1
|
Claus-Walker RA, Slanzon GS, Elder LA, Hinnant HR, Mandella CM, Parrish LM, Trombetta SC, McConnel CS. Characterization of the preweaned Holstein calf fecal microbiota prior to, during, and following resolution of uncomplicated gastrointestinal disease. Front Microbiol 2024; 15:1388489. [PMID: 38855768 PMCID: PMC11157069 DOI: 10.3389/fmicb.2024.1388489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Little is known about shifts in the fecal microbiome of dairy calves preceding and following the incidence of gastrointestinal disease. The objective of this cohort study was to describe the fecal microbiome of preweaned dairy calves before, during, and after gastrointestinal disease. A total of 111 Holstein dairy calves were enrolled on 2 dairies (D1 and D2) and followed until 5 weeks old. Health assessments were performed weekly and fecal samples were collected every other week. Of the 111 calves, 12 calves from D1 and 12 calves from D2 were retrospectively defined as healthy, and 7 calves from D1 and 11 calves from D2 were defined as diarrheic. Samples from these calves were sequenced targeting the 16S rRNA gene and compared based on health status within age groups and farms: healthy (0-1 week old) vs. pre-diarrheic (0-1 week old), healthy (2-3 weeks old) vs. diarrheic (2-3 weeks old), and healthy (4-5 weeks old) vs. post-diarrheic (4-5 weeks old) calves. Healthy and diarrheic samples clustered together based on age rather than health status on both farms. Based on linear discriminant analysis, a few species were identified to be differently enriched when comparing health status within age groups and farm. Among them, Bifidobacterium sp. was differently enriched in pre-diarrheic calves at D1 (0-1 week old) whereas healthy calves of the same age group and farm showed a higher abundance of Escherichia coli. Bifidobacterium sp. was identified as a biomarker of fecal samples from healthy calves (2-3 weeks old) on D1 when compared with diarrheic calves of the same age group and farm. Feces from diarrheic calves on D2 (2-3 weeks old) were characterized by taxa from Peptostreptococcus and Anaerovibrio genera whereas fecal samples of age-matched healthy calves were characterized by Collinsella aerofaciens and Bifidobacterium longum. After resolution of uncomplicated diarrhea (4-5 weeks old), Collinsella aerofaciens was more abundant in D2 calves whereas Bacteriodes uniformis was more abundant in D1 calves. Taken together, these findings suggest that the age of the preweaned calf is the major driver of changes to fecal microbiome composition and diversity even in the face of uncomplicated gastrointestinal disease.
Collapse
|
2
|
De Wolfe TJ, Wright ES. Multi-factorial examination of amplicon sequencing workflows from sample preparation to bioinformatic analysis. BMC Microbiol 2023; 23:107. [PMID: 37076812 PMCID: PMC10114302 DOI: 10.1186/s12866-023-02851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND The development of sequencing technologies to evaluate bacterial microbiota composition has allowed new insights into the importance of microbial ecology. However, the variety of methodologies used among amplicon sequencing workflows leads to uncertainty about best practices as well as reproducibility and replicability among microbiome studies. Using a bacterial mock community composed of 37 soil isolates, we performed a comprehensive methodological evaluation of workflows, each with a different combination of methodological factors spanning sample preparation to bioinformatic analysis to define sources of artifacts that affect coverage, accuracy, and biases in the resulting compositional profiles. RESULTS Of the workflows examined, those using the V4-V4 primer set enabled the highest level of concordance between the original mock community and resulting microbiome sequence composition. Use of a high-fidelity polymerase, or a lower-fidelity polymerase with an increased PCR elongation time, limited chimera formation. Bioinformatic pipelines presented a trade-off between the fraction of distinct community members identified (coverage) and fraction of correct sequences (accuracy). DADA2 and QIIME2 assembled V4-V4 reads amplified by Taq polymerase resulted in the highest accuracy (100%) but had a coverage of only 52%. Using mothur to assemble and denoise V4-V4 reads resulted in a coverage of 75%, albeit with marginally lower accuracy (99.5%). CONCLUSIONS Optimization of microbiome workflows is critical for accuracy and to support reproducibility and replicability among microbiome studies. These considerations will help reveal the guiding principles of microbial ecology and impact the translation of microbiome research to human and environmental health.
Collapse
Affiliation(s)
- Travis J. De Wolfe
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 450 Technology Drive Rm. 426, Pittsburgh, PA 15219 USA
- Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, 4480 Oak Street Rm. 208B, Vancouver, BC V6H 4E4 Canada
- Gut4Health, BC Children’s Hospital Research Institute, University of British Columbia, 950 West 28th Avenue Rm. 211, Vancouver, BC V5Z 4H4 Canada
| | - Erik S. Wright
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 450 Technology Drive Rm. 426, Pittsburgh, PA 15219 USA
| |
Collapse
|
3
|
Rozaliyani A, Antariksa B, Nurwidya F, Zaini J, Setianingrum F, Hasan F, Nugrahapraja H, Yusva H, Wibowo H, Bowolaksono A, Kosmidis C. The Fungal and Bacterial Interface in the Respiratory Mycobiome with a Focus on Aspergillus spp. Life (Basel) 2023; 13:life13041017. [PMID: 37109545 PMCID: PMC10142979 DOI: 10.3390/life13041017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The heterogeneity of the lung microbiome and its alteration are prevalently seen among chronic lung diseases patients. However, studies to date have primarily focused on the bacterial microbiome in the lung rather than fungal composition, which might play an essential role in the mechanisms of several chronic lung diseases. It is now well established that Aspergillus spp. colonies may induce various unfavorable inflammatory responses. Furthermore, bacterial microbiomes such as Pseudomonas aeruginosa provide several mechanisms that inhibit or stimulate Aspergillus spp. life cycles. In this review, we highlighted fungal and bacterial microbiome interactions in the respiratory tract, with a focus on Aspergillus spp.
