1
|
Chandola U, Gaudin M, Trottier C, Lavier-Aydat LJ, Manirakiza E, Menicot S, Fischer EJ, Louvet I, Lacour T, Chaumier T, Tanaka A, Pohnert G, Chaffron S, Tirichine L. Non-cyanobacterial diazotrophs support the survival of marine microalgae in nitrogen-depleted environment. Genome Biol 2025; 26:146. [PMID: 40437550 PMCID: PMC12117797 DOI: 10.1186/s13059-025-03597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Non-cyanobacteria diazotrophs (NCDs) are shown to dominate in surface waters shifting the long-held paradigm of cyanobacteria dominance. This raises fundamental questions on how these putative heterotrophic bacteria thrive in sunlit oceans. The absence of laboratory cultures of these bacteria significantly limits our ability to understand their behavior in natural environments and, consequently, their contribution to the marine nitrogen cycle. RESULTS Here, via a multidisciplinary approach, we identify the presence of NCDs within the phycosphere of the model diatom Phaeodactylum tricornutum (Pt), which sustain the survival of Pt in nitrogen-depleted conditions. Through bacterial metacommunity sequencing and genome assembly, we identify multiple NCDs belonging to the Rhizobiales order, including Bradyrhizobium, Mesorhizobium, Georhizobium, and Methylobacterium. We demonstrate the nitrogen-fixing ability of PtNCDs through in silico identification of nitrogen fixation genes and by other experimental assays. We show the wide occurrence of this type of interactions with the isolation of NCDs from other microalgae, their identification in the environment, and their predicted associations with photosynthetic microalgae. CONCLUSIONS Our study underscores the importance of microalgae interactions with NCDs to support nitrogen fixation. This work provides a unique model Pt-NCDs to study the ecology of this interaction, advancing our understanding of the key drivers of global marine nitrogen fixation.
Collapse
Affiliation(s)
- Udita Chandola
- UMR 6286, F-44000, Nantes Université, CNRS, Nantes, US2B, France
| | - Marinna Gaudin
- UMR 6004, Nantes Université, École Centrale Nantes, CNRS, Nantes, LS2 N, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Tara Oceans GOSEE, F-75016, Paris, R2022, France
| | - Camille Trottier
- UMR 6286, F-44000, Nantes Université, CNRS, Nantes, US2B, France
| | | | - Eric Manirakiza
- UMR 6286, F-44000, Nantes Université, CNRS, Nantes, US2B, France
| | - Samuel Menicot
- UMR 6286, F-44000, Nantes Université, CNRS, Nantes, US2B, France
| | - Erik Jörg Fischer
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 7743, Germany
| | - Isabelle Louvet
- UMR 6230, Nantes Université, CNRS, CEISAM, Nantes, 44000, France
| | - Thomas Lacour
- PHYTOX, PHYSALG, Rue de L'Ile d'Yeu, Nantes Cedex 03, BP2110544311, France
| | | | - Atsuko Tanaka
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 7743, Germany
| | - Samuel Chaffron
- UMR 6004, Nantes Université, École Centrale Nantes, CNRS, Nantes, LS2 N, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Tara Oceans GOSEE, F-75016, Paris, R2022, France
| | - Leïla Tirichine
- UMR 6286, F-44000, Nantes Université, CNRS, Nantes, US2B, France.
- Institute for Marine and Antarctic Studies (IMAS), Ecology and Biodiversity Centre, University of Tasmania, TAS, Hobart, 7004, Australia.
| |
Collapse
|
2
|
Duran C, Dupuy C, Agogué H, Duran R, Cravo-Laureau C. Towards a comprehensive view of wetland benthic communities. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100391. [PMID: 40321238 PMCID: PMC12048814 DOI: 10.1016/j.crmicr.2025.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Benthic prokaryotic communities, utmost important for wetlands and marine environments functioning, are influenced by physical-chemical parameters and interactions with other communities, especially micro-eukaryotes and meiofauna. Thus, a holistic view of the benthic community is necessary to fully understand their organization and functioning. This study assesses the implementation of a comprehensive view, using mock communities and environmental samples. A DNA extraction strategy combining two procedures is proposed: one to obtain DNA from micro-organisms, using 0.25 g of sediment, and the other from meiofauna, using 0.25 g of sieving refluxes from 5 g of sediment. Three conditions were considered to create mock communities: (i) varying eukaryotes' abundance, (ii) adding meiofauna from salted or freshwater wetlands, and (iii) including or not a sediment matrix. Most organisms composing the mock communities were detected, except a filamentous cyanobacteria. All mock communities showed similar composition indicating that sediment did not affect the DNA extraction. This result also demonstrated that sieving, necessary to enrich meiofauna from sediment, does not significantly affect any of the communities. For the environmental samples investigated, most of the taxa usually described in the literature were retrieved in the salted, brackish and freshwater marshes sediment. The proposed approach was successful in analysing organisms from the three domains of life in a unique environmental sample, providing a holistic view of the benthic community. Furthermore, the significant differences observed between samples from the three different marshes, indicated that our approach can be used for conducting successful ecological studies, especially useful for understanding benthic communities' interactions.
Collapse
Affiliation(s)
- Clélia Duran
- Universite de Pau et des Pays de l'Adour, UPPA, CNRS, IPREM, Pau, France
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université, La Rochelle, France
| | - Christine Dupuy
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université, La Rochelle, France
| | - Hélène Agogué
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université, La Rochelle, France
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, UPPA, CNRS, IPREM, Pau, France
| | | |
Collapse
|
3
|
Xu X, Luo W, Ren Z, Song X. Intelligent Detection and Recognition of Marine Plankton by Digital Holography and Deep Learning. SENSORS (BASEL, SWITZERLAND) 2025; 25:2325. [PMID: 40218838 PMCID: PMC11991423 DOI: 10.3390/s25072325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The detection, observation, recognition, and statistics of marine plankton are the basis of marine ecological research. In recent years, digital holography has been widely applied to plankton detection and recognition. However, the recording and reconstruction of digital holography require a strictly controlled laboratory environment and time-consuming iterative computation, respectively, which impede its application in marine plankton imaging. In this paper, an intelligent method designed with digital holography and deep learning algorithms is proposed to detect and recognize marine plankton (IDRMP). An accurate integrated A-Unet network is established under the principle of deep learning and trained by digital holograms recorded with publicly available plankton datasets. This method can complete the work of reconstructing and recognizing a variety of plankton organisms stably and efficiently by a single hologram, and a system interface of YOLOv5 that can realize the task of the end-to-end detection of plankton by a single frame is provided. The structural similarities of the images reconstructed by IDRMP are all higher than 0.97, and the average accuracy of the detection of four plankton species, namely, Appendicularian, Chaetognath, Echinoderm and Hydromedusae,, reaches 91.0% after using YOLOv5. In optical experiments, typical marine plankton collected from Weifang, China, are employed as samples. For randomly selected samples of Copepods, Tunicates and Polychaetes, the results are ideal and acceptable, and a batch detection function is developed for the learning of the system. Our test and experiment results demonstrate that this method is efficient and accurate for the detection and recognition of numerous plankton within a certain volume of space after they are recorded by digital holography.
Collapse
Affiliation(s)
- Xianfeng Xu
- College of Science, China University of Petroleum (East China), Qingdao 266580, China; (W.L.); (Z.R.); (X.S.)
| | | | | | | |
Collapse
|
4
|
Ramondenc S, Eveillard D, Metfies K, Iversen MH, Nöthig EM, Piepenburg D, Hasemann C, Soltwedel T. Unveiling pelagic-benthic coupling associated with the biological carbon pump in the Fram Strait (Arctic Ocean). Nat Commun 2025; 16:840. [PMID: 39833152 PMCID: PMC11747630 DOI: 10.1038/s41467-024-55221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Settling aggregates transport organic matter from the ocean surface to the deep sea and seafloor. Though plankton communities impact carbon export, how specific organisms and their interactions affect export efficiency is unknown. Looking at 15 years of eDNA sequences (18S-V4) from settling and sedimented organic matter in the Fram Strait, here we observe that most phylogenetic groups were transferred from pelagic to benthic ecosystems. Chaetoceros socialis, sea-ice diatoms, Radiolaria, and Chaetognatha are critical components of vertical carbon flux to 200 m depth. In contrast, the diatom C. socialis alone is essential for the amount of organic carbon reaching the seafloor. Spatiotemporal changes in community composition show decreasing diatom abundance during warm anomalies, which would reduce the efficiency of a diatom-driven biological carbon pump. Interestingly, several parasites are also tightly associated with carbon flux and show a strong vertical connectivity, suggesting a potential role in sedimentation processes involving their hosts, especially through interactions with resting spores, which could have implications for pelagic-benthic coupling and overall ecosystem functioning.
Collapse
Affiliation(s)
- Simon Ramondenc
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| | - Damien Eveillard
- Nantes Université, Ecole Centrale Nantes, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Katja Metfies
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Morten H Iversen
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Eva-Maria Nöthig
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Dieter Piepenburg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Christiane Hasemann
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Thomas Soltwedel
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
5
|
Rotter A, Varamogianni-Mamatsi D, Zvonar Pobirk A, Gosenca Matjaž M, Cueto M, Díaz-Marrero AR, Jónsdóttir R, Sveinsdóttir K, Catalá TS, Romano G, Aslanbay Guler B, Atak E, Berden Zrimec M, Bosch D, Deniz I, Gaudêncio SP, Grigalionyte-Bembič E, Klun K, Zidar L, Coll Rius A, Baebler Š, Lukić Bilela L, Rinkevich B, Mandalakis M. Marine cosmetics and the blue bioeconomy: From sourcing to success stories. iScience 2024; 27:111339. [PMID: 39650733 PMCID: PMC11625311 DOI: 10.1016/j.isci.2024.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
As the global population continues to grow, so does the demand for longer, healthier lives and environmentally responsible choices. Consumers are increasingly drawn to naturally sourced products with proven health and wellbeing benefits. The marine environment presents a promising yet underexplored resource for the cosmetics industry, offering bioactive compounds with the potential for safe and biocompatible ingredients. This manuscript provides a comprehensive overview of the potential of marine organisms for cosmetics production, highlighting marine-derived compounds and their applications in skin/hair/oral-care products, cosmeceuticals and more. It also lays down critical safety considerations and addresses the methodologies for sourcing marine compounds, including harvesting, the biorefinery concept, use of systems biology for enhanced product development, and the relevant regulatory landscape. The review is enriched by three case studies: design of macroalgal skincare products in Iceland, establishment of a microalgal cosmetics spin-off in Italy, and the utilization of marine proteins for cosmeceutical applications.
Collapse
Affiliation(s)
- Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Rósa Jónsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
| | - Kolbrún Sveinsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Teresa S. Catalá
- Global Society Institute, Wälderhaus, am Inselpark 19, 21109 Hamburg, Germany
- Organization for Science, Education and Global Society GmbH, am Inselpark 19, 21109 Hamburg, Germany
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn - Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy
| | - Bahar Aslanbay Guler
- Faculty of Engineering Department of Bioengineering, Ege University, Izmir 35100, Turkey
| | - Eylem Atak
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | | | - Daniel Bosch
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Irem Deniz
- Faculty of Engineering Department of Bioengineering, Manisa Celal Bayar University, Manisa 45119, Turkey
| | - Susana P. Gaudêncio
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Luen Zidar
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Anna Coll Rius
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, Haifa 3102201, Israel
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| |
Collapse
|
6
|
Verma A, Amnebrink D, Lee CC, Wai SN, Sandblad L, Pinhassi J, Wikner J. Prokaryotic morphological features and maintenance activities governed by seasonal productivity conditions. FEMS Microbiol Ecol 2024; 100:fiae121. [PMID: 39264060 PMCID: PMC11556340 DOI: 10.1093/femsec/fiae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024] Open
Abstract
Prokaryotic maintenance respiration and associated metabolic activities constitute a considerable proportion of the total respiration of carbon to CO2 in the ocean's mixed layer. However, seasonal influences on prokaryotic maintenance activities in terms of morphological and metabolic adaptations at low (winter) and high productivity (summer) are still unclear. To address this, we examined the natural prokaryotic communities at the mesocosm scale to analyse the differences in their morphological features and gene expression at low and high maintenance respiration, experimentally manipulated with the specific growth rate. Here, we showed that morphological features including membrane blebbing, membrane vesicles, and cell‒cell connections occurred under high productivity. Metabolic adaptations associated with maintenance activities were observed under low productivity. Several Kyoto Encyclopedia of Genes and Genomes categories related to signal transduction, energy metabolism, and translational machinery supported maintenance activities under simulated winter conditions. Differential abundances of genes related to transporters, osmoregulation, nitrogen metabolism, ribosome biogenesis, and cold stress were observed. Our results demonstrate how specific growth rate in different seasons can influence resource allocation at the levels of morphological features and metabolic adaptations. This motivates further study of morphological features and their ecological role during high productivity, while investigations of metabolic adaptations during low productivity can advance our knowledge about maintenance activities.
