dividing brain NPCs were found to be apically-localized, whereas actively-dividing NPCs for the ventral nerve cord (VNC) were found apically, basally, and closer to the ventral midline. We used lineage tracing to characterize the changing boundary of the trunk neuroectoderm. Finally, to start to generate a genetic hierarchy, we performed double-fluorescent in-situ hybridization (FISH) and single-FISH plus EdU labeling for neurogenic gene homologs. In the brain and VNC, Ct-soxB1 and Ct-neurogenin were expressed in a large proportion of apically-localized, EdU+ NPCs. In contrast, Ct-ash1 was expressed in a small subset of apically-localized, EdU+ NPCs and subsurface, EdU- cells, but not in Ct-neuroD+ or Ct-elav1+ cells, which also were subsurface. CONCLUSIONS Our data suggest a putative genetic hierarchy with Ct-soxB1 and Ct-neurogenin at the top, followed by Ct-ash1, then Ct-neuroD, and finally Ct-elav1. Comparison of our data with that from Platynereis dumerilii revealed expression of neurogenin homologs in proliferating NPCs in annelids, which appears different than the expression of vertebrate neurogenin homologs in cells that are exiting the cell cycle. Furthermore, differences between neurogenesis in the head versus trunk of C. teleta suggest that these two tissues may be independent developmental modules, possibly with differing evolutionary trajectories.
Collapse
Affiliation(s)
- A. Sur
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - A. Renfro
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - P. J. Bergmann
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - N. P. Meyer
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| |
Collapse
|
10
|
Hou L, Wei Y, Lin Y, Wang X, Lai Y, Yin M, Chen Y, Guo X, Wu S, Zhu Y, Yuan J, Tariq M, Li N, Sun H, Wang H, Zhang X, Chen J, Bao X, Jauch R. Concurrent binding to DNA and RNA facilitates the pluripotency reprogramming activity of Sox2. Nucleic Acids Res 2020; 48:3869-3887. [PMID: 32016422 PMCID: PMC7144947 DOI: 10.1093/nar/gkaa067] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/03/2023] Open
Abstract
Some transcription factors that specifically bind double-stranded DNA appear to also function as RNA-binding proteins. Here, we demonstrate that the transcription factor Sox2 is able to directly bind RNA in vitro as well as in mouse and human cells. Sox2 targets RNA via a 60-amino-acid RNA binding motif (RBM) positioned C-terminally of the DNA binding high mobility group (HMG) box. Sox2 can associate with RNA and DNA simultaneously to form ternary RNA/Sox2/DNA complexes. Deletion of the RBM does not affect selection of target genes but mitigates binding to pluripotency related transcripts, switches exon usage and impairs the reprogramming of somatic cells to a pluripotent state. Our findings designate Sox2 as a multi-functional factor that associates with RNA whilst binding to cognate DNA sequences, suggesting that it may co-transcriptionally regulate RNA metabolism during somatic cell reprogramming.
Collapse
Affiliation(s)
- Linlin Hou
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangzhou/Shenzhen, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuanjie Wei
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yingying Lin
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangzhou/Shenzhen, China.,Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiwei Wang
- Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yiwei Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Menghui Yin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China
| | - Yanpu Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Xiangpeng Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Senbin Wu
- Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Muqddas Tariq
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Na Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaofei Zhang
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,CAS Key Laboratory of Regenerative Biology, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xichen Bao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ralf Jauch
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Parcellation of the striatal complex into dorsal and ventral districts. Proc Natl Acad Sci U S A 2020; 117:7418-7429. [PMID: 32170006 DOI: 10.1073/pnas.1921007117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The striatal complex of basal ganglia comprises two functionally distinct districts. The dorsal district controls motor and cognitive functions. The ventral district regulates the limbic function of motivation, reward, and emotion. The dorsoventral parcellation of the striatum also is of clinical importance as differential striatal pathophysiologies occur in Huntington's disease, Parkinson's disease, and drug addiction disorders. Despite these striking neurobiologic contrasts, it is largely unknown how the dorsal and ventral divisions of the striatum are set up. Here, we demonstrate that interactions between the two key transcription factors Nolz-1 and Dlx1/2 control the migratory paths of striatal neurons to the dorsal or ventral striatum. Moreover, these same transcription factors control the cell identity of striatal projection neurons in both the dorsal and the ventral striata including the D1-direct and D2-indirect pathways. We show that Nolz-1, through the I12b enhancer, represses Dlx1/2, allowing normal migration of striatal neurons to dorsal and ventral locations. We demonstrate that deletion, up-regulation, and down-regulation of Nolz-1 and Dlx1/2 can produce a striatal phenotype characterized by a withered dorsal striatum and an enlarged ventral striatum and that we can rescue this phenotype by manipulating the interactions between Nolz-1 and Dlx1/2 transcription factors. Our study indicates that the two-tier system of striatal complex is built by coupling of cell-type identity and migration and suggests that the fundamental basis for divisions of the striatum known to be differentially vulnerable at maturity is already encoded by the time embryonic striatal neurons begin their migrations into developing striata.
Collapse
|
12
|
Lucchese G, Flöel A, Stahl B. A Peptide Link Between Human Cytomegalovirus Infection, Neuronal Migration, and Psychosis. Front Psychiatry 2020; 11:349. [PMID: 32457660 PMCID: PMC7225321 DOI: 10.3389/fpsyt.2020.00349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/06/2020] [Indexed: 01/28/2023] Open
Abstract
Alongside biological, psychological, and social risk factors, psychotic syndromes may be related to disturbances of neuronal migration. This highly complex process characterizes the developing brain of the fetus, the early postnatal brain, and the adult brain, as reflected by changes within the subventricular zone and the dentate gyrus of the hippocampus, where neurogenesis persists throughout life. Psychosis also appears to be linked to human cytomegalovirus (HCMV) infection. However, little is known about the connection between psychosis, HCMV infection, and disruption of neuronal migration. The present study addresses the hypothesis that HCMV infection may lead to mental disorders through mechanisms of autoimmune cross-reactivity. Searching for common peptides that underlie immune cross-reactions, the analyses focus on HCMV and human proteins involved in neuronal migration. Results demonstrate a large overlap of viral peptides with human proteins associated with neuronal migration, such as ventral anterior homeobox 1 and cell adhesion molecule 1 implicated in GABAergic and glutamatergic neurotransmission. The present findings support the possibility of immune cross-reactivity between HCMV and human proteins that-when altered, mutated, or improperly functioning-may disrupt normal neuronal migration. In addition, these findings are consistent with a molecular and mechanistic framework for pathological sequences of events, beginning with HCMV infection, followed by immune activation, cross-reactivity, and neuronal protein variations that may ultimately contribute to the emergence of mental disorders, including psychosis.
Collapse
Affiliation(s)
- Guglielmo Lucchese
- Department of Neurology, University of Greifswald, Greifswald, Germany.,Department of Computing, Goldsmiths, University of London, London, United Kingdom
| | - Agnes Flöel
- Department of Neurology, University of Greifswald, Greifswald, Germany.,Partner Site Rostock/Greifswald, German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Benjamin Stahl
- Department of Neurology, University of Greifswald, Greifswald, Germany.,Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Psychologische Hochschule Berlin, Berlin, Germany
| |
Collapse
|
13
|
Lukmanto D, Khanh VC, Shirota S, Kato T, Takasaki MM, Ohneda O. Dynamic Changes of Mouse Embryonic Stem Cell-Derived Neural Stem Cells Under In Vitro Prolonged Culture and Hypoxic Conditions. Stem Cells Dev 2019; 28:1434-1450. [DOI: 10.1089/scd.2019.0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Donny Lukmanto
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Vuong Cat Khanh
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Saori Shirota
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Toshiki Kato
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Mami Matsuo Takasaki
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
14
|
Lekk I, Duboc V, Faro A, Nicolaou S, Blader P, Wilson SW. Sox1a mediates the ability of the parapineal to impart habenular left-right asymmetry. eLife 2019; 8:47376. [PMID: 31373552 PMCID: PMC6677535 DOI: 10.7554/elife.47376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Left-right asymmetries in the zebrafish habenular nuclei are dependent upon the formation of the parapineal, a unilateral group of neurons that arise from the medially positioned pineal complex. In this study, we show that both the left and right habenula are competent to adopt left-type molecular character and efferent connectivity upon the presence of only a few parapineal cells. This ability to impart left-sided character is lost in parapineal cells lacking Sox1a function, despite the normal specification of the parapineal itself. Precisely timed laser ablation experiments demonstrate that the parapineal influences neurogenesis in the left habenula at early developmental stages as well as neurotransmitter phenotype and efferent connectivity during subsequent stages of habenular differentiation. These results reveal a tight coordination between the formation of the unilateral parapineal nucleus and emergence of asymmetric habenulae, ensuring that appropriate lateralised character is propagated within left and right-sided circuitry.
Collapse
Affiliation(s)
- Ingrid Lekk
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Véronique Duboc
- Centre de Biologie Intégrative (FR 3743), Centre de Biologie du Développement (UMR5547), Université de Toulouse, CNRS, Toulouse, France.,Université Côte d'Azur, CHU, Inserm, CNRS, IRCAN, Nice, France
| | - Ana Faro
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stephanos Nicolaou
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Patrick Blader
- Centre de Biologie Intégrative (FR 3743), Centre de Biologie du Développement (UMR5547), Université de Toulouse, CNRS, Toulouse, France
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
15
|
Chang WF, Wu YH, Xu J, Sung LY. Compromised Chondrocyte Differentiation Capacity in TERC Knockout Mouse Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. Int J Mol Sci 2019; 20:ijms20051236. [PMID: 30870992 PMCID: PMC6429130 DOI: 10.3390/ijms20051236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Mammalian telomere lengths are primarily regulated by telomerase, consisting of a reverse transcriptase protein (TERT) and an RNA subunit (TERC). We previously reported the generation of mouse Terc+/- and Terc-/- embryonic stem cells (ntESCs) by somatic cell nuclear transfer. In the present work, we investigated the germ layer development competence of Terc-/-, Terc+/- and wild-type (Terc+/+) ntESCs. The telomere lengths are longest in wild-type but shortest in Terc-/- ntESCs, and correlate reversely with the population doubling time. Interestingly, while in vitro embryoid body (EB) differentiation assay reveals EB size difference among ntESCs of different genotypes, the more stringent in vivo teratoma assay demonstrates that Terc-/- ntESCs are severely defective in differentiating into the mesodermal lineage cartilage. Consistently, in a directed in vitro chondrocyte differentiation assay, the Terc-/- cells failed in forming Collagen II expressing cells. These findings underscore the significance in maintaining proper telomere lengths in stem cells and their derivatives for regenerative medicine.
Collapse
Affiliation(s)
- Wei-Fang Chang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| | - Yun-Hsin Wu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
- Animal Resource Center, National Taiwan University, Taipei 106, Taiwan.
- Center for Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
16
|
Ross KG, Molinaro AM, Romero C, Dockter B, Cable KL, Gonzalez K, Zhang S, Collins EMS, Pearson BJ, Zayas RM. SoxB1 Activity Regulates Sensory Neuron Regeneration, Maintenance, and Function in Planarians. Dev Cell 2019; 47:331-347.e5. [PMID: 30399335 DOI: 10.1016/j.devcel.2018.10.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 10/27/2022]
Abstract
SoxB1 genes play fundamental roles in neurodevelopmental processes and maintaining stem cell multipotency, but little is known about their function in regeneration. We addressed this question by analyzing the activity of the SoxB1 homolog soxB1-2 in the planarian Schmidtea mediterranea. Expression and functional analysis revealed that soxB1-2 marks ectodermal-lineage progenitors, and its activity is required for differentiation of subsets of ciliated epidermal and neuronal cells. Moreover, we show that inhibiting soxB1-2 or its candidate target genes leads to abnormal sensory neuron regeneration that causes planarians to display seizure-like movements or phenotypes associated with the loss of sensory modalities. Our analyses highlight soxB1-2-regulated genes that are expressed in sensory neurons and are homologous to factors implicated in epileptic disorders in humans and animal models of epilepsy, indicating that planarians can serve as a complementary model to investigate genetic causes of epilepsy.
Collapse
Affiliation(s)
- Kelly G Ross
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Alyssa M Molinaro
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Celeste Romero
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Brian Dockter
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Katrina L Cable
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Karla Gonzalez
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Siqi Zhang
- Department of Physics, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Eva-Maria S Collins
- Department of Physics, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Bret J Pearson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
17
|
Corsinotti A, Wong FC, Tatar T, Szczerbinska I, Halbritter F, Colby D, Gogolok S, Pantier R, Liggat K, Mirfazeli ES, Hall-Ponsele E, Mullin NP, Wilson V, Chambers I. Distinct SoxB1 networks are required for naïve and primed pluripotency. eLife 2017; 6:27746. [PMID: 29256862 PMCID: PMC5758114 DOI: 10.7554/elife.27746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
Deletion of Sox2 from mouse embryonic stem cells (ESCs) causes trophectodermal differentiation. While this can be prevented by enforced expression of the related SOXB1 proteins, SOX1 or SOX3, the roles of SOXB1 proteins in epiblast stem cell (EpiSC) pluripotency are unknown. Here, we show that Sox2 can be deleted from EpiSCs with impunity. This is due to a shift in the balance of SoxB1 expression in EpiSCs, which have decreased Sox2 and increased Sox3 compared to ESCs. Consistent with functional redundancy, Sox3 can also be deleted from EpiSCs without eliminating self-renewal. However, deletion of both Sox2 and Sox3 prevents self-renewal. The overall SOXB1 levels in ESCs affect differentiation choices: neural differentiation of Sox2 heterozygous ESCs is compromised, while increased SOXB1 levels divert the ESC to EpiSC transition towards neural differentiation. Therefore, optimal SOXB1 levels are critical for each pluripotent state and for cell fate decisions during exit from naïve pluripotency.
Collapse
Affiliation(s)
- Andrea Corsinotti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Frederick Ck Wong
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Tülin Tatar
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Iwona Szczerbinska
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Florian Halbritter
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Douglas Colby
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Sabine Gogolok
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Raphaël Pantier
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Kirsten Liggat
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Elham S Mirfazeli
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Elisa Hall-Ponsele
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Nicholas P Mullin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
18
|
Mandalos NP, Remboutsika E. Sox2: To crest or not to crest? Semin Cell Dev Biol 2016; 63:43-49. [PMID: 27592260 DOI: 10.1016/j.semcdb.2016.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Precise control of neural progenitor transformation into neural crest stem cells ensures proper craniofacial and head development. In the neural progenitor pool, SoxB factors play an essential role as cell fate determinants of neural development, whereas during neural crest stem cell formation, Sox2 plays a predominant role as a guardian of the developmental clock that ensures precision of cell flow in the developing head.
Collapse
Affiliation(s)
- Nikolaos Panagiotis Mandalos
- National University of Athens Medical School, Department of Pediatrics, 75 Mikras Asias Str., 115 27, Athens, Greece; Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming", 34 Fleming Str., 16672 Vari-Attica, Greece; Adjunct Faculty, The Lieber Institute for Brain Development, Basic Sciences Division, Johns Hopkins Medical Campus, 855 North Wolfe Str., Suite 300, 3rd Floor, Baltimore, MD 21205, USA
| | - Eumorphia Remboutsika
- National University of Athens Medical School, Department of Pediatrics, 75 Mikras Asias Str., 115 27, Athens, Greece; Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming", 34 Fleming Str., 16672 Vari-Attica, Greece; Adjunct Faculty, The Lieber Institute for Brain Development, Basic Sciences Division, Johns Hopkins Medical Campus, 855 North Wolfe Str., Suite 300, 3rd Floor, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Cheng M, Jin X, Mu L, Wang F, Li W, Zhong X, Liu X, Shen W, Liu Y, Zhou Y. Combination of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development. J Neurosci Res 2016; 94:814-24. [PMID: 27317429 DOI: 10.1002/jnr.23776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/26/2022]
Abstract
In utero electroporation (IUE) is commonly used to study cortical development of cerebrum by downregulating or overexpressing genes of interest in neural progenitor cells (NPCs) of small mammals. However, exogenous plasmids are lost or diluted over time. Furthermore, gene knockdown based on short-hairpin RNAs may exert nonspecific effects that lead to aberrant neuronal migration. Genomic engineering by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system has great research and therapeutic potentials. Here we integrate the CRISPR/Cas9 components into the piggyBac (PB) transposon system (the CRISPR/Cas9-PB toolkit) for cortical IUEs. The mouse Sry-related HMG box-2 (Sox2) gene was selected as the target for its application. Most transduced cortical NPCs were depleted of SOX2 protein as early as 3 days post-IUE, whereas expressions of SOX1 and PAX6 remained intact. Furthermore, both the WT Cas9 and the D10A nickase mutant Cas9n showed comparable knockout efficiency. Transduced cortical cells were purified with fluorescence-activated cell sorting, and effective gene editing at the Sox2 loci was confirmed. Thus, application of the CRISPR/Cas9-PB toolkit in IUE is a promising strategy to study gene functions in cortical NPCs and their progeny. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Man Cheng
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xubin Jin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Mu
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fangyu Wang
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Li
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoling Zhong
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuan Liu
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenchen Shen
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Liu
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Zhou
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Goldsmith S, Lovell-Badge R, Rizzoti K. SOX2 is sequentially required for progenitor proliferation and lineage specification in the developing pituitary. Development 2016; 143:2376-88. [PMID: 27226320 PMCID: PMC4958329 DOI: 10.1242/dev.137984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/13/2016] [Indexed: 02/01/2023]
Abstract
Sox2 mutations are associated with pituitary hormone deficiencies and the protein is required for pituitary progenitor proliferation, but its function has not been well characterized in this context. SOX2 is known to activate expression of Six6, encoding a homeodomain transcription factor, in the ventral diencephalon. Here, we find that the same relationship likely exists in the pituitary. Moreover, because Six6 deletion is associated with a similar phenotype as described here for loss of Sox2, Six6 appears to be an essential downstream target of SOX2 in the gland. We also uncover a second role for SOX2. Whereas cell differentiation is reduced in Sox2 mutants, some endocrine cells are generated, such as POMC-positive cells in the intermediate lobe. However, loss of SOX2 here results in complete downregulation of the melanotroph pioneer factor PAX7, and subsequently a switch of identity from melanotrophs to ectopic corticotrophs. Rescuing proliferation by ablating the cell cycle negative regulator p27 (also known as Cdkn1b) in Sox2 mutants does not restore melanotroph emergence. Therefore, SOX2 has two independent roles during pituitary morphogenesis; firstly, promotion of progenitor proliferation, and subsequently, acquisition of melanotroph identity. Summary: SOX2 has two independent roles during pituitary morphogenesis: promoting progenitor proliferation via SIX6 and determining melanotroph identity via PAX7.
Collapse
Affiliation(s)
- Sam Goldsmith
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Robin Lovell-Badge
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Karine Rizzoti
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
21
|
Vidal B, Santella A, Serrano-Saiz E, Bao Z, Chuang CF, Hobert O. C. elegans SoxB genes are dispensable for embryonic neurogenesis but required for terminal differentiation of specific neuron types. Development 2015; 142:2464-77. [PMID: 26153233 DOI: 10.1242/dev.125740] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022]
Abstract
Neurogenesis involves deeply conserved patterning molecules, such as the proneural basic helix-loop-helix transcription factors. Sox proteins and specifically members of the SoxB and SoxC groups are another class of conserved transcription factors with an important role in neuronal fate commitment and differentiation in various species. In this study, we examine the expression of all five Sox genes of the nematode C. elegans and analyze the effect of null mutant alleles of all members of the SoxB and SoxC groups on nervous system development. Surprisingly, we find that, unlike in other systems, neither of the two C. elegans SoxB genes sox-2 (SoxB1) and sox-3 (SoxB2), nor the sole C. elegans SoxC gene sem-2, is broadly expressed throughout the embryonic or adult nervous system and that all three genes are mostly dispensable for embryonic neurogenesis. Instead, sox-2 is required to maintain the developmental potential of blast cells that are generated in the embryo but divide only postembryonically to give rise to differentiated neuronal cell types. Moreover, sox-2 and sox-3 have selective roles in the terminal differentiation of specific neuronal cell types. Our findings suggest that the common themes of SoxB gene function across phylogeny lie in specifying developmental potential and, later on, in selectively controlling terminal differentiation programs of specific neuron types, but not in broadly controlling neurogenesis.
Collapse
Affiliation(s)
- Berta Vidal
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
| | - Anthony Santella
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Esther Serrano-Saiz
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
22
|
Chang CC, Ou YC, Wang KL, Chang TC, Cheng YM, Chen CH, Chu TY, Hsu ST, Liou WS, Chang YY, Wu HH, Chen TH, Lai HC. Triage of Atypical Glandular Cell by SOX1 and POU4F3 Methylation: A Taiwanese Gynecologic Oncology Group (TGOG) Study. PLoS One 2015; 10:e0128705. [PMID: 26057869 PMCID: PMC4461194 DOI: 10.1371/journal.pone.0128705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction Invasive procedures including loop electrosurgical excision, cervical conization, and endometrial sampling are often recommended when atypical glandular cells (AGC) are detected on Pap smear with unsatisfactory colposcopy. These invasive procedures may result in patient anxiety, increased medical expense, and increasing the risk of preterm delivery in subsequent pregnancies. This study was performed to assess methylation biomarkers in the triage of AGC on Pap smear for invasive procedures. Methods We conducted a multicenter study in 13 medical centers in Taiwan from May 2012 to May 2014. A total of 55 samples diagnosed “AGC not otherwise specified” (AGC-NOS) were included. All patients with AGC underwent colposcopy, cervical biopsy, endometrial sampling, and conization if indicated. Multiplex quantitative methylation-specific polymerase chain reaction (QMSPCR) was performed. Sensitivity, specificity, and accuracy were calculated for detecting CIN3+ and endometrial complex hyperplasia. Results In 55 patients with AGC, the sensitivity for methylated (m) SOX1m, PAX1 m, ZNF582m,PTPRRm, AJAP1m, HS3ST2m, and POU4F3m for detecting CIN3+ and endometrial complex hyperplasia lesions was 100, 86, 71, 86, 86, 57, and 100%; specificity was 67, 79, 85, 50, 52, 96, and 52%, respectively. Testing for high risk-HPV had a sensitivity of 57% and specificity of 75% for CIN3+ and endometrial complex hyperplasia lesions. Conclusion Methylated (m) SOX1m and POU4F3m could be new methylation biomarkers for detection of CIN3+ and endometrial complex hyperplasia in AGC. Women with AGC and positive SOX1m / POU4F3m, colposcopy, cervical conization or endometrial sampling should be considered.
Collapse
Affiliation(s)
- Cheng-Chang Chang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, R.O.C
| | - Kung-Liahng Wang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan, R.O.C
| | - Ting-Chang Chang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C
| | - Ya-Min Cheng
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| | - Chi-Hau Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan, R.O.C
| | - Tang-Yuan Chu
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, R.O.C
| | - Shih-Tien Hsu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shiung Liou
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Hua-Hsi Wu
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C
| | - Tze-Ho Chen
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | - Hung-Cheng Lai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, R.O.C
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
23
|
Jasnic-Savovic J, Klajn A, Milivojevic M, Mojsin M, Nikcevic G. Human embryonal carcinoma cells in serum-free conditions as an in vitro model system of neural differentiation. Altern Lab Anim 2015; 43:9-18. [PMID: 25802994 DOI: 10.1177/026119291504300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Serum is generally regarded as an essential component of many eukaryotic cell culture media, despite the fact that serum composition varies greatly and may be the source of a wide range of artefacts. The objective of this study was to assess serum-free growth conditions for the human embryonal carcinoma cell line, NT2/D1. These cells greatly resemble embryonic stem cells. In the presence of retinoic acid (RA), NT2/D1 cells irreversibly differentiate along the neuronal lineage. We have previously shown that the early phases of neural induction of these cells by RA involve the up-regulation of SOX3 gene expression. Our goal was to compare RA-induced differentiation of NT2/D1 cells in serum-containing and serum-free media, by using SOX3 protein levels as a marker of differentiation. We found that NT2/D1 cells can be successfully grown under serum-free conditions, and that the presence or absence of serum does not affect the level of SOX3 protein after a 48-hour RA induction. However, six days of RA treatment resulted in a marked increase in SOX3 protein levels in serum-free media compared to serum-containing media, indicating that serum might have an inhibitory effect on the expression of this neural differentiation marker. This finding is important for both basic and translational studies that hope to exploit cell culture conditions that are free of animal-derived products.
Collapse
Affiliation(s)
- Jovana Jasnic-Savovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Klajn
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Gordana Nikcevic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
24
|
Stemmer M, Schuhmacher LN, Foulkes NS, Bertolucci C, Wittbrodt J. Cavefish eye loss in response to an early block in retinal differentiation progression. Development 2015; 142:743-752. [PMID: 25617433 DOI: 10.1242/dev.114629] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The troglomorphic phenotype shared by diverse cave-dwelling animals is regarded as a classical example of convergent evolution. One unresolved question is whether the characteristic eye loss in diverse cave species is based on interference with the same genetic program. Phreatichthys andruzzii, a Somalian cavefish, has evolved under constant conditions in complete darkness and shows severe troglomorphic characteristics, such as complete loss of eyes, pigments and scales. During early embryonic development, a complete eye is formed but is subsequently lost. In Astyanax mexicanus, another blind cavefish, eye loss has been attributed to interference during eye field patterning. To address whether similar pathways have been targeted by evolution independently, we investigated the retinal development of P. andruzzii, studying the expression of marker genes involved in eye patterning, morphogenesis, differentiation and maintenance. In contrast to Astyanax, patterning of the eye field and evagination of the optic vesicles proceeds without obvious deviation. However, the subsequent differentiation of retinal cell types is arrested during generation of the first-born cell type, retinal ganglion cells, which also fail to project correctly to the optic tectum. Eye degeneration in both species is driven by progressive apoptosis. However, it is retinal apoptosis in Phreatichthys that progresses in a wave-like manner and eliminates progenitor cells that fail to differentiate, in contrast to Astyanax, where lens apoptosis appears to serve as a driving force. Thus, evolution has targeted late retinal differentiation events, indicating that there are several ways to discontinue the development and maintenance of an eye.
Collapse
Affiliation(s)
- Manuel Stemmer
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | | | - Nicholas S Foulkes
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.,Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Mandalos N, Rhinn M, Granchi Z, Karampelas I, Mitsiadis T, Economides AN, Dollé P, Remboutsika E. Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development. Front Physiol 2014; 5:345. [PMID: 25309446 PMCID: PMC4162359 DOI: 10.3389/fphys.2014.00345] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/22/2014] [Indexed: 12/19/2022] Open
Abstract
Precise control of self-renewal and differentiation of progenitor cells into the cranial neural crest (CNC) pool ensures proper head development, guided by signaling pathways such as BMPs, FGFs, Shh and Notch. Here, we show that murine Sox2 plays an essential role in controlling progenitor cell behavior during craniofacial development. A “Conditional by Inversion” Sox2 allele (Sox2COIN) has been employed to generate an epiblast ablation of Sox2 function (Sox2EpINV). Sox2EpINV/+(H) haploinsufficient and conditional (Sox2EpINV/mosaic) mutant embryos proceed beyond gastrulation and die around E11. These mutant embryos exhibit severe anterior malformations, with hydrocephaly and frontonasal truncations, which could be attributed to the deregulation of CNC progenitor cells during their epithelial to mesenchymal transition. This irregularity results in an exacerbated and aberrant migration of Sox10+ NCC in the branchial arches and frontonasal process of the Sox2 mutant embryos. These results suggest a novel role for Sox2 as a regulator of the epithelial to mesenchymal transitions (EMT) that are important for the cell flow in the developing head.
Collapse
Affiliation(s)
- Nikolaos Mandalos
- Stem Cell Biology Laboratory, Division of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming" Vari-Attica, Greece
| | - Muriel Rhinn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR7104, Université de Strasbourg Illkirch, France
| | - Zoraide Granchi
- Orofacial Development and Regeneration Unit, Faculty of Medicine, Institute of Oral Biology, University of Zurich, ZZM Zurich, Switzerland
| | - Ioannis Karampelas
- Stem Cell Biology Laboratory, Division of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming" Vari-Attica, Greece ; Department of Neurosurgery, University Hospitals Case Medical Center Cleveland, OH, USA
| | - Thimios Mitsiadis
- Orofacial Development and Regeneration Unit, Faculty of Medicine, Institute of Oral Biology, University of Zurich, ZZM Zurich, Switzerland
| | | | - Pascal Dollé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR7104, Université de Strasbourg Illkirch, France
| | - Eumorphia Remboutsika
- Stem Cell Biology Laboratory, Division of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming" Vari-Attica, Greece
| |
Collapse
|
26
|
Kuipers SD, Schroeder JE, Trentani A. Changes in hippocampal neurogenesis throughout early development. Neurobiol Aging 2014; 36:365-79. [PMID: 25172123 DOI: 10.1016/j.neurobiolaging.2014.07.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/25/2014] [Accepted: 07/26/2014] [Indexed: 12/18/2022]
Abstract
Adult hippocampal neurogenesis drastically diminishes with age but the underlying mechanisms remain unclear. Here, age-related influences on the hippocampal early neuroprogenitor cell (NPC) pool was examined by quantifying changes in Sox1-expressing cells in the dentate gyrus subgranular zone from early adulthood (3 months) to middle age (12 months). Proliferation of distinct NPC subpopulations (Sox1+, Nestin+, and Doublecortin+) and newborn cell survival were also investigated. Examination of total 5-bromodeoxyuridine (BrdU)+ and Doublecortin (DCX)± cells revealed an early and dramatic age-dependent decline of hippocampal neurogenesis. Increasing age from 3 to 12 months was primarily associated with reduced total proliferation, in vivo (-79% of BrdU+ cells) but not in vitro, and DCX+ cell numbers (-89%). When proliferative rates of individual NPC subpopulations were examined, a different picture emerged as proliferating Nestin+ neuroprogenitors (-95% at 9 months) and BrdU+/DCX+ neuroblasts and/or immature neurons (-83% at 12 months) declined the most, whereas proliferating Sox1+ NPCs only dropped by 53%. Remarkably, despite greatly reduced proliferative rates and recent reports of Nestin+ neuroprogenitor loss, total numbers of early Sox1+ NPCs were unaffected by age (at least up to middle age), and newborn cell survival within the dentate gyrus was increased. Neuronal differentiation was concomitantly reduced; however, thus suggesting age-associated changes in fate-choice determination.
Collapse
Affiliation(s)
| | | | - Andrea Trentani
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Department of Molecular Neurobiology, Centre for Behaviour and Neurosciences, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
27
|
Reiprich S, Wegner M. From CNS stem cells to neurons and glia: Sox for everyone. Cell Tissue Res 2014; 359:111-24. [PMID: 24894327 DOI: 10.1007/s00441-014-1909-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/05/2014] [Indexed: 12/17/2022]
Abstract
Neuroepithelial precursor cells of the vertebrate central nervous system either self-renew or differentiate into neurons, oligodendrocytes or astrocytes under the influence of a gene regulatory network that consists in transcription factors, epigenetic modifiers and microRNAs. Sox transcription factors are central to this regulatory network, especially members of the SoxB, SoxC, SoxD, SoxE and SoxF groups. These Sox proteins are widely expressed in neuroepithelial precursor cells and in newly specified, differentiating and mature neurons, oligodendrocytes and astrocytes and influence their identity, survival and development. They exert their effect predominantly at the transcriptional level but also have substantial impact on expression at the epigenetic and posttranscriptional levels with some Sox proteins acting as pioneer factors, recruiting chromatin-modifying and -remodelling complexes or influencing microRNA expression. They interact with a large variety of other transcription factors and influence the expression of regulatory molecules and effector genes in a cell-type-specific and temporally controlled manner. As versatile regulators with context-dependent functions, they are not only indispensable for central nervous system development but might also be instrumental for the development of reprogramming and cell conversion strategies for replacement therapies and for assisted regeneration after injury or degeneration-induced cell loss in the central nervous system.
Collapse
Affiliation(s)
- Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany,
| | | |
Collapse
|
28
|
Abstract
SoxB1 sub-family of transcriptional regulators are expressed in progenitor (NP) cells throughout the neuroaxis and are generally downregulated during neuronal differentiation. Gain- and loss-of-function studies indicate that Sox1, Sox2 and Sox3 are key regulators of NP differentiation and that their roles in CNS development are largely redundant. Nevertheless, mutation of each SoxB1 individually results in a different array of CNS defects, raising the possibility that SoxB1 proteins have subtly different functions in NP cells. To explore the mechanism of SOXB1 functional redundancy, and to identify genes that are most sensitive to loss of the Sox3 gene, we performed genome wide expression profiling of Sox3 null NP cells. Nineteen genes with abnormal expression were identified, including the homeobox gene Dbx1. Analysis of Sox3 null embryos revealed that Dbx1 was significantly reduced in the neural tube and developing brain and that SOX3 bound directly to conserved elements associated with this gene in cultured NP cells and in vivo. These data define Dbx1 as a direct SOX3 target gene whose expression, intriguingly, is not fully rescued by other SOXB1 transcription factors, suggesting that there are inherent differences in SOXB1 protein activity.
Collapse
|
29
|
Chang CC, Huang RL, Wang HC, Liao YP, Yu MH, Lai HC. High methylation rate of LMX1A, NKX6-1, PAX1, PTPRR, SOX1, and ZNF582 genes in cervical adenocarcinoma. Int J Gynecol Cancer 2014; 24:201-9. [PMID: 24407576 DOI: 10.1097/igc.0000000000000054] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the status of DNA methylation of 6 genes, LMX1A, NKX6-1, PAX1, PTPRR, SOX1, and ZNF582, previously found from squamous cell carcinomas in adenocarcinomas (ACs) of the uterine cervix. METHODS We assessed the methylation status of these genes in 40 ACs, cervical scrapings from 23 ACs, and 67 normal control cervices by real-time quantitative methylation-specific polymerase chain reaction. The results were validated by bisulfite pyrosequencing. RESULTS The methylation levels of all the 6 genes in the ACs were significantly higher than those in normal cervical tissues, especially for PAX1, PTPRR, SOX1, and ZNF582. The odds ratios and 95% confidence intervals (CIs) of high methylation levels in PAX1, PTPRR, SOX1, and ZNF582 for the risk of developing an AC were 15.7 (95% CI, 7.0-40.6), 16.9 (95% CI, 7.6-43.0), 32.1 (95% CI, 12.1-124.3), and 25.4 (95% CI, 10.4-78.3), respectively (all P < 0.001). The methylation indices of PAX1, PTPRR, SOX1, and ZNF582 recovered from scrapings of ACs were significantly higher than in normal controls. The odds ratios of these indices for the risk of developing an AC in PAX1, PTPRR, SOX1, and ZNF582 were 6.2 (95% CI, 2.6-15.4), 12.1(95% CI, 3.8-46.4), 6.2 (95% CI, 2.6-15.8), and 20.6 (95% CI, 6.9-77.5), respectively (all P < 0.001). CONCLUSIONS Cervical ACs carry aberrantly high methylation rates of PAX1, PTPRR, SOX1, and ZNF582--commonly methylated in squamous cell carcinomas--which might help for AC screening.
Collapse
Affiliation(s)
- Cheng-Chang Chang
- *Department of Obstetrics and Gynecology, Tri-Service General Hospital; †Laboratory of Epigenetics and Cancer Stem Cells, and ‡Graduate Institute of Medical Sciences, National Defense Medical Center; and §Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Hoffmann SA, Hos D, Küspert M, Lang RA, Lovell-Badge R, Wegner M, Reiprich S. Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes. Development 2014; 141:39-50. [PMID: 24257626 PMCID: PMC3865748 DOI: 10.1242/dev.098418] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/29/2013] [Indexed: 11/20/2022]
Abstract
Neural precursor cells of the ventricular zone give rise to all neurons and glia of the central nervous system and rely for maintenance of their precursor characteristics on the closely related SoxB1 transcription factors Sox1, Sox2 and Sox3. We show in mouse spinal cord that, whereas SoxB1 proteins are usually downregulated upon neuronal specification, they continue to be expressed in glial precursors. In the oligodendrocyte lineage, Sox2 and Sox3 remain present into the early phases of terminal differentiation. Surprisingly, their deletion does not alter precursor characteristics but interferes with proper differentiation. Although a direct influence on myelin gene expression may be part of their function, we provide evidence for another mode of action. SoxB1 proteins promote oligodendrocyte differentiation in part by negatively controlling miR145 and thereby preventing this microRNA from inhibiting several pro-differentiation factors. This study presents one of the few cases in which SoxB1 proteins, including the stem cell factor Sox2, are associated with differentiation rather than precursor functions.
Collapse
Affiliation(s)
- Stephanie A. Hoffmann
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Deniz Hos
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Richard A. Lang
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH 45229-3026, USA
| | | | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
31
|
Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development 2013; 140:4129-44. [PMID: 24086078 DOI: 10.1242/dev.091793] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sox transcription factors play widespread roles during development; however, their versatile funtions have a relatively simple basis: the binding of a Sox protein alone to DNA does not elicit transcriptional activation or repression, but requires binding of a partner transcription factor to an adjacent site on the DNA. Thus, the activity of a Sox protein is dependent upon the identity of its partner factor and the context of the DNA sequence to which it binds. In this Primer, we provide an mechanistic overview of how Sox family proteins function, as a paradigm for transcriptional regulation of development involving multi-transcription factor complexes, and we discuss how Sox factors can thus regulate diverse processes during development.
Collapse
Affiliation(s)
- Yusuke Kamachi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
32
|
Karnavas T, Mandalos N, Malas S, Remboutsika E. SoxB, cell cycle and neurogenesis. Front Physiol 2013; 4:298. [PMID: 24146653 PMCID: PMC3797971 DOI: 10.3389/fphys.2013.00298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/29/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Theodoros Karnavas
- Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming" Vari-Attica, Greece
| | | | | | | |
Collapse
|
33
|
Ko HA, Chen SY, Chen HY, Hao HJ, Liu FC. Cell type-selective expression of the zinc finger-containing gene Nolz-1/Zfp503 in the developing mouse striatum. Neurosci Lett 2013; 548:44-9. [PMID: 23684982 DOI: 10.1016/j.neulet.2013.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 04/17/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
The zinc finger-containing gene Nolz-1/Zfp503 is a developmentally regulated striatum-enriched gene. In the present study, we characterized the cell type-selective expression pattern of Nolz-1 protein in the developing mouse striatum. Nolz-1 immunoreactivity was present in Isl-1-positive ventral LGE (vLGE, striatal primordia), but absent in Pax6-positive dorsal LGE (dLGE, non-striatal primordia). In the vLGE, Nolz-1 immunoreactivity was detected in early differentiating TuJ1-positive neurons, but not in Ki67-positive proliferating progenitor cells. Moreover, many Nolz-1-immunoreactive cells co-expressed Foxp1 or Foxp2, markers for striatal projection neurons. To further characterize Nolz-1 expression with respect to D1R-containing striatonigral and D2R-containing striatopallidal projection neurons, we used the Drd1-EGFP and Drd2-EGFP transgenic mice. Nolz-1 and EGFP double labeled neurons were found in the developing striatum of Drd1-EGFP and Drd2-EGFP mice, indicating Nolz-1 expression in both populations of striatal projection neurons. Notably, Nolz-1 protein was not expressed in Nkx2.1-positive interneuron progenitors, Lhx8-positive cholinergic interneuron progenitors, nNOS and calretinin-positive interneurons in E18.5 striatum. In the developing nucleus accumbens and olfactory tubercles of ventral striatum, many Nolz-1-positive cells co-expressed Sox1, an important transcriptional regulator for ventral striatum, suggesting a role of Nolz-1 in regulating development of the ventral striatum. Finally, in contrast to postnatal down-regulation of Nolz-1 in the dorsal striatum, Nolz-1 protein was persistently expressed in the olfactory tubercle from E15.5 to adulthood. Taken together, our study suggests that Nolz-1 serves as a marker for early differentiating striatal projection neurons and that Nolz-1 may regulate development of striatal projection neurons.
Collapse
Affiliation(s)
- Hsin-An Ko
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | | | | | | | | |
Collapse
|
34
|
A Systematic Survey and Characterization of Enhancers that Regulate Sox3 in Neuro-Sensory Development in Comparison with Sox2 Enhancers. BIOLOGY 2012; 1:714-35. [PMID: 24832516 PMCID: PMC4009812 DOI: 10.3390/biology1030714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 11/17/2022]
Abstract
Development of neural and sensory primordia at the early stages of embryogenesis depends on the activity of two B1 Sox transcription factors, Sox2 and Sox3. The embryonic expression patterns of the Sox2 and Sox3 genes are similar, yet they show gene-unique features. We screened for enhancers of the 231-kb genomic region encompassing Sox3 of chicken, and identified 13 new enhancers that showed activity in different domains of the neuro-sensory primordia. Combined with the three Sox3-proximal enhancers determined previously, at least 16 enhancers were involved in Sox3 regulation. Starting from the NP1 enhancer, more enhancers with different specificities are activated in sequence, resulting in complex overlapping patterns of enhancer activities. NP1 was activated in the caudal lateral epiblast adjacent to the posterior growing end of neural plate, and by the combined action of Wnt and Fgf signaling, similar to the Sox2 N1 enhancer involved in neural/mesodermal dichotomous cell lineage segregation. The Sox3 D5 enhancer and Sox2 N3 enhancer were also activated similarly in the diencephalon, optic vesicle and lens placode, suggesting analogies in their regulation. In general, however, the specificities of the enhancers were not identical between Sox3 and Sox2, including the cases of the NP1 and D5 enhancers.
Collapse
|
35
|
Mandalos N, Saridaki M, Harper JL, Kotsoni A, Yang P, Economides AN, Remboutsika E. Application of a novel strategy of engineering conditional alleles to a single exon gene, Sox2. PLoS One 2012; 7:e45768. [PMID: 23029233 PMCID: PMC3459942 DOI: 10.1371/journal.pone.0045768] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/20/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The Conditional by Inversion (COIN) method for engineering conditional alleles relies on an invertible optimized gene trap-like element, the COIN module, for imparting conditionality. The COIN module contains an optimized 3' splice site-polyadenylation signal pair, but is inserted antisense to the target gene and therefore does not alter transcription, until it is inverted by Cre recombinase. In order to make COIN applicable to all protein-coding genes, the COIN module has been engineered within an artificial intron, enabling insertion into an exon. METHODOLOGY/PRINCIPAL FINDINGS Therefore, theoretically, the COIN method should be applicable to single exon genes, and to test this idea we engineered a COIN allele of Sox2. This single exon gene presents additional design challenges, in that its proximal promoter and coding region are entirely contained within a CpG island, and are also spanned by an overlapping transcript, Sox2Ot, which contains mmu-miR1897. Here, we show that despite disruption of the CpG island by the COIN module intron, the COIN allele of Sox2 (Sox2(COIN)) is phenotypically wild type, and also does not interfere with expression of Sox2Ot and miR1897. Furthermore, the inverted COIN allele of Sox2, Sox2(INV) is functionally null, as homozygotes recapitulate the phenotype of Sox2(βgeo/βgeo) mice, a well-characterized Sox2 null. Lastly, the benefit of the eGFP marker embedded in the COIN allele is demonstrated as it mirrors the expression pattern of Sox2. CONCLUSIONS/SIGNIFICANCE Our results demonstrate the applicability of the COIN technology as a method of choice for targeting single exon genes.
Collapse
Affiliation(s)
- Nikolaos Mandalos
- Stem Cell Biology Laboratory, Institute of Molecular Biology and Genetics, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| | - Marannia Saridaki
- Stem Cell Biology Laboratory, Institute of Molecular Biology and Genetics, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| | - Jessica Lea Harper
- Stem Cell Biology Laboratory, Institute of Molecular Biology and Genetics, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Anastasia Kotsoni
- Stem Cell Biology Laboratory, Institute of Molecular Biology and Genetics, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| | - Peter Yang
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Aris N. Economides
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Eumorphia Remboutsika
- Stem Cell Biology Laboratory, Institute of Molecular Biology and Genetics, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
36
|
Venere M, Han YG, Bell R, Song JS, Alvarez-Buylla A, Blelloch R. Sox1 marks an activated neural stem/progenitor cell in the hippocampus. Development 2012; 139:3938-49. [PMID: 22992951 DOI: 10.1242/dev.081133] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dentate gyrus of the hippocampus continues generating new neurons throughout life. These neurons originate from radial astrocytes within the subgranular zone (SGZ). Here, we find that Sox1, a member of the SoxB1 family of transcription factors, is expressed in a subset of radial astrocytes. Lineage tracing using Sox1-tTA;tetO-Cre;Rosa26 reporter mice shows that the Sox1-expressing cells represent an activated neural stem/progenitor population that gives rise to most if not all newly born granular neurons, as well as a small number of mature hilar astrocytes. Furthermore, a subpopulation of Sox1-marked cells have long-term neurogenic potential, producing new neurons 3 months after inactivation of tetracycline transactivator. Remarkably, after 8 weeks of labeling and a 12-week chase, as much as 44% of all granular neurons in the dentate gyrus were derived from Sox1 lineage-traced adult neural stem/progenitor cells. The fraction of Sox1-positive cells within the radial astrocyte population decreases with age, correlating with a decrease in neurogenesis. However, expression profiling shows that these cells are transcriptionally stable throughout the lifespan of the mouse. These results demonstrate that Sox1 is expressed in an activated stem/progenitor population whose numbers decrease with age while maintaining a stable molecular program.
Collapse
Affiliation(s)
- Monica Venere
- Department of Urology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
37
|
Paul A, Cai Y, Atwal GS, Huang ZJ. Developmental Coordination of Gene Expression between Synaptic Partners During GABAergic Circuit Assembly in Cerebellar Cortex. Front Neural Circuits 2012; 6:37. [PMID: 22754500 PMCID: PMC3385560 DOI: 10.3389/fncir.2012.00037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/01/2012] [Indexed: 01/14/2023] Open
Abstract
The assembly of neural circuits involves multiple sequential steps such as the specification of cell-types, their migration to proper brain locations, morphological and physiological differentiation, and the formation and maturation of synaptic connections. This intricate and often prolonged process is guided by elaborate genetic mechanisms that regulate each step. Evidence from numerous systems suggests that each cell-type, once specified, is endowed with a genetic program that unfolds in response to, and is regulated by, extrinsic signals, including cell–cell and synaptic interactions. To a large extent, the execution of this intrinsic program is achieved by the expression of specific sets of genes that support distinct developmental processes. Therefore, a comprehensive analysis of the developmental progression of gene expression in synaptic partners of neurons may provide a basis for exploring the genetic mechanisms regulating circuit assembly. Here we examined the developmental gene expression profiles of well-defined cell-types in a stereotyped microcircuit of the cerebellar cortex. We found that the transcriptomes of Purkinje cell and stellate/basket cells are highly dynamic throughout postnatal development. We revealed “phasic expression” of transcription factors, ion channels, receptors, cell adhesion molecules, gap junction proteins, and identified distinct molecular pathways that might contribute to sequential steps of cerebellar inhibitory circuit formation. We further revealed a correlation between genomic clustering and developmental co-expression of hundreds of transcripts, suggesting the involvement of chromatin level gene regulation during circuit formation.
Collapse
Affiliation(s)
- Anirban Paul
- Cold Spring Harbor Laboratory, Neuroscience Cold Spring Harbor, New York, NY, USA
| | | | | | | |
Collapse
|
38
|
Kropp M, Wilson SI. The expression profile of the tumor suppressor gene Lzts1 suggests a role in neuronal development. Dev Dyn 2012; 241:984-94. [PMID: 22419569 DOI: 10.1002/dvdy.23777] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Neuronal circuit assembly comprises a number of developmental processes that ultimately underlie function. Identifying the molecular events that dictate these processes can give key insights into how neuronal circuit formation is coordinated. To begin to identify such molecular mechanisms, we have analysed the expression of a candidate gene of entirely unknown function within the nervous system. Here we reveal the spatial and temporal distribution of Lzts1 in mouse and chick embryonic spinal cord and propose potential biological functions. RESULTS Lzts1 mRNA is transiently expressed at the border of the ventricular and mantle zones in subsets of sensory and motor spinal neurons. The protein is localized to the cell body, axon, and trailing process of motor, commissural, and dorsal root neurons during development. CONCLUSIONS Taken together, the spatial and temporal distribution of Lzts1 is consistent with a potential function(s) in cell cycle regulation, axon growth or guidance, and/or migration of neurons.
Collapse
Affiliation(s)
- Marlene Kropp
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
39
|
Anastasiades PG, Butt SJB. Decoding the transcriptional basis for GABAergic interneuron diversity in the mouse neocortex. Eur J Neurosci 2011; 34:1542-52. [DOI: 10.1111/j.1460-9568.2011.07904.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Nikčević G, Kovačević-Grujičić N, Mojsin M, Krstić A, Savić T, Stevanović M. Regulation of the SOX3 gene expression by retinoid receptors. Physiol Res 2011; 60:S83-91. [PMID: 21777018 DOI: 10.33549/physiolres.932184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sox3/SOX3 gene is considered to be one of the earliest neural markers in vertebrates. Despite the mounting evidence that Sox3/SOX3 is one of the key players in the development of the nervous system, limited data are available regarding the transcriptional regulation of its expression. This review is focused on the retinoic acid induced regulation of SOX3 gene expression, with particular emphasis on the involvement of retinoid receptors. Experiments with human embryonal carcinoma cells identified two response elements involved in retinoic acid/retinoid X receptor-dependent activation of the SOX3 gene expression: distal atypical retinoic acid-response element, consisting of two unique G-rich boxes separated by 49 bp, and proximal element comprising DR-3-like motif, composed of two imperfect hexameric half-sites. Importantly, the retinoic acid-induced SOX3 gene expression could be significantly down-regulated by a synthetic antagonist of retinoid receptors. This cell model provides a solid base for further studies on mechanism(s) underlying regulation of expression of SOX3 gene, which could improve the understanding of molecular signals that induce neurogenesis in the stem/progenitor cells both during development and in adulthood.
Collapse
Affiliation(s)
- G Nikčević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
41
|
Turner ME, Ely D, Prokop J, Milsted A. Sry, more than testis determination? Am J Physiol Regul Integr Comp Physiol 2011; 301:R561-71. [PMID: 21677270 DOI: 10.1152/ajpregu.00645.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Sry locus on the mammalian Y chromosome is the developmental switch responsible for testis determination. Inconsistent with this important function, the Sry locus is transcribed in adult males at times and in tissues not involved with testis determination. Sry is expressed in multiple tissues of the peripheral and central nervous system. Sry is derived from Sox3 and is similar to other SOXB family loci. The SOXB loci are responsible for nervous system development. Sry has been demonstrated to modulate the catecholamine pathway, so it should have functional consequences in the central and peripheral nervous system. The nervous system expression and potential function are consistent with Sry as a SOXB family member. In mammals, Sox3 is X-linked and undergoes dosage compensation in females. The expression of Sry in adult males allows for a type of sexual differentiation independent of circulating gonadal hormones. A quantitative difference in Sox3 plus Sry expression in males vs. females could drive changes in the transcriptome of these cells, differentiating male and female cells. Sry expression and its transcriptional effects should be considered when investigating sexual dimorphic phenotypes.
Collapse
Affiliation(s)
- Monte E Turner
- Department of Biology, The University of Akron, Akron, Ohio, USA.
| | | | | | | |
Collapse
|
42
|
Remboutsika E, Elkouris M, Iulianella A, Andoniadou CL, Poulou M, Mitsiadis TA, Trainor PA, Lovell-Badge R. Flexibility of neural stem cells. Front Physiol 2011; 2:16. [PMID: 21516249 PMCID: PMC3079860 DOI: 10.3389/fphys.2011.00016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/28/2011] [Indexed: 12/17/2022] Open
Abstract
Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions, embryonic cortical neurospheres are heterogeneous with regard to Sox2 expression and contain astrocytes, neural stem cells, and neural progenitor cells sufficiently plastic to give rise to neural crest cells when transplanted into the hindbrain of E1.5 chick and E8 mouse embryos. However, when neurospheres are maintained under lineage selection, such that all cells express Sox2, neural stem cells maintain their Pax6+ cortical radial glia identity and exhibit a more restricted fate in vitro and after transplantation. These data demonstrate that Sox2 preserves the cortical identity and regulates the plasticity of self-renewing Pax6+ radial glia cells.
Collapse
Affiliation(s)
- Eumorphia Remboutsika
- Stem Cell Biology Laboratory, Institute of Molecular Biology and Genetics, Biomedical Sciences Research Center "Alexander Fleming," Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
43
|
L’Episcopo F, Tirolo C, Testa N, Caniglia S, Morale M, Cossetti C, D’Adamo P, Zardini E, Andreoni L, Ihekwaba A, Serra P, Franciotta D, Martino G, Pluchino S, Marchetti B. Reactive astrocytes and Wnt/β-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Neurobiol Dis 2011; 41:508-27. [PMID: 21056667 PMCID: PMC3558878 DOI: 10.1016/j.nbd.2010.10.023] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/15/2010] [Accepted: 10/27/2010] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence points to reactive glia as a pivotal factor in Parkinson's disease (PD) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model of basal ganglia injury, but whether astrocytes and microglia activation may exacerbate dopaminergic (DAergic) neuron demise and/or contribute to DAergic repair is presently the subject of much debate. Here, we have correlated the loss and recovery of the nigrostriatal DAergic functionality upon acute MPTP exposure with extensive gene expression analysis at the level of the ventral midbrain (VM) and striata (Str) and found a major upregulation of pro-inflammatory chemokines and wingless-type MMTV integration site1 (Wnt1), a key transcript involved in midbrain DAergic neurodevelopment. Wnt signaling components (including Frizzled-1 [Fzd-1] and β-catenin) were dynamically regulated during MPTP-induced DAergic degeneration and reactive glial activation. Activated astrocytes of the ventral midbrain were identified as candidate source of Wnt1 by in situ hybridization and real-time PCR in vitro. Blocking Wnt/Fzd signaling with Dickkopf-1 (Dkk1) counteracted astrocyte-induced neuroprotection against MPP(+) toxicity in primary mesencephalic astrocyte-neuron cultures, in vitro. Moreover, astroglial-derived factors, including Wnt1, promoted neurogenesis and DAergic neurogenesis from adult midbrain stem/neuroprogenitor cells, in vitro. Conversely, lack of Wnt1 transcription in response to MPTP in middle-aged mice and failure of DAergic neurons to recover were reversed by pharmacological activation of Wnt/β-catenin signaling, in vivo, thus suggesting MPTP-reactive astrocytes in situ and Wnt1 as candidate components of neuroprotective/neurorescue pathways in MPTP-induced nigrostriatal DAergic plasticity.
Collapse
Affiliation(s)
- F. L’Episcopo
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, Via Conte Ruggero 73, 94018 Troina (EN) Italy
| | - C. Tirolo
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, Via Conte Ruggero 73, 94018 Troina (EN) Italy
| | - N. Testa
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, Via Conte Ruggero 73, 94018 Troina (EN) Italy
| | - S. Caniglia
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, Via Conte Ruggero 73, 94018 Troina (EN) Italy
| | - M.C. Morale
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, Via Conte Ruggero 73, 94018 Troina (EN) Italy
| | - C. Cossetti
- Cambridge Centre for Brain Repair Department of Clinical Neurosciences ED Adrian Building Forvie Site Robinson Way Cambridge CB2 0PY, UK
| | - P. D’Adamo
- Molecular Genetics of Mental Retardation Unit, San Raffaele Institute, Via Olgettina, 58 I-20132 Milan, Italy
| | - E. Zardini
- Neuroimmunology Unit, National Neurological Instititute C. Mondino, Via Mondino 2, 27100 Pavia, Italy
| | - L. Andreoni
- Neuroimmunology Unit, National Neurological Instititute C. Mondino, Via Mondino 2, 27100 Pavia, Italy
| | - A.E.C. Ihekwaba
- Cambridge Centre for Brain Repair Department of Clinical Neurosciences ED Adrian Building Forvie Site Robinson Way Cambridge CB2 0PY, UK
| | - P.A. Serra
- Department of Pharmacology, University of Sassari, Medical School, Viale S. Pietro 43, 07100 Sassari, Italy
| | - D. Franciotta
- Department of Pharmacology, University of Sassari, Medical School, Viale S. Pietro 43, 07100 Sassari, Italy
| | - G. Martino
- San Raffaele Institute, Neuroimmunology Unit, DIBIT2 and Institute of Experimental Neurology (INSPE), Via Olgettina, 58 I-20132 Milan, Italy
| | - S. Pluchino
- Cambridge Centre for Brain Repair Department of Clinical Neurosciences ED Adrian Building Forvie Site Robinson Way Cambridge CB2 0PY, UK
| | - B. Marchetti
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, Via Conte Ruggero 73, 94018 Troina (EN) Italy
- Department of Clinical and Molecular Biomedicine, Pharmacology Section, University of Catania, Viale A. Doria, 95125 Catania, Italy
- Faculty of Pharmacy, University of Catania, Viale A. Doria, 95125 Catania, Italy
| |
Collapse
|
44
|
Elkouris M, Balaskas N, Poulou M, Politis PK, Panayiotou E, Malas S, Thomaidou D, Remboutsika E. Sox1 Maintains the Undifferentiated State of Cortical Neural Progenitor Cells via the Suppression of Prox1-Mediated Cell Cycle Exit and Neurogenesis. Stem Cells 2011; 29:89-98. [DOI: 10.1002/stem.554] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Archer TC, Jin J, Casey ES. Interaction of Sox1, Sox2, Sox3 and Oct4 during primary neurogenesis. Dev Biol 2010; 350:429-40. [PMID: 21147085 DOI: 10.1016/j.ydbio.2010.12.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 12/21/2022]
Abstract
Sox1, Sox2 and Sox3, the three members of the SoxB1 subgroup of transcription factors, have similar sequences, expression patterns and overexpression phenotypes. Thus, it has been suggested that they have redundant roles in the maintenance of neural stem cells in development. However, the long-term effect of overexpression or their function in combination with their putative co-factor Oct4 has not been tested. Here, we show that overexpression of sox1, sox2, sox3 or oct91, the Xenopus homologue of Oct4, results in the same phenotype: an expanded neural plate at the expense of epidermis and delayed neurogenesis. However, each of these proteins induced a unique profile of neural markers and the combination of Oct91 with each SoxB1 protein had different effects, as did continuous misexpression of the proteins. Overexpression studies indicate that Oct91 preferentially cooperates with Sox2 to maintain neural progenitor marker expression, while knockdown of Oct91 inhibits neural induction driven by either Sox2 or Sox3. Continuous expression of Sox1 and Sox2 in transgenic embryos represses neuron differentiation and inhibits anterior development while increasing cell proliferation. Constitutively active Sox3, however, leads to increased apoptosis suggesting that it functions as a tumor suppressor. While the SoxB1s have overlapping functions, they are not strictly redundant as they induce different sets of genes and are likely to partner with different proteins to maintain progenitor identity.
Collapse
Affiliation(s)
- Tenley C Archer
- Department of Biology, Georgetown University, Washington, DC 20057, USA.
| | | | | |
Collapse
|
46
|
Sox1 is required for the specification of a novel p2-derived interneuron subtype in the mouse ventral spinal cord. J Neurosci 2010; 30:12274-80. [PMID: 20844123 DOI: 10.1523/jneurosci.2402-10.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During mouse development, the ventral spinal cord becomes organized into five progenitor domains that express different combinations of transcription factors and generate different subsets of neurons and glia. One of these domains, known as the p2 domain, generates two subtypes of interneurons, V2a and V2b. Here we have used genetic fate mapping and loss-of-function analysis to show that the transcription factor Sox1 is expressed in, and is required for, a third type of p2-derived interneuron, which we named V2c. These are close relatives of V2b interneurons, and, in the absence of Sox1, they switch to the V2b fate. In addition, we show that late-born V2a and V2b interneurons are heterogeneous, and subsets of these cells express the transcription factor Pax6. Our data demonstrate that interneuron diversification in the p2 domain is more complex than previously thought and directly implicate Sox1 in this process.
Collapse
|
47
|
Tomer R, Denes AS, Tessmar-Raible K, Arendt D. Profiling by Image Registration Reveals Common Origin of Annelid Mushroom Bodies and Vertebrate Pallium. Cell 2010; 142:800-9. [DOI: 10.1016/j.cell.2010.07.043] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/22/2010] [Accepted: 07/14/2010] [Indexed: 01/08/2023]
|
48
|
Abstract
In the cochlea, spiral ganglion neurons play a critical role in hearing as they form the relay between mechanosensory hair cells in the inner ear and cochlear nuclei in the brainstem. The proneural basic helix-loop-helix transcription factors Neurogenin1 (Neurog1) and NeuroD1 have been shown to be essential for the development of otocyst-derived inner ear sensory neurons. Here, we show neural competence of nonsensory epithelial cells in the cochlea, as ectopic expression of either Neurog1 or NeuroD1 results in the formation of neuronal cells. Since the high-mobility-group type transcription factor Sox2, which is also known to play a role in neurogenesis, is expressed in otocyst-derived neural precursor cells and later in the spiral ganglion neurons along with Neurog1 and NeuroD1, we used both gain- and loss-of-function experiments to examine the role of Sox2 in spiral ganglion neuron formation. We demonstrate that overexpression of Sox2 results in the production of neurons, suggesting that Sox2 is sufficient for the induction of neuronal fate in nonsensory epithelial cells. Furthermore, spiral ganglion neurons are absent in cochleae from Sox2(Lcc/Lcc) mice, indicating that Sox2 is also required for neuronal formation in the cochlea. Our results indicate that Sox2, along with Neurog1 and NeuroD1, are sufficient to induce a neuronal fate in nonsensory regions of the cochlea. Finally, we demonstrate that nonsensory cells within the cochlea retain neural competence through at least the early postnatal period.
Collapse
|
49
|
Chew LJ, Gallo V. The Yin and Yang of Sox proteins: Activation and repression in development and disease. J Neurosci Res 2010; 87:3277-87. [PMID: 19437544 DOI: 10.1002/jnr.22128] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The general view of development consists of the acquisition of committed/differentiated phenotypes following a period of self-renewal and progenitor expansion. Lineage specification and progression are phenomena of antagonistic events, silencing tissue-specific gene expression in precursors to allow self-renewal and multipotentiality, and subsequently suppressing proliferation and embryonic gene expression to promote the restricted expression of tissue-specific genes during maturation. The high mobility group-containing Sox family of transcription factors constitutes one of the earliest classes of genes to be expressed during embryonic development. These proteins not only are indispensable for progenitor cell specification but also are critical for terminal differentiation of multiple cell types in a wide variety of lineages. Sox transcription factors are now known to induce or repress progenitor cell characteristics and cell proliferation or to activate the expression of tissue-specific genes. Sox proteins fulfill their diverse functions in developmental regulation by distinct molecular mechanisms. Not surprisingly, in addition to DNA binding and bending, Sox transcription factors also interact with different protein partners to function as coactivators or corepressors of downstream target genes. Here we seek to provide an overview of the current knowledge of Sox gene functional mechanisms, in an effort to understand their roles in both development and pathology.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, USA
| | | |
Collapse
|
50
|
Mojsin M, Stevanovic M. PBX1 and MEIS1 up-regulate SOX3 gene expression by direct interaction with a consensus binding site within the basal promoter region. Biochem J 2009; 425:107-16. [PMID: 19799567 DOI: 10.1042/bj20090694] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sox3/SOX3 [SRY (sex determining region Y)-box 3] is considered to be one of the earliest neural markers in vertebrates, playing a role in specifying neuronal fate. We have previously reported characterization of the SOX3 promoter and demonstrated that the general transcription factors NF-Y (nuclear factor-Y), Sp1 (specificity protein 1) and USF (upstream stimulatory factor) are involved in transcriptional regulation of SOX3 promoter activity. In the present study we provide the first evidence that the TALE (three-amino-acid loop extension) transcription factors PBX1 (pre-B-cell leukaemia homeobox 1) and MEIS1 (myeloid ecotropic viral integration site 1 homologue) participate in regulating human SOX3 gene expression in NT2/D1 cells by direct interaction with the consensus PBX/MEIS-binding site, which is conserved in all mammalian orthologue promoters analysed. PBX1 is present in the protein complex formed at this site with nuclear proteins from uninduced cells, whereas both PBX1 and MEIS1 proteins were detected in the complex created with extract from RA (retinoic acid)-induced NT2/D1 cells. By functional analysis we also showed that mutations of the PBX1/MEIS1-binding sites resulted in profound reduction of SOX3 promoter responsiveness to RA. Finally, we demonstrated that overexpressed PBX1 and MEIS1 increased endogenous SOX3 protein expression in both uninduced and RA-induced NT2/D1 cells. With the results of the present study, for the first time, we have established a functional link between the TALE proteins, PBX1 and MEIS1, and expression of the human SOX3 gene. This link is of particular interest since both TALE family members and members of the SOX superfamily are recognized as important developmental regulators.
Collapse
Affiliation(s)
- Marija Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010 Belgrade, Serbia
| | | |
Collapse
|