Collapse
Affiliation(s)
- Anna Rozaliyani
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Budhi Antariksa
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Fariz Nurwidya
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Jamal Zaini
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Findra Setianingrum
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Firman Hasan
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Husna Nugrahapraja
- Life Science and Biotechnology, Bandung Institute of Technology, Bandung 40312, Indonesia
| | - Humaira Yusva
- Magister Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia
| | - Chris Kosmidis
- Manchester Academic Health Science Centre, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK
| |
Collapse
|
4
|
Vos WAJW, Groenendijk AL, Blaauw MJT, van Eekeren LE, Navas A, Cleophas MCP, Vadaq N, Matzaraki V, dos Santos JC, Meeder EMG, Fröberg J, Weijers G, Zhang Y, Fu J, ter Horst R, Bock C, Knoll R, Aschenbrenner AC, Schultze J, Vanderkerckhove L, Hwandih T, Wonderlich ER, Vemula SV, van der Kolk M, de Vet SCP, Blok WL, Brinkman K, Rokx C, Schellekens AFA, de Mast Q, Joosten LAB, Berrevoets MAH, Stalenhoef JE, Verbon A, van Lunzen J, Netea MG, van der Ven AJAM. The 2000HIV study: Design, multi-omics methods and participant characteristics. Front Immunol 2022; 13:982746. [PMID: 36605197 PMCID: PMC9809279 DOI: 10.3389/fimmu.2022.982746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/25/2022] [Indexed: 01/07/2023] Open
Abstract
Background Even during long-term combination antiretroviral therapy (cART), people living with HIV (PLHIV) have a dysregulated immune system, characterized by persistent immune activation, accelerated immune ageing and increased risk of non-AIDS comorbidities. A multi-omics approach is applied to a large cohort of PLHIV to understand pathways underlying these dysregulations in order to identify new biomarkers and novel genetically validated therapeutic drugs targets. Methods The 2000HIV study is a prospective longitudinal cohort study of PLHIV on cART. In addition, untreated HIV spontaneous controllers were recruited. In-depth multi-omics characterization will be performed, including genomics, epigenomics, transcriptomics, proteomics, metabolomics and metagenomics, functional immunological assays and extensive immunophenotyping. Furthermore, the latent viral reservoir will be assessed through cell associated HIV-1 RNA and DNA, and full-length individual proviral sequencing on a subset. Clinical measurements include an ECG, carotid intima-media thickness and plaque measurement, hepatic steatosis and fibrosis measurement as well as psychological symptoms and recreational drug questionnaires. Additionally, considering the developing pandemic, COVID-19 history and vaccination was recorded. Participants return for a two-year follow-up visit. The 2000HIV study consists of a discovery and validation cohort collected at separate sites to immediately validate any finding in an independent cohort. Results Overall, 1895 PLHIV from four sites were included for analysis, 1559 in the discovery and 336 in the validation cohort. The study population was representative of a Western European HIV population, including 288 (15.2%) cis-women, 463 (24.4%) non-whites, and 1360 (71.8%) MSM (Men who have Sex with Men). Extreme phenotypes included 114 spontaneous controllers, 81 rapid progressors and 162 immunological non-responders. According to the Framingham score 321 (16.9%) had a cardiovascular risk of >20% in the next 10 years. COVID-19 infection was documented in 234 (12.3%) participants and 474 (25.0%) individuals had received a COVID-19 vaccine. Conclusion The 2000HIV study established a cohort of 1895 PLHIV that employs multi-omics to discover new biological pathways and biomarkers to unravel non-AIDS comorbidities, extreme phenotypes and the latent viral reservoir that impact the health of PLHIV. The ultimate goal is to contribute to a more personalized approach to the best standard of care and a potential cure for PLHIV.
Collapse
Affiliation(s)
- Wilhelm A. J. W. Vos
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands,*Correspondence: Wilhelm A. J. W. Vos,
| | - Albert L. Groenendijk
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Internal Medicine and Department of Medical Microbiology and Infectious diseases, Erasmus Medical Center (MC), Erasmus University, Rotterdam, Netherlands
| | - Marc J. T. Blaauw
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Louise E. van Eekeren
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Adriana Navas
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Maartje C. P. Cleophas
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Jéssica C. dos Santos
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Elise M. G. Meeder
- Department of Psychiatry, Radboudumc, Radboud University, Nijmegen, Netherlands,Donders Institute for Brain, Radboud University, Cognition and Behavior, Nijmegen, Netherlands,Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Radboud University, Nijmegen, Netherlands
| | - Janeri Fröberg
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Gert Weijers
- Medical UltraSound Imaging Center (MUSIC) Department of Medical Imaging, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Yue Zhang
- Universitair Medisch Centrum Groningen, University of Groningen, Groningen, Netherlands
| | - Jingyuan Fu
- Universitair Medisch Centrum Groningen, University of Groningen, Groningen, Netherlands
| | - Rob ter Horst
- Center for Molecular Medicine (CeMM) Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- Center for Molecular Medicine (CeMM) Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,Medical University of Vienna, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Institute of Artificial Intelligence, Vienna, Austria
| | - Rainer Knoll
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) eingetragener Verein (e.V.), Bonn, Germany,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Anna C. Aschenbrenner
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Platform for Single Cell Genomics and Epigenomics (PRECISE), DZNE and University of Bonn, Bonn, Germany
| | - Joachim Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) eingetragener Verein (e.V.), Bonn, Germany,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany,Platform for Single Cell Genomics and Epigenomics (PRECISE), DZNE and University of Bonn, Bonn, Germany
| | - Linos Vanderkerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Talent Hwandih
- Medical Science Department, Sysmex Europe Societas Europaea (SE), Norderstedt, Germany
| | | | - Sai V. Vemula
- Clinical Development, ViiV Healthcare, Durham, NC, United States
| | - Mike van der Kolk
- Translational Medical Research, ViiV Healthcare, Brentford, United Kingdom
| | - Sterre C. P. de Vet
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Willem L. Blok
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Kees Brinkman
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Casper Rokx
- Department of Internal Medicine and Department of Medical Microbiology and Infectious diseases, Erasmus Medical Center (MC), Erasmus University, Rotterdam, Netherlands
| | - Arnt F. A. Schellekens
- Department of Psychiatry, Radboudumc, Radboud University, Nijmegen, Netherlands,Donders Institute for Brain, Radboud University, Cognition and Behavior, Nijmegen, Netherlands,Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Radboud University, Nijmegen, Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marvin A. H. Berrevoets
- Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Janneke E. Stalenhoef
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Annelies Verbon
- Department of Internal Medicine and Department of Medical Microbiology and Infectious diseases, Erasmus Medical Center (MC), Erasmus University, Rotterdam, Netherlands
| | - Jan van Lunzen
- Translational Medical Research, ViiV Healthcare, Brentford, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Andre J. A. M. van der Ven
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
5
|
Hu H, Wang M, Huang Y, Xu Z, Xu P, Nie Y, Tang H. Guided by the principles of microbiome engineering: Accomplishments and perspectives for environmental use. MLIFE 2022; 1:382-398. [PMID: 38818482 PMCID: PMC10989833 DOI: 10.1002/mlf2.12043] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 06/01/2024]
Abstract
Although the accomplishments of microbiome engineering highlight its significance for the targeted manipulation of microbial communities, knowledge and technical gaps still limit the applications of microbiome engineering in biotechnology, especially for environmental use. Addressing the environmental challenges of refractory pollutants and fluctuating environmental conditions requires an adequate understanding of the theoretical achievements and practical applications of microbiome engineering. Here, we review recent cutting-edge studies on microbiome engineering strategies and their classical applications in bioremediation. Moreover, a framework is summarized for combining both top-down and bottom-up approaches in microbiome engineering toward improved applications. A strategy to engineer microbiomes for environmental use, which avoids the build-up of toxic intermediates that pose a risk to human health, is suggested. We anticipate that the highlighted framework and strategy will be beneficial for engineering microbiomes to address difficult environmental challenges such as degrading multiple refractory pollutants and sustain the performance of engineered microbiomes in situ with indigenous microorganisms under fluctuating conditions.
Collapse
Affiliation(s)
- Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Miaoxiao Wang
- Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Department of Environmental MicrobiologyETH ZürichEawagSwitzerland
| | - Yiqun Huang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhaoyong Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yong Nie
- College of EngineeringPeking UniversityBeijingChina
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
6
|
Zhang Y, Li Z, Zhang Y, Sun K, Ren N, Li M. Acute toxic effects of diclofenac exposure on freshwater crayfish (Procambarus clarkii): Insights from hepatopancreatic pathology, molecular regulation and intestinal microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114068. [PMID: 36108435 DOI: 10.1016/j.ecoenv.2022.114068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
In this study, we exposed adult male crayfish (Procambarus clarkii) to different concentrations of diclofenac (DCF) for 96 h. In the meantime, we investigated the alternations of hepatopancreatic pathology, molecular regulation and intestinal microbiota of P. clarkii exposed to DCF. The results demonstrated DCF led to histological changes including epithelium vacuolization and tubule lumen dilatation in the hepatopancreas. Transcriptome sequencing analysis showed that 642 and 586 genes were differentially expressed in the hepatopancreas of P. clarkii exposed to 1 and 10 mg/L DCF, respectively. DCF could affect the functions of antioxidation, immunity and metabolism of hepatopancreas by inducing the abnormal expressions of immune- and redox-related genes. GO enrichment results demonstrated that 10 mg/L DCF exposure could modulate the processes of molting, amino sugar metabolism, protein hydrolysis and intracellular protein translocation of P. clarkii. Additionally, the abundances of bacterial families including Shewanellaceae, Bacteroidaceae, Vibrionaceae, Erysipelotrichaceae, Aeromonadaceae, Moraxellaceae, etc. in the intestine were significantly changed after DCF exposure, and the disruption of intestinal flora might further cause abnormal intestinal metabolism in P. clarkii. This study provides novel mechanistic insights into the toxic effects of anti-inflammatory drugs on aquatic crustaceans.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Zheyu Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Kai Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingtang Li
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
7
|
Monteiro M, Poor A, Muro B, Carnevale R, Leal D, Garbossa C, Moreno A, Almond G. The sow microbiome: Current and future perspectives to maximize the productivity in swine herds. JOURNAL OF SWINE HEALTH AND PRODUCTION 2022; 30:238-250. [DOI: 10.54846/jshap/1277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The development of new generation sequencing methods and the reduction in the cost per base sequenced over the past few years is drawing the attention of the pig industry to microbiome understanding and modulation. In recent years, there has been an increase in the number of articles published related to microbiome studies in swine. With respect to sows, microbiome studies mainly focused on the gut, with some studies evaluating the reproductive tract and mammary microbiome. However, studies about urinary microbiome are still lacking. The present literature indicates that the microbiome in the sow’s gut can affect the microbiome in other body parts. Moreover, the understanding of the dynamics and interactions among microbial populations within the sow or the herd has led to improvements in animal health and reproductive performance. This review provides new insights related to sow intestinal, urinary, mammary, and reproductive microbiomes and their relationships with reproductive outcomes, diseases, and early colonization in offspring by gathering the most recent work in this field as well as pinpoints information gaps that require further investigation. This literature review also sheds light on the knowledge regarding the role of microbiomes in the reduction of antimicrobial use.
Collapse
|
8
|
Murphy EA, Velázquez KT. The role of diet and physical activity in influencing the microbiota/microbiome. DIET, INFLAMMATION, AND HEALTH 2022:693-745. [DOI: 10.1016/b978-0-12-822130-3.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Pinart M, Nimptsch K, Forslund SK, Schlicht K, Gueimonde M, Brigidi P, Turroni S, Ahrens W, Hebestreit A, Wolters M, Dötsch A, Nöthlings U, Oluwagbemigun K, Cuadrat RRC, Schulze MB, Standl M, Schloter M, De Angelis M, Iozzo P, Guzzardi MA, Vlaemynck G, Penders J, Jonkers DMAE, Stemmer M, Chiesa G, Cavalieri D, De Filippo C, Ercolini D, De Filippis F, Ribet D, Achamrah N, Tavolacci MP, Déchelotte P, Bouwman J, Laudes M, Pischon T. Identification and Characterization of Human Observational Studies in Nutritional Epidemiology on Gut Microbiomics for Joint Data Analysis. Nutrients 2021; 13:3292. [PMID: 34579168 PMCID: PMC8466729 DOI: 10.3390/nu13093292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 01/16/2023] Open
Abstract
In any research field, data access and data integration are major challenges that even large, well-established consortia face. Although data sharing initiatives are increasing, joint data analyses on nutrition and microbiomics in health and disease are still scarce. We aimed to identify observational studies with data on nutrition and gut microbiome composition from the Intestinal Microbiomics (INTIMIC) Knowledge Platform following the findable, accessible, interoperable, and reusable (FAIR) principles. An adapted template from the European Nutritional Phenotype Assessment and Data Sharing Initiative (ENPADASI) consortium was used to collect microbiome-specific information and other related factors. In total, 23 studies (17 longitudinal and 6 cross-sectional) were identified from Italy (7), Germany (6), Netherlands (3), Spain (2), Belgium (1), and France (1) or multiple countries (3). Of these, 21 studies collected information on both dietary intake (24 h dietary recall, food frequency questionnaire (FFQ), or Food Records) and gut microbiome. All studies collected stool samples. The most often used sequencing platform was Illumina MiSeq, and the preferred hypervariable regions of the 16S rRNA gene were V3-V4 or V4. The combination of datasets will allow for sufficiently powered investigations to increase the knowledge and understanding of the relationship between food and gut microbiome in health and disease.
Collapse
Affiliation(s)
- Mariona Pinart
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany;
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117 Berlin, Germany
- Host-Microbiome Factors in Cardiovascular Disease Lab, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University of Kiel, 24105 Kiel, Germany; (K.S.); (M.L.)
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain;
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany; (W.A.); (A.H.); (M.W.)
- Institute of Statistics, Bremen University, 28359 Bremen, Germany
| | - Antje Hebestreit
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany; (W.A.); (A.H.); (M.W.)
| | - Maike Wolters
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany; (W.A.); (A.H.); (M.W.)
| | - Andreas Dötsch
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany;
| | - Ute Nöthlings
- Nutritional Epidemiology Unit, Institute of Nutrition and Food Sciences, University of Bonn, 53115 Bonn, Germany; (U.N.); (K.O.)
| | - Kolade Oluwagbemigun
- Nutritional Epidemiology Unit, Institute of Nutrition and Food Sciences, University of Bonn, 53115 Bonn, Germany; (U.N.); (K.O.)
| | - Rafael R. C. Cuadrat
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (R.R.C.C.); (M.B.S.)
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (R.R.C.C.); (M.B.S.)
- Institute of Nutritional Science, University of Potsdam, 14558 Potsdam, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (P.I.); (M.A.G.)
| | - Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (P.I.); (M.A.G.)
| | - Geertrui Vlaemynck
- Department Technology and Food, Flanders Research Institute for Agriculture, Fisheries and Food, 9090 Melle, Belgium;
| | - John Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
| | - Daisy M. A. E. Jonkers
- Department of Internal Medicine, Division Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
| | - Maya Stemmer
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva P.O. Box 653, Israel;
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Florence, Italy;
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology National Research Council, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (D.E.); (F.D.F.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (D.E.); (F.D.F.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| | - David Ribet
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis Dysfunctions”, UNIROUEN, Normandie University, 76000 Rouen, France; (D.R.); (N.A.); (M.-P.T.); (P.D.)
| | - Najate Achamrah
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis Dysfunctions”, UNIROUEN, Normandie University, 76000 Rouen, France; (D.R.); (N.A.); (M.-P.T.); (P.D.)
- Department of Nutrition, CHU Rouen, 76000 Rouen, France
| | - Marie-Pierre Tavolacci
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis Dysfunctions”, UNIROUEN, Normandie University, 76000 Rouen, France; (D.R.); (N.A.); (M.-P.T.); (P.D.)
- INSERM CIC-CRB 1404, CHU Rouen, 76000 Rouen, France
| | - Pierre Déchelotte
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis Dysfunctions”, UNIROUEN, Normandie University, 76000 Rouen, France; (D.R.); (N.A.); (M.-P.T.); (P.D.)
- Department of Nutrition, CHU Rouen, 76000 Rouen, France
| | - Jildau Bouwman
- Microbiology and Systems Biology Group, TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands;
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University of Kiel, 24105 Kiel, Germany; (K.S.); (M.L.)
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
- Biobank Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Biobank Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| |
Collapse
|
10
|
Comparative genomics of in vitro and in vivo evolution of probiotics reveals energy restriction not the main evolution driving force in short term. Genomics 2021; 113:3373-3380. [PMID: 34311046 DOI: 10.1016/j.ygeno.2021.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022]
Abstract
Probiotics have attracted much attention because of their health-promoting effects, but little is known about the in vivo evolution of probiotics. This study analyzed the genome adaptation of the probiotic Lactiplantibacillus plantarum P-8 strain cultivated in ordinary and glucose restrictive growth media. Then, this study re-analyzed genomes of P-8 isolates recovered from the gut contents of subjects in two feeding trials (in rat and human). The sampling time points were similar to that of the in vitro evolution experiment, which might give parallel comparison of the in vitro and in vivo evolution processes. Our results showed that intra-individual specific microbial genomic variants of the original strain were detected in all human and some rat subjects. The divergent patterns of evolution within the host gastrointestinal tract suggested intra-individual-specific environmental adaptation. Based on comprehensive analysis of adapted-isolates recovered from these experiments, our results showed that the energy restriction was not the main driving force for evolution of probiotics. The individual-specific adaptation of probiotics might partially explain the varying extent of health effects seen between different individuals after probiotic consumption. In addition, the results suggest that probiotics should not only adapt to the environment of the birth canal, but also adapt to other species in the gut, revealing the Red Queen hypothesis in the process of intestinal flora.
Collapse
|
11
|
Dutta S, Na CS, Lee YH. Features of Bacterial Microbiota in the Wild Habitat of Pulsatilla tongkangensis, the Endangered "Long-Sepal Donggang Pasque-Flower Plant," Endemic to Karst Topography of Korea. Front Microbiol 2021; 12:656105. [PMID: 34305828 PMCID: PMC8297415 DOI: 10.3389/fmicb.2021.656105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022] Open
Abstract
Microbes associated with plants significantly influence the development and health of the plants. The diversity and function of microbiomes associated with the long-sepal Donggang pasque-flower (DPF) plant, an endemic and endangered species in karst ecosystems, remain unexplored. In this study, we investigated the features of bacterial communities associated with the rhizosphere and roots of DPF plants and their functions in plant growth promotion. The DPF plants were collected from natural and cultivated habitats, and their 16S rDNA was sequenced to assess the bacterial community structures. The bacterial microbiota was more diverse in wild than in cultivated plants. The core bacterial microbiota commonly functioned as endophytes in both wild and cultivated DPF plants, although there were some differences. The identified bacterial strains benefited plants through nitrogen fixation, phosphate solubilization, or phytohormone production, inducing measurable growth differences in Arabidopsis thaliana. To the best of our knowledge, this study is the first to report the bacterial community structures associated with the rhizosphere soil and roots of DPF plants in karst ecosystems. The bacterial strains isolated in this study could be used to aid sustainable growth and restoration of rare plants in karst ecosystems. Our systematic research on the microbiomes associated with these endangered plants will contribute to their conservation as well as development of better cultivation.
Collapse
Affiliation(s)
- Swarnalee Dutta
- Division of Biotechnology, Jeonbuk National University, Iksan, South Korea
| | - Chae Sun Na
- Seed Viability Research Team, Baekdudaegan National Arboretum, Bonghwa-gun, South Korea
| | - Yong Hoon Lee
- Division of Biotechnology, Jeonbuk National University, Iksan, South Korea.,Plant Medical Research Center, Advanced Institute of Environment and Bioscience, and Institute of Bio-industry, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
12
|
Batista BD, Singh BK. Realities and hopes in the application of microbial tools in agriculture. Microb Biotechnol 2021; 14:1258-1268. [PMID: 34156754 PMCID: PMC8313292 DOI: 10.1111/1751-7915.13866] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022] Open
Abstract
The use of microbial tools to sustainably increase agricultural production has received significant attention from researchers, industries and policymakers. Over the past decade, the market access and development of microbial products have been accelerated by (i) the recent advances in plant-associated microbiome science, (ii) the pressure from consumers and policymakers for increasing crop productivity and reducing the use of agrochemicals, (iii) the rising threats of biotic and abiotic stresses, (iv) the loss of efficacy of some agrochemicals and plant breeding programs and (v) the calls for agriculture to contribute towards mitigating climate change. Although the sector is still in its infancy, the path towards effective microbial products is taking shape and the global market of these products has increased faster than that of agrochemicals. Promising results from using microbes either as biofertilizers or biopesticides have been continually reported, fuelling optimism and high expectations for the sector. However, some limitations, often related to low efficacy and inconsistent performance in field conditions, urgently need to be addressed to promote a wider use of microbial tools. We propose that advances in in situ microbiome manipulation approaches, such as the use of products containing synthetic microbial communities and novel prebiotics, have great potential to overcome some of these current constraints. Much more progress is expected in the development of microbial inoculants as areas such as synthetic biology and nano-biotechnology advance. If key technical, translational and regulatory issues are addressed, microbial tools will not only play an important role in sustainably boosting agricultural production over the next few decades but also contribute towards other sustainable development goals, including job creation and mitigation of the impacts of climate change.
Collapse
Affiliation(s)
- Bruna D. Batista
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNSWAustralia
| | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNSWAustralia
- Global Centre for Land‐Based InnovationWestern Sydney UniversityRichmondNSWAustralia
| |
Collapse
|
13
|
Park I, Goo D, Nam H, Wickramasuriya SS, Lee K, Zimmerman NP, Smith AH, Rehberger TG, Lillehoj HS. Effects of Dietary Maltol on Innate Immunity, Gut Health, and Growth Performance of Broiler Chickens Challenged With Eimeria maxima. Front Vet Sci 2021; 8:667425. [PMID: 34095279 PMCID: PMC8173067 DOI: 10.3389/fvets.2021.667425] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Two studies were conducted to evaluate the effects of maltol as a postbiotic on innate immunity, gut health, and enteric infection. In the first study, an in vitro culture system was used to evaluate the effects of maltol on the innate immune response of chicken macrophage cells (CMC), gut integrity of chicken intestinal epithelial cells (IEC), anti-parasitic activity against Eimeria maxima, and differentiation of quail muscle cells (QMC) and primary chicken embryonic muscle cells (PMC). All cells seeded in the 24-well plates were treated with maltol at concentrations of 0.1, 1.0, and 10.0 μg. CMC and IEC were stimulated by lipopolysaccharide to induce an innate immune response, and QMC and PMC were treated with 0.5 and 2% fetal bovine serum, respectively. After 18 h of incubation, pro-inflammatory cytokines, tight junction proteins (TJPs), and muscle cell growth markers were measured. In the second study, the dietary effect of maltol was evaluated on disease parameters in broiler chickens infected with E. maxima. Eighty male 1-day-old broiler chickens were allocated into the following four treatment groups: (1) Control group without infection, (2) Basal diet with E. maxima, (3) High maltol (HI; 10.0 mg /kg feed) with E. maxima, and (4) Low maltol (LO; 1.0 mg/kg feed) with E. maxima. Body weights (BW) were measured on days 0, 7, 14, 20, and 22. All chickens except the CON group were orally infected with 104E. maxima per chicken on day 14. Jejunum samples were collected for gut lesion scoring, and the gene expression of cytokines and TJPs. Data was analyzed using PROC MIXED in SAS. In vitro, maltol not only increased TJPs in IEC and cytokines in the LPS-stimulated CMC but also showed direct cytotoxicity against sporozoites of E. maxima. In vivo, the HI group improved the BW, reduced the gut lesion scores and fecal oocyst shedding, and decreased jejunal TNFSF15 and IL-1β expression in E. maxima-infected chickens. In conclusion, these results demonstrate the beneficial effects of dietary maltol in the enhancement of growth performance, gut health, and coccidiosis resistance and the applicability of maltol as a postbiotic for the replacement of antibiotic growth promoters in commercial poultry production.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Doyun Goo
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Samiru S Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Noah P Zimmerman
- Arm & Hammer Animal and Food Production, Waukesha, WI, United States
| | - Alexandra H Smith
- Arm & Hammer Animal and Food Production, Waukesha, WI, United States
| | | | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
14
|
Joukar F, Mavaddati S, Mansour-Ghanaei F, Samadani AA. Gut Microbiota as a Positive Potential Therapeutic Factor in Carcinogenesis: an Overview of Microbiota-Targeted Therapy. J Gastrointest Cancer 2021; 51:363-378. [PMID: 31025167 DOI: 10.1007/s12029-019-00237-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer therapeutic methods comprising chemotherapy, radiotherapy, and surgery are so routine in cancer treatment. Remarkably, there are several personal features which affect the effectiveness of such treatments including nutrition, microbiome diversity, and physical activity which has distinct significant roles during and after therapies along with their bilateral connections. In this way, the ability of gut microbiota36 in modulating the efficacy of chemotherapeutic medications in cancer and other types of disorders is of great importance. In addition, the role of dietary, probiotic, and synthetically engineered bacteria in manipulating and optimizing the gut microbiota is of interest. Conspicuously, the correlation between the commensal microbiota and also host can regulate the physiological activities comprising the immunity system and inflammatory agents and it is scanned in the category of cancers. Bacterial species have been employed in cancer therapy; commensal microbes posse a key beneficial role in this field. Practically, the microbiota has this potential to accelerate and modulates a certain response by priming in order to release the pro-inflammatory agents. We would like to discuss these vital factors in this review as gut microbiota has the potential to be the main option for personalized cancer treatment strategies in the future. Meaning, this novel data present clinical promising feasibilities of modulating cancer therapy with using microbiota.
Collapse
Affiliation(s)
- Farahnaz Joukar
- GI Cancer Screening and Prevention Research Center, Guilan University of Medical Sciences, Rasht, Iran.,Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Mavaddati
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.,Caspian Digestive Disease Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- GI Cancer Screening and Prevention Research Center, Guilan University of Medical Sciences, Rasht, Iran.,Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Akbar Samadani
- GI Cancer Screening and Prevention Research Center, Guilan University of Medical Sciences, Rasht, Iran. .,Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
15
|
Challenges in Human Skin Microbial Profiling for Forensic Science: A Review. Genes (Basel) 2020; 11:genes11091015. [PMID: 32872386 PMCID: PMC7564248 DOI: 10.3390/genes11091015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
The human microbiome is comprised of the microbes that live on and within an individual, as well as immediately surrounding them. Microbial profiling may have forensic utility in the identification or association of individuals with criminal activities, using microbial signatures derived from a personal microbiome. This review highlights some important aspects of recent studies, many of which have revealed issues involving the effect of contamination of microbial samples from both technical and environmental sources and their impacts on microbiome research and the potential forensic applications of microbial profiling. It is imperative that these challenges be discussed and evaluated within a forensic context to better understand the future directions and potential applications of microbial profiling for human identification. It is necessary that the limitations identified be resolved prior to the adoption of microbial profiling, or, at a minimum, acknowledged by those applying this new approach.
Collapse
|
16
|
Prevention of Severe Intestinal Barrier Dysfunction Through a Single-Species Probiotics is Associated With the Activation of Microbiome-Mediated Glutamate-Glutamine Biosynthesis. Shock 2020; 55:128-137. [PMID: 32694391 DOI: 10.1097/shk.0000000000001593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Intra-abdominal hypertension (IAH), the leading complication in the intensive care unit, significantly disturbs the gut microbial composition by decreasing the relative abundance of Lactobacillus and increasing the relative abundance of opportunistic infectious bacteria. METHODS To evaluate the preventative effect of Lactobacillus-based probiotics on IAH-induced intestinal barrier damages, a single-species probiotics (L92) and a multispecies probiotics (VSL#3) were introduced orally to Sprague-Dawley rats for 7 days before inducing IAH. The intestinal histology and permeability to macromolecules (fluoresceine isothiocyanate, FITC-dextran, N = 8 for each group), the parameters of immunomodulatory and oxidative responses [monocyte chemotactic protein 1 (MCP-1), interleukin-1β (IL-1β), interleukin-4 (IL-4), interleukin-10 (IL-10), malonaldehyde, glutathione peroxidase (GSH- Px), catalase (CAT), and superoxide dismutase; N = 4 for each group], and the microbiome profiling (N = 4 for each group) were analyzed. RESULTS Seven-day pretreatments of L92 significantly alleviated the IAH-induced increase in intestinal permeability to FITC-dextran and histological damage (P < 0.0001), accompanied with the suppression of inflammatory and oxidative activation. The increase of MCP-1 and IL-1β was significantly inhibited (P < 0.05); the anti-inflammatory cytokines, IL-4, and IL-10 were maintained at high levels; and the suppression of CAT (P < 0.05) was significantly reversed when pretreated with L92. On the contrary, no significant protective effects were observed in the VSL#3-pretreated group. Among the 84 identified species, 260 MetaCyc pathways, and 217 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, the protective effects of L92 were correlated with an increased relative abundance of Bacteroides finegoldii, Odoribacter splanchnicus, and the global activation of amino acid biosynthesis pathways, especially the glutamate-glutamine biosynthesis pathway. CONCLUSIONS Seven-day pretreatment with a single-species probiotics can prevent IAH-induced severe intestinal barrier dysfunction, potentially through microbial modulation.
Collapse
|
17
|
Brumfield KD, Hasan NA, Leddy MB, Cotruvo JA, Rashed SM, Colwell RR, Huq A. A comparative analysis of drinking water employing metagenomics. PLoS One 2020; 15:e0231210. [PMID: 32271799 PMCID: PMC7145143 DOI: 10.1371/journal.pone.0231210] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
The microbiological content of drinking water traditionally is determined by employing culture-dependent methods that are unable to detect all microorganisms, especially those that are not culturable. High-throughput sequencing now makes it possible to determine the microbiome of drinking water. Thus, the natural microbiota of water and water distribution systems can now be determined more accurately and analyzed in significantly greater detail, providing comprehensive understanding of the microbial community of drinking water applicable to public health. In this study, shotgun metagenomic analysis was performed to determine the microbiological content of drinking water and to provide a preliminary assessment of tap, drinking fountain, sparkling natural mineral, and non-mineral bottled water. Predominant bacterial species detected were members of the phyla Actinobacteria and Proteobacteria, notably the genera Alishewanella, Salmonella, and Propionibacterium in non-carbonated non-mineral bottled water, Methyloversatilis and Methylibium in sparkling natural mineral water, and Mycobacterium and Afipia in tap and drinking fountain water. Fecal indicator bacteria, i.e., Escherichia coli or enterococci, were not detected in any samples examined in this study. Bacteriophages and DNA encoding a few virulence-associated factors were detected but determined to be present only at low abundance. Antibiotic resistance markers were detected only at abundance values below our threshold of confidence. DNA of opportunistic plant and animal pathogens was identified in some samples and these included bacteria (Mycobacterium spp.), protozoa (Acanthamoeba mauritaniensis and Acanthamoeba palestinensis), and fungi (Melampsora pinitorqua and Chryosporium queenslandicum). Archaeal DNA (Candidatus Nitrosoarchaeum) was detected only in sparkling natural mineral water. This preliminary study reports the complete microbiome (bacteria, viruses, fungi, and protists) of selected types of drinking water employing whole-genome high-throughput sequencing and bioinformatics. Investigation into activity and function of the organisms detected is in progress.
Collapse
Affiliation(s)
- Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States of America
| | - Nur A. Hasan
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States of America
- CosmosID Inc., Rockville, MD, United States of America
| | - Menu B. Leddy
- Essential Environmental and Engineering Systems, Huntington Beach, CA, United States of America
| | - Joseph A. Cotruvo
- Joseph Cotruvo and Associates LLC, Washington, DC, United States of America
| | - Shah M. Rashed
- Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America
- CosmosID Inc., Rockville, MD, United States of America
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States of America
- CosmosID Inc., Rockville, MD, United States of America
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America
| |
Collapse
|
18
|
Ramiro RS, Durão P, Bank C, Gordo I. Low mutational load and high mutation rate variation in gut commensal bacteria. PLoS Biol 2020; 18:e3000617. [PMID: 32155146 PMCID: PMC7064181 DOI: 10.1371/journal.pbio.3000617] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria generally live in species-rich communities, such as the gut microbiota. Yet little is known about bacterial evolution in natural ecosystems. Here, we followed the long-term evolution of commensal Escherichia coli in the mouse gut. We observe the emergence of mutation rate polymorphism, ranging from wild-type levels to 1,000-fold higher. By combining experiments, whole-genome sequencing, and in silico simulations, we identify the molecular causes and explore the evolutionary conditions allowing these hypermutators to emerge and coexist within the microbiota. The hypermutator phenotype is caused by mutations in DNA polymerase III proofreading and catalytic subunits, which increase mutation rate by approximately 1,000-fold and stabilise hypermutator fitness, respectively. Strong mutation rate variation persists for >1,000 generations, with coexistence between lineages carrying 4 to >600 mutations. The in vivo molecular evolution pattern is consistent with fitness effects of deleterious mutations sd ≤ 10−4/generation, assuming a constant effect or exponentially distributed effects with a constant mean. Such effects are lower than typical in vitro estimates, leading to a low mutational load, an inference that is observed in in vivo and in vitro competitions. Despite large numbers of deleterious mutations, we identify multiple beneficial mutations that do not reach fixation over long periods of time. This indicates that the dynamics of beneficial mutations are not shaped by constant positive Darwinian selection but could be explained by other evolutionary mechanisms that maintain genetic diversity. Thus, microbial evolution in the gut is likely characterised by partial sweeps of beneficial mutations combined with hitchhiking of slightly deleterious mutations, which take a long time to be purged because they impose a low mutational load. The combination of these two processes could allow for the long-term maintenance of intraspecies genetic diversity, including mutation rate polymorphism. These results are consistent with the pattern of genetic polymorphism that is emerging from metagenomics studies of the human gut microbiota, suggesting that we have identified key evolutionary processes shaping the genetic composition of this community. Weak-effect deleterious mutations and negative frequency–dependent selection, acting on beneficial mutations, shape the dynamics of molecular evolution within the mouse gut microbiota.
Collapse
Affiliation(s)
- Ricardo S. Ramiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (RSR); (IG)
| | - Paulo Durão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (RSR); (IG)
| |
Collapse
|
19
|
Hernandez-Agreda A, Leggat W, Ainsworth TD. A place for taxonomic profiling in the study of the coral prokaryotic microbiome. FEMS Microbiol Lett 2020; 366:5426210. [PMID: 30939203 DOI: 10.1093/femsle/fnz063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 04/01/2019] [Indexed: 12/29/2022] Open
Abstract
The enormous variability in richness, abundance and diversity of unknown bacterial organisms inhabiting the coral microbiome have challenged our understanding of their functional contribution to coral health. Identifying the attributes of the healthy meta-organism is paramount for contemporary approaches aiming to manipulate dysbiotic stages of the coral microbiome. This review evaluates the current knowledge on the structure and mechanisms driving bacterial communities in the coral microbiome and discusses two topics requiring further research to define the healthy coral microbiome. (i) We examine the necessity to establish microbial baselines to understand the spatial and temporal dynamics of the healthy coral microbiome and summarise conceptual and logistic challenges to consider in the design of these baselines. (ii) We propose potential mechanical, physical and chemical mechanisms driving bacterial distribution within coral compartments and suggest experiments to test them. Finally, we highlight aspects of the use of 16S amplicon sequencing requiring standardization and discuss its contribution to other multi-omics approaches.
Collapse
Affiliation(s)
- Alejandra Hernandez-Agreda
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,The College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California, 94118, USA
| | - William Leggat
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,The College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,School of Environmental and Life Sciences, The University of Newcastle, 10 Chittaway Road, Ourimbah, New South Wales, 2258, Australia
| | - Tracy D Ainsworth
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,School of Biological, Earth and Environmental Sciences, The University of New South Wales, Biological Sciences Building (D26), Randwick, New South Wales, 2052, Australia
| |
Collapse
|
20
|
Ogier JC, Pagès S, Frayssinet M, Gaudriault S. Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. MICROBIOME 2020; 8:25. [PMID: 32093774 PMCID: PMC7041241 DOI: 10.1186/s40168-020-00800-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The holistic view of bacterial symbiosis, incorporating both host and microbial environment, constitutes a major conceptual shift in studies deciphering host-microbe interactions. Interactions between Steinernema entomopathogenic nematodes and their bacterial symbionts, Xenorhabdus, have long been considered monoxenic two partner associations responsible for the killing of the insects and therefore widely used in insect pest biocontrol. We investigated this "monoxenic paradigm" by profiling the microbiota of infective juveniles (IJs), the soil-dwelling form responsible for transmitting Steinernema-Xenorhabdus between insect hosts in the parasitic lifecycle. RESULTS Multigenic metabarcoding (16S and rpoB markers) showed that the bacterial community associated with laboratory-reared IJs from Steinernema carpocapsae, S. feltiae, S. glaseri and S. weiseri species consisted of several Proteobacteria. The association with Xenorhabdus was never monoxenic. We showed that the laboratory-reared IJs of S. carpocapsae bore a bacterial community composed of the core symbiont (Xenorhabdus nematophila) together with a frequently associated microbiota (FAM) consisting of about a dozen of Proteobacteria (Pseudomonas, Stenotrophomonas, Alcaligenes, Achromobacter, Pseudochrobactrum, Ochrobactrum, Brevundimonas, Deftia, etc.). We validated this set of bacteria by metabarcoding analysis on freshly sampled IJs from natural conditions. We isolated diverse bacterial taxa, validating the profile of the Steinernema FAM. We explored the functions of the FAM members potentially involved in the parasitic lifecycle of Steinernema. Two species, Pseudomonas protegens and P. chlororaphis, displayed entomopathogenic properties suggestive of a role in Steinernema virulence and membership of the Steinernema pathobiome. CONCLUSIONS Our study validates a shift from monoxenic paradigm to pathobiome view in the case of the Steinernema ecology. The microbial communities of low complexity associated with EPNs will permit future microbiota manipulation experiments to decipher overall microbiota functioning in the infectious process triggered by EPN in insects and, more generally, in EPN ecology.
Collapse
Affiliation(s)
| | - Sylvie Pagès
- DGIMI, INRAe-Université de Montpellier, 34095, Montpellier, France
| | - Marie Frayssinet
- DGIMI, INRAe-Université de Montpellier, 34095, Montpellier, France
| | | |
Collapse
|
21
|
Cullen CM, Aneja KK, Beyhan S, Cho CE, Woloszynek S, Convertino M, McCoy SJ, Zhang Y, Anderson MZ, Alvarez-Ponce D, Smirnova E, Karstens L, Dorrestein PC, Li H, Sen Gupta A, Cheung K, Powers JG, Zhao Z, Rosen GL. Emerging Priorities for Microbiome Research. Front Microbiol 2020; 11:136. [PMID: 32140140 PMCID: PMC7042322 DOI: 10.3389/fmicb.2020.00136] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiome research has increased dramatically in recent years, driven by advances in technology and significant reductions in the cost of analysis. Such research has unlocked a wealth of data, which has yielded tremendous insight into the nature of the microbial communities, including their interactions and effects, both within a host and in an external environment as part of an ecological community. Understanding the role of microbiota, including their dynamic interactions with their hosts and other microbes, can enable the engineering of new diagnostic techniques and interventional strategies that can be used in a diverse spectrum of fields, spanning from ecology and agriculture to medicine and from forensics to exobiology. From June 19-23 in 2017, the NIH and NSF jointly held an Innovation Lab on Quantitative Approaches to Biomedical Data Science Challenges in our Understanding of the Microbiome. This review is inspired by some of the topics that arose as priority areas from this unique, interactive workshop. The goal of this review is to summarize the Innovation Lab's findings by introducing the reader to emerging challenges, exciting potential, and current directions in microbiome research. The review is broken into five key topic areas: (1) interactions between microbes and the human body, (2) evolution and ecology of microbes, including the role played by the environment and microbe-microbe interactions, (3) analytical and mathematical methods currently used in microbiome research, (4) leveraging knowledge of microbial composition and interactions to develop engineering solutions, and (5) interventional approaches and engineered microbiota that may be enabled by selectively altering microbial composition. As such, this review seeks to arm the reader with a broad understanding of the priorities and challenges in microbiome research today and provide inspiration for future investigation and multi-disciplinary collaboration.
Collapse
Affiliation(s)
- Chad M. Cullen
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | | | - Sinem Beyhan
- Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, United States
| | - Clara E. Cho
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, United States
| | - Stephen Woloszynek
- Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI), Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States
- College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Matteo Convertino
- Nexus Group, Faculty of Information Science and Technology, Gi-CoRE Station for Big Data & Cybersecurity, Hokkaido University, Sapporo, Japan
| | - Sophie J. McCoy
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | | | - Ekaterina Smirnova
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, United States
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ananya Sen Gupta
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, United States
| | - Kevin Cheung
- Department of Dermatology, The University of Iowa, Iowa City, IA, United States
| | | | - Zhengqiao Zhao
- Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI), Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States
| | - Gail L. Rosen
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
- Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI), Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
22
|
O’Donnell ST, Ross RP, Stanton C. The Progress of Multi-Omics Technologies: Determining Function in Lactic Acid Bacteria Using a Systems Level Approach. Front Microbiol 2020; 10:3084. [PMID: 32047482 PMCID: PMC6997344 DOI: 10.3389/fmicb.2019.03084] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Lactic Acid Bacteria (LAB) have long been recognized as having a significant impact ranging from commercial to health domains. A vast amount of research has been carried out on these microbes, deciphering many of the pathways and components responsible for these desirable effects. However, a large proportion of this functional information has been derived from a reductionist approach working with pure culture strains. This provides limited insight into understanding the impact of LAB within intricate systems such as the gut microbiome or multi strain starter cultures. Whole genome sequencing of strains and shotgun metagenomics of entire systems are powerful techniques that are currently widely used to decipher function in microbes, but they also have their limitations. An available genome or metagenome can provide an image of what a strain or microbiome, respectively, is potentially capable of and the functions that they may carry out. A top-down, multi-omics approach has the power to resolve the functional potential of an ecosystem into an image of what is being expressed, translated and produced. With this image, it is possible to see the real functions that members of a system are performing and allow more accurate and impactful predictions of the effects of these microorganisms. This review will discuss how technological advances have the potential to increase the yield of information from genomics, transcriptomics, proteomics and metabolomics. The potential for integrated omics to resolve the role of LAB in complex systems will also be assessed. Finally, the current software approaches for managing these omics data sets will be discussed.
Collapse
Affiliation(s)
- Shane Thomas O’Donnell
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
23
|
Aluthge ND, Van Sambeek DM, Carney-Hinkle EE, Li YS, Fernando SC, Burkey TE. BOARD INVITED REVIEW: The pig microbiota and the potential for harnessing the power of the microbiome to improve growth and health1. J Anim Sci 2019; 97:3741-3757. [PMID: 31250899 DOI: 10.1093/jas/skz208] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.
Collapse
Affiliation(s)
- Nirosh D Aluthge
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | | | | | - Yanshuo S Li
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | | | - Thomas E Burkey
- Department of Animal Science, University of Nebraska, Lincoln, NE
| |
Collapse
|
24
|
Abbas M, Matta J, Le T, Bensmail H, Obafemi-Ajayi T, Honavar V, EL-Manzalawy Y. Biomarker discovery in inflammatory bowel diseases using network-based feature selection. PLoS One 2019; 14:e0225382. [PMID: 31756219 PMCID: PMC6874333 DOI: 10.1371/journal.pone.0225382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Reliable identification of Inflammatory biomarkers from metagenomics data is a promising direction for developing non-invasive, cost-effective, and rapid clinical tests for early diagnosis of IBD. We present an integrative approach to Network-Based Biomarker Discovery (NBBD) which integrates network analyses methods for prioritizing potential biomarkers and machine learning techniques for assessing the discriminative power of the prioritized biomarkers. Using a large dataset of new-onset pediatric IBD metagenomics biopsy samples, we compare the performance of Random Forest (RF) classifiers trained on features selected using a representative set of traditional feature selection methods against NBBD framework, configured using five different tools for inferring networks from metagenomics data, and nine different methods for prioritizing biomarkers as well as a hybrid approach combining best traditional and NBBD based feature selection. We also examine how the performance of the predictive models for IBD diagnosis varies as a function of the size of the data used for biomarker identification. Our results show that (i) NBBD is competitive with some of the state-of-the-art feature selection methods including Random Forest Feature Importance (RFFI) scores; and (ii) NBBD is especially effective in reliably identifying IBD biomarkers when the number of data samples available for biomarker discovery is small.
Collapse
Affiliation(s)
- Mostafa Abbas
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - John Matta
- Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
| | - Thanh Le
- Engineering Program, Missouri State University, Springfield, MO, United States of America
| | - Halima Bensmail
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Tayo Obafemi-Ajayi
- Engineering Program, Missouri State University, Springfield, MO, United States of America
- * E-mail: (TO-A); (YE-M)
| | - Vasant Honavar
- College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, United States of America
| | - Yasser EL-Manzalawy
- College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, United States of America
- Geisinger Health System, Danville, PA, United States of America
- * E-mail: (TO-A); (YE-M)
| |
Collapse
|
25
|
Reis Ferreira M, Andreyev HJN, Mohammed K, Truelove L, Gowan SM, Li J, Gulliford SL, Marchesi JR, Dearnaley DP. Microbiota- and Radiotherapy-Induced Gastrointestinal Side-Effects (MARS) Study: A Large Pilot Study of the Microbiome in Acute and Late-Radiation Enteropathy. Clin Cancer Res 2019; 25:6487-6500. [PMID: 31345839 DOI: 10.1158/1078-0432.ccr-19-0960] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/18/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Radiotherapy is important in managing pelvic cancers. However, radiation enteropathy may occur and can be dose limiting. The gut microbiota may contribute to the pathogenesis of radiation enteropathy. We hypothesized that the microbiome differs between patients with and without radiation enteropathy.Experimental Design: Three cohorts of patients (n = 134) were recruited. The early cohort (n = 32) was followed sequentially up to 12 months post-radiotherapy to assess early radiation enteropathy. Linear mixed models were used to assess microbiota dynamics. The late cohort (n = 87) was assessed cross-sectionally to assess late radiation enteropathy. The colonoscopy cohort compared the intestinal mucosa microenvironment in patients with radiation enteropathy (cases, n = 9) with healthy controls (controls, n = 6). Fecal samples were obtained from all cohorts. In the colonoscopy cohort, intestinal mucosa samples were taken. Metataxonomics (16S rRNA gene) and imputed metataxonomics (Piphillin) were used to characterize the microbiome. Clinician- and patient-reported outcomes were used for clinical characterization. RESULTS In the acute cohort, we observed a trend for higher preradiotherapy diversity in patients with no self-reported symptoms (P = 0.09). Dynamically, diversity decreased less over time in patients with rising radiation enteropathy (P = 0.05). A consistent association between low bacterial diversity and late radiation enteropathy was also observed, albeit nonsignificantly. Higher counts of Clostridium IV, Roseburia, and Phascolarctobacterium significantly associated with radiation enteropathy. Homeostatic intestinal mucosa cytokines related to microbiota regulation and intestinal wall maintenance were significantly reduced in radiation enteropathy [IL7 (P = 0.05), IL12/IL23p40 (P = 0.03), IL15 (P = 0.05), and IL16 (P = 0.009)]. IL15 inversely correlated with counts of Roseburia and Propionibacterium. CONCLUSIONS The microbiota presents opportunities to predict, prevent, or treat radiation enteropathy. We report the largest clinical study to date into associations of the microbiota with acute and late radiation enteropathy. An altered microbiota associates with early and late radiation enteropathy, with clinical implications for risk assessment, prevention, and treatment of radiation-induced side-effects.See related commentary by Lam et al., p. 6280.
Collapse
Affiliation(s)
- Miguel Reis Ferreira
- The Institute of Cancer Research, London, United Kingdom. .,The Royal Marsden NHS Foundation Trust, London, United Kingdom.,Guys and St Thomas NHS Foