1
|
Shi Q, Liu R, Jiang L, Gao S, Ma J, Tian X, Jiang C, Liang C, Zhao H, Song W, Xie B. The Nuclear Effector MiISE23 From Meloidogyne incognita Targets JAZ Proteins and Suppresses Jasmonate Signalling, Increasing Host Susceptibility. PLANT, CELL & ENVIRONMENT 2025; 48:4611-4624. [PMID: 40045540 DOI: 10.1111/pce.15461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 05/06/2025]
Abstract
Meloidogyne incognita is an economically important plant-parasitic nematode that can infect thousands of different plant species. During its interaction with host plants, M. incognita synthesises numerous effectors in oesophageal glands, which are then secreted into plant tissues. Here, we characterised the effector MiISE23 and found that it could suppress plant immune responses. In situ hybridisation showed that MiISE23 was expressed in the subventral glands. Transgenic Arabidopsis plants expressing MiISE23 were more susceptible to M. incognita, whereas host-derived RNAi of MiISE23 was found to decrease M. incognita infection in Arabidopsis. In vitro and in vivo experiments showed that MiISE23 repressed jasmonate (JA) signalling by directly interacting with and suppressing jasmonoyl-isoleucine (JA-Ile)-induced degradation of jasmonate ZIM-domain proteins by COI1. The expression of MiISE23 in Arabidopsis repressed the expression of JA-responsive genes and reduced the levels of endogenous JA-Ile. AtJAZ6 transgenic lines of Arabidopsis showed increased susceptibility to M. incognita infection. Collectively, our results show that MiISE23 stabilises JAZ proteins and interferes with JA signalling, revealing a novel mechanism utilised by root-knot nematodes to hijack phytohormone signalling and promote parasitism.
Collapse
Affiliation(s)
- Qianqian Shi
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Rui Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Jiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Shasha Gao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Juan Ma
- Key Laboratory of IPM on Crops in Northern Region of North China, MARA China, Hebei IPM Innovation Center, International Science and Technology Joint Research Center on IPM of Hebei Province, Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xiaoxuan Tian
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Chunyu Jiang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Chen Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Honghai Zhao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wenwen Song
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Tsakiri D, Kotsaridis K, Michalopoulou VA, Zhang N, Marinos S, Kountourakis N, Kokkinidis M, Martin GB, Sarris PF. Subcellular targets and recognition mechanism of Ralstonia solanacearum effector RipE1. iScience 2025; 28:112307. [PMID: 40276755 PMCID: PMC12018115 DOI: 10.1016/j.isci.2025.112307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/23/2024] [Accepted: 03/10/2025] [Indexed: 04/26/2025] Open
Abstract
Some plant NLRs carry unusual integrated protein domains (IDs) that mimic host targets of pathogen effectors. RipE1 is a core Ralstonia solanacearum Type III effector with a predicted cysteine protease activity that activates defense responses in resistant plants. In this study, we used a library of NLR-IDs as an investigative tool to screen for potential host-cell targets of RipE1. Based on these findings and the effector's localization, we identified two plant membrane trafficking components as RipE1's subcellular targets. Depending on its protease activity, RipE1 promotes the degradation of both exocyst complex subunit Exo70B1 and its known interactor RPM1-interacting protein-4 (RIN4), a known plant immunity regulator. RipE1 protease activity is recognized by the RIN4-guarding NLR Pseudomonas tomato race 1 (Ptr1) in Nicotiana benthamiana. Overall, the data presented here, along with the existing literature, suggest a possible link between RipE1 activity upon the host secretion machinery and its NLR-mediated recognition.
Collapse
Affiliation(s)
- Dimitra Tsakiri
- Department of Biology, University of Crete, 714 09 Heraklion, Crete, Greece
| | | | - Vassiliki A. Michalopoulou
- Department of Biology, University of Crete, 714 09 Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 714 09 Heraklion, Crete, Greece
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Sotiris Marinos
- Department of Biology, University of Crete, 714 09 Heraklion, Crete, Greece
| | - Nikos Kountourakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 714 09 Heraklion, Crete, Greece
| | - Michael Kokkinidis
- Department of Biology, University of Crete, 714 09 Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 714 09 Heraklion, Crete, Greece
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Panagiotis F. Sarris
- Department of Biology, University of Crete, 714 09 Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 714 09 Heraklion, Crete, Greece
- Biosciences, University of Exeter, Exeter, Devon EX4 4SB, UK
| |
Collapse
|
3
|
Wang Y, Gao J, Chen X, Huang Y, Wu Y, Zhu J, Li W. Effect of CFEM proteins on pathogenicity, patulin accumulation and host immunity of postharvest apple pathogens Penicillium expansum. Int J Food Microbiol 2025; 435:111180. [PMID: 40174320 DOI: 10.1016/j.ijfoodmicro.2025.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Penicillium expansum is a significant post-harvest pathogenic fungi on most pome fruits. Common fungal extracellular membrane (CFEM) proteins, as effectors, contribute to virulence and manipulate host immunity. However, the CFEM proteins in P. expansum have not been identified and functionally studied. In this study, we screened two P. expansum CFEM proteins, PeCFEM5 and PeCFEM8, whose expression was highly up-regulated during postharvest apple infection. Growth and pathogenicity of P. expansum were characterized by knockout and complementary of PeCFEM5 and PeCFEM8. Deletion of PeCFEM5 and PeCFEM8 resulted in changes in spore development and increased resistance to cell wall integrity stress. The lesion spots on apple and pear fruit inoculated with P. expansum gradually expanded and deepened in color. The ΔPeCFEM5 and ΔPeCFEM8 strains reduced lesion diameter on apple fruit by 47 % and 29 %, respectively, compared with the WT strains. Detection of patulin accumulation by high-performance liquid chromatography (HPLC) revealed that deletion of PeCFEM5 or PeCFEM8 suppressed patulin content in medium and apples, and patulin biosynthesis-related genes were down-regulated. The PeCFEM5 and PeCFEM8 were also confirmed as effector proteins capable of suppressing the cell death triggered by BAX and the expression of plant defense genes in Nicotiana benthamiana. Phytohormone ELISA assays showed that jasmonic acid levels were reduced, but salicylic acid levels were increased by transient expression of PeCFEM5 or PeCFEM8 in the host plant. These results indicate that PeCFEM5 and PeCFEM8 effectors are crucial for pathogenicity, patulin biogenesis, and modulating host plant immunity.
Collapse
Affiliation(s)
- Yanling Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Jie Gao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xin Chen
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yanqi Huang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yurui Wu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jinfen Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wei Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
4
|
Yang Y, Wu Y, Huang J, Tang H, Gao H, Yu J, Chen J, Ji H, Huang M, Wan X, Tan X. A novel type III effector RipBU from Ralstonia solanacearum suppresses plant immunity and promotes peanut susceptibility. Int J Biol Macromol 2025; 284:138189. [PMID: 39617238 DOI: 10.1016/j.ijbiomac.2024.138189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
A predicted peanut R. solanacearum T3E RS_T3E_Hyp6 was identified as a definite T3E and renamed as RipBU. It is relative conserved in 31 R. solanacearum strains. Deletion of RipBU in R. solanacearum HA4-1 strain caused the attenuate pathogenicity in peanut, and complementarity of RipBU recovered the virulence of ΔRipBU mutant strain. Transient expression of RipBU decreased the level of chlorophyll, resulting in leaf chlorosis and suppressed flg22-triggered reactive oxygen species (ROS) burst and the expression of pattern-triggered immunity (PTI) marker genes in the leaves of Nicotiania benthamiana. Subcellular localization observation showed that RipBU localizes to chloroplasts in tobacco cells. RipBU significantly increased the jasmonic acid (JA) content and the expressions of JA-signaling marker genes in tobacco leaves, while significantly decreased the salicylic acid (SA) level and the expressions of SA-signaling marker genes. RipBU contained a putative lipase domain, and mutation of which abolished the ability of RipBU to induce tobacco leaf chlorosis and peanut wilt, while still localized to chloroplasts. Our study reveals the virulence function of RipBU that suppresses plant immunity by inhibiting PTI and SA signaling, and promoting JA signaling.
Collapse
Affiliation(s)
- Yong Yang
- Guangzhou key laboratory for research and development of crop germplasm resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Yushuang Wu
- Guangzhou key laboratory for research and development of crop germplasm resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Jinling Huang
- Guangzhou key laboratory for research and development of crop germplasm resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Huiquan Tang
- Guangzhou key laboratory for research and development of crop germplasm resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Haoran Gao
- Guangzhou key laboratory for research and development of crop germplasm resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Junyi Yu
- Guangzhou key laboratory for research and development of crop germplasm resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Jiajun Chen
- Guangzhou key laboratory for research and development of crop germplasm resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Han Ji
- Guangzhou key laboratory for research and development of crop germplasm resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Mengshu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaorong Wan
- Guangzhou key laboratory for research and development of crop germplasm resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Xiaodan Tan
- Guangzhou key laboratory for research and development of crop germplasm resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China.
| |
Collapse
|
5
|
Kumaraswamy S, Huang Y. Molecular Interactions Between Plants and Aphids: Recent Advances and Future Perspectives. INSECTS 2024; 15:935. [PMID: 39769537 PMCID: PMC11677212 DOI: 10.3390/insects15120935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Aphids are small, notorious insect pests that negatively impact plant health and agricultural productivity through direct damage, such as sap-sucking, and indirectly as vectors of plant viruses. Plants respond to aphid feeding with a variety of molecular mechanisms to mitigate damage. These responses are diverse and highly dynamic, functioning either independently or in combination. Understanding plant-aphid interactions is crucial for revealing the full range of plant defenses against aphids. When aphids infest, plants detect the damage via specific receptor proteins, initiating a signaling cascade that activates defense mechanisms. These defenses include a complex interaction of phytohormones that trigger defense pathways, secondary metabolites that deter aphid feeding and reproduction, lectins and protease inhibitors that disrupt aphid physiology, and elicitors that activate further defense responses. Meanwhile, aphids counteract plant defenses with salivary effectors and proteins that suppress plant defenses, aiding in their successful colonization. This review offers a detailed overview of the molecular mechanisms involved in plant-aphid interactions, emphasizing both established and emerging plant defense strategies. Its uniqueness lies in synthesizing the recent progress made in plant defense responses to aphids, along with aphids' countermeasures to evade such defenses. By consolidating current knowledge, this review provides key insights for developing sustainable strategies to achieve crop protection and minimize dependence on chemical pesticides.
Collapse
Affiliation(s)
- Sunil Kumaraswamy
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Yinghua Huang
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
- Plant Science Research Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 1301 N. Western Road, Stillwater, OK 74075, USA
| |
Collapse
|
6
|
Liu L, Liu Y, Ji X, Zhao X, Liu J, Xu N. Coronatine orchestrates ABI1-mediated stomatal opening to facilitate bacterial pathogen infection through importin β protein SAD2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:676-688. [PMID: 38683723 DOI: 10.1111/tpj.16784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 05/02/2024]
Abstract
Stomatal immunity plays an important role during bacterial pathogen invasion. Abscisic acid (ABA) induces plants to close their stomata and halt pathogen invasion, but many bacterial pathogens secrete phytotoxin coronatine (COR) to antagonize ABA signaling and reopen the stomata to promote infection at early stage of invasion. However, the underlining mechanism is not clear. SAD2 is an importin β family protein, and the sad2 mutant shows hypersensitivity to ABA. We discovered ABI1, which negatively regulated ABA signaling and reduced plant sensitivity to ABA, was accumulated in the plant nucleus after COR treatment. This event required SAD2 to import ABI1 to the plant nucleus. Abolition of SAD2 undermined ABI1 accumulation. Our study answers the long-standing question of how bacterial COR antagonizes ABA signaling and reopens plant stomata during pathogen invasion.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, China
| | - Yanzhi Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Xuehan Ji
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, China
| | - Xia Zhao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, China
| | - Jun Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, China
| | - Ning Xu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Roychowdhury R, Mishra S, Anand G, Dalal D, Gupta R, Kumar A, Gupta R. Decoding the molecular mechanism underlying salicylic acid (SA)-mediated plant immunity: an integrated overview from its biosynthesis to the mode of action. PHYSIOLOGIA PLANTARUM 2024; 176:e14399. [PMID: 38894599 DOI: 10.1111/ppl.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Salicylic acid (SA) is an important phytohormone, well-known for its regulatory role in shaping plant immune responses. In recent years, significant progress has been made in unravelling the molecular mechanisms underlying SA biosynthesis, perception, and downstream signalling cascades. Through the concerted efforts employing genetic, biochemical, and omics approaches, our understanding of SA-mediated defence responses has undergone remarkable expansion. In general, following SA biosynthesis through Avr effectors of the pathogens, newly synthesized SA undergoes various biochemical changes to achieve its active/inactive forms (e.g. methyl salicylate). The activated SA subsequently triggers signalling pathways associated with the perception of pathogen-derived signals, expression of defence genes, and induction of systemic acquired resistance (SAR) to tailor the intricate regulatory networks that coordinate plant immune responses. Nonetheless, the mechanistic understanding of SA-mediated plant immune regulation is currently limited because of its crosstalk with other signalling networks, which makes understanding this hormone signalling more challenging. This comprehensive review aims to provide an integrated overview of SA-mediated plant immunity, deriving current knowledge from diverse research outcomes. Through the integration of case studies, experimental evidence, and emerging trends, this review offers insights into the regulatory mechanisms governing SA-mediated immunity and signalling. Additionally, this review discusses the potential applications of SA-mediated defence strategies in crop improvement, disease management, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Sapna Mishra
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Debalika Dalal
- Department of Botany, Visva-Bharati Central University, Santiniketan, West Bengal, India
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, South Korea
| |
Collapse
|
8
|
Maguvu TE, Frias RJ, Hernandez-Rosas AI, Holtz BA, Niederholzer FJA, Duncan RA, Yaghmour MA, Culumber CM, Gordon PE, Vieira FCF, Rolshausen PE, Adaskaveg JE, Burbank LP, Lindow SE, Trouillas FP. Phylogenomic analyses and comparative genomics of Pseudomonas syringae associated with almond (Prunus dulcis) in California. PLoS One 2024; 19:e0297867. [PMID: 38603730 PMCID: PMC11008872 DOI: 10.1371/journal.pone.0297867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/10/2024] [Indexed: 04/13/2024] Open
Abstract
We sequenced and comprehensively analysed the genomic architecture of 98 fluorescent pseudomonads isolated from different symptomatic and asymptomatic tissues of almond and a few other Prunus spp. Phylogenomic analyses, genome mining, field pathogenicity tests, and in vitro ice nucleation and antibiotic sensitivity tests were integrated to improve knowledge of the biology and management of bacterial blast and bacterial canker of almond. We identified Pseudomonas syringae pv. syringae, P. cerasi, and P. viridiflava as almond canker pathogens. P. syringae pv. syringae caused both canker and foliar (blast) symptoms. In contrast, P. cerasi and P. viridiflava only caused cankers, and P. viridiflava appeared to be a weak pathogen of almond. Isolates belonging to P. syringae pv. syringae were the most frequently isolated among the pathogenic species/pathovars, composing 75% of all pathogenic isolates. P. cerasi and P. viridiflava isolates composed 8.3 and 16.7% of the pathogenic isolates, respectively. Laboratory leaf infiltration bioassays produced results distinct from experiments in the field with both P. cerasi and P. syringae pv. syringae, causing significant necrosis and browning of detached leaves, whereas P. viridiflava conferred moderate effects. Genome mining revealed the absence of key epiphytic fitness-related genes in P. cerasi and P. viridiflava genomic sequences, which could explain the contrasting field and laboratory bioassay results. P. syringae pv. syringae and P. cerasi isolates harboured the ice nucleation protein, which correlated with the ice nucleation phenotype. Results of sensitivity tests to copper and kasugamycin showed a strong linkage to putative resistance genes. Isolates harbouring the ctpV gene showed resistance to copper up to 600 μg/ml. In contrast, isolates without the ctpV gene could not grow on nutrient agar amended with 200 μg/ml copper, suggesting ctpV can be used to phenotype copper resistance. All isolates were sensitive to kasugamycin at the label-recommended rate of 100μg/ml.
Collapse
Affiliation(s)
- Tawanda E. Maguvu
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States of America
- Kearney Agricultural Research and Extension Center, Parlier, CA, United States of America
| | - Rosa J. Frias
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States of America
| | | | - Brent A. Holtz
- University of California Cooperative Extension, CA, United States of America
| | | | - Roger A. Duncan
- University of California Cooperative Extension, CA, United States of America
| | | | | | - Phoebe E. Gordon
- University of California Cooperative Extension, CA, United States of America
| | - Flavia C. F. Vieira
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA, United States of America
| | - Philippe E. Rolshausen
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA, United States of America
| | - James E. Adaskaveg
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA, United States of America
| | - Lindsey P. Burbank
- U.S. Department of Agriculture, Agricultural Research Service, Parlier, CA, United States of America
| | - Steven E. Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Florent P. Trouillas
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States of America
- Kearney Agricultural Research and Extension Center, Parlier, CA, United States of America
| |
Collapse
|
9
|
Hou S, Rodrigues O, Liu Z, Shan L, He P. Small holes, big impact: Stomata in plant-pathogen-climate epic trifecta. MOLECULAR PLANT 2024; 17:26-49. [PMID: 38041402 PMCID: PMC10872522 DOI: 10.1016/j.molp.2023.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens, characterized by adaptive strategies that influence both plant resistance and pathogen virulence. The ongoing climate change introduces further complexity, affecting pathogen invasion and host immunity. This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines. In addition, the review explores how climate changes impact plant-pathogen interactions by modulating stomatal behavior. In light of the pressing challenges associated with food security and the unpredictable nature of climate changes, future research in this field, which includes the investigation of spatiotemporal regulation and engineering of stomatal immunity, emerges as a promising avenue for enhancing crop resilience and contributing to climate control strategies.
Collapse
Affiliation(s)
- Shuguo Hou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse Midi-Pyrénées, INP-PURPAN, 31076 Toulouse, France
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Liu F, Cai S, Ma Z, Yue H, Xing L, Wang Y, Feng S, Wang L, Dai L, Wan H, Gao J, Chen M, Rahman M, Zhou B. RVE2, a new regulatory factor in jasmonic acid pathway, orchestrates resistance to Verticillium wilt. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2507-2524. [PMID: 37553251 PMCID: PMC10651145 DOI: 10.1111/pbi.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Verticillium dahliae, one of the most destructive fungal pathogens of several crops, challenges the sustainability of cotton productivity worldwide because very few widely-cultivated Upland cotton varieties are resistant to Verticillium wilt (VW). Here, we report that REVEILLE2 (RVE2), the Myb-like transcription factor, confers the novel function in resistance to VW by regulating the jasmonic acid (JA) pathway in cotton. RVE2 expression was essentially required for the activation of JA-mediated disease-resistance response. RVE2 physically interacted with TPL/TPRs and disturbed JAZ proteins to recruit TPL and TPR1 in NINJA-dependent manner, which regulated JA response by relieving inhibited-MYC2 activity. The MYC2 then bound to RVE2 promoter for the activation of its transcription, forming feedback loop. Interestingly, a unique truncated RVE2 widely existing in D-subgenome (GhRVE2D) of natural Upland cotton represses the ability of the MYC2 to activate GhRVE2A promoter but not GausRVE2 or GbRVE2. The result could partially explain why Gossypium barbadense popularly shows higher resistance than Gossypium hirsutum. Furthermore, disturbing the JA-signalling pathway resulted into the loss of RVE2-mediated disease-resistance in various plants (Arabidopsis, tobacco and cotton). RVE2 overexpression significantly enhanced the resistance to VW. Collectively, we conclude that RVE2, a new regulatory factor, plays a pivotal role in fine-tuning JA-signalling, which would improve our understanding the mechanisms underlying the resistance to VW.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Zhifeng Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Haoran Yue
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Liangshuai Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yingying Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Shouli Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Liang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Mengfei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Mehboob‐ur‐ Rahman
- Plant Genomics & Mol. Breeding LabNational Institute for Biotechnology & Genetic Engineering (NIBGE)FaisalabadPakistan
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
11
|
Bernasconi A, Lorrain C, Flury P, Alassimone J, McDonald BA, Sánchez-Vallet A. Virulent strains of Zymoseptoria tritici suppress the host immune response and facilitate the success of avirulent strains in mixed infections. PLoS Pathog 2023; 19:e1011767. [PMID: 37972205 PMCID: PMC10721197 DOI: 10.1371/journal.ppat.1011767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/14/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
Plants interact with a plethora of pathogenic microorganisms in nature. Pathogen-plant interaction experiments focus mainly on single-strain infections, typically ignoring the complexity of multi-strain infections even though mixed infections are common and critical for the infection outcome. The wheat pathogen Zymoseptoria tritici forms highly diverse fungal populations in which several pathogen strains often colonize the same leaf. Despite the importance of mixed infections, the mechanisms governing interactions between a mixture of pathogen strains within a plant host remain largely unexplored. Here we demonstrate that avirulent pathogen strains benefit from being in mixed infections with virulent strains. We show that virulent strains suppress the wheat immune response, allowing avirulent strains to colonize the apoplast and to reproduce. Our experiments indicate that virulent strains in mixed infections can suppress the plant immune system, probably facilitating the persistence of avirulent pathogen strains in fields planted with resistant host plants.
Collapse
Affiliation(s)
- Alessio Bernasconi
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Cécile Lorrain
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Priska Flury
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Julien Alassimone
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Bruce A. McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Andrea Sánchez-Vallet
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Centro de Biotecnología y Genómica de Plantas (CBGP/Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria/Centro Superior de Investigaciones Científicas (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón (Madrid) Spain
| |
Collapse
|
12
|
Kim B, Kim I, Yu W, Li M, Kim H, Ahn YJ, Sohn KH, Macho AP, Segonzac C. The Ralstonia pseudosolanacearum effector RipE1 is recognized at the plasma membrane by NbPtr1, the Nicotiana benthamiana homologue of Pseudomonas tomato race 1. MOLECULAR PLANT PATHOLOGY 2023; 24:1312-1318. [PMID: 37310613 PMCID: PMC10502825 DOI: 10.1111/mpp.13363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
The bacterial wilt disease caused by soilborne bacteria of the Ralstonia solanacearum species complex (RSSC) threatens important crops worldwide. Only a few immune receptors conferring resistance to this devastating disease are known so far. Individual RSSC strains deliver around 70 different type III secretion system effectors into host cells to manipulate the plant physiology. RipE1 is an effector conserved across the RSSC and triggers immune responses in the model solanaceous plant Nicotiana benthamiana. Here, we used multiplexed virus-induced gene silencing of the nucleotide-binding and leucine-rich repeat receptor family to identify the genetic basis of RipE1 recognition. Specific silencing of the N. benthamiana homologue of Solanum lycopersicoides Ptr1 (confers resistance to Pseudomonas syringae pv. tomato race 1) gene (NbPtr1) completely abolished RipE1-induced hypersensitive response and immunity to Ralstonia pseudosolanacearum. The expression of the native NbPtr1 coding sequence was sufficient to restore RipE1 recognition in Nb-ptr1 knockout plants. Interestingly, RipE1 association with the host cell plasma membrane was necessary for NbPtr1-dependent recognition. Furthermore, NbPtr1-dependent recognition of RipE1 natural variants is polymorphic, providing additional evidence for the indirect mode of activation of NbPtr1. Altogether, this work supports NbPtr1 relevance for resistance to bacterial wilt disease in Solanaceae.
Collapse
Affiliation(s)
- Boyoung Kim
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulRepublic of Korea
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Injae Kim
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulRepublic of Korea
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Meng Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Haseong Kim
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Ye Jin Ahn
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Kee Hoon Sohn
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
- Department of Agricultural BiotechnologySeoul National UniversitySeoulRepublic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Cécile Segonzac
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulRepublic of Korea
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
13
|
Nielsen TK, Winther-Have CS, Thomsen IM, Jackson RW, Rabiey M, Hennessy RC, Bak F, Kot W, Nicolaisen MH, Carstens AB, Hansen LH. Genetic rearrangements in Pseudomonas amygdali pathovar aesculi shape coronatine plasmids. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105486. [PMID: 37541538 DOI: 10.1016/j.meegid.2023.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/23/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Plant pathogenic Pseudomonas species use multiple classes of toxins and virulence factors during host infection. The genes encoding these pathogenicity factors are often located on plasmids and other mobile genetic elements, suggesting that they are acquired through horizontal gene transfer to confer an evolutionary advantage for successful adaptation to host infection. However, the genetic rearrangements that have led to mobilization of the pathogenicity genes are not fully understood. In this study, we have sequenced and analyzed the complete genome sequences of four Pseudomonas amygdali pv. aesculi (Pae), which infect European horse chestnut trees (Aesculus hippocastanum) and belong to phylogroup 3 of the P. syringae species complex. The four investigated genomes contain six groups of plasmids that all encode pathogenicity factors. Effector genes were found to be mostly associated with insertion sequence elements, suggesting that virulence genes are generally mobilized and potentially undergo horizontal gene transfer after transfer to a conjugative plasmid. We show that the biosynthetic gene cluster encoding the phytotoxin coronatine was recently transferred from a chromosomal location to a mobilizable plasmid that subsequently formed a co-integrate with a conjugative plasmid.
Collapse
Affiliation(s)
- Tue Kjærgaard Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Caroline S Winther-Have
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Iben Margrete Thomsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Robert W Jackson
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mojgan Rabiey
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - Frederik Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Mette Haubjerg Nicolaisen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Alexander Byth Carstens
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Harris W, Kim S, Vӧlz R, Lee YH. Nuclear effectors of plant pathogens: Distinct strategies to be one step ahead. MOLECULAR PLANT PATHOLOGY 2023; 24:637-650. [PMID: 36942744 DOI: 10.1111/mpp.13315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 05/18/2023]
Abstract
Nuclear effector proteins released by bacteria, oomycete, nematode, and fungi burden the global environment and crop yield. Microbial effectors are key weapons in the evolutionary arms race between plants and pathogens, vital in determining the success of pathogenic colonization. Secreted effectors undermine a multitude of host cellular processes depending on their target destination. Effectors are classified by their localization as either extracellular (apoplastic) or intracellular. Intracellular effectors can be further subclassified by their compartment such as the nucleus, cytoplasm or chloroplast. Nuclear effectors bring into question the role of the plant nucleus' intrinsic defence strategies and their vulnerability to effector-based manipulation. Nuclear effectors interfere with multiple nuclear processes including the epigenetic regulation of the host chromatin, the impairment of the trans-kingdom antifungal RNAi machinery, and diverse classes of immunity-associated host proteins. These effector-targeted pathways are widely conserved among different hosts and regulate a broad array of plant cellular processes. Thus, these nuclear sites constitute meaningful targets for effectors to subvert the plant defence system and acquire resources for pathogenic propagation. This review provides an extensive and comparative compilation of diverse plant microbe nuclear effector libraries, thereby highlighting the distinct and conserved mechanisms these effectors employ to modulate plant cellular processes for the pathogen's profit.
Collapse
Affiliation(s)
- William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ronny Vӧlz
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
Sobol G, Majhi BB, Pasmanik-Chor M, Zhang N, Roberts HM, Martin GB, Sessa G. Tomato receptor-like cytoplasmic kinase Fir1 is involved in flagellin signaling and preinvasion immunity. PLANT PHYSIOLOGY 2023; 192:565-581. [PMID: 36511947 PMCID: PMC10152693 DOI: 10.1093/plphys/kiac577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 05/03/2023]
Abstract
Detection of bacterial flagellin by the tomato (Solanum lycopersicum) receptors Flagellin sensing 2 (Fls2) and Fls3 triggers activation of pattern-triggered immunity (PTI). We identified the tomato Fls2/Fls3-interacting receptor-like cytoplasmic kinase 1 (Fir1) protein that is involved in PTI triggered by flagellin perception. Fir1 localized to the plasma membrane and interacted with Fls2 and Fls3 in yeast (Saccharomyces cerevisiae) and in planta. CRISPR/Cas9-generated tomato fir1 mutants were impaired in several immune responses induced by the flagellin-derived peptides flg22 and flgII-28, including resistance to Pseudomonas syringae pv. tomato (Pst) DC3000, production of reactive oxygen species, and enhanced PATHOGENESIS-RELATED 1b (PR1b) gene expression, but not MAP kinase phosphorylation. Remarkably, fir1 mutants developed larger Pst DC3000 populations than wild-type plants, whereas no differences were observed in wild-type and fir1 mutant plants infected with the flagellin deficient Pst DC3000ΔfliC. fir1 mutants failed to close stomata when infected with Pst DC3000 and Pseudomonas fluorescens and were more susceptible to Pst DC3000 than wild-type plants when inoculated by dipping, but not by vacuum-infiltration, indicating involvement of Fir1 in preinvasion immunity. RNA-seq analysis detected fewer differentially expressed genes in fir1 mutants and altered expression of jasmonic acid (JA)-related genes. In support of JA response deregulation in fir1 mutants, these plants were similarly susceptible to Pst DC3000 and to the coronatine-deficient Pst DC3118 strain, and more resistant to the necrotrophic fungus Botrytis cinerea following PTI activation. These results indicate that tomato Fir1 is required for a subset of flagellin-triggered PTI responses and support a model in which Fir1 negatively regulates JA signaling during PTI activation.
Collapse
Affiliation(s)
- Guy Sobol
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Bharat Bhusan Majhi
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S. Wise Faculty of Life Science, Tel-Aviv University, 69978 Tel- Aviv, Israel
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Holly M Roberts
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Guido Sessa
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
16
|
Umer MJ, Zheng J, Yang M, Batool R, Abro AA, Hou Y, Xu Y, Gebremeskel H, Wang Y, Zhou Z, Cai X, Liu F, Zhang B. Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Funct Integr Genomics 2023; 23:142. [PMID: 37121989 DOI: 10.1007/s10142-023-01065-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
The soil-borne pathogen Verticillium dahliae, also referred as "The Cotton Cancer," is responsible for causing Verticillium wilt in cotton crops, a destructive disease with a global impact. To infect cotton plants, the pathogen employs multiple virulence mechanisms such as releasing enzymes that degrade cell walls, activating genes that contribute to virulence, and using protein effectors. Conversely, cotton plants have developed numerous defense mechanisms to combat the impact of V. dahliae. These include strengthening the cell wall by producing lignin and depositing callose, discharging reactive oxygen species, and amassing hormones related to defense. Despite the efforts to develop resistant cultivars, there is still no permanent solution to Verticillium wilt due to a limited understanding of the underlying molecular mechanisms that drive both resistance and pathogenesis is currently prevalent. To address this challenge, cutting-edge technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), host-induced gene silencing (HIGS), and gene delivery via nano-carriers could be employed as effective alternatives to control the disease. This article intends to present an overview of V. dahliae virulence mechanisms and discuss the different cotton defense mechanisms against Verticillium wilt, including morphophysiological and biochemical responses and signaling pathways including jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and strigolactones (SLs). Additionally, the article highlights the significance of microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) in gene expression regulation, as well as the different methods employed to identify and functionally validate genes to achieve resistance against this disease. Gaining a more profound understanding of these mechanisms could potentially result in the creation of more efficient strategies for combating Verticillium wilt in cotton crops.
Collapse
Affiliation(s)
- Muhammad Jawad Umer
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Zheng
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
| | - Mengying Yang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aamir Ali Abro
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Haileslassie Gebremeskel
- Mehoni Agricultural Research Center, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Yuhong Wang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - ZhongLi Zhou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.
| | - Baohong Zhang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
17
|
Abstract
Robust plant immune systems are fine-tuned by both protein-coding genes and non-coding RNAs. Long non-coding RNAs (lncRNAs) refer to RNAs with a length of more than 200 nt and usually do not have protein-coding function and do not belong to any other well-known non-coding RNA types. The non-protein-coding, low expression, and non-conservative characteristics of lncRNAs restrict their recognition. Although studies of lncRNAs in plants are in the early stage, emerging studies have shown that plants employ lncRNAs to regulate plant immunity. Moreover, in response to stresses, numerous lncRNAs are differentially expressed, which manifests the actions of low-expressed lncRNAs and makes plant-microbe/insect interactions a convenient system to study the functions of lncRNAs. Here, we summarize the current advances in plant lncRNAs, discuss their regulatory effects in different stages of plant immunity, and highlight their roles in diverse plant-microbe/insect interactions. These insights will not only strengthen our understanding of the roles and actions of lncRNAs in plant-microbe/insect interactions but also provide novel insight into plant immune responses and a basis for further research in this field.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wenling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- HainanYazhou Bay Seed Lab, Sanya, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
18
|
Singh SK, Shree A, Verma S, Singh K, Kumar K, Srivastava V, Singh R, Saxena S, Singh AP, Pandey A, Verma PK. The nuclear effector ArPEC25 from the necrotrophic fungus Ascochyta rabiei targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis, increasing host susceptibility. THE PLANT CELL 2023; 35:1134-1159. [PMID: 36585808 PMCID: PMC10015165 DOI: 10.1093/plcell/koac372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 05/29/2023]
Abstract
Fungal pathogens deploy a barrage of secreted effectors to subvert host immunity, often by evading, disrupting, or altering key components of transcription, defense signaling, and metabolic pathways. However, the underlying mechanisms of effectors and their host targets are largely unexplored in necrotrophic fungal pathogens. Here, we describe the effector protein Ascochyta rabiei PEXEL-like Effector Candidate 25 (ArPEC25), which is secreted by the necrotroph A. rabiei, the causal agent of Ascochyta blight disease in chickpea (Cicer arietinum), and is indispensable for virulence. After entering host cells, ArPEC25 localizes to the nucleus and targets the host LIM transcription factor CaβLIM1a. CaβLIM1a is a transcriptional regulator of CaPAL1, which encodes phenylalanine ammonia lyase (PAL), the regulatory, gatekeeping enzyme of the phenylpropanoid pathway. ArPEC25 inhibits the transactivation of CaβLIM1a by interfering with its DNA-binding ability, resulting in negative regulation of the phenylpropanoid pathway and decreased levels of intermediates of lignin biosynthesis, thereby suppressing lignin production. Our findings illustrate the role of fungal effectors in enhancing virulence by targeting a key defense pathway that leads to the biosynthesis of various secondary metabolites and antifungal compounds. This study provides a template for the study of less explored necrotrophic effectors and their host target functions.
Collapse
Affiliation(s)
- Shreenivas Kumar Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Shree
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sandhya Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kunal Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Srivastava
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Samiksha Saxena
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Agam Prasad Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Pandey
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
19
|
Sun L, Wu X, Diao J, Zhang J. Pathogenesis mechanisms of phytopathogen effectors. WIREs Mech Dis 2023; 15:e1592. [PMID: 36593734 DOI: 10.1002/wsbm.1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 01/04/2023]
Abstract
Plants commonly face the threat of invasion by a wide variety of pathogens and have developed sophisticated immune mechanisms to defend against infectious diseases. However, successful pathogens have evolved diverse mechanisms to overcome host immunity and cause diseases. Different cell structures and unique cellular organelles carried by plant cells endow plant-specific defense mechanisms, in addition to the common framework of innate immune system shared by both plants and animals. Effectors serve as crucial virulence weapons employed by phytopathogens to disarm the plant immune system and promote infection. Here we summarized the many diverse strategies by which phytopathogen effectors overcome plant defense and prospected future perspectives. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lifan Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyun Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Diao
- Northeast Forestry University, College of Forestry, Harbin, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Kong F, Yang L. Pathogen-triggered changes in plant development: Virulence strategies or host defense mechanism? Front Microbiol 2023; 14:1122947. [PMID: 36876088 PMCID: PMC9975269 DOI: 10.3389/fmicb.2023.1122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Plants, as sessile organisms, are constantly exposed to pathogens in nature. Plants rely on physical barriers, constitutive chemical defenses, and sophisticated inducible immunity to fight against pathogens. The output of these defense strategies is highly associated with host development and morphology. Successful pathogens utilize various virulence strategies to colonize, retrieve nutrients, and cause disease. In addition to the overall defense-growth balance, the host-pathogen interactions often lead to changes in the development of specific tissues/organs. In this review, we focus on recent advances in understanding the molecular mechanisms of pathogen-induced changes in plants' development. We discuss that changes in host development could be a target of pathogen virulence strategies or an active defense strategy of plants. Current and ongoing research about how pathogens shape plant development to increase their virulence and causes diseases could give us novel views on plant disease control.
Collapse
Affiliation(s)
- Feng Kong
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Li Yang
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| |
Collapse
|
21
|
Zhao Y, Yang B, Xu H, Wu J, Xu Z, Wang Y. The Phytophthora effector Avh94 manipulates host jasmonic acid signaling to promote infection. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2199-2210. [PMID: 36067028 DOI: 10.1111/jipb.13358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The oomycete pathogen Phytophthora sojae is a causal agent of soybean root rot. Upon colonization of soybeans, P. sojae secretes various RXLR effectors to suppress host immune responses, supporting successful infection. Previous research has demonstrated that the RXLR effector Avh94 functions as a virulence effector, but the molecular mechanism underlying its role in virulence remains unknown. Here, we demonstrate that Avh94 overexpression in plants and pathogens promotes Phytophthora infection. Avh94 interacts with soybean JAZ1/2, which is a repressor of jasmonic acid (JA) signaling. Avh94 stabilizes JAZ1/2 to inhibit JA signaling and silencing of JAZ1/2 enhances soybean resistance against P. sojae. Moreover, P. sojae lines overexpressing Avh94 inhibit JA signaling. Furthermore, exogenous application of methyl jasmonate improves plant resistance to Phytophthora. Taken together, these findings suggest that P. sojae employs an RXLR effector to hijack JA signaling and thereby promote infection.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huawei Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinbin Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyang Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
22
|
Cao P, Chen J, Wang R, Zhao M, Zhang S, An Y, Liu P, Zhang M. A conserved type III effector RipB is recognized in tobacco and contributes to Ralstonia solanacearum virulence in susceptible host plants. Biochem Biophys Res Commun 2022; 631:18-24. [PMID: 36162325 DOI: 10.1016/j.bbrc.2022.09.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022]
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt, causes devastating diseases in a wide range of plants including potato, tomato, pepper and tobacco. The pathogen delivers approximately 70 type III effectors (T3Es) into plant cells during infection. In this study, we confirmed that a T3E RipB is recognized in tobacco. We further demonstrated that RipB is conserved among R. solanacearum isolates and five different ripB alleles are all recognized in tobacco. The ripB from GMI1000 was transformed into susceptible host Arabidopsis, and a defect in root development was observed in ripB-transgenic plants. Pathogen inoculation assays showed that ripB expression promoted plant susceptibility to R. solanacearum infection, indicating that RipB contributes to pathogen virulence in Arabidopsis. Expression of ripB in roq1 mutant partially suppressed reactive oxygen species production, confirming that RipB interferes with plant basal defense. Interestingly, ripB expression promoted cytokinin-related gene expression in Arabidopsis, suggesting a role of cytokinin signaling pathway in plant-R. solanacearum interactions. Finally, RipB harbors potential 14-3-3 binding motifs, but the associations between RipB and 14-3-3 proteins were undetectable in yeast two-hybrid assay. Together, our results demonstrate that multiple ripB alleles are recognized in Nicotiana, and RipB suppresses basal defense in susceptible host to promote R. solanacearum infection.
Collapse
Affiliation(s)
- Peng Cao
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jialan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, 350013, China
| | - Mengwei Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangxi Zhang
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuyan An
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, 350013, China.
| | - Meixiang Zhang
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
23
|
Wang Y, Li N, Zhan J, Wang X, Zhou XR, Shi J, Wang H. Genome-wide analysis of the JAZ subfamily of transcription factors and functional verification of BnC08.JAZ1-1 in Brassica napus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:93. [PMID: 36096884 PMCID: PMC9469596 DOI: 10.1186/s13068-022-02192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/30/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND JAZ subfamily plays crucial roles in growth and development, stress, and hormone responses in various plant species. Despite its importance, the structural and functional analyses of the JAZ subfamily in Brassica napus are still limited. RESULTS Comparing to the existence of 12 JAZ genes (AtJAZ1-AtJAZ12) in Arabidopsis, there are 28, 31, and 56 JAZ orthologues in the reference genome of B. rapa, B. oleracea, and B. napus, respectively, in accordance with the proven triplication events during the evolution of Brassicaceae. The phylogenetic analysis showed that 127 JAZ proteins from A. thaliana, B. rapa, B. oleracea, and B. napus could fall into five groups. The structure analysis of all 127 JAZs showed that these proteins have the common motifs of TIFY and Jas, indicating their conservation in Brassicaceae species. In addition, the cis-element analysis showed that the main motif types are related to phytohormones, biotic and abiotic stresses. The qRT-PCR of the representative 11 JAZ genes in B. napus demonstrated that different groups of BnJAZ individuals have distinct patterns of expression under normal conditions or treatments with distinctive abiotic stresses and phytohormones. Especially, the expression of BnJAZ52 (BnC08.JAZ1-1) was significantly repressed by abscisic acid (ABA), gibberellin (GA), indoleacetic acid (IAA), polyethylene glycol (PEG), and NaCl treatments, while induced by methyl jasmonate (MeJA), cold and waterlogging. Expression pattern analysis showed that BnC08.JAZ1-1 was mainly expressed in the vascular bundle and young flower including petal, pistil, stamen, and developing ovule, but not in the stem, leaf, and mature silique and seed. Subcellular localization showed that the protein was localized in the nucleus, in line with its orthologues in Arabidopsis. Overexpression of BnC08.JAZ1-1 in Arabidopsis resulted in enhanced seed weight, likely through regulating the expression of the downstream response genes involved in the ubiquitin-proteasome pathway and phospholipid metabolism pathway. CONCLUSIONS The systematic identification, phylogenetic, syntenic, and expression analyses of BnJAZs subfamily improve our understanding of their roles in responses to stress and phytohormone in B. napus. In addition, the preliminary functional validation of BnC08.JAZ1-1 in Arabidopsis demonstrated that this subfamily might also play a role in regulating seed weight.
Collapse
Affiliation(s)
- Ying Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Na Li
- grid.464499.2The Laboratory of Melon Crops, Zhengzhou Fruit Research Institute of the Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province China
| | - Jiepeng Zhan
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xinfa Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Xue-Rong Zhou
- grid.1016.60000 0001 2173 2719Commonwealth Scientific & Industrial Research Organisation (CSIRO) Agriculture &Food, Canberra, ACT Australia
| | - Jiaqin Shi
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hanzhong Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
24
|
Stroud EA, Jayaraman J, Templeton MD, Rikkerink EHA. Comparison of the pathway structures influencing the temporal response of salicylate and jasmonate defence hormones in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:952301. [PMID: 36160984 PMCID: PMC9504473 DOI: 10.3389/fpls.2022.952301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Defence phytohormone pathways evolved to recognize and counter multiple stressors within the environment. Salicylic acid responsive pathways regulate the defence response to biotrophic pathogens whilst responses to necrotrophic pathogens, herbivory, and wounding are regulated via jasmonic acid pathways. Despite their contrasting roles in planta, the salicylic acid and jasmonic acid defence networks share a common architecture, progressing from stages of biosynthesis, to modification, regulation, and response. The unique structure, components, and regulation of each stage of the defence networks likely contributes, in part, to the speed, establishment, and longevity of the salicylic acid and jasmonic acid signaling pathways in response to hormone treatment and various biotic stressors. Recent advancements in the understanding of the Arabidopsis thaliana salicylic acid and jasmonic acid signaling pathways are reviewed here, with a focus on how the structure of the pathways may be influencing the temporal regulation of the defence responses, and how biotic stressors and the many roles of salicylic acid and jasmonic acid in planta may have shaped the evolution of the signaling networks.
Collapse
Affiliation(s)
- Erin A. Stroud
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jay Jayaraman
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Bioprotection Aotearoa, Lincoln, New Zealand
| | - Matthew D. Templeton
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Bioprotection Aotearoa, Lincoln, New Zealand
| | - Erik H. A. Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
25
|
Sun Y, Shao X, Zhang Y, Han L, Huang J, Xie Y, Liu J, Deng X. Maintenance of tRNA and elongation factors supports T3SS proteins translational elongations in pathogenic bacteria during nutrient starvation. Cell Biosci 2022; 12:147. [PMID: 36064743 PMCID: PMC9446538 DOI: 10.1186/s13578-022-00884-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sufficient nutrition contributes to rapid translational elongation and protein synthesis in eukaryotic cells and prokaryotic bacteria. Fast synthesis and accumulation of type III secretion system (T3SS) proteins conduce to the invasion of pathogenic bacteria into the host cells. However, the translational elongation patterns of T3SS proteins in pathogenic bacteria under T3SS-inducing conditions remain unclear. Here, we report a mechanism of translational elongation of T3SS regulators, effectors and structural protein in four model pathogenic bacteria (Pseudomonas syringae, Pseudomonas aeruginosa, Xanthomonas oryzae and Ralstonia solanacearum) and a clinical isolate (Pseudomonas aeruginosa UCBPP-PA14) under nutrient-limiting conditions. We proposed a luminescence reporter system to quantitatively determine the translational elongation rates (ERs) of T3SS regulators, effectors and structural protein under different nutrient-limiting conditions and culture durations.
Results
The translational ERs of T3SS regulators, effectors and structural protein in these pathogenic bacteria were negatively regulated by the nutrient concentration and culture duration. The translational ERs in 0.5× T3SS-inducing medium were the highest of all tested media. In 1× T3SS-inducing medium, the translational ERs were highest at 0 min and then rapidly decreased. The translational ERs of T3SS regulators, effectors and structural protein were inhibited by tRNA degradation and by reduced levels of elongation factors (EFs).
Conclusions
Rapid translational ER and synthesis of T3SS protein need adequate tRNAs and EFs in nutrient-limiting conditions. Numeric presentation of T3SS translation visually indicates the invasion of bacteria and provides new insights into T3SS expression that can be applied to other pathogenic bacteria.
Collapse
|
26
|
Sohn SI, Pandian S, Rakkammal K, Largia MJV, Thamilarasan SK, Balaji S, Zoclanclounon YAB, Shilpha J, Ramesh M. Jasmonates in plant growth and development and elicitation of secondary metabolites: An updated overview. FRONTIERS IN PLANT SCIENCE 2022; 13:942789. [PMID: 36035665 PMCID: PMC9407636 DOI: 10.3389/fpls.2022.942789] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Secondary metabolites are incontestably key specialized molecules with proven health-promoting effects on human beings. Naturally synthesized secondary metabolites are considered an important source of pharmaceuticals, food additives, cosmetics, flavors, etc., Therefore, enhancing the biosynthesis of these relevant metabolites by maintaining natural authenticity is getting more attention. The application of exogenous jasmonates (JAs) is well recognized for its ability to trigger plant growth and development. JAs have a large spectrum of action that covers seed germination, hypocotyl growth regulation, root elongation, petal expansion, and apical hook growth. This hormone is considered as one of the key regulators of the plant's growth and development when the plant is under biotic or abiotic stress. The JAs regulate signal transduction through cross-talking with other genes in plants and thereby deploy an appropriate metabolism in the normal or stressed conditions. It has also been found to be an effective chemical elicitor for the synthesis of naturally occurring secondary metabolites. This review discusses the significance of JAs in the growth and development of plants and the successful outcomes of jasmonate-driven elicitation of secondary metabolites including flavonoids, anthraquinones, anthocyanin, xanthonoid, and more from various plant species. However, as the enhancement of these metabolites is essentially measured via in vitro cell culture or foliar spray, the large-scale production is significantly limited. Recent advancements in the plant cell culture technology lay the possibilities for the large-scale manufacturing of plant-derived secondary metabolites. With the insights about the genetic background of the metabolite biosynthetic pathway, synthetic biology also appears to be a potential avenue for accelerating their production. This review, therefore, also discussed the potential manoeuvres that can be deployed to synthesis plant secondary metabolites at the large-scale using plant cell, tissue, and organ cultures.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | | | - Senthil Kumar Thamilarasan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | - Yedomon Ange Bovys Zoclanclounon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jayabalan Shilpha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
27
|
Alam ST, Sarowar S, Mondal HA, Makandar R, Chowdhury Z, Louis J, Shah J. Opposing effects of MYZUS PERSICAE-INDUCED LIPASE 1 and jasmonic acid influence the outcome of Arabidopsis thaliana-Fusarium graminearum interaction. MOLECULAR PLANT PATHOLOGY 2022; 23:1141-1153. [PMID: 35396792 PMCID: PMC9276950 DOI: 10.1111/mpp.13216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 05/21/2023]
Abstract
Fusarium graminearum (Fg) is an important fungal pathogen of small grain cereals that can also infect Arabidopsis thaliana. In Arabidopsis, jasmonic acid (JA) signalling involving JASMONATE RESISTANT 1 (JAR1), which synthesizes JA-isoleucine, a signalling form of JA, promotes susceptibility to Fg. Here we show that Arabidopsis MYZUS PERSICAE-INDUCED LIPASE 1 (MPL1), via its influence on limiting JA accumulation, restricts Fg infection. MPL1 expression was up-regulated in response to Fg infection, and MPL1-OE plants, which overexpress MPL1, exhibited enhanced resistance against Fg. In comparison, disease severity was higher on the mpl1 mutant than the wild type. JA content was lower in MPL1-OE and higher in mpl1 than in the wild type, indicating that MPL1 limits JA accumulation. Pharmacological experiments confirmed the importance of MPL1-determined restriction of JA accumulation on curtailment of Fg infection. Methyl-JA application attenuated the MPL1-OE-conferred resistance, while the JA biosynthesis inhibitor ibuprofen enhanced resistance in mpl1. Also, the JA biosynthesis-defective opr3 mutant was epistatic to mpl1, resulting in enhanced resistance in mpl1 opr3 plants. In comparison, JAR1 was not essential for the mpl1-conferred susceptibility to Fg. Considering that methyl-JA promotes Fg growth in culture, we suggest that in part MPL1 curtails disease by limiting the availability of a plant-derived Fg growth-promoting factor.
Collapse
Affiliation(s)
- Syeda T. Alam
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- BioDiscovery InstituteUniversity of North TexasDentonTexasUSA
| | - Sujon Sarowar
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- Present address:
Genetic Improvement of Fruits and Vegetables Laboratory, United States Department of Agriculture‐Agricultural Research ServiceChatsworthNew JerseyUSA
| | - Hossain A. Mondal
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- College of Postgraduate Studies in Agricultural Sciences (CPGS‐AS)under Central Agricultural UniversityImphalIndia
| | - Ragiba Makandar
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- Department of Plant SciencesUniversity of HyderabadGachibowliIndia
| | - Zulkarnain Chowdhury
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- BioDiscovery InstituteUniversity of North TexasDentonTexasUSA
| | - Joe Louis
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- Department of Entomology and Department of BiochemistryUniversity of NebraskaLincolnNebraskaUSA
| | - Jyoti Shah
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- BioDiscovery InstituteUniversity of North TexasDentonTexasUSA
| |
Collapse
|
28
|
Zhao Z, Fan J, Yang P, Wang Z, Opiyo SO, Mackey D, Xia Y. Involvement of Arabidopsis Acyl Carrier Protein 1 in PAMP-Triggered Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:681-693. [PMID: 35343247 DOI: 10.1094/mpmi-02-22-0049-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant fatty acids (FAs) and lipids are essential in storing energy and act as structural components for cell membranes and signaling molecules for plant growth and stress responses. Acyl carrier proteins (ACPs) are small acidic proteins that covalently bind the fatty acyl intermediates during the elongation of FAs. The Arabidopsis thaliana ACP family has eight members. Through reverse genetic, molecular, and biochemical approaches, we have discovered that ACP1 localizes to the chloroplast and limits the magnitude of pattern-triggered immunity (PTI) against the bacterial pathogen Pseudomonas syringae pv. tomato. Mutant acp1 plants have reduced levels of linolenic acid (18:3), which is the primary precursor for biosynthesis of the phytohormone jasmonic acid (JA), and a corresponding decrease in the abundance of JA. Consistent with the known antagonistic relationship between JA and salicylic acid (SA), acp1 mutant plants also accumulate a higher level of SA and display corresponding shifts in JA- and SA-regulated transcriptional outputs. Moreover, methyl JA and linolenic acid treatments cause an apparently enhanced decrease of resistance against P. syringae pv. tomato in acp1 mutants than that in WT plants. The ability of ACP1 to prevent this hormone imbalance likely underlies its negative impact on PTI in plant defense. Thus, ACP1 links FA metabolism to stress hormone homeostasis to be negatively involved in PTI in Arabidopsis plant defense. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
| | - Jiangbo Fan
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Piao Yang
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Stephen Obol Opiyo
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Ye Xia
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
| |
Collapse
|
29
|
Nakano M, Omae N, Tsuda K. Inter-organismal phytohormone networks in plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102258. [PMID: 35820321 DOI: 10.1016/j.pbi.2022.102258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 06/10/2022] [Indexed: 05/14/2023]
Abstract
Phytohormones are produced by plants and play central roles in interactions with pathogenic and beneficial microbes as well as plant growth and development. Each phytohormone pathway consists of its biosynthesis, transport, perception, and signaling and is intertwined with each other at various levels to form phytohormone networks in plants. Different kinds of microbes also produce phytohormones that exert physiological roles within microbes and manipulate phytohormone networks in plants by using phytohormones, their mimics, and proteinaceous effectors. In turn, plant-derived phytohormones can directly or indirectly through plant signaling networks affect microbial metabolism and community assembly. Therefore, phytohormone networks in plants and microbes are connected through plant and microbial phytohormones and other molecules to form inter-organismal phytohormone networks. In this review, we summarize recent progress on molecular mechanisms of inter-organismal phytohormone networks and discuss future steps necessary for advancing our understanding of phytohormone networks.
Collapse
Affiliation(s)
- Masahito Nakano
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Natsuki Omae
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
30
|
Thieffry A, López-Márquez D, Bornholdt J, Malekroudi MG, Bressendorff S, Barghetti A, Sandelin A, Brodersen P. PAMP-triggered genetic reprogramming involves widespread alternative transcription initiation and an immediate transcription factor wave. THE PLANT CELL 2022; 34:2615-2637. [PMID: 35404429 PMCID: PMC9252474 DOI: 10.1093/plcell/koac108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/07/2022] [Indexed: 05/13/2023]
Abstract
Immune responses triggered by pathogen-associated molecular patterns (PAMPs) are key to pathogen defense, but drivers and stabilizers of the growth-to-defense genetic reprogramming remain incompletely understood in plants. Here, we report a time-course study of the establishment of PAMP-triggered immunity (PTI) using cap analysis of gene expression. We show that around 15% of all transcription start sites (TSSs) rapidly induced during PTI define alternative transcription initiation events. From these, we identify clear examples of regulatory TSS change via alternative inclusion of target peptides or domains in encoded proteins, or of upstream open reading frames in mRNA leader sequences. We also find that 60% of PAMP response genes respond earlier than previously thought. In particular, a cluster of rapidly and transiently PAMP-induced genes is enriched in transcription factors (TFs) whose functions, previously associated with biological processes as diverse as abiotic stress adaptation and stem cell activity, appear to converge on growth restriction. Furthermore, examples of known potentiators of PTI, in one case under direct mitogen-activated protein kinase control, support the notion that the rapidly induced TFs could constitute direct links to PTI signaling pathways and drive gene expression changes underlying establishment of the immune state.
Collapse
Affiliation(s)
- Axel Thieffry
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Jette Bornholdt
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | - Simon Bressendorff
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Andrea Barghetti
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | | |
Collapse
|
31
|
Transcriptional regulation of plant innate immunity. Essays Biochem 2022; 66:607-620. [PMID: 35726519 PMCID: PMC9528082 DOI: 10.1042/ebc20210100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022]
Abstract
Transcriptional reprogramming is an integral part of plant immunity. Tight regulation of the immune transcriptome is essential for a proper response of plants to different types of pathogens. Consequently, transcriptional regulators are proven targets of pathogens to enhance their virulence. The plant immune transcriptome is regulated by many different, interconnected mechanisms that can determine the rate at which genes are transcribed. These include intracellular calcium signaling, modulation of the redox state, post-translational modifications of transcriptional regulators, histone modifications, DNA methylation, modulation of RNA polymerases, alternative transcription inititation, the Mediator complex and regulation by non-coding RNAs. In addition, on their journey from transcription to translation, mRNAs are further modulated through mechanisms such as nuclear RNA retention, storage of mRNA in stress granules and P-bodies, and post-transcriptional gene silencing. In this review, we highlight the latest insights into these mechanisms. Furthermore, we discuss some emerging technologies that promise to greatly enhance our understanding of the regulation of the plant immune transcriptome in the future.
Collapse
|
32
|
Zhang S, Li C, Si J, Han Z, Chen D. Action Mechanisms of Effectors in Plant-Pathogen Interaction. Int J Mol Sci 2022; 23:6758. [PMID: 35743201 PMCID: PMC9224169 DOI: 10.3390/ijms23126758] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023] Open
Abstract
Plant pathogens are one of the main factors hindering the breeding of cash crops. Pathogens, including oomycetes, fungus, and bacteria, secrete effectors as invasion weapons to successfully invade and propagate in host plants. Here, we review recent advances made in the field of plant-pathogen interaction models and the action mechanisms of phytopathogenic effectors. The review illustrates how effectors from different species use similar and distinct strategies to infect host plants. We classify the main action mechanisms of effectors in plant-pathogen interactions according to the infestation process: targeting physical barriers for disruption, creating conditions conducive to infestation, protecting or masking themselves, interfering with host cell physiological activity, and manipulating plant downstream immune responses. The investigation of the functioning of plant pathogen effectors contributes to improved understanding of the molecular mechanisms of plant-pathogen interactions. This understanding has important theoretical value and is of practical significance in plant pathology and disease resistance genetics and breeding.
Collapse
Affiliation(s)
| | | | | | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| |
Collapse
|
33
|
Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays Biochem 2022; 66:647-656. [PMID: 35698792 DOI: 10.1042/ebc20210090] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 12/25/2022]
Abstract
The phytohormones salicylic acid (SA) and jasmonic acid (JA) are major players in plant immunity. Numerous studies have provided evidence that SA- and JA-mediated signaling interact with each other (SA-JA crosstalk) to orchestrate plant immune responses against pathogens. At the same time, SA-JA crosstalk is often exploited by pathogens to promote their virulence. In this review, we summarize our current knowledge of molecular mechanisms for and modulations of SA-JA crosstalk during pathogen infection.
Collapse
|
34
|
Kashihara S, Nishimura T, Noutoshi Y, Yamamoto M, Toyoda K, Ichinose Y, Matsui H. HopAZ1, a type III effector of Pseudomonas amygdali pv. tabaci, induces a hypersensitive response in tobacco wildfire-resistant Nicotiana tabacum 'N509'. MOLECULAR PLANT PATHOLOGY 2022; 23:885-894. [PMID: 35233886 PMCID: PMC9104263 DOI: 10.1111/mpp.13198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 05/27/2023]
Abstract
Pseudomonas amygdali pv. tabaci (formerly Pseudomonas syringae pv. tabaci; Pta) is a gram-negative bacterium that causes bacterial wildfire disease in Nicotiana tabacum. The pathogen establishes infections by using a type III secretion system to inject type III effector proteins (T3Es) into cells, thereby interfering with the host__s immune system. To counteract the effectors, plants have evolved disease-resistance genes and mechanisms to induce strong resistance on effector recognition. By screening a series of Pta T3E-deficient mutants, we have identified HopAZ1 as the T3E that induces disease resistance in N. tabacum 'N509'. Inoculation with the Pta ∆hopAZ1 mutant did not induce resistance to Pta in N509. We also found that the Pta ∆hopAZ1 mutant did not induce a hypersensitive response and promoted severe disease symptoms in N509. Furthermore, a C-terminal truncated HopAZ1 abolished HopAZ1-dependent cell death in N509. These results indicate that HopAZ1 is the avirulence factor that induces resistance to Pta by N509.
Collapse
Affiliation(s)
- Sachi Kashihara
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Takafumi Nishimura
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Yuki Ichinose
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Hidenori Matsui
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| |
Collapse
|
35
|
Huang X, Huang X, Guo L, He L, Xiao D, Zhan J, Wang A, Liang R. Comparative Transcriptome Analysis Provides Insights into the Resistance in Pueraria [ Pueraria lobata (Willd.) Ohwi] in Response to Pseudo-Rust Disease. Int J Mol Sci 2022; 23:5223. [PMID: 35563613 PMCID: PMC9101505 DOI: 10.3390/ijms23095223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pueraria lobata is an important medicinal and edible homologous plant that is widely cultivated in Asian countries. However, its production and quality are seriously threatened by its susceptibility to pseudo-rust disease. The underlying molecular mechanisms are poorly known, particularly from a transcriptional perspective. Pseudo-rust disease is a major disease in pueraria, primarily caused by Synchytrium puerariae Miy (SpM). In this study, transcriptomic profiles were analyzed and compared between two pueraria varieties: the disease-resistant variety (GUIGE18) and the susceptible variety (GUIGE8). The results suggest that the number of DEGs in GUIGE18 is always more than in GUIGE8 at each of the three time points after SpM infection, indicating that their responses to SpM infection may be different, and that the active response of GUIGE18 to SpM infection may occur earlier than that of GUIGE8. A total of 7044 differentially expressed genes (DEGs) were identified, and 406 co-expressed DEGs were screened out. Transcription factor analysis among the DEGs revealed that the bHLH, WRKY, ERF, and MYB families may play an important role in the interaction between pueraria and pathogens. A GO and KEGG enrichment analysis of these DEGs showed that they were mainly involved in the following pathways: metabolic, defense response, plant hormone signal transduction, MAPK signaling pathway-plant, plant pathogen interaction, flavonoid biosynthesis, phenylpropanoid biosynthesis, and secondary metabolite biosynthesis. The CPK, CESA, PME, and CYP gene families may play important roles in the early stages after SpM infection. The DEGs that encode antioxidase (CAT, XDH, and SOD) were much more up-regulated. Defense enzyme activity, endogenous hormones, and flavonoid content changed significantly in the two varieties at the three infection stages. Finally, we speculated on the regulatory pathways of pueraria pseudo-rust and found that an oxidation-reduction process, flavonoid biosynthesis, and ABA signaling genes may be associated with the response to SpM infection in pueraria. These results expand the understanding of pueraria resistance and physiological regulations by multiple pathways.
Collapse
Affiliation(s)
- Xinlu Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Xiaoxi Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Lijun Guo
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Renfan Liang
- Academy of Agricultural Science, Guangxi University, Nanning 530004, China
| |
Collapse
|
36
|
Qi P, Huang M, Hu X, Zhang Y, Wang Y, Li P, Chen S, Zhang D, Cao S, Zhu W, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling. THE PLANT CELL 2022; 34:1666-1683. [PMID: 35043960 PMCID: PMC9048914 DOI: 10.1093/plcell/koac015] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/13/2022] [Indexed: 05/25/2023]
Abstract
The bacterial pathogen Ralstonia solanacearum causes wilt disease on Arabidopsis thaliana and tomato (Solanum lycopersicum). This pathogen uses type III effectors to inhibit the plant immune system; however, how individual effectors interfere with plant immune responses, including transcriptional reprograming, remain elusive. Here, we show that the type III effector RipAB targets Arabidopsis TGACG SEQUENCE-SPECIFIC BINDING PROTEIN (TGA) transcription factors, the central regulators of plant immune gene regulation, via physical interaction in the nucleus to dampen immune responses. RipAB was required for R. solanacearum virulence on wild-type tomato and Arabidopsis but not Arabidopsis tga1 tga4 and tga2 tga5 tga6 mutants. Stable expression of RipAB in Arabidopsis suppressed the pathogen-associated molecular pattern-triggered reactive oxygen species (ROS) burst and immune gene induction as well as salicylic acid (SA) regulons including RBOHD and RBOHF, responsible for ROS production, all of which were phenocopied by the tga1 tga4 and tga2 tga5 tga6 mutants. We found that TGAs directly activate RBOHD and RBOHF expression and that RipAB inhibits this through interfering with the recruitment of RNA polymerase II. These results suggest that TGAs are the bona fide and major virulence targets of RipAB, which disrupts SA signaling by inhibiting TGA activity to achieve successful infection.
Collapse
Affiliation(s)
| | | | | | - Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ying Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Pengyue Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyun Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sen Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wanting Zhu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bo Li
- Author for correspondence:
| |
Collapse
|
37
|
Raffeiner M, Üstün S, Guerra T, Spinti D, Fitzner M, Sonnewald S, Baldermann S, Börnke F. The Xanthomonas type-III effector XopS stabilizes CaWRKY40a to regulate defense responses and stomatal immunity in pepper (Capsicum annuum). THE PLANT CELL 2022; 34:1684-1708. [PMID: 35134217 PMCID: PMC9048924 DOI: 10.1093/plcell/koac032] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/20/2022] [Indexed: 05/26/2023]
Abstract
As a critical part of plant immunity, cells that are attacked by pathogens undergo rapid transcriptional reprogramming to minimize virulence. Many bacterial phytopathogens use type III effector (T3E) proteins to interfere with plant defense responses, including this transcriptional reprogramming. Here, we show that Xanthomonas outer protein S (XopS), a T3E of Xanthomonas campestris pv. vesicatoria (Xcv), interacts with and inhibits proteasomal degradation of WRKY40, a transcriptional regulator of defense gene expression. Virus-induced gene silencing of WRKY40 in pepper (Capsicum annuum) enhanced plant tolerance to Xcv infection, indicating that WRKY40 represses immunity. Stabilization of WRKY40 by XopS reduces the expression of its targets, which include salicylic acid-responsive genes and the jasmonic acid signaling repressor JAZ8. Xcv bacteria lacking XopS display significantly reduced virulence when surface inoculated onto susceptible pepper leaves. XopS delivery by Xcv, as well as ectopic expression of XopS in Arabidopsis thaliana or Nicotiana benthamiana, prevented stomatal closure in response to bacteria and biotic elicitors. Silencing WRKY40 in pepper or N. benthamiana abolished XopS's ability to prevent stomatal closure. This suggests that XopS interferes with both preinvasion and apoplastic defense by manipulating WRKY40 stability and downstream gene expression, eventually altering phytohormone crosstalk to promote pathogen proliferation.
Collapse
Affiliation(s)
- Margot Raffeiner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
| | | | - Tiziana Guerra
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
| | - Daniela Spinti
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Maria Fitzner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
| | - Sophia Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-Universität, Erlangen 91058, Germany
| | - Susanne Baldermann
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal 14558, Germany
| | | |
Collapse
|
38
|
Wan S, Xin XF. Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot. J Genet Genomics 2022; 49:704-714. [PMID: 35452856 DOI: 10.1016/j.jgg.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
The phytohormone jasmonate plays a pivotal role in various aspects of plant life, including developmental programs and defense against pests and pathogens. A large body of knowledge on jasmonate biosynthesis, signal transduction as well as its functions in diverse plant processes has been gained in the past two decades. In addition, there exists extensive crosstalk between jasmonate pathway and other phytohormone pathways, such as salicylic acid (SA) and gibberellin (GA), in co-regulation of plant immune status, fine-tuning the balance of plant growth and defense, and so on, which were mostly learned from studies in the dicotyledonous model plants Arabidopsis thaliana and tomato but much less in monocot. Interestingly, existing evidence suggests both conservation and functional divergence in terms of core components of jasmonate pathway, its biological functions and signal integration with other phytohormones, between monocot and dicot. In this review, we summarize the current understanding on JA signal initiation, perception and regulation, and highlight the distinctive characteristics in different lineages of plants.
Collapse
Affiliation(s)
- Shiwei Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
39
|
Wang Y, Pruitt RN, Nürnberger T, Wang Y. Evasion of plant immunity by microbial pathogens. Nat Rev Microbiol 2022; 20:449-464. [PMID: 35296800 DOI: 10.1038/s41579-022-00710-3] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/21/2022]
Abstract
Plant pathogenic viruses, bacteria, fungi and oomycetes cause destructive diseases in natural habitats and agricultural settings, thereby threatening plant biodiversity and global food security. The capability of plants to sense and respond to microbial infection determines the outcome of plant-microorganism interactions. Host-adapted microbial pathogens exploit various infection strategies to evade or counter plant immunity and eventually establish a replicative niche. Evasion of plant immunity through dampening host recognition or the subsequent immune signalling and defence execution is a crucial infection strategy used by different microbial pathogens to cause diseases, underpinning a substantial obstacle for efficient deployment of host genetic resistance genes for sustainable disease control. In this Review, we discuss current knowledge of the varied strategies microbial pathogens use to evade the complicated network of plant immunity for successful infection. In addition, we discuss how to exploit this knowledge to engineer crop resistance.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Rory N Pruitt
- Centre for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, Germany
| | - Thorsten Nürnberger
- Centre for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, Germany.,Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China. .,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
40
|
Rocher F, Alouane T, Philippe G, Martin ML, Label P, Langin T, Bonhomme L. Fusarium graminearum Infection Strategy in Wheat Involves a Highly Conserved Genetic Program That Controls the Expression of a Core Effectome. Int J Mol Sci 2022; 23:ijms23031914. [PMID: 35163834 PMCID: PMC8836836 DOI: 10.3390/ijms23031914] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Fusarium graminearum, the main causal agent of Fusarium Head Blight (FHB), is one of the most damaging pathogens in wheat. Because of the complex organization of wheat resistance to FHB, this pathosystem represents a relevant model to elucidate the molecular mechanisms underlying plant susceptibility and to identify their main drivers, the pathogen’s effectors. Although the F. graminearum catalog of effectors has been well characterized at the genome scale, in planta studies are needed to confirm their effective accumulation in host tissues and to identify their role during the infection process. Taking advantage of the genetic variability from both species, a RNAseq-based profiling of gene expression was performed during an infection time course using an aggressive F. graminearum strain facing five wheat cultivars of contrasting susceptibility as well as using three strains of contrasting aggressiveness infecting a single susceptible host. Genes coding for secreted proteins and exhibiting significant expression changes along infection progress were selected to identify the effector gene candidates. During its interaction with the five wheat cultivars, 476 effector genes were expressed by the aggressive strain, among which 91% were found in all the infected hosts. Considering three different strains infecting a single susceptible host, 761 effector genes were identified, among which 90% were systematically expressed in the three strains. We revealed a robust F. graminearum core effectome of 357 genes expressed in all the hosts and by all the strains that exhibited conserved expression patterns over time. Several wheat compartments were predicted to be targeted by these putative effectors including apoplast, nucleus, chloroplast and mitochondria. Taken together, our results shed light on a highly conserved parasite strategy. They led to the identification of reliable key fungal genes putatively involved in wheat susceptibility to F. graminearum, and provided valuable information about their putative targets.
Collapse
Affiliation(s)
- Florian Rocher
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Tarek Alouane
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Géraldine Philippe
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Marie-Laure Martin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, Université Evry, 91190 Gif sur Yvette, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91190 Gif sur Yvette, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Philippe Label
- UMR 547 Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant, INRAE, Université Clermont Auvergne, 63178 Aubière, France;
| | - Thierry Langin
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Ludovic Bonhomme
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
- Correspondence:
| |
Collapse
|
41
|
Xu Z, Xiong D, Han Z, Tian C. A Putative Effector CcSp84 of Cytospora chrysosperma Localizes to the Plant Nucleus to Trigger Plant Immunity. Int J Mol Sci 2022; 23:1614. [PMID: 35163540 PMCID: PMC8835870 DOI: 10.3390/ijms23031614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cytospora chrysosperma is the main causal agent of poplar canker disease in China, especially in some areas with poor site conditions. Pathogens secrete a large number of effectors to interfere the plant immunity and promote their infection and colonization. Nevertheless, the roles of effectors in C. chrysosperma remain poorly understood. In this study, we identified and functionally characterized a candidate effector CcSp84 from C. chrysosperma, which contained a nuclear localization signal motif at the C-terminal and was highly induced during infection stages. Transient expression of CcSp84 in Nicotiana benthamiana leaves could trigger cell death. Additionally, deletion of CcSp84 significantly reduced fungal virulence to the polar twigs, while no obvious defects were observed in fungal growth and sensitivity to H2O2. Confocal microscopy revealed that CcSp84 labeled with a green fluorescent protein (GFP) was mainly accumulated in the plant nucleus. Further analysis revealed that the plant nucleus localization of CcSp84 was necessary to trigger plant immune responses, including ROS accumulation, callose deposition, and induced expression of jasmonic acid and ethylene defense-related genes. Collectively, our results suggest that CcSp84 is a virulence-related effector, and plant nucleus localization is required for its functions.
Collapse
Affiliation(s)
- Zhiye Xu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Z.X.); (Z.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Dianguang Xiong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Z.X.); (Z.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Zhu Han
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Z.X.); (Z.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Z.X.); (Z.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
42
|
Zhang J, Zhou M, Liu W, Nie J, Huang L. Pseudomonas syringae pv. actinidiae Effector HopAU1 Interacts with Calcium-Sensing Receptor to Activate Plant Immunity. Int J Mol Sci 2022; 23:508. [PMID: 35008934 PMCID: PMC8745740 DOI: 10.3390/ijms23010508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Kiwifruit canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive pathogen that globally threatens the kiwifruit industry. Understanding the molecular mechanism of plant-pathogen interaction can accelerate applying resistance breeding and controlling plant diseases. All known effectors secreted by pathogens play an important role in plant-pathogen interaction. However, the effectors in Psa and their function mechanism remain largely unclear. Here, we successfully identified a T3SS effector HopAU1 which had no virulence contribution to Psa, but could, however, induce cell death and activate a series of immune responses by agroinfiltration in Nicotiana benthamiana, including elevated transcripts of immune-related genes, accumulation of reactive oxygen species (ROS), and callose deposition. We found that HopAU1 interacted with a calcium sensing receptor in N. benthamiana (NbCaS) as well as its close homologue in kiwifruit (AcCaS). More importantly, silencing CaS by RNAi in N. benthamiana greatly attenuated HopAU1-triggered cell death, suggesting CaS is a crucial component for HopAU1 detection. Further researches showed that overexpression of NbCaS in N. benthamiana significantly enhanced plant resistance against Sclerotinia sclerotiorum and Phytophthora capsici, indicating that CaS serves as a promising resistance-related gene for disease resistance breeding. We concluded that HopAU1 is an immune elicitor that targets CaS to trigger plant immunity.
Collapse
Affiliation(s)
| | | | | | | | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (J.Z.); (M.Z.); (W.L.); (J.N.)
| |
Collapse
|
43
|
Viana F, Peringathara SS, Rizvi A, Schroeder GN. Host manipulation by bacterial type III and type IV secretion system effector proteases. Cell Microbiol 2021; 23:e13384. [PMID: 34392594 PMCID: PMC11475232 DOI: 10.1111/cmi.13384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
Proteases are powerful enzymes, which cleave peptide bonds, leading most of the time to irreversible fragmentation or degradation of their substrates. Therefore they control many critical cell fate decisions in eukaryotes. Bacterial pathogens exploit this power and deliver protease effectors through specialised secretion systems into host cells. Research over the past years revealed that the functions of protease effectors during infection are diverse, reflecting the lifestyles and adaptations to specific hosts; however, only a small number of peptidase families seem to have given rise to most of these protease virulence factors by the evolution of different substrate-binding specificities, intracellular activation and subcellular targeting mechanisms. Here, we review our current knowledge about the enzymology and function of protease effectors, which Gram-negative bacterial pathogens translocate via type III and IV secretion systems to irreversibly manipulate host processes. We highlight emerging concepts such as signalling by protease cleavage products and effector-triggered immunity, which host cells employ to detect and defend themselves against a protease attack. TAKE AWAY: Proteases irreversibly cleave proteins to control critical cell fate decisions. Gram-negative bacteria use type III and IV secretion systems to inject effectors. Protease effectors are integral weapons for the manipulation of host processes. Effectors evolved from few peptidase families to target diverse substrates. Effector-triggered immunity upon proteolytic attack emerges as host defence.
Collapse
Affiliation(s)
- Flávia Viana
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Shruthi Sachidanandan Peringathara
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Arshad Rizvi
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Gunnar N. Schroeder
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| |
Collapse
|
44
|
Wen T, Wu X, Hu L, Qiu Y, Rui L, Zhang Y, Ding X, Ye J. A novel pine wood nematode effector, BxSCD1, suppresses plant immunity and interacts with an ethylene-forming enzyme in pine. MOLECULAR PLANT PATHOLOGY 2021; 22:1399-1412. [PMID: 34396673 PMCID: PMC8518578 DOI: 10.1111/mpp.13121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/13/2023]
Abstract
The plant-parasitic nematode Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), causes enormous economic loss every year. Currently, little is known about the pathogenic mechanisms of PWD. Several effectors have been identified in B. xylophilus, but their functions and host targets have yet to be elucidated. Here, we demonstrated that BxSCD1 suppresses cell death and inhibits B. xylophilus PAMP BxCDP1-triggered immunity in Nicotiana benthamiana and Pinus thunbergii. BxSCD1 was transcriptionally upregulated in the early stage of B. xylophilus infection. In situ hybridization experiments showed that BxSCD1 was specifically expressed in the dorsal glands and intestine. Cysteine residues are essential for the function of BxSCD1. Transient expression of BxSCD1 in N. benthamiana revealed that it was primarily targeted to the cytoplasm and nucleus. The morbidity was significantly reduced in P. thunbergii infected with B. xylophilus when BxSCD1 was silenced. We identified 1-aminocyclopropane-1-carboxylate oxidase 1, the actual ethylene-forming enzyme, as a host target of BxSCD1 by yeast two-hybrid and coimmunoprecipitation. Overall, this study illustrated that BxSCD1 played a critical role in the B. xylophilus-plant interaction.
Collapse
Affiliation(s)
- Tong‐Yue Wen
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Xiao‐Qin Wu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Long‐Jiao Hu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Yi‐Jun Qiu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Lin Rui
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Yan Zhang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Xiao‐Lei Ding
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Jian‐Ren Ye
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| |
Collapse
|
45
|
Dodueva I, Lebedeva M, Lutova L. Dialog between Kingdoms: Enemies, Allies and Peptide Phytohormones. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112243. [PMID: 34834606 PMCID: PMC8618561 DOI: 10.3390/plants10112243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 05/14/2023]
Abstract
Various plant hormones can integrate developmental and environmental responses, acting in a complex network, which allows plants to adjust their developmental processes to changing environments. In particular, plant peptide hormones regulate various aspects of plant growth and development as well as the response to environmental stress and the interaction of plants with their pathogens and symbionts. Various plant-interacting organisms, e.g., bacterial and fungal pathogens, plant-parasitic nematodes, as well as symbiotic and plant-beneficial bacteria and fungi, are able to manipulate phytohormonal level and/or signaling in the host plant in order to overcome plant immunity and to create the habitat and food source inside the plant body. The most striking example of such phytohormonal mimicry is the ability of certain plant pathogens and symbionts to produce peptide phytohormones of different classes. To date, in the genomes of plant-interacting bacteria, fungi, and nematodes, the genes encoding effectors which mimic seven classes of peptide phytohormones have been found. For some of these effectors, the interaction with plant receptors for peptide hormones and the effect on plant development and defense have been demonstrated. In this review, we focus on the currently described classes of peptide phytohormones found among the representatives of other kingdoms, as well as mechanisms of their action and possible evolutional origin.
Collapse
|
46
|
Xu B, Gong X, Chen S, Hu M, Zhang J, Peng Q. Transcriptome Analysis Reveals the Complex Molecular Mechanisms of Brassica napus- Sclerotinia sclerotiorum Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:716935. [PMID: 34691098 PMCID: PMC8531588 DOI: 10.3389/fpls.2021.716935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a devastating disease for many important crops worldwide, including Brassica napus. Although numerous studies have been performed on the gene expression changes in B. napus and S. sclerotiorum, knowledge regarding the molecular mechanisms of B. napus-S. sclerotiorum interactions is limited. Here, we revealed the changes in the gene expression and related pathways in both B. napus and S. sclerotiorum during the sclerotinia stem rot (SSR) infection process using transcriptome analyses. In total, 1,986, 2,217, and 16,079 differentially expressed genes (DEGs) were identified in B. napus at 6, 24, and 48 h post-inoculation, respectively, whereas 1,511, 1,208, and 2,051 DEGs, respectively, were identified in S. sclerotiorum. The gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that most of the hormone-signaling pathways in B. napus were enriched, and thus, the hormone contents at four stages were measured. The DEGs and hormone contents revealed that salicylic acid was activated, while the jasmonic acid pathway was repressed at 24 h post-inoculation. Additionally, the expressional patterns of the cell wall-degrading enzyme-encoding genes in S. sclerotiorum and the hydrolytic enzymes in B. napus were consistent with the SSR infection process. The results contribute to a better understanding of the interactions between B. napus and S. sclerotiorum and the development of future preventive measures against SSR.
Collapse
Affiliation(s)
- Binjie Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xi Gong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Song Chen
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maolong Hu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Peng
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Institute of Life Sciences, Jiangsu University, Jiangsu, China
| |
Collapse
|
47
|
A class of independently evolved transcriptional repressors in plant RNA viruses facilitates viral infection and vector feeding. Proc Natl Acad Sci U S A 2021; 118:2016673118. [PMID: 33836579 PMCID: PMC7980396 DOI: 10.1073/pnas.2016673118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Plant viruses employ diverse virulence strategies to achieve successful infection, but there are few known general strategies of viral pathogenicity and transmission used by widely different plant viruses. Here, we report a class of independently evolved virulence factors in different plant RNA viruses which possess active transcriptional repressor activity. Rice viruses in the genera Fijivirus, Tenuivirus, and Cytorhabdovirus all have transcriptional repressors that interact in plants with the key components of jasmonic acid (JA) signaling, namely mediator subunit OsMED25, OsJAZ proteins, and OsMYC transcription factors. These transcriptional repressors can directly disassociate the OsMED25-OsMYC complex, inhibit the transcriptional activation of OsMYC, and then combine with OsJAZ proteins to cooperatively attenuate the JA pathway in a way that benefits viral infection. At the same time, these transcriptional repressors efficiently enhanced feeding by the virus insect vectors by repressing JA signaling. Our findings reveal a common strategy in unrelated plant viruses in which viral transcriptional repressors hijack and repress the JA pathway in favor of both viral pathogenicity and vector transmission.
Collapse
|
48
|
Wang S, Li S, Wang J, Li Q, Xin XF, Zhou S, Wang Y, Li D, Xu J, Luo ZQ, He SY, Sun W. A bacterial kinase phosphorylates OSK1 to suppress stomatal immunity in rice. Nat Commun 2021; 12:5479. [PMID: 34531388 PMCID: PMC8445998 DOI: 10.1038/s41467-021-25748-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
The Xanthomonas outer protein C2 (XopC2) family of bacterial effectors is widely found in plant pathogens and Legionella species. However, the biochemical activity and host targets of these effectors remain enigmatic. Here we show that ectopic expression of XopC2 promotes jasmonate signaling and stomatal opening in transgenic rice plants, which are more susceptible to Xanthomonas oryzae pv. oryzicola infection. Guided by these phenotypes, we discover that XopC2 represents a family of atypical kinases that specifically phosphorylate OSK1, a universal adaptor protein of the Skp1-Cullin-F-box ubiquitin ligase complexes. Intriguingly, OSK1 phosphorylation at Ser53 by XopC2 exclusively increases the binding affinity of OSK1 to the jasmonate receptor OsCOI1b, and specifically enhances the ubiquitination and degradation of JAZ transcription repressors and plant disease susceptibility through inhibiting stomatal immunity. These results define XopC2 as a prototypic member of a family of pathogenic effector kinases and highlight a smart molecular mechanism to activate jasmonate signaling.
Collapse
Affiliation(s)
- Shanzhi Wang
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Shuai Li
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyang Wang
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Qian Li
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiu-Fang Xin
- grid.17088.360000 0001 2150 1785DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA ,grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), CAS John Innes Centre of Excellence for Plant and Microbial Sciences (CEPAMS), Shanghai, China
| | - Shuang Zhou
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Yanping Wang
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Dayong Li
- grid.464353.30000 0000 9888 756XCollege of Plant Protection, Jilin Agricultural University, Changchun, Jilin China
| | - Jiaqing Xu
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Zhao-Qing Luo
- grid.169077.e0000 0004 1937 2197Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN USA
| | - Sheng Yang He
- grid.17088.360000 0001 2150 1785DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA ,grid.17088.360000 0001 2150 1785Howard Hughes Medical Institute, Michigan State University, East Lansing, MI USA
| | - Wenxian Sun
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China ,grid.464353.30000 0000 9888 756XCollege of Plant Protection, Jilin Agricultural University, Changchun, Jilin China
| |
Collapse
|
49
|
Huang Z, Wang Z, Li X, He S, Liu Q, Zhai H, Zhao N, Gao S, Zhang H. Genome-Wide Identification and Expression Analysis of JAZ Family Involved in Hormone and Abiotic Stress in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2021; 22:ijms22189786. [PMID: 34575953 PMCID: PMC8468994 DOI: 10.3390/ijms22189786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023] Open
Abstract
Jasmonate ZIM-domain (JAZ) proteins are key repressors of a jasmonic acid signaling pathway. They play essential roles in the regulation of plant growth and development, as well as environmental stress responses. However, this gene family has not been explored in sweet potato. In this study, we identified 14, 15, and 14 JAZs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), and its two diploid relatives Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively. These JAZs were divided into five subgroups according to their phylogenetic relationships with Arabidopsis. The protein physiological properties, chromosome localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network, and expression pattern of these 43 JAZs were systematically investigated. The results suggested that there was a differentiation between homologous JAZs, and each JAZ gene played different vital roles in growth and development, hormone crosstalk, and abiotic stress response between sweet potato and its two diploid relatives. Our work provided comprehensive comparison and understanding of the JAZ genes in sweet potato and its two diploid relatives, supplied a theoretical foundation for their functional study, and further facilitated the molecular breeding of sweet potato.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huan Zhang
- Correspondence: ; Tel./Fax: +86-010-6273-2559
| |
Collapse
|
50
|
Gorshkov V, Tsers I. Plant susceptible responses: the underestimated side of plant-pathogen interactions. Biol Rev Camb Philos Soc 2021; 97:45-66. [PMID: 34435443 PMCID: PMC9291929 DOI: 10.1111/brv.12789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Plant susceptibility to pathogens is usually considered from the perspective of the loss of resistance. However, susceptibility cannot be equated with plant passivity since active host cooperation may be required for the pathogen to propagate and cause disease. This cooperation consists of the induction of reactions called susceptible responses that transform a plant from an autonomous biological unit into a component of a pathosystem. Induced susceptibility is scarcely discussed in the literature (at least compared to induced resistance) although this phenomenon has a fundamental impact on plant-pathogen interactions and disease progression. This review aims to summarize current knowledge on plant susceptible responses and their regulation. We highlight two main categories of susceptible responses according to their consequences and indicate the relevance of susceptible response-related studies to agricultural practice. We hope that this review will generate interest in this underestimated aspect of plant-pathogen interactions.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia.,Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| | - Ivan Tsers
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| |
Collapse
|