Collapse
Affiliation(s)
- Ashish Verma
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, Norrbyn 557, SE-905 71 Hörnefors, Sweden
| | - Dennis Amnebrink
- Centre for Ecology and Evolution in Microbial Model Systems – EEMiS, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Cheng Choo Lee
- Umeå Centre for Electron Microscopy, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Linda Sandblad
- Umeå Centre for Electron Microscopy, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems – EEMiS, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Johan Wikner
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, Norrbyn 557, SE-905 71 Hörnefors, Sweden
| |
Collapse
|
7
|
Campese L, Russo L, Abagnale M, Alberti A, Bachi G, Balestra C, Bellardini D, Buondonno A, Cardini U, Carotenuto Y, Checcucci G, Chiusano ML, D'Ambra I, d'Ippolito G, Di Capua I, Donnarumma V, Fontana A, Furia M, Galarza-Verkovitch D, Gallia R, Labadie K, Leone S, Licandro P, Longo A, Maselli M, Merquiol L, Murano C, Oliveira PH, Passarelli A, Percopo I, Perdereau A, Piredda R, Raffini F, Roncalli V, Ruscheweyh HJ, Russo E, Saggiomo M, Santinelli C, Sarno D, Sunagawa S, Tramontano F, Trano AC, Uttieri M, Wincker P, Zampicinini G, Casotti R, Conversano F, D'Alelio D, Iudicone D, Margiotta F, Montresor M. The NEREA Augmented Observatory: an integrative approach to marine coastal ecology. Sci Data 2024; 11:989. [PMID: 39256479 PMCID: PMC11387787 DOI: 10.1038/s41597-024-03787-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
The NEREA (Naples Ecological REsearch for Augmented observatories) initiative aims to establish an augmented observatory in the Gulf of Naples (GoN), designed to advance the understanding of marine ecosystems through a holistic approach. Inspired by the Tara Oceans expedition and building on the scientific legacy of the MareChiara Long-Term Ecological Research (LTER-MC) site, NEREA integrates traditional physical, chemical, and biological measurements with state-of-the-art methodologies such as metabarcoding and metagenomics. Here we present the first 10 months of NEREA data, collected from April 2019 to January 2020, encompassing physico-chemical parameters, plankton biodiversity (e.g., microscopy and flow cytometry), prokaryotic and eukaryotic metabarcoding, a prokaryotic gene catalogue, and a collection of 3818 prokaryotic Metagenome-Assembled Genomes (MAGs). NEREA's efforts produce a significant volume of multifaceted data, which enhances our understanding of marine ecosystems and promotes the development of scientific hypotheses and ideas.
Collapse
Affiliation(s)
- Lucia Campese
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Luca Russo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Maria Abagnale
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Adriana Alberti
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Giancarlo Bachi
- Biophysics Institute, CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Cecilia Balestra
- National Institute of Oceanography and Applied Geophysics, OGS, via Auguste Piccard 54, 34151, Trieste, Italy
| | - Daniele Bellardini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- DiSTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Angela Buondonno
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Ulisse Cardini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Genoa Marine Centre, Villa del Principe, Piazza del Principe 4, 16126, Genoa, Italy
| | - Ylenia Carotenuto
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | | - Maria Luisa Chiusano
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- Department of Agricultural Sciences, University Federico II of Naples, Piazza Carlo di Borbone, 1, 80055, Portici, Napoli, Italy
| | - Isabella D'Ambra
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Giuliana d'Ippolito
- Bio-Organic Chemistry Unit, Institute of Bio-molecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Iole Di Capua
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Vincenzo Donnarumma
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- Department of Life and Environmental Sciences, University of Cagliari, Via Tommaso Fiorelli 1, 09126, Cagliari, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Bio-molecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Laboratory of Bio-Organic Chemistry and Chemical Biology, Biology department, University of Naples "Federico II", Via Cupa Nuova Cinthia 21, 80126, Napoli, Italy
| | - Marta Furia
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Denisse Galarza-Verkovitch
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Roberto Gallia
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Via Nuovo Macello 16, 80055, Portici Naples, Italy
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Priscilla Licandro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Antonio Longo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- Department of Biology, University of Napoli "Federico II", Via Cupa Nuova Cinthia 21, 80126, Napoli, Italy
| | - Maira Maselli
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Louise Merquiol
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- TELEMMe - MMSH, Aix-Marseille Université, 5 rue du Château de l'Horloge, 13097, Aix-en-Provence, France
| | - Carola Murano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Pedro H Oliveira
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Augusto Passarelli
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Via Nuovo Macello 16, 80055, Portici Naples, Italy
| | - Isabella Percopo
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Aude Perdereau
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Roberta Piredda
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Francesca Raffini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Vittoria Roncalli
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, 8093, Switzerland
| | - Ennio Russo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- Bio-Organic Chemistry Unit, Institute of Bio-molecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Maria Saggiomo
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Chiara Santinelli
- Biophysics Institute, CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Diana Sarno
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, 8093, Switzerland
| | - Ferdinando Tramontano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Anna Chiara Trano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Marco Uttieri
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Gianpaolo Zampicinini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- National Institute of Oceanography and Applied Geophysics, OGS, via Auguste Piccard 54, 34151, Trieste, Italy
| | - Raffaella Casotti
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Fabio Conversano
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Domenico D'Alelio
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy.
| | - Daniele Iudicone
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Francesca Margiotta
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Marina Montresor
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
8
|
Rose SA, Robicheau BM, Tolman J, Fonseca-Batista D, Rowland E, Desai D, Ratten JM, Kantor EJH, Comeau AM, Langille MG, Jerlström-Hultqvist J, Devred E, Sarthou G, Bertrand EM, LaRoche J. Nitrogen fixation in the widely distributed marine γ-proteobacterial diazotroph Candidatus Thalassolituus haligoni. SCIENCE ADVANCES 2024; 10:eadn1476. [PMID: 39083619 PMCID: PMC11290528 DOI: 10.1126/sciadv.adn1476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The high diversity and global distribution of heterotrophic bacterial diazotrophs (HBDs) in the ocean has recently become apparent. However, understanding the role these largely uncultured microorganisms play in marine N2 fixation poses a challenge due to their undefined growth requirements and the complex regulation of the nitrogenase enzyme. We isolated and characterized Candidatus Thalassolituus haligoni, a member of a widely distributed clade of HBD belonging to the Oceanospirillales. Analysis of its nifH gene via amplicon sequencing revealed the extensive distribution of Cand. T. haligoni across the Pacific, Atlantic, and Arctic Oceans. Pangenome analysis indicates that the isolate shares >99% identity with an uncultured metagenome-assembled genome called Arc-Gamma-03, recently recovered from the Arctic Ocean. Through combined genomic, proteomic, and physiological approaches, we confirmed that the isolate fixes N2 gas. However, the mechanisms governing nitrogenase regulation in Cand. T. haligoni remain unclear. We propose Cand. T. haligoni as a globally distributed, cultured HBD model species within this understudied clade of Oceanospirillales.
Collapse
Affiliation(s)
- Sonja A. Rose
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Brent M. Robicheau
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Debany Fonseca-Batista
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elden Rowland
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Integrated Microbiome Resource (IMR) and Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jenni-Marie Ratten
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ella Joy H. Kantor
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - André M. Comeau
- Integrated Microbiome Resource (IMR) and Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan G.I. Langille
- Integrated Microbiome Resource (IMR) and Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Emmanuel Devred
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Halifax, Nova Scotia, Canada
| | | | - Erin M. Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Morard R, Darling KF, Weiner AKM, Hassenrück C, Vanni C, Cordier T, Henry N, Greco M, Vollmar NM, Milivojevic T, Rahman SN, Siccha M, Meilland J, Jonkers L, Quillévéré F, Escarguel G, Douady CJ, de Garidel-Thoron T, de Vargas C, Kucera M. The global genetic diversity of planktonic foraminifera reveals the structure of cryptic speciation in plankton. Biol Rev Camb Philos Soc 2024; 99:1218-1241. [PMID: 38351434 DOI: 10.1111/brv.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 07/06/2024]
Abstract
The nature and extent of diversity in the plankton has fascinated scientists for over a century. Initially, the discovery of many new species in the remarkably uniform and unstructured pelagic environment appeared to challenge the concept of ecological niches. Later, it became obvious that only a fraction of plankton diversity had been formally described, because plankton assemblages are dominated by understudied eukaryotic lineages with small size that lack clearly distinguishable morphological features. The high diversity of the plankton has been confirmed by comprehensive metabarcoding surveys, but interpretation of the underlying molecular taxonomies is hindered by insufficient integration of genetic diversity with morphological taxonomy and ecological observations. Here we use planktonic foraminifera as a study model and reveal the full extent of their genetic diversity and investigate geographical and ecological patterns in their distribution. To this end, we assembled a global data set of ~7600 ribosomal DNA sequences obtained from morphologically characterised individual foraminifera, established a robust molecular taxonomic framework for the observed diversity, and used it to query a global metabarcoding data set covering ~1700 samples with ~2.48 billion reads. This allowed us to extract and assign 1 million reads, enabling characterisation of the structure of the genetic diversity of the group across ~1100 oceanic stations worldwide. Our sampling revealed the existence of, at most, 94 distinct molecular operational taxonomic units (MOTUs) at a level of divergence indicative of biological species. The genetic diversity only doubles the number of formally described species identified by morphological features. Furthermore, we observed that the allocation of genetic diversity to morphospecies is uneven. Only 16 morphospecies disguise evolutionarily significant genetic diversity, and the proportion of morphospecies that show genetic diversity increases poleward. Finally, we observe that MOTUs have a narrower geographic distribution than morphospecies and that in some cases the MOTUs belonging to the same morphospecies (cryptic species) have different environmental preferences. Overall, our analysis reveals that even in the light of global genetic sampling, planktonic foraminifera diversity is modest and finite. However, the extent and structure of the cryptic diversity reveals that genetic diversification is decoupled from morphological diversification, hinting at different mechanisms acting at different levels of divergence.
Collapse
Affiliation(s)
- Raphaël Morard
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Kate F Darling
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JW, UK
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Agnes K M Weiner
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Christiane Hassenrück
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestrasse 15, Warnemünde, 18119, Germany
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Tristan Cordier
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Nicolas Henry
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, Roscoff, 29680, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, 75016, France
| | - Mattia Greco
- Institut de Ciències del Mar, Passeig Marítim de la Barceloneta, Barcelona, 37-49, Spain
| | - Nele M Vollmar
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Tamara Milivojevic
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Shirin Nurshan Rahman
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Michael Siccha
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Julie Meilland
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Lukas Jonkers
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Frédéric Quillévéré
- Univ Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, UMR CNRS 5276 LGL-TPE, Villeurbanne, F-69622, France
| | - Gilles Escarguel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, F-69622, France
| | - Christophe J Douady
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, F-69622, France
- Institut Universitaire de France, Paris, France
| | | | - Colomban de Vargas
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, Roscoff, 29680, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR7144, Place Georges Teissier, Roscoff, 29680, France
| | - Michal Kucera
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| |
Collapse
|
10
|
Marotta P, Sabatino V, Ambrosino L, Miralto M, Ferrante MI. De novo transcriptome assembly of a lipoxygenase knock-down strain in the diatom Pseudo-nitzschia arenysensis. Sci Data 2024; 11:522. [PMID: 38778120 PMCID: PMC11111692 DOI: 10.1038/s41597-024-03375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Diatoms are microalgae that live in marine and freshwater environments and are responsible for about 20% of the world's carbon fixation. Population dynamics of these cells is finely regulated by intricate signal transduction systems, in which oxylipins are thought to play a relevant role. These are oxygenated fatty acids whose biosynthesis is initiated by a lipoxygenase enzyme (LOX) and are widely distributed in all phyla, including diatoms. Here, we present a de novo transcriptome obtained from the RNA-seq performed in the diatom species Pseudo-nitzschia arenysensis, using both a wild-type and a LOX-silenced strain, which will represent a reliable reference for comparative analyses within the Pseudo-nitzschia genus and at a broader taxonomic scale. Moreover, the RNA-seq data can be interrogated to go deeper into the oxylipins metabolic pathways.
Collapse
Affiliation(s)
- Pina Marotta
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, Naples, 80131, Italy
| | - Valeria Sabatino
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Luca Ambrosino
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Marco Miralto
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Maria Immacolata Ferrante
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
- Associate to the National Institute of Oceanography and Applied Geophysics, 34151, Trieste, Italy.
| |
Collapse
|
11
|
Nebauer DJ, Pearson LA, Neilan BA. Critical steps in an environmental metaproteomics workflow. Environ Microbiol 2024; 26:e16637. [PMID: 38760994 DOI: 10.1111/1462-2920.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Environmental metaproteomics is a rapidly advancing field that provides insights into the structure, dynamics, and metabolic activity of microbial communities. As the field is still maturing, it lacks consistent workflows, making it challenging for non-expert researchers to navigate. This review aims to introduce the workflow of environmental metaproteomics. It outlines the standard practices for sample collection, processing, and analysis, and offers strategies to overcome the unique challenges presented by common environmental matrices such as soil, freshwater, marine environments, biofilms, sludge, and symbionts. The review also highlights the bottlenecks in data analysis that are specific to metaproteomics samples and provides suggestions for researchers to obtain high-quality datasets. It includes recent benchmarking studies and descriptions of software packages specifically built for metaproteomics analysis. The article is written without assuming the reader's familiarity with single-organism proteomic workflows, making it accessible to those new to proteomics or mass spectrometry in general. This primer for environmental metaproteomics aims to improve accessibility to this exciting technology and empower researchers to tackle challenging and ambitious research questions. While it is primarily a resource for those new to the field, it should also be useful for established researchers looking to streamline or troubleshoot their metaproteomics experiments.
Collapse
Affiliation(s)
- Daniel J Nebauer
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Centre of Excellence in Synthetic Biology, Australian Research Council, Sydney, New South Wales, Australia
| | - Leanne A Pearson
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Centre of Excellence in Synthetic Biology, Australian Research Council, Sydney, New South Wales, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Centre of Excellence in Synthetic Biology, Australian Research Council, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Rolland J, Boutin R, Eveillard D, Delahaye B. Datascape: exploring heterogeneous dataspace. Sci Rep 2024; 14:7041. [PMID: 38580694 PMCID: PMC10997776 DOI: 10.1038/s41598-024-52493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/19/2024] [Indexed: 04/07/2024] Open
Abstract
Data science is a powerful field for gaining insights, comparing, and predicting behaviors from datasets. However, the diversity of methods and hypotheses needed to abstract a dataset exhibits a lack of genericity. Moreover, the shape of a dataset, which structures its contained information and uncertainties, is rarely considered. Inspired by state-of-the-art manifold learning and hull estimations algorithms, we propose a novel framework, the datascape, that leverages topology and graph theory to abstract heterogeneous datasets. Built upon the combination of a nearest neighbor graph, a set of convex hulls, and a metric distance that respects the shape of the data, the datascape allows exploration of the dataset's underlying space. We show that the datascape can uncover underlying functions from simulated datasets, build predictive algorithms with performance close to state-of-the-art algorithms, and reveal insightful geodesic paths between points. It demonstrates versatility through ecological, medical, and simulated data use cases.
Collapse
Affiliation(s)
- Jakez Rolland
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, 44322, Nantes, France.
- Bio Logbook, 44200, Nantes, France.
| | | | - Damien Eveillard
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, 44322, Nantes, France
| | - Benoit Delahaye
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, 44322, Nantes, France
| |
Collapse
|
13
|
Logares R. Decoding populations in the ocean microbiome. MICROBIOME 2024; 12:67. [PMID: 38561814 PMCID: PMC10983722 DOI: 10.1186/s40168-024-01778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
Understanding the characteristics and structure of populations is fundamental to comprehending ecosystem processes and evolutionary adaptations. While the study of animal and plant populations has spanned a few centuries, microbial populations have been under scientific scrutiny for a considerably shorter period. In the ocean, analyzing the genetic composition of microbial populations and their adaptations to multiple niches can yield important insights into ecosystem function and the microbiome's response to global change. However, microbial populations have remained elusive to the scientific community due to the challenges associated with isolating microorganisms in the laboratory. Today, advancements in large-scale metagenomics and metatranscriptomics facilitate the investigation of populations from many uncultured microbial species directly from their habitats. The knowledge acquired thus far reveals substantial genetic diversity among various microbial species, showcasing distinct patterns of population differentiation and adaptations, and highlighting the significant role of selection in structuring populations. In the coming years, population genomics is expected to significantly increase our understanding of the architecture and functioning of the ocean microbiome, providing insights into its vulnerability or resilience in the face of ongoing global change. Video Abstract.
Collapse
Affiliation(s)
- Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Catalonia, 08003, Spain.
| |
Collapse
|
14
|
Sánchez P, Coutinho FH, Sebastián M, Pernice MC, Rodríguez-Martínez R, Salazar G, Cornejo-Castillo FM, Pesant S, López-Alforja X, López-García EM, Agustí S, Gojobori T, Logares R, Sala MM, Vaqué D, Massana R, Duarte CM, Acinas SG, Gasol JM. Marine picoplankton metagenomes and MAGs from eleven vertical profiles obtained by the Malaspina Expedition. Sci Data 2024; 11:154. [PMID: 38302528 PMCID: PMC10834958 DOI: 10.1038/s41597-024-02974-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
The Ocean microbiome has a crucial role in Earth's biogeochemical cycles. During the last decade, global cruises such as Tara Oceans and the Malaspina Expedition have expanded our understanding of the diversity and genetic repertoire of marine microbes. Nevertheless, there are still knowledge gaps regarding their diversity patterns throughout depth gradients ranging from the surface to the deep ocean. Here we present a dataset of 76 microbial metagenomes (MProfile) of the picoplankton size fraction (0.2-3.0 µm) collected in 11 vertical profiles covering contrasting ocean regions sampled during the Malaspina Expedition circumnavigation (7 depths, from surface to 4,000 m deep). The MProfile dataset produced 1.66 Tbp of raw DNA sequences from which we derived: 17.4 million genes clustered at 95% sequence similarity (M-GeneDB-VP), 2,672 metagenome-assembled genomes (MAGs) of Archaea and Bacteria (Malaspina-VP-MAGs), and over 100,000 viral genomic sequences. This dataset will be a valuable resource for exploring the functional and taxonomic connectivity between the photic and bathypelagic tropical and sub-tropical ocean, while increasing our general knowledge of the Ocean microbiome.
Collapse
Affiliation(s)
- Pablo Sánchez
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - Felipe H Coutinho
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Marta Sebastián
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Massimo C Pernice
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Raquel Rodríguez-Martínez
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology & Bioengineering (CeBiB), Santiago, Chile
| | - Guillem Salazar
- Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | | | - Stéphane Pesant
- EMBL's European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Xabier López-Alforja
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Ester María López-García
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
- Centre National de la Recherche Scientifique (CNRS), UMR5254, IPREM, Pau, France
| | - Susana Agustí
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Ramiro Logares
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Maria Montserrat Sala
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Dolors Vaqué
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Ramon Massana
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Carlos M Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Silvia G Acinas
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - Josep M Gasol
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
15
|
Branscombe L, Harrison EL, Choong ZYD, Swink C, Keys M, Widdicombe C, Wilson WH, Cunliffe M, Helliwell K. Cryptic bacterial pathogens of diatoms peak during senescence of a winter diatom bloom. THE NEW PHYTOLOGIST 2024; 241:1292-1307. [PMID: 38037269 DOI: 10.1111/nph.19441] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023]
Abstract
Diatoms are globally abundant microalgae that form extensive blooms in aquatic ecosystems. Certain bacteria behave antagonistically towards diatoms, killing or inhibiting their growth. Despite their crucial implications to diatom blooms and population health, knowledge of diatom antagonists in the environment is fundamentally lacking. We report systematic characterisation of the diversity and seasonal dynamics of bacterial antagonists of diatoms via plaque assay sampling in the Western English Channel (WEC), where diatoms frequently bloom. Unexpectedly, peaks in detection did not occur during characteristic spring diatom blooms, but coincided with a winter bloom of Coscinodiscus, suggesting that these bacteria likely influence distinct diatom host populations. We isolated multiple bacterial antagonists, spanning 4 classes and 10 bacterial orders. Notably, a diatom attaching Roseobacter Ponticoccus alexandrii was isolated multiple times, indicative of a persistent environmental presence. Moreover, many isolates had no prior reports of antagonistic activity towards diatoms. We verified diatom growth inhibitory effects of eight isolates. In all cases tested, these effects were activated by pre-exposure to diatom organic matter. Discovery of widespread 'cryptic' antagonistic activity indicates that bacterial pathogenicity towards diatoms is more prevalent than previously recognised. Finally, examination of the global biogeography of WEC antagonists revealed co-occurrence patterns with diatom host populations in marine waters globally.
Collapse
Affiliation(s)
- Laura Branscombe
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Ellen L Harrison
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Zhi Yi Daniel Choong
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Courtney Swink
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Matthew Keys
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
| | | | - William H Wilson
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Michael Cunliffe
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Katherine Helliwell
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
16
|
Terzin M, Laffy PW, Robbins S, Yeoh YK, Frade PR, Glasl B, Webster NS, Bourne DG. The road forward to incorporate seawater microbes in predictive reef monitoring. ENVIRONMENTAL MICROBIOME 2024; 19:5. [PMID: 38225668 PMCID: PMC10790441 DOI: 10.1186/s40793-023-00543-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Marine bacterioplankton underpin the health and function of coral reefs and respond in a rapid and sensitive manner to environmental changes that affect reef ecosystem stability. Numerous meta-omics surveys over recent years have documented persistent associations of opportunistic seawater microbial taxa, and their associated functions, with metrics of environmental stress and poor reef health (e.g. elevated temperature, nutrient loads and macroalgae cover). Through positive feedback mechanisms, disturbance-triggered heterotrophic activity of seawater microbes is hypothesised to drive keystone benthic organisms towards the limit of their resilience and translate into shifts in biogeochemical cycles which influence marine food webs, ultimately affecting entire reef ecosystems. However, despite nearly two decades of work in this space, a major limitation to using seawater microbes in reef monitoring is a lack of a unified and focused approach that would move beyond the indicator discovery phase and towards the development of rapid microbial indicator assays for (near) real-time reef management and decision-making. By reviewing the current state of knowledge, we provide a comprehensive framework (defined as five phases of research and innovation) to catalyse a shift from fundamental to applied research, allowing us to move from descriptive to predictive reef monitoring, and from reactive to proactive reef management.
Collapse
Affiliation(s)
- Marko Terzin
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| | - Patrick W Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Steven Robbins
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yun Kit Yeoh
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Pedro R Frade
- Natural History Museum Vienna, 1010, Vienna, Austria
| | - Bettina Glasl
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Antarctic Program, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, 7050, Australia
| | - David G Bourne
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
17
|
Duitama González C, Rangavittal S, Vicedomini R, Chikhi R, Richard H. aKmerBroom: Ancient oral DNA decontamination using Bloom filters on k-mer sets. iScience 2023; 26:108057. [PMID: 37876815 PMCID: PMC10590965 DOI: 10.1016/j.isci.2023.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
Dental calculus samples are modeled as a mixture of DNA coming from dental plaque and contaminants. Current computational decontamination methods such as Recentrifuge and DeconSeq require either a reference database or sequenced negative controls, and therefore have limited use cases. We present a reference-free decontamination tool tailored for the removal of contaminant DNA of ancient oral sample called aKmerBroom. Our tool builds a Bloom filter of known ancient and modern oral k-mers, then scans an input set of ancient metagenomic reads using multiple passes to iteratively retain reads likely to be of oral origin. On synthetic data, aKmerBroom achieves over 89.53 % sensitivity and 94.00 % specificity. On real datasets, aKmerBroom shows higher read retainment (+ 60 % on average) than other methods. We anticipate aKmerBroom will be a valuable tool for the processing of ancient oral samples as it will prevent contaminated datasets from being completely discarded in downstream analyses.
Collapse
Affiliation(s)
- Camila Duitama González
- Institut Pasteur, 75015 Paris, France
- Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | | | | | | | - Hugues Richard
- MF1 - Genome Competence Center, Robert Koch Institute, 13353 Berlin, Germany
| |
Collapse
|
18
|
Turk-Kubo KA, Gradoville MR, Cheung S, Cornejo-Castillo FM, Harding KJ, Morando M, Mills M, Zehr JP. Non-cyanobacterial diazotrophs: global diversity, distribution, ecophysiology, and activity in marine waters. FEMS Microbiol Rev 2023; 47:fuac046. [PMID: 36416813 PMCID: PMC10719068 DOI: 10.1093/femsre/fuac046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/15/2022] [Accepted: 11/17/2022] [Indexed: 12/17/2023] Open
Abstract
Biological dinitrogen (N2) fixation supplies nitrogen to the oceans, supporting primary productivity, and is carried out by some bacteria and archaea referred to as diazotrophs. Cyanobacteria are conventionally considered to be the major contributors to marine N2 fixation, but non-cyanobacterial diazotrophs (NCDs) have been shown to be distributed throughout ocean ecosystems. However, the biogeochemical significance of marine NCDs has not been demonstrated. This review synthesizes multiple datasets, drawing from cultivation-independent molecular techniques and data from extensive oceanic expeditions, to provide a comprehensive view into the diversity, biogeography, ecophysiology, and activity of marine NCDs. A NCD nifH gene catalog was compiled containing sequences from both PCR-based and PCR-free methods, identifying taxa for future studies. NCD abundances from a novel database of NCD nifH-based abundances were colocalized with environmental data, unveiling distinct distributions and environmental drivers of individual taxa. Mechanisms that NCDs may use to fuel and regulate N2 fixation in response to oxygen and fixed nitrogen availability are discussed, based on a metabolic analysis of recently available Tara Oceans expedition data. The integration of multiple datasets provides a new perspective that enhances understanding of the biology, ecology, and biogeography of marine NCDs and provides tools and directions for future research.
Collapse
Affiliation(s)
- Kendra A Turk-Kubo
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| | - Mary R Gradoville
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
- Columbia River Inter-Tribal Fish Commission, Portland, OR, United States
| | - Shunyan Cheung
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| | - Francisco M Cornejo-Castillo
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Pg. Marítim Barceloneta, 37-49 08003 Barcelona, Spain
| | - Katie J Harding
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
- Marine Biology Research Division, Scripps Institute of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Michael Morando
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| | - Matthew Mills
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| |
Collapse
|
19
|
Gazulla CR, Cabello AM, Sánchez P, Gasol JM, Sánchez O, Ferrera I. A Metagenomic and Amplicon Sequencing Combined Approach Reveals the Best Primers to Study Marine Aerobic Anoxygenic Phototrophs. MICROBIAL ECOLOGY 2023; 86:2161-2172. [PMID: 37148309 PMCID: PMC10497671 DOI: 10.1007/s00248-023-02220-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/07/2023] [Indexed: 05/08/2023]
Abstract
Studies based on protein-coding genes are essential to describe the diversity within bacterial functional groups. In the case of aerobic anoxygenic phototrophic (AAP) bacteria, the pufM gene has been established as the genetic marker for this particular functional group, although available primers are known to have amplification biases. We review here the existing primers for pufM gene amplification, design new ones, and evaluate their phylogenetic coverage. We then use samples from contrasting marine environments to evaluate their performance. By comparing the taxonomic composition of communities retrieved with metagenomics and with different amplicon approaches, we show that the commonly used PCR primers are biased towards the Gammaproteobacteria phylum and some Alphaproteobacteria clades. The metagenomic approach, as well as the use of other combinations of the existing and newly designed primers, show that these groups are in fact less abundant than previously observed, and that a great proportion of pufM sequences are affiliated to uncultured representatives, particularly in the open ocean. Altogether, the framework developed here becomes a better alternative for future studies based on the pufM gene and, additionally, serves as a reference for primer evaluation of other functional genes.
Collapse
Affiliation(s)
- Carlota R Gazulla
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalunya, Spain.
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain.
| | - Ana María Cabello
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, 29640, Fuengirola, Málaga, Spain
| | - Pablo Sánchez
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Olga Sánchez
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalunya, Spain.
| | - Isabel Ferrera
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, 29640, Fuengirola, Málaga, Spain.
| |
Collapse
|
20
|
Laso-Jadart R, O'Malley M, Sykulski AM, Ambroise C, Madoui MA. Holistic view of the seascape dynamics and environment impact on macro-scale genetic connectivity of marine plankton populations. BMC Ecol Evol 2023; 23:46. [PMID: 37658324 PMCID: PMC10472650 DOI: 10.1186/s12862-023-02160-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Plankton seascape genomics studies have revealed different trends from large-scale weak differentiation to microscale structures. Previous studies have underlined the influence of the environment and seascape on species differentiation and adaptation. However, these studies have generally focused on a few single species, sparse molecular markers, or local scales. Here, we investigated the genomic differentiation of plankton at the macro-scale in a holistic approach using Tara Oceans metagenomic data together with a reference-free computational method. RESULTS We reconstructed the FST-based genomic differentiation of 113 marine planktonic taxa occurring in the North and South Atlantic Oceans, Southern Ocean, and Mediterranean Sea. These taxa belong to various taxonomic clades spanning Metazoa, Chromista, Chlorophyta, Bacteria, and viruses. Globally, population genetic connectivity was significantly higher within oceanic basins and lower in bacteria and unicellular eukaryotes than in zooplankton. Using mixed linear models, we tested six abiotic factors influencing connectivity, including Lagrangian travel time, as proxies of oceanic current effects. We found that oceanic currents were the main population genetic connectivity drivers, together with temperature and salinity. Finally, we classified the 113 taxa into parameter-driven groups and showed that plankton taxa belonging to the same taxonomic rank such as phylum, class or order presented genomic differentiation driven by different environmental factors. CONCLUSION Our results validate the isolation-by-current hypothesis for a non-negligible proportion of taxa and highlight the role of other physicochemical parameters in large-scale plankton genetic connectivity. The reference-free approach used in this study offers a new systematic framework to analyse the population genomics of non-model and undocumented marine organisms from a large-scale and holistic point of view.
Collapse
Affiliation(s)
- Romuald Laso-Jadart
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, Paris, France
| | - Michael O'Malley
- STOR-i Centre for Doctoral Training/Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - Adam M Sykulski
- STOR-i Centre for Doctoral Training/Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | | | - Mohammed-Amin Madoui
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, Paris, France.
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-Aux-Roses, France.
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, 21000, Dijon, France.
| |
Collapse
|
21
|
Pascoal F, Tomasino MP, Piredda R, Quero GM, Torgo L, Poulain J, Galand PE, Fuhrman JA, Mitchell A, Tinta T, Turk Dermastia T, Fernandez-Guerra A, Vezzi A, Logares R, Malfatti F, Endo H, Dąbrowska AM, De Pascale F, Sánchez P, Henry N, Fosso B, Wilson B, Toshchakov S, Ferrant GK, Grigorov I, Vieira FRJ, Costa R, Pesant S, Magalhães C. Inter-comparison of marine microbiome sampling protocols. ISME COMMUNICATIONS 2023; 3:84. [PMID: 37598259 PMCID: PMC10439934 DOI: 10.1038/s43705-023-00278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 08/21/2023]
Abstract
Research on marine microbial communities is growing, but studies are hard to compare because of variation in seawater sampling protocols. To help researchers in the inter-comparison of studies that use different seawater sampling methodologies, as well as to help them design future sampling campaigns, we developed the EuroMarine Open Science Exploration initiative (EMOSE). Within the EMOSE framework, we sampled thousands of liters of seawater from a single station in the NW Mediterranean Sea (Service d'Observation du Laboratoire Arago [SOLA], Banyuls-sur-Mer), during one single day. The resulting dataset includes multiple seawater processing approaches, encompassing different material-type kinds of filters (cartridge membrane and flat membrane), three different size fractionations (>0.22 µm, 0.22-3 µm, 3-20 µm and >20 µm), and a number of different seawater volumes ranging from 1 L up to 1000 L. We show that the volume of seawater that is filtered does not have a significant effect on prokaryotic and protist diversity, independently of the sequencing strategy. However, there was a clear difference in alpha and beta diversity between size fractions and between these and "whole water" (with no pre-fractionation). Overall, we recommend care when merging data from datasets that use filters of different pore size, but we consider that the type of filter and volume should not act as confounding variables for the tested sequencing strategies. To the best of our knowledge, this is the first time a publicly available dataset effectively allows for the clarification of the impact of marine microbiome methodological options across a wide range of protocols, including large-scale variations in sampled volume.
Collapse
Affiliation(s)
- Francisco Pascoal
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n, 4169- 007, Porto, Portugal
| | - Maria Paola Tomasino
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Roberta Piredda
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Grazia Marina Quero
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Largo Fiera della Pesca 2, 60125, Ancona, Italy
| | - Luís Torgo
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Écogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Jed A Fuhrman
- Marine & Environmental Biology, Department of Biological Sciences, University of Southern California (USC), Los Angeles, CA, USA
| | - Alex Mitchell
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Tinkara Tinta
- National Institute of Biology, Marine Biology Station Piran, Piran, Slovenia
| | | | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Vezzi
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC. Passeig Marítim de la Barceloneta, 37-49, ES08003, Barcelona, Spain
| | | | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Japan
| | - Anna Maria Dąbrowska
- Department of Marine Ecology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Fabio De Pascale
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Pablo Sánchez
- Institute of Marine Sciences (ICM), CSIC. Passeig Marítim de la Barceloneta, 37-49, ES08003, Barcelona, Spain
| | - Nicolas Henry
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M ECOMAP, UMR 7144, Roscoff, France
- CNRS, FR2424, ABiMS, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Bruno Fosso
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70126, Bari, Italy
| | - Bryan Wilson
- Department of Biology, John Krebs Field Station, University of Oxford, Wytham, OX2 8QJ, UK
| | | | | | - Ivo Grigorov
- Technical University of Denmark, National Institute of Aquatic Resources, Kgs. Lyngby, Denmark
| | | | - Rodrigo Costa
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Institute for Bioengineering and Biosciences (iBB) and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Stéphane Pesant
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK.
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n, 4169- 007, Porto, Portugal.
| |
Collapse
|
22
|
Rigonato J, Budinich M, Murillo AA, Brandão MC, Pierella Karlusich JJ, Soviadan YD, Gregory AC, Endo H, Kokoszka F, Vik D, Henry N, Frémont P, Labadie K, Zayed AA, Dimier C, Picheral M, Searson S, Poulain J, Kandels S, Pesant S, Karsenti E, Bork P, Bowler C, de Vargas C, Eveillard D, Gehlen M, Iudicone D, Lombard F, Ogata H, Stemmann L, Sullivan MB, Sunagawa S, Wincker P, Chaffron S, Jaillon O. Ocean-wide comparisons of mesopelagic planktonic community structures. ISME COMMUNICATIONS 2023; 3:83. [PMID: 37596349 PMCID: PMC10439195 DOI: 10.1038/s43705-023-00279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 08/20/2023]
Abstract
For decades, marine plankton have been investigated for their capacity to modulate biogeochemical cycles and provide fishery resources. Between the sunlit (epipelagic) layer and the deep dark waters, lies a vast and heterogeneous part of the ocean: the mesopelagic zone. How plankton composition is shaped by environment has been well-explored in the epipelagic but much less in the mesopelagic ocean. Here, we conducted comparative analyses of trans-kingdom community assemblages thriving in the mesopelagic oxygen minimum zone (OMZ), mesopelagic oxic, and their epipelagic counterparts. We identified nine distinct types of intermediate water masses that correlate with variation in mesopelagic community composition. Furthermore, oxygen, NO3- and particle flux together appeared as the main drivers governing these communities. Novel taxonomic signatures emerged from OMZ while a global co-occurrence network analysis showed that about 70% of the abundance of mesopelagic plankton groups is organized into three community modules. One module gathers prokaryotes, pico-eukaryotes and Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) from oxic regions, and the two other modules are enriched in OMZ prokaryotes and OMZ pico-eukaryotes, respectively. We hypothesize that OMZ conditions led to a diversification of ecological niches, and thus communities, due to selective pressure from limited resources. Our study further clarifies the interplay between environmental factors in the mesopelagic oxic and OMZ, and the compositional features of communities.
Collapse
Affiliation(s)
- Janaina Rigonato
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 91000, Evry, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.
| | - Marko Budinich
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, 29680, Roscoff, France
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Alejandro A Murillo
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Manoela C Brandão
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France
| | - Juan J Pierella Karlusich
- Institut de Biologie de l'ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Yawouvi Dodji Soviadan
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France
| | - Ann C Gregory
- Department of Microbiology, The Ohio State University, Columbus, OH, 43214, USA
| | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Florian Kokoszka
- Institut de Biologie de l'ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Dean Vik
- Department of Microbiology, The Ohio State University, Columbus, OH, 43214, USA
| | - Nicolas Henry
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, 29680, Roscoff, France
| | - Paul Frémont
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 91000, Evry, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 91000, Evry, France
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, OH, 43214, USA
| | - Céline Dimier
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France
| | - Marc Picheral
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France
| | - Sarah Searson
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 91000, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Stefanie Kandels
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117, Heidelberg, Germany
- Directors' Research European Molecular Biology Laboratory Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Stéphane Pesant
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Bremen, Germany
| | - Eric Karsenti
- Institut de Biologie de l'ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
- Directors' Research European Molecular Biology Laboratory Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117, Heidelberg, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Institut de Biologie de l'ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, 29680, Roscoff, France
| | - Damien Eveillard
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Marion Gehlen
- Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette cedex, France
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Fabien Lombard
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Lars Stemmann
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, 43214, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, 43214, USA
| | - Shinichi Sunagawa
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117, Heidelberg, Germany
- Department of Biology; Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, 8093, Switzerland
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 91000, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Samuel Chaffron
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 91000, Evry, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.
| |
Collapse
|
23
|
Santiago BCF, de Souza ID, Cavalcante JVF, Morais DAA, da Silva MB, Pasquali MADB, Dalmolin RJS. Metagenomic Analyses Reveal the Influence of Depth Layers on Marine Biodiversity on Tropical and Subtropical Regions. Microorganisms 2023; 11:1668. [PMID: 37512841 PMCID: PMC10386303 DOI: 10.3390/microorganisms11071668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of open ocean global-scale studies provided important information about the genomics of oceanic microbial communities. Metagenomic analyses shed light on the structure of marine habitats, unraveling the biodiversity of different water masses. Many biological and environmental factors can contribute to marine organism composition, such as depth. However, much remains unknown about microbial communities' taxonomic and functional features in different water layer depths. Here, we performed a metagenomic analysis of 76 publicly available samples from the Tara Ocean Project, distributed in 8 collection stations located in tropical or subtropical regions, and sampled from three layers of depth (surface water layer-SRF, deep chlorophyll maximum layer-DCM, and mesopelagic zone-MES). The SRF and DCM depth layers are similar in abundance and diversity, while the MES layer presents greater diversity than the other layers. Diversity clustering analysis shows differences regarding the taxonomic content of samples. At the domain level, bacteria prevail in most samples, and the MES layer presents the highest proportion of archaea among all samples. Taken together, our results indicate that the depth layer influences microbial sample composition and diversity.
Collapse
Affiliation(s)
- Bianca C F Santiago
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
| | - Iara D de Souza
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
| | - João Vitor F Cavalcante
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
| | - Diego A A Morais
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
| | - Mikaelly B da Silva
- Food Engineering Department, Federal University of Campina Grande, Campina Grande 58401-490, Brazil
| | | | - Rodrigo J S Dalmolin
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
- Department of Biochemistry-CB, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
24
|
Lombard F, Bourdin G, Pesant S, Agostini S, Baudena A, Boissin E, Cassar N, Clampitt M, Conan P, Da Silva O, Dimier C, Douville E, Elineau A, Fin J, Flores JM, Ghiglione JF, Hume BCC, Jalabert L, John SG, Kelly RL, Koren I, Lin Y, Marie D, McMinds R, Mériguet Z, Metzl N, Paz-García DA, Pedrotti ML, Poulain J, Pujo-Pay M, Ras J, Reverdin G, Romac S, Rouan A, Röttinger E, Vardi A, Voolstra CR, Moulin C, Iwankow G, Banaigs B, Bowler C, de Vargas C, Forcioli D, Furla P, Galand PE, Gilson E, Reynaud S, Sunagawa S, Sullivan MB, Thomas OP, Troublé R, Thurber RV, Wincker P, Zoccola D, Allemand D, Planes S, Boss E, Gorsky G. Open science resources from the Tara Pacific expedition across coral reef and surface ocean ecosystems. Sci Data 2023; 10:324. [PMID: 37264023 DOI: 10.1038/s41597-022-01757-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/10/2022] [Indexed: 06/03/2023] Open
Abstract
The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean and the ocean surface waters at 249 locations, resulting in the collection of nearly 58 000 samples. The expedition was designed to systematically study warm-water coral reefs and included the collection of corals, fish, plankton, and seawater samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide a complete description of the sampling methodology, and we explain how to explore and access the different datasets generated by the expedition. Environmental context data were obtained from taxonomic registries, gazetteers, almanacs, climatologies, operational biogeochemical models, and satellite observations. The quality of the different environmental measures has been validated not only by various quality control steps, but also through a global analysis allowing the comparison with known environmental large-scale structures. Such publicly released datasets open the perspective to address a wide range of scientific questions.
Collapse
Affiliation(s)
- Fabien Lombard
- Sorbonne Université, Laboratoire d'Océanographie de Villefranche, UMR 7093, CNRS, Institut de la Mer de Villefranche, 06230, Villefranche sur mer, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France.
- Institut Universitaire de France, 75231, Paris, France.
| | - Guillaume Bourdin
- Sorbonne Université, Laboratoire d'Océanographie de Villefranche, UMR 7093, CNRS, Institut de la Mer de Villefranche, 06230, Villefranche sur mer, France
- School of Marine Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Alberto Baudena
- Sorbonne Université, Laboratoire d'Océanographie de Villefranche, UMR 7093, CNRS, Institut de la Mer de Villefranche, 06230, Villefranche sur mer, France
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Nicolas Cassar
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer, Brest, France
| | - Megan Clampitt
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- Université Côte d'Azur, Institut Fédératif de Recherche - Ressources Marines (IFR MARRES), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, Monaco
| | - Pascal Conan
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, 66650, Banyuls Sur Mer, France
- Sorbonne Université, CNRS, OSU STAMAR - UAR2017, 75252 Paris, France
| | - Ophélie Da Silva
- Sorbonne Université, Laboratoire d'Océanographie de Villefranche, UMR 7093, CNRS, Institut de la Mer de Villefranche, 06230, Villefranche sur mer, France
| | - Céline Dimier
- Sorbonne Université, Laboratoire d'Océanographie de Villefranche, UMR 7093, CNRS, Institut de la Mer de Villefranche, 06230, Villefranche sur mer, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Amanda Elineau
- Sorbonne Université, Laboratoire d'Océanographie de Villefranche, UMR 7093, CNRS, Institut de la Mer de Villefranche, 06230, Villefranche sur mer, France
| | - Jonathan Fin
- Laboratoire LOCEAN/IPSL, Sorbonne Université-CNRS-IRD-MNHN, Paris, 75005, France
| | - J Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, Rehovot, Israel
| | - Jean-François Ghiglione
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, 66650, Banyuls Sur Mer, France
| | | | - Laetitia Jalabert
- Sorbonne Université, Laboratoire d'Océanographie de Villefranche, UMR 7093, CNRS, Institut de la Mer de Villefranche, 06230, Villefranche sur mer, France
| | - Seth G John
- Department of Earth Science, University of Southern California, Los Angeles, CA, USA
| | - Rachel L Kelly
- Department of Earth Science, University of Southern California, Los Angeles, CA, USA
| | - Ilan Koren
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, Rehovot, Israel
| | - Yajuan Lin
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer, Brest, France
- Environmental Research Center, Duke Kunshan University, Kunshan, China
| | - Dominique Marie
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, AD2M, Roscoff, France
| | - Ryan McMinds
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- Université Côte d'Azur, Maison de la Modélisation, de la Simulation et des Interactions (MSI), Nice, France
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Zoé Mériguet
- Sorbonne Université, Laboratoire d'Océanographie de Villefranche, UMR 7093, CNRS, Institut de la Mer de Villefranche, 06230, Villefranche sur mer, France
| | - Nicolas Metzl
- Laboratoire LOCEAN/IPSL, Sorbonne Université-CNRS-IRD-MNHN, Paris, 75005, France
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, 23096, México
| | - Maria Luiza Pedrotti
- Sorbonne Université, Laboratoire d'Océanographie de Villefranche, UMR 7093, CNRS, Institut de la Mer de Villefranche, 06230, Villefranche sur mer, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Mireille Pujo-Pay
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, 66650, Banyuls Sur Mer, France
| | - Joséphine Ras
- Sorbonne Université, Laboratoire d'Océanographie de Villefranche, UMR 7093, CNRS, Institut de la Mer de Villefranche, 06230, Villefranche sur mer, France
| | - Gilles Reverdin
- Laboratoire LOCEAN/IPSL, Sorbonne Université-CNRS-IRD-MNHN, Paris, 75005, France
| | - Sarah Romac
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, AD2M, Roscoff, France
| | - Alice Rouan
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- Université Côte d'Azur, Institut Fédératif de Recherche - Ressources Marines (IFR MARRES), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, Monaco
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- Université Côte d'Azur, Institut Fédératif de Recherche - Ressources Marines (IFR MARRES), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, Monaco
| | - Assaf Vardi
- Weizmann Institute of Science, Department of Plant and Environmental Science, Rehovot, Israel
| | | | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, AD2M, Roscoff, France
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- Université Côte d'Azur, Institut Fédératif de Recherche - Ressources Marines (IFR MARRES), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, Monaco
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- Université Côte d'Azur, Institut Fédératif de Recherche - Ressources Marines (IFR MARRES), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, Monaco
| | - Pierre E Galand
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, UMR 8222, LECOB, Banyuls-sur-Mer, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- Université Côte d'Azur, Institut Fédératif de Recherche - Ressources Marines (IFR MARRES), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, Monaco
- Department of Medical Genetics, CHU, Nice, France
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Antoine, Monaco
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Matthew B Sullivan
- Department of Microbiology and Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, Galway, Ireland
| | | | | | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Antoine, Monaco
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Antoine, Monaco
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Gaby Gorsky
- Sorbonne Université, Laboratoire d'Océanographie de Villefranche, UMR 7093, CNRS, Institut de la Mer de Villefranche, 06230, Villefranche sur mer, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| |
Collapse
|
25
|
Belser C, Poulain J, Labadie K, Gavory F, Alberti A, Guy J, Carradec Q, Cruaud C, Da Silva C, Engelen S, Mielle P, Perdereau A, Samson G, Gas S, Voolstra CR, Galand PE, Flores JM, Hume BCC, Perna G, Ziegler M, Ruscheweyh HJ, Boissin E, Romac S, Bourdin G, Iwankow G, Moulin C, Paz García DA, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Forcioli D, Furla P, Gilson E, Lombard F, Pesant S, Reynaud S, Sunagawa S, Thomas OP, Troublé R, Thurber RV, Zoccola D, Scarpelli C, Jacoby EK, Oliveira PH, Aury JM, Allemand D, Planes S, Wincker P. Integrative omics framework for characterization of coral reef ecosystems from the Tara Pacific expedition. Sci Data 2023; 10:326. [PMID: 37264047 DOI: 10.1038/s41597-023-02204-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/14/2022] [Indexed: 06/03/2023] Open
Abstract
Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e. the multipartite assemblages comprising the coral host organism, endosymbiotic dinoflagellates, bacteria, archaea, fungi, and viruses. Tara Pacific is an ambitious project built upon the experience of previous Tara Oceans expeditions, and leveraging state-of-the-art sequencing technologies and analyses to dissect the biodiversity and biocomplexity of the coral holobiont screened across most archipelagos spread throughout the entire Pacific Ocean. Here we detail the Tara Pacific workflow for multi-omics data generation, from sample handling to nucleotide sequence data generation and deposition. This unique multidimensional framework also includes a large amount of concomitant metadata collected side-by-side that provide new assessments of coral reef biodiversity including micro-biodiversity and shape future investigations of coral reef dynamics and their fate in the Anthropocene.
Collapse
Affiliation(s)
- Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France.
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Frederick Gavory
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Julie Guy
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Stefan Engelen
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Paul Mielle
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000, Evry, France
| | - Aude Perdereau
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Gaelle Samson
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Shahinaz Gas
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | | | - Pierre E Galand
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls/Mer, France
| | - J Michel Flores
- Weizmann Institute of Science, Dept. Earth and Planetary Science, Rehovot, Israel
| | - Benjamin C C Hume
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Gabriela Perna
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, 8093, Switzerland
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Sarah Romac
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Clémentine Moulin
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75 012, Paris, France
| | - David A Paz García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, Col. Playa Palo de Santa Rita Sur, La Paz, 23096, Baja California Sur, México
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, France
| | - Paola Furla
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, France
- Department of Medical Genetics, CHU of Nice, Nice, France
| | - Fabien Lombard
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d' Océanographie de Villefranche, F-06230, Villefranche-sur-Mer, France
- Institut Universitaire de France, 75231, Paris, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, France
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, 8093, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75 012, Paris, France
| | - Rebecca Vega Thurber
- Oregon State University, Department of Microbiology, 220 Nash Hall, 97331, Corvallis, OR, USA
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, France
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Claude Scarpelli
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - E' Krame Jacoby
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Pedro H Oliveira
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, France
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| |
Collapse
|
26
|
Veselá-Strejcová J, Scalco E, Zingone A, Colin S, Caputi L, Sarno D, Nebesářová J, Bowler C, Lukeš J. Diverse eukaryotic phytoplankton from around the Marquesas Islands documented by combined microscopy and molecular techniques. Protist 2023; 174:125965. [PMID: 37327684 DOI: 10.1016/j.protis.2023.125965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 06/18/2023]
Abstract
Oceanic phytoplankton serve as a base for the food webs within the largest planetary ecosystem. Despite this, surprisingly little is known about species composition, function and ecology of phytoplankton communities, especially for vast areas of the open ocean. In this study we focus on the marine phytoplankton microflora from the vicinity of the Marquesas Islands in the Southern Pacific Ocean collected during the Tara Oceans expedition. Multiple samples from four sites and two depths were studied in detail using light microscopy, scanning electron microscopy, and automated confocal laser scanning microscopy. In total 289 taxa were identified, with Dinophyceae and Bacillariophyceae contributing 60% and 32% of taxa, respectively, to phytoplankton community composition. Notwithstanding, a large number of cells could not be assigned to any known species. Coccolithophores and other flagellates together contributed less than 8% to the species list. Observed cell densities were generally low, but at sites of high autotrophic biomass, diatoms reached the highest cell densities (1.26 × 104 cells L-1). Overall, 18S rRNA metabarcode-based community compositions matched microscopy-based estimates, particularly for the main diatom taxa, indicating consistency and complementarity between different methods, while the wide range of microscopy-based methods permitted several unknown and poorly studied taxa to be revealed and identified.
Collapse
Affiliation(s)
- Jana Veselá-Strejcová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Eleonora Scalco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Sébastien Colin
- Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| | - Luigi Caputi
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Diana Sarno
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Jana Nebesářová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Chris Bowler
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
27
|
W B Jr M, A S R, P M, F B. Cellular and Natural Viral Engineering in Cognition-Based Evolution. Commun Integr Biol 2023; 16:2196145. [PMID: 37153718 PMCID: PMC10155641 DOI: 10.1080/19420889.2023.2196145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Neo-Darwinism conceptualizes evolution as the continuous succession of predominately random genetic variations disciplined by natural selection. In that frame, the primary interaction between cells and the virome is relegated to host-parasite dynamics governed by selective influences. Cognition-Based Evolution regards biological and evolutionary development as a reciprocating cognition-based informational interactome for the protection of self-referential cells. To sustain cellular homeorhesis, cognitive cells collaborate to assess the validity of ambiguous biological information. That collective interaction involves coordinate measurement, communication, and active deployment of resources as Natural Cellular Engineering. These coordinated activities drive multicellularity, biological development, and evolutionary change. The virome participates as the vital intercessory among the cellular domains to ensure their shared permanent perpetuation. The interactions between the virome and the cellular domains represent active virocellular cross-communications for the continual exchange of resources. Modular genetic transfers between viruses and cells carry bioactive potentials. Those exchanges are deployed as nonrandom flexible tools among the domains in their continuous confrontation with environmental stresses. This alternative framework fundamentally shifts our perspective on viral-cellular interactions, strengthening established principles of viral symbiogenesis. Pathogenesis can now be properly appraised as one expression of a range of outcomes between cells and viruses within a larger conceptual framework of Natural Viral Engineering as a co-engineering participant with cells. It is proposed that Natural Viral Engineering should be viewed as a co-existent facet of Natural Cellular Engineering within Cognition-Based Evolution.
Collapse
Affiliation(s)
- Miller W B Jr
- Banner Health Systems - Medicine, Paradise Valley, Arizona, AZ, USA
| | - Reber A S
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Marshall P
- Department of Engineering, Evolution 2.0, Oak Park, IL, USA
| | - Baluška F
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Srikakulam SK, Keller S, Dabbaghie F, Bals R, Kalinina OV. MetaProFi: an ultrafast chunked Bloom filter for storing and querying protein and nucleotide sequence data for accurate identification of functionally relevant genetic variants. Bioinformatics 2023; 39:7056636. [PMID: 36825843 PMCID: PMC9994790 DOI: 10.1093/bioinformatics/btad101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023] Open
Abstract
MOTIVATION Bloom filters are a popular data structure that allows rapid searches in large sequence datasets. So far, all tools work with nucleotide sequences; however, protein sequences are conserved over longer evolutionary distances, and only mutations on the protein level may have any functional significance. RESULTS We present MetaProFi, a Bloom filter-based tool that, for the first time, offers the functionality to build indexes of amino acid sequences and query them with both amino acid and nucleotide sequences, thus bringing sequence comparison to the biologically relevant protein level. MetaProFi implements additional efficient engineering solutions, such as a shared memory system, chunked data storage and efficient compression. In addition to its conceptual novelty, MetaProFi demonstrates state-of-the-art performance and excellent memory consumption-to-speed ratio when applied to various large datasets. AVAILABILITY AND IMPLEMENTATION Source code in Python is available at https://github.com/kalininalab/metaprofi.
Collapse
Affiliation(s)
- Sanjay K Srikakulam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany.,Graduate School of Computer Science, Saarland University, 66123 Saarbrücken, Germany.,Interdisciplinary Graduate School of Natural Product Research, Saarland University, 66123 Saarbrücken, Germany
| | - Sebastian Keller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany.,Graduate School of Computer Science, Saarland University, 66123 Saarbrücken, Germany
| | - Fawaz Dabbaghie
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany.,Institute for Medical Biometry and Bioinformatics, Heinrich Heine University Düsseldorf, Medical Faculty, 40225 Düsseldorf, Germany.,Center for Digital Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology, Intensive Care Medicine, 66421 Homburg, Germany
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany.,Drug Bioinformatics, Medical Faculty, Saarland University, 66421 Homburg, Germany.,Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
29
|
Mayers KMJ, Kuhlisch C, Basso JTR, Saltvedt MR, Buchan A, Sandaa RA. Grazing on Marine Viruses and Its Biogeochemical Implications. mBio 2023; 14:e0192121. [PMID: 36715508 PMCID: PMC9973340 DOI: 10.1128/mbio.01921-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Viruses are the most abundant biological entities in the ocean and show great diversity in terms of size, host specificity, and infection cycle. Lytic viruses induce host cell lysis to release their progeny and thereby redirect nutrients from higher to lower trophic levels. Studies continue to show that marine viruses can be ingested by nonhost organisms. However, not much is known about the role of viral particles as a nutrient source and whether they possess a nutritional value to the grazing organisms. This review seeks to assess the elemental composition and biogeochemical relevance of marine viruses, including roseophages, which are a highly abundant group of bacteriophages in the marine environment. We place a particular emphasis on the phylum Nucleocytoviricota (NCV) (formerly known as nucleocytoplasmic large DNA viruses [NCLDVs]), which comprises some of the largest viral particles in the marine plankton that are well in the size range of prey for marine grazers. Many NCVs contain lipid membranes in their capsid that are rich carbon and energy sources, which further increases their nutritional value. Marine viruses may thus be an important nutritional component of the marine plankton, which can be reintegrated into the classical food web by nonhost organism grazing, a process that we coin the "viral sweep." Possibilities for future research to resolve this process are highlighted and discussed in light of current technological advancements.
Collapse
Affiliation(s)
- Kyle M. J. Mayers
- Environment and Climate Division, NORCE Norwegian Research Centre, Bergen, Norway
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonelle T. R. Basso
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | | | - Alison Buchan
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Ruth-Anne Sandaa
- Department of Microbiology, University of Bergen, Bergen, Norway
| |
Collapse
|
30
|
Frémont P, Gehlen M, Jaillon O. Plankton biogeography in the 21st century and impacts of climate change: advances through genomics. C R Biol 2023; 346:13-24. [PMID: 37254792 DOI: 10.5802/crbiol.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/01/2023]
Abstract
This article summarizes recent advances in our knowledge of plankton biogeography obtained by genomic approaches and the impacts of global warming on it. Large-scale comparison of the genomic content of samples of different plankton size fractions revealed a partitioning of the oceans into genomic provinces and the impact of major oceanic currents on them. By defining ecological niches, these provinces are extrapolated to all oceans, with the exception of the Arctic Ocean. By the end of the 21st century, a major restructuring of these provinces is projected in response to a high emission greenhouse gas scenario over 50% of the surface of the studied oceans. Such a restructuring could lead to a decrease in export production by 4%. Finally, obtaining assembled sequences of a large number of plankton genomes defining this biogeography has allowed to better characterize the genomic content of the provinces and to identify the species structuring them. These genomes similarly enabled a better description of potential future changes of plankton communities under climate change.
Collapse
|
31
|
Satoh S, Tanaka R, Yokono M, Endoh D, Yabuki T, Tanaka A. Phylogeny analysis of whole protein-coding genes in metagenomic data detected an environmental gradient for the microbiota. PLoS One 2023; 18:e0281288. [PMID: 36730456 PMCID: PMC9894459 DOI: 10.1371/journal.pone.0281288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Environmental factors affect the growth of microorganisms and therefore alter the composition of microbiota. Correlative analysis of the relationship between metagenomic composition and the environmental gradient can help elucidate key environmental factors and establishment principles for microbial communities. However, a reasonable method to quantitatively compare whole metagenomic data and identify the primary environmental factors for the establishment of microbiota has not been reported so far. In this study, we developed a method to compare whole proteomes deduced from metagenomic shotgun sequencing data, and quantitatively display their phylogenetic relationships as metagenomic trees. We called this method Metagenomic Phylogeny by Average Sequence Similarity (MPASS). We also compared one of the metagenomic trees with dendrograms of environmental factors using a comparison tool for phylogenetic trees. The MPASS method correctly constructed metagenomic trees of simulated metagenomes and soil and water samples. The topology of the metagenomic tree of samples from the Kirishima hot springs area in Japan was highly similarity to that of the dendrograms based on previously reported environmental factors for this area. The topology of the metagenomic tree also reflected the dynamics of microbiota at the taxonomic and functional levels. Our results strongly suggest that MPASS can successfully classify metagenomic shotgun sequencing data based on the similarity of whole protein-coding sequences, and will be useful for the identification of principal environmental factors for the establishment of microbial communities. Custom Perl script for the MPASS pipeline is available at https://github.com/s0sat/MPASS.
Collapse
Affiliation(s)
- Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- * E-mail:
| | - Rei Tanaka
- Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Makio Yokono
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Daiji Endoh
- Department of Radiation Biology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Tetsuo Yabuki
- General Education Department, Hokusei Gakuen University, Sapporo, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
32
|
Thompson AW, Sweeney CP, Sutherland KR. Selective and differential feeding on marine prokaryotes by mucous mesh feeders. Environ Microbiol 2023; 25:880-893. [PMID: 36594240 DOI: 10.1111/1462-2920.16334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Microbial mortality impacts the structure of food webs, carbon flow, and the interactions that create dynamic patterns of abundance across gradients in space and time in diverse ecosystems. In the oceans, estimates of microbial mortality by viruses, protists, and small zooplankton do not account fully for observations of loss, suggesting the existence of underappreciated mortality sources. We examined how ubiquitous mucous mesh feeders (i.e. gelatinous zooplankton) could contribute to microbial mortality in the open ocean. We coupled capture of live animals by blue-water diving to sequence-based approaches to measure the enrichment and selectivity of feeding by two coexisting mucous grazer taxa (pteropods and salps) on numerically dominant marine prokaryotes. We show that mucous mesh grazers consume a variety of marine prokaryotes and select between coexisting lineages and similar cell sizes. We show that Prochlorococcus may evade filtration more than other cells and that planktonic archaea are consumed by macrozooplanktonic grazers. Discovery of these feeding relationships identifies a new source of mortality for Earth's dominant marine microbes and alters our understanding of how top-down processes shape microbial community and function.
Collapse
Affiliation(s)
- Anne W Thompson
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Carey P Sweeney
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
33
|
Kjær KH, Winther Pedersen M, De Sanctis B, De Cahsan B, Korneliussen TS, Michelsen CS, Sand KK, Jelavić S, Ruter AH, Schmidt AMA, Kjeldsen KK, Tesakov AS, Snowball I, Gosse JC, Alsos IG, Wang Y, Dockter C, Rasmussen M, Jørgensen ME, Skadhauge B, Prohaska A, Kristensen JÅ, Bjerager M, Allentoft ME, Coissac E, Rouillard A, Simakova A, Fernandez-Guerra A, Bowler C, Macias-Fauria M, Vinner L, Welch JJ, Hidy AJ, Sikora M, Collins MJ, Durbin R, Larsen NK, Willerslev E. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature 2022; 612:283-291. [PMID: 36477129 PMCID: PMC9729109 DOI: 10.1038/s41586-022-05453-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/18/2022] [Indexed: 12/12/2022]
Abstract
Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago1 had climates resembling those forecasted under future warming2. Palaeoclimatic records show strong polar amplification with mean annual temperatures of 11-19 °C above contemporary values3,4. The biological communities inhabiting the Arctic during this time remain poorly known because fossils are rare5. Here we report an ancient environmental DNA6 (eDNA) record describing the rich plant and animal assemblages of the Kap København Formation in North Greenland, dated to around two million years ago. The record shows an open boreal forest ecosystem with mixed vegetation of poplar, birch and thuja trees, as well as a variety of Arctic and boreal shrubs and herbs, many of which had not previously been detected at the site from macrofossil and pollen records. The DNA record confirms the presence of hare and mitochondrial DNA from animals including mastodons, reindeer, rodents and geese, all ancestral to their present-day and late Pleistocene relatives. The presence of marine species including horseshoe crab and green algae support a warmer climate than today. The reconstructed ecosystem has no modern analogue. The survival of such ancient eDNA probably relates to its binding to mineral surfaces. Our findings open new areas of genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities from two million years ago using ancient eDNA.
Collapse
Affiliation(s)
- Kurt H Kjær
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Mikkel Winther Pedersen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Bianca De Sanctis
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Binia De Cahsan
- Section for Molecular Ecology and Evolution, The Globe Institute, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Thorfinn S Korneliussen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Michelsen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Karina K Sand
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stanislav Jelavić
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, ISTerre, Grenoble, France
| | - Anthony H Ruter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Astrid M A Schmidt
- Nordic Foundation for Development and Ecology (NORDECO), Copenhagen, Denmark
- DIS Study Abroad in Scandinavia, University of Copenhagen, Copenhagen, Denmark
| | - Kristian K Kjeldsen
- Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Alexey S Tesakov
- Geological Institute, Russian Academy of Sciences, Moscow, Russia
| | - Ian Snowball
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - John C Gosse
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Inger G Alsos
- The Arctic University Museum of Norway, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Yucheng Wang
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Ana Prohaska
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jeppe Å Kristensen
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Geological Survey of Denmark and Greenland, (GEUS), Copenhagen, Denmark
| | - Morten Bjerager
- Department of Geophysics and Sedimentary Basins, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Eric Coissac
- The Arctic University Museum of Norway, UiT-The Arctic University of Norway, Tromsø, Norway
- University of Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Alexandra Rouillard
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Geosciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | | | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM Université PSL, Paris, France
| | - Marc Macias-Fauria
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Lasse Vinner
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Alan J Hidy
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Collins
- Department of Archaeology, University of Cambridge, Cambridge, UK
- Section for GeoBiology, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Nicolaj K Larsen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Department of Zoology, University of Cambridge, Cambridge, UK.
- MARUM, University of Bremen, Bremen, Germany.
| |
Collapse
|
34
|
Liao M, Xie Y, Shi M, Cui J. Over two decades of research on the marine RNA virosphere. IMETA 2022; 1:e59. [PMID: 38867898 PMCID: PMC10989941 DOI: 10.1002/imt2.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
RNA viruses (realm: Riboviria), including RNA phages and eukaryote-infecting RNA viruses, are essential components of marine ecosystems. A large number of marine RNA viruses have been discovered in the last two decades because of the rapid development of next-generation sequencing (NGS) technology. Indeed, the combination of NGS and state-of-the-art meta-omics methods (viromics, the study of all viruses in a specific environment) has led to a fundamental understanding of the taxonomy and genetic diversity of RNA viruses in the sea, suggesting the complex ecological roles played by RNA viruses in this complex ecosystem. Furthermore, comparisons of viromes in the context of highly variable marine niches reveal the biogeographic patterns and ecological impact of marine RNA viruses, whose role in global ecology is becoming increasingly clearer. In this review, we summarize the characteristics of the global marine RNA virosphere and outline the taxonomic hierarchy of RNA viruses with a specific focus on their ancient evolutionary history. We also review the development of methodology and the major progress resulting from its applications in RNA viromics. The aim of this review is not only to provide an in-depth understanding of multifaceted aspects of marine RNA viruses, but to offer future perspectives on developing a better methodology for discovery, and exploring the evolutionary origin and major ecological significance of marine RNA virosphere.
Collapse
Affiliation(s)
- Meng‐en Liao
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yunyi Xie
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mang Shi
- School of MedicineSun Yat‐sen UniversityShenzhen Campus of Sun Yat‐sen UniversityShenzhenChina
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- Laboatory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
| |
Collapse
|
35
|
Joublin-Delavat A, Touahri K, Crétin P, Morot A, Rodrigues S, Jesus B, Trigodet F, Delavat F. Genetic and physiological insights into the diazotrophic activity of a non-cyanobacterial marine diazotroph. Environ Microbiol 2022; 24:6510-6523. [PMID: 36302093 PMCID: PMC10099842 DOI: 10.1111/1462-2920.16261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/21/2022] [Indexed: 01/12/2023]
Abstract
Nitrogen (N2 ) fixation, or diazotrophy, supports a large part of primary production in oceans. Culture-independent approaches highlighted the presence in abundance of marine non-cyanobacterial diazotrophs (NCD), but their ecophysiology remains elusive, mostly because of the low number of isolated NCD and because of the lack of available genetic tools for these isolates. Here, a dual genetic and functional approach allowed unveiling the ecophysiology of a marine NCD affiliated to the species Vibrio diazotrophicus. Physiological characterization of the first marine NCD mutant obtained so far was performed using a soft-gellan assay, demonstrating that a ΔnifH mutant is not able to grow in nitrogen-free media. Furthermore, we demonstrated that V. diazotrophicus produces a thick biofilm under diazotrophic conditions, suggesting biofilm production as an adaptive response of this NCD to cope with the inhibition of nitrogen fixation by molecular oxygen. Finally, the genomic signature of V. diazotrophicus is essentially absent from metagenomic data of Tara Ocean expeditions, despite having been isolated from various marine environments. We think that the genetically tractable V. diazotrophicus strain used in this study may serve as an ideal model to study the ecophysiology of these overlooked procaryotic group.
Collapse
Affiliation(s)
| | - Katia Touahri
- Nantes Université, CNRS, US2B, UMR6286, Nantes, France.,Laboratoire Chimie et Biochimie de Molécules Bioactives, Université de Strasbourg/CNRS, UMR7177, Strasbourg, France
| | | | - Amandine Morot
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France.,Université de Bretagne-Sud, UR3884, LBCM, IUEM, Lorient, France
| | | | - Bruno Jesus
- Nantes Université, RSBE2 ISOMer, UR2160, Nantes, France
| | - Florian Trigodet
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
36
|
Rogers AD, Appeltans W, Assis J, Ballance LT, Cury P, Duarte C, Favoretto F, Hynes LA, Kumagai JA, Lovelock CE, Miloslavich P, Niamir A, Obura D, O'Leary BC, Ramirez-Llodra E, Reygondeau G, Roberts C, Sadovy Y, Steeds O, Sutton T, Tittensor DP, Velarde E, Woodall L, Aburto-Oropeza O. Discovering marine biodiversity in the 21st century. ADVANCES IN MARINE BIOLOGY 2022; 93:23-115. [PMID: 36435592 DOI: 10.1016/bs.amb.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We review the current knowledge of the biodiversity of the ocean as well as the levels of decline and threat for species and habitats. The lack of understanding of the distribution of life in the ocean is identified as a significant barrier to restoring its biodiversity and health. We explore why the science of taxonomy has failed to deliver knowledge of what species are present in the ocean, how they are distributed and how they are responding to global and regional to local anthropogenic pressures. This failure prevents nations from meeting their international commitments to conserve marine biodiversity with the results that investment in taxonomy has declined in many countries. We explore a range of new technologies and approaches for discovery of marine species and their detection and monitoring. These include: imaging methods, molecular approaches, active and passive acoustics, the use of interconnected databases and citizen science. Whilst no one method is suitable for discovering or detecting all groups of organisms many are complementary and have been combined to give a more complete picture of biodiversity in marine ecosystems. We conclude that integrated approaches represent the best way forwards for accelerating species discovery, description and biodiversity assessment. Examples of integrated taxonomic approaches are identified from terrestrial ecosystems. Such integrated taxonomic approaches require the adoption of cybertaxonomy approaches and will be boosted by new autonomous sampling platforms and development of machine-speed exchange of digital information between databases.
Collapse
Affiliation(s)
- Alex D Rogers
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom.
| | - Ward Appeltans
- Intergovernmental Oceanographic Commission of UNESCO, Oostende, Belgium
| | - Jorge Assis
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Lisa T Ballance
- Marine Mammal Institute, Oregon State University, Newport, OR, United States
| | | | - Carlos Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Kingdom of Saudi Arabia
| | - Fabio Favoretto
- Autonomous University of Baja California Sur, La Paz, Baja California Sur, Mexico
| | - Lisa A Hynes
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Joy A Kumagai
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Patricia Miloslavich
- Scientific Committee on Oceanic Research (SCOR), College of Earth, Ocean and Environment, University of Delaware, Newark, DE, United States; Departamento de Estudios Ambientales, Universidad Simón Bolívar, Venezuela & Scientific Committee for Oceanic Research (SCOR), Newark, DE, United States
| | - Aidin Niamir
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | | | - Bethan C O'Leary
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom; Department of Environment and Geography, University of York, York, United Kingdom
| | - Eva Ramirez-Llodra
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Gabriel Reygondeau
- Yale Center for Biodiversity Movement and Global Change, Yale University, New Haven, CT, United States; Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Callum Roberts
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Yvonne Sadovy
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong
| | - Oliver Steeds
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Tracey Sutton
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania Beach, FL, United States
| | | | - Enriqueta Velarde
- Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Veracruz, Mexico
| | - Lucy Woodall
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom; Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
37
|
Diaminopimelic Acid Metabolism by Pseudomonadota in the Ocean. Microbiol Spectr 2022; 10:e0069122. [PMID: 36040174 PMCID: PMC9602339 DOI: 10.1128/spectrum.00691-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diaminopimelic acid (DAP) is a unique component of the cell wall of Gram-negative bacteria. It is also an important component of organic matter and is widely utilized by microbes in the world's oceans. However, neither DAP concentrations nor marine DAP-utilizing microbes have been investigated. Here, DAP concentrations in seawater were measured and the diversity of marine DAP-utilizing bacteria and the mechanisms for their DAP metabolism were investigated. Free DAP concentrations in seawater, from surface to a 5,000 m depth, were found to be between 0.61 μM and 0.96 μM in the western Pacific Ocean. DAP-utilizing bacteria from 20 families in 4 phyla were recovered from the western Pacific seawater and 14 strains were further isolated, in which Pseudomonadota bacteria were dominant. Based on genomic and transcriptomic analyses combined with gene deletion and in vitro activity detection, DAP decarboxylase (LysA), which catalyzes the decarboxylation of DAP to form lysine, was found to be a key and specific enzyme involved in DAP metabolism in the isolated Pseudomonadota strains. Interrogation of the Tara Oceans database found that most LysA-like sequences (92%) are from Pseudomonadota, which are widely distributed in multiple habitats. This study provides an insight into DAP metabolism by marine bacteria in the ocean and contributes to our understanding of the mineralization and recycling of DAP by marine bacteria. IMPORTANCE DAP is a unique component of peptidoglycan in Gram-negative bacterial cell walls. Due to the large number of marine Gram-negative bacteria, DAP is an important component of marine organic matter. However, it remains unclear how DAP is metabolized by marine microbes. This study investigated marine DAP-utilizing bacteria by cultivation and bioinformational analysis and examined the mechanism of DAP metabolism used by marine bacteria. The results demonstrate that Pseudomonadota bacteria are likely to be an important DAP-utilizing group in the ocean and that DAP decarboxylase is a key enzyme involved in DAP metabolism. This study also sheds light on the mineralization and recycling of DAP driven by bacteria.
Collapse
|
38
|
Richter DJ, Watteaux R, Vannier T, Leconte J, Frémont P, Reygondeau G, Maillet N, Henry N, Benoit G, Da Silva O, Delmont TO, Fernàndez-Guerra A, Suweis S, Narci R, Berney C, Eveillard D, Gavory F, Guidi L, Labadie K, Mahieu E, Poulain J, Romac S, Roux S, Dimier C, Kandels S, Picheral M, Searson S, Pesant S, Aury JM, Brum JR, Lemaitre C, Pelletier E, Bork P, Sunagawa S, Lombard F, Karp-Boss L, Bowler C, Sullivan MB, Karsenti E, Mariadassou M, Probert I, Peterlongo P, Wincker P, de Vargas C, Ribera d'Alcalà M, Iudicone D, Jaillon O. Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems. eLife 2022; 11:e78129. [PMID: 35920817 PMCID: PMC9348854 DOI: 10.7554/elife.78129] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Biogeographical studies have traditionally focused on readily visible organisms, but recent technological advances are enabling analyses of the large-scale distribution of microscopic organisms, whose biogeographical patterns have long been debated. Here we assessed the global structure of plankton geography and its relation to the biological, chemical, and physical context of the ocean (the 'seascape') by analyzing metagenomes of plankton communities sampled across oceans during the Tara Oceans expedition, in light of environmental data and ocean current transport. Using a consistent approach across organismal sizes that provides unprecedented resolution to measure changes in genomic composition between communities, we report a pan-ocean, size-dependent plankton biogeography overlying regional heterogeneity. We found robust evidence for a basin-scale impact of transport by ocean currents on plankton biogeography, and on a characteristic timescale of community dynamics going beyond simple seasonality or life history transitions of plankton.
Collapse
Affiliation(s)
- Daniel J Richter
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra), Passeig Marítim de la BarcelonetaBarcelonaSpain
| | - Romain Watteaux
- Stazione Zoologica Anton Dohrn, Villa ComunaleNaplesItaly
- CEA, DAM, DIF, F‐91297Arpajon CedexFrance
| | - Thomas Vannier
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UMMarseilleFrance
| | - Jade Leconte
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Paul Frémont
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Gabriel Reygondeau
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia. Aquatic Ecosystems Research LabVancouverCanada
- Ecology and Evolutionary Biology, Yale UniversityNew Haven, CTUnited States
| | - Nicolas Maillet
- Institut pasteur, Université Paris Cité, Bioinformatics and Biostatistics HubParisFrance
| | - Nicolas Henry
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Gaëtan Benoit
- Univ Rennes, CNRS, Inria, IRISA-UMR 6074RennesFrance
| | - Ophélie Da Silva
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Sorbonne Universités, CNRS, Laboratoire d’Oceanographie de Villefranche, LOVVillefranche‐sur‐MerFrance
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Antonio Fernàndez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of CopenhagenCopenhagenDenmark
- MARUM, Center for Marine Environmental Sciences, University of BremenBremenGermany
- Max Planck Institute for Marine MicrobiologyBremenGermany
| | - Samir Suweis
- Dipartimento di Fisica e Astronomia ‘G. Galilei’ & CNISM, INFN, Università di PadovaPadovaItaly
| | - Romain Narci
- MaIAGE, INRAE, Université Paris‐SaclayJouy‐en‐JosasFrance
| | - Cédric Berney
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Damien Eveillard
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Nantes Université, Ecole Centrale Nantes, CNRS, LS2NNantesFrance
| | - Frederick Gavory
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
| | - Lionel Guidi
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Sorbonne Universités, CNRS, Laboratoire d’Oceanographie de Villefranche, LOVVillefranche‐sur‐MerFrance
| | - Karine Labadie
- Genoscope, Institut de biologie François‐Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris‐SaclayEvryFrance
| | - Eric Mahieu
- Genoscope, Institut de biologie François‐Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris‐SaclayEvryFrance
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Simon Roux
- Department of Microbiology, The Ohio State UniversityColumbusUnited States
| | - Céline Dimier
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Stefanie Kandels
- Structural and Computational Biology, European Molecular Biology LaboratoryHeidelbergGermany
- Directors’ Research European Molecular Biology LaboratoryHeidelbergGermany
| | - Marc Picheral
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Sorbonne Universités, CNRS, Laboratoire d’Oceanographie de Villefranche, LOVVillefranche‐sur‐MerFrance
| | - Sarah Searson
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Sorbonne Universités, CNRS, Laboratoire d’Oceanographie de Villefranche, LOVVillefranche‐sur‐MerFrance
| | - Stéphane Pesant
- MARUM, Center for Marine Environmental Sciences, University of BremenBremenGermany
- PANGAEA, Data Publisher for Earth and Environmental Science, University of BremenBremenGermany
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
| | - Jennifer R Brum
- Department of Microbiology, The Ohio State UniversityColumbusUnited States
- Department of Oceanography and Coastal Sciences, Louisiana State UniversityBaton RougeUnited States
| | | | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology LaboratoryHeidelbergGermany
- Yonsei Frontier Lab, Yonsei UniversitySeoulRepublic of Korea
- Department of Bioinformatics, Biocenter, University of WürzburgWürzburgGermany
| | - Shinichi Sunagawa
- Structural and Computational Biology, European Molecular Biology LaboratoryHeidelbergGermany
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir‐Prelog‐WegZurichSwitzerland
| | - Fabien Lombard
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Sorbonne Universités, CNRS, Laboratoire d’Oceanographie de Villefranche, LOVVillefranche‐sur‐MerFrance
- Institut Universitaire de France (IUF)ParisFrance
| | - Lee Karp-Boss
- School of Marine Sciences, University of MaineOronoUnited States
| | - Chris Bowler
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State UniversityColumbusUnited States
- EMERGE Biology Integration Institute, The Ohio State UniversityColumbusUnited States
- Center of Microbiome Science, The Ohio State UniversityColumbusUnited States
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State UniversityColumbusUnited States
| | - Eric Karsenti
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
- Directors’ Research European Molecular Biology LaboratoryHeidelbergGermany
| | | | - Ian Probert
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | | | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAPRoscoffFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| | | | | | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Evry, Université Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2O22/Tara GOSEEParisFrance
| |
Collapse
|
39
|
Vernette C, Lecubin J, Sánchez P, Sunagawa S, Delmont TO, Acinas SG, Pelletier E, Hingamp P, Lescot M. The Ocean Gene Atlas v2.0: online exploration of the biogeography and phylogeny of plankton genes. Nucleic Acids Res 2022; 50:W516-W526. [PMID: 35687095 PMCID: PMC9252727 DOI: 10.1093/nar/gkac420] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Testing hypothesis about the biogeography of genes using large data resources such as Tara Oceans marine metagenomes and metatranscriptomes requires significant hardware resources and programming skills. The new release of the 'Ocean Gene Atlas' (OGA2) is a freely available intuitive online service to mine large and complex marine environmental genomic databases. OGA2 datasets available have been extended and now include, from the Tara Oceans portfolio: (i) eukaryotic Metagenome-Assembled-Genomes (MAGs) and Single-cell Assembled Genomes (SAGs) (10.2E+6 coding genes), (ii) version 2 of Ocean Microbial Reference Gene Catalogue (46.8E+6 non-redundant genes), (iii) 924 MetaGenomic Transcriptomes (7E+6 unigenes), (iv) 530 MAGs from an Arctic MAG catalogue (1E+6 genes) and (v) 1888 Bacterial and Archaeal Genomes (4.5E+6 genes), and an additional dataset from the Malaspina 2010 global circumnavigation: (vi) 317 Malaspina Deep Metagenome Assembled Genomes (0.9E+6 genes). Novel analyses enabled by OGA2 include phylogenetic tree inference to visualize user queries within their context of sequence homologues from both the marine environmental dataset and the RefSeq database. An Application Programming Interface (API) now allows users to query OGA2 using command-line tools, hence providing local workflow integration. Finally, gene abundance can be interactively filtered directly on map displays using any of the available environmental variables. Ocean Gene Atlas v2.0 is freely-available at: https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.
Collapse
Affiliation(s)
- Caroline Vernette
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara Oceans-GOSEE, Paris, France
| | | | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Tom O Delmont
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut de Biologie François-Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057 Evry, France
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Eric Pelletier
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut de Biologie François-Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057 Evry, France
| | - Pascal Hingamp
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | - Magali Lescot
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara Oceans-GOSEE, Paris, France
| |
Collapse
|
40
|
Meinnel T. Tracking N-terminal protein processing from the Golgi to the chromatophore of a rhizarian amoeba. PLANT PHYSIOLOGY 2022; 189:1226-1231. [PMID: 35485189 PMCID: PMC9237673 DOI: 10.1093/plphys/kiac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/16/2022] [Indexed: 05/03/2023]
Abstract
Mass spectrometry analysis of protein processing in a photosynthetic rhizarian amoeba, Paulinella chromatophora, suggests a major trafficking route from the cytosol to the chromatophore via the Golgi.
Collapse
|
41
|
Nishimura Y, Yoshizawa S. The OceanDNA MAG catalog contains over 50,000 prokaryotic genomes originated from various marine environments. Sci Data 2022; 9:305. [PMID: 35715423 PMCID: PMC9205870 DOI: 10.1038/s41597-022-01392-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/12/2022] [Indexed: 12/22/2022] Open
Abstract
Marine microorganisms are immensely diverse and play fundamental roles in global geochemical cycling. Recent metagenome-assembled genome studies, with particular attention to large-scale projects such as Tara Oceans, have expanded the genomic repertoire of marine microorganisms. However, published marine metagenome data is still underexplored. We collected 2,057 marine metagenomes covering various marine environments and developed a new genome reconstruction pipeline. We reconstructed 52,325 qualified genomes composed of 8,466 prokaryotic species-level clusters spanning 59 phyla, including genomes from the deep-sea characterized as deeper than 1,000 m (n = 3,337), low-oxygen zones of <90 μmol O2 per kg water (n = 7,884), and polar regions (n = 7,752). Novelty evaluation using a genome taxonomy database shows that 6,256 species (73.9%) are novel and include genomes of high taxonomic novelty, such as new class candidates. These genomes collectively expanded the known phylogenetic diversity of marine prokaryotes by 34.2%, and the species representatives cover 26.5-42.0% of prokaryote-enriched metagenomes. Thoroughly leveraging accumulated metagenomic data, this genome resource, named the OceanDNA MAG catalog, illuminates uncharacterized marine microbial 'dark matter' lineages.
Collapse
Affiliation(s)
- Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
- Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
42
|
Kaszecki E, Kennedy V, Shah M, Maciszewski K, Karnkowska A, Linton E, Ginger ML, Farrow S, Ebenezer TE. Meeting Report: Euglenids in the Age of Symbiogenesis: Origins, Innovations, and Prospects, November 8-11, 2021. Protist 2022; 173:125894. [PMID: 35772300 DOI: 10.1016/j.protis.2022.125894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Emma Kaszecki
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Victoria Kennedy
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Mahfuzur Shah
- Department of Cell Biology, Metabolism and Systems Biology, Noblegen Inc., 2140 East Bank Dr, Peterborough, ON, Canada
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Eric Linton
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859, USA
| | - Michael L Ginger
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Scott Farrow
- Department of Cell Biology, Metabolism and Systems Biology, Noblegen Inc., 2140 East Bank Dr, Peterborough, ON, Canada
| | - ThankGod Echezona Ebenezer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire CB10 1SD, UK
| |
Collapse
|
43
|
Hogle SL, Hackl T, Bundy RM, Park J, Satinsky B, Hiltunen T, Biller S, Berube PM, Chisholm SW. Siderophores as an iron source for picocyanobacteria in deep chlorophyll maximum layers of the oligotrophic ocean. THE ISME JOURNAL 2022; 16:1636-1646. [PMID: 35241788 PMCID: PMC9122953 DOI: 10.1038/s41396-022-01215-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Prochlorococcus and Synechococcus are the most abundant photosynthesizing organisms in the oceans. Gene content variation among picocyanobacterial populations in separate ocean basins often mirrors the selective pressures imposed by the region's distinct biogeochemistry. By pairing genomic datasets with trace metal concentrations from across the global ocean, we show that the genomic capacity for siderophore-mediated iron uptake is widespread in Synechococcus and low-light adapted Prochlorococcus populations from deep chlorophyll maximum layers of iron-depleted regions of the oligotrophic Pacific and S. Atlantic oceans: Prochlorococcus siderophore consumers were absent in the N. Atlantic ocean (higher new iron flux) but constituted up to half of all Prochlorococcus genomes from metagenomes in the N. Pacific (lower new iron flux). Picocyanobacterial siderophore consumers, like many other bacteria with this trait, also lack siderophore biosynthesis genes indicating that they scavenge exogenous siderophores from seawater. Statistical modeling suggests that the capacity for siderophore uptake is endemic to remote ocean regions where atmospheric iron fluxes are the smallest, especially at deep chlorophyll maximum and primary nitrite maximum layers. We argue that abundant siderophore consumers at these two common oceanographic features could be a symptom of wider community iron stress, consistent with prior hypotheses. Our results provide a clear example of iron as a selective force driving the evolution of marine picocyanobacteria.
Collapse
Affiliation(s)
- Shane L Hogle
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biology, University of Turku, Turku, Finland.
| | - Thomas Hackl
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Randelle M Bundy
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Jiwoon Park
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Brandon Satinsky
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Teppo Hiltunen
- Department of Biology, University of Turku, Turku, Finland
| | - Steven Biller
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Paul M Berube
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
44
|
Czech L, Stamatakis A, Dunthorn M, Barbera P. Metagenomic Analysis Using Phylogenetic Placement-A Review of the First Decade. FRONTIERS IN BIOINFORMATICS 2022; 2:871393. [PMID: 36304302 PMCID: PMC9580882 DOI: 10.3389/fbinf.2022.871393] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Phylogenetic placement refers to a family of tools and methods to analyze, visualize, and interpret the tsunami of metagenomic sequencing data generated by high-throughput sequencing. Compared to alternative (e. g., similarity-based) methods, it puts metabarcoding sequences into a phylogenetic context using a set of known reference sequences and taking evolutionary history into account. Thereby, one can increase the accuracy of metagenomic surveys and eliminate the requirement for having exact or close matches with existing sequence databases. Phylogenetic placement constitutes a valuable analysis tool per se, but also entails a plethora of downstream tools to interpret its results. A common use case is to analyze species communities obtained from metagenomic sequencing, for example via taxonomic assignment, diversity quantification, sample comparison, and identification of correlations with environmental variables. In this review, we provide an overview over the methods developed during the first 10 years. In particular, the goals of this review are 1) to motivate the usage of phylogenetic placement and illustrate some of its use cases, 2) to outline the full workflow, from raw sequences to publishable figures, including best practices, 3) to introduce the most common tools and methods and their capabilities, 4) to point out common placement pitfalls and misconceptions, 5) to showcase typical placement-based analyses, and how they can help to analyze, visualize, and interpret phylogenetic placement data.
Collapse
Affiliation(s)
- Lucas Czech
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
45
|
Lemane T, Medvedev P, Chikhi R, Peterlongo P. kmtricks: efficient and flexible construction of Bloom filters for large sequencing data collections. BIOINFORMATICS ADVANCES 2022; 2:vbac029. [PMID: 36699393 PMCID: PMC9710589 DOI: 10.1093/bioadv/vbac029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/28/2023]
Abstract
Summary When indexing large collections of short-read sequencing data, a common operation that has now been implemented in several tools (Sequence Bloom Trees and variants, BIGSI) is to construct a collection of Bloom filters, one per sample. Each Bloom filter is used to represent a set of k-mers which approximates the desired set of all the non-erroneous k-mers present in the sample. However, this approximation is imperfect, especially in the case of metagenomics data. Erroneous but abundant k-mers are wrongly included, and non-erroneous but low-abundant ones are wrongly discarded. We propose kmtricks, a novel approach for generating Bloom filters from terabase-sized collections of sequencing data. Our main contributions are (i) an efficient method for jointly counting k-mers across multiple samples, including a streamlined Bloom filter construction by directly counting, partitioning and sorting hashes instead of k-mers, which is approximately four times faster than state-of-the-art tools; (ii) a novel technique that takes advantage of joint counting to preserve low-abundant k-mers present in several samples, improving the recovery of non-erroneous k-mers. Our experiments highlight that this technique preserves around 8× more k-mers than the usual yet crude filtering of low-abundance k-mers in a large metagenomics dataset. Availability and implementation https://github.com/tlemane/kmtricks. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Téo Lemane
- Univ. Rennes, Inria, CNRS, IRISA, Rennes F-35000, France
| | - Paul Medvedev
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16801, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16801, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16801, USA
| | - Rayan Chikhi
- Sequence Bioinformatics, Institut Pasteur, Université Paris Cité, Paris F-75015, France
| | | |
Collapse
|
46
|
Plankton under Pressure: How Water Conditions Alter the Phytoplankton–Zooplankton Link in Coastal Lagoons. WATER 2022. [DOI: 10.3390/w14060974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transitional waters (TWs), such as coastal lagoons, are bodies of surface water at the transition between saline and freshwater domains. These environments play a vital role in guaranteeing ecosystem services, including provision of food, protection against meteorological events, as anthropogenic carbon sinks, and in filtering of pollutants. Due to the escalating overpopulation characterising coastlines worldwide, transitional systems are over-exploited, degraded, and reduced in their macroscopic features. However, information on the impact of anthropogenic pressures on planktonic organisms in these systems is still scanty and fragmented. Herein, we summarise the literature, with a special focus on coastal lagoons undergoing anthropogenic pressure. Specifically, we report on the implications of human impacts on the ecological state of plankton, i.e., a fundamental ecological component of aquatic ecosystems. Literature information indicates that human forces may alter ecosystem structures and functions in coastal lagoons, as in other TWs such as estuaries, hampering the phytoplankton–zooplankton link, i.e., the main trophic process occurring in those communities, and which sustains aquatic productivity. Changes in the dominance and lifestyle of key planktonic players, plus the invasion of ‘alien’ species, and consequent regime shifts, are among the most common outcomes of human disturbance.
Collapse
|
47
|
Acker M, Hogle SL, Berube PM, Hackl T, Coe A, Stepanauskas R, Chisholm SW, Repeta DJ. Phosphonate production by marine microbes: Exploring new sources and potential function. Proc Natl Acad Sci U S A 2022; 119:e2113386119. [PMID: 35254902 PMCID: PMC8931226 DOI: 10.1073/pnas.2113386119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
SignificancePhosphonates are a class of phosphorus metabolites characterized by a highly stable C-P bond. Phosphonates accumulate to high concentrations in seawater, fuel a large fraction of marine methane production, and serve as a source of phosphorus to microbes inhabiting nutrient-limited regions of the oligotrophic ocean. Here, we show that 15% of all bacterioplankton in the surface ocean have genes phosphonate synthesis and that most belong to the abundant groups Prochlorococcus and SAR11. Genomic and chemical evidence suggests that phosphonates are incorporated into cell-surface phosphonoglycoproteins that may act to mitigate cell mortality by grazing and viral lysis. These results underscore the large global biogeochemical impact of relatively rare but highly expressed traits in numerically abundant groups of marine bacteria.
Collapse
Affiliation(s)
- Marianne Acker
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
- Department of Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Shane L. Hogle
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, University of Turku, Turku 20500, Finland
| | - Paul M. Berube
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Thomas Hackl
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Allison Coe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ramunas Stepanauskas
- Single Cell Genomics Center, Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel J. Repeta
- Department of Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| |
Collapse
|
48
|
A holistic genome dataset of bacteria, archaea and viruses of the Pearl River estuary. Sci Data 2022; 9:49. [PMID: 35165305 PMCID: PMC8844013 DOI: 10.1038/s41597-022-01153-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/12/2022] [Indexed: 12/21/2022] Open
Abstract
Estuaries are one of the most important coastal ecosystems. While microbiomes and viromes have been separately investigated in some estuaries, few studies holistically deciphered the genomes and connections of viruses and their microbial hosts along an estuarine salinity gradient. Here we applied deep metagenomic sequencing on microbial and viral communities in surface waters of the Pearl River estuary, one of China’s largest estuaries with strong anthropogenic impacts. Overall, 1,205 non-redundant prokaryotic genomes with ≥50% completeness and ≤10% contamination, and 78,502 non-redundant viral-like genomes were generated from samples of three size fractions and five salinity levels. Phylogenomic analysis and taxonomy classification show that majority of these estuarine prokaryotic and viral genomes are novel at species level according to public databases. Potential connections between the microbial and viral populations were further investigated by host-virus matching. These combined microbial and viral genomes provide an important complement of global marine genome datasets and should greatly facilitate our understanding of microbe-virus interactions, evolution and their implications in estuarine ecosystems. Measurement(s) | bacteria • Archaea • viruses | Technology Type(s) | Shotgun Sequencing | Sample Characteristic - Organism | estuary metagenome | Sample Characteristic - Environment | subtropical estuarine | Sample Characteristic - Location | Pearl river estuary |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.17139998
Collapse
|
49
|
Vuong P, Wise MJ, Whiteley AS, Kaur P. Small investments with big returns: environmental genomic bioprospecting of microbial life. Crit Rev Microbiol 2022; 48:641-655. [PMID: 35100064 DOI: 10.1080/1040841x.2021.2011833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms and their natural products are major drivers of ecological processes and industrial applications. Microbial bioprospecting has been critical for the advancement in various fields such as pharmaceuticals, sustainable industries, food security and bioremediation. Next generation sequencing has been paramount in the exploration of diverse environmental microbiomes. It presents a culture-independent approach to investigating hitherto uncultured taxa, resulting in the creation of massive sequence databases, which are available in the public domain. Genome mining searches available (meta)genomic data for target biosynthetic genes, and combined with the large-scale public data, this in-silico bioprospecting method presents an efficient and extensive way to uncover microbial bioproducts. Bioinformatic tools have progressed to a stage where we can recover genomes from the environment; these metagenome-assembled genomes present a way to understand the metabolic capacity of microorganisms in a physiological and ecological context. Environmental sampling been extensive across various ecological settings, including microbiomes with unique physicochemical properties that could influence the discovery of novel functions and metabolic pathways. Although in-silico methods cannot completely substitute in-vitro studies, the contextual information it provides is invaluable for understanding the ecological and taxonomic distribution of microbial genotypes and to form effective strategies for future microbial bioprospecting efforts.
Collapse
Affiliation(s)
- Paton Vuong
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
| | - Michael J Wise
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia
| | - Andrew S Whiteley
- Centre for Environment & Life Sciences, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat, Australia
| | - Parwinder Kaur
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
| |
Collapse
|
50
|
Lund D, Kieffer N, Parras-Moltó M, Ebmeyer S, Berglund F, Johnning A, Larsson DGJ, Kristiansson E. Large-scale characterization of the macrolide resistome reveals high diversity and several new pathogen-associated genes. Microb Genom 2022; 8. [PMID: 35084301 PMCID: PMC8914350 DOI: 10.1099/mgen.0.000770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Macrolides are broad-spectrum antibiotics used to treat a range of infections. Resistance to macrolides is often conferred by mobile resistance genes encoding Erm methyltransferases or Mph phosphotransferases. New erm and mph genes keep being discovered in clinical settings but their origins remain unknown, as is the type of macrolide resistance genes that will appear in the future. In this study, we used optimized hidden Markov models to characterize the macrolide resistome. Over 16 terabases of genomic and metagenomic data, representing a large taxonomic diversity (11 030 species) and diverse environments (1944 metagenomic samples), were searched for the presence of erm and mph genes. From this data, we predicted 28 340 macrolide resistance genes encoding 2892 unique protein sequences, which were clustered into 663 gene families (<70 % amino acid identity), of which 619 (94 %) were previously uncharacterized. This included six new resistance gene families, which were located on mobile genetic elements in pathogens. The function of ten predicted new resistance genes were experimentally validated in Escherichia coli using a growth assay. Among the ten tested genes, seven conferred increased resistance to erythromycin, with five genes additionally conferring increased resistance to azithromycin, showing that our models can be used to predict new functional resistance genes. Our analysis also showed that macrolide resistance genes have diverse origins and have transferred horizontally over large phylogenetic distances into human pathogens. This study expands the known macrolide resistome more than ten-fold, provides insights into its evolution, and demonstrates how computational screening can identify new resistance genes before they become a significant clinical problem.
Collapse
Affiliation(s)
- David Lund
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Nicolas Kieffer
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcos Parras-Moltó
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Stefan Ebmeyer
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Johnning
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Systems and Data Analysis, Fraunhofer-Chalmers Centre, Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Erik Kristiansson,
| |
Collapse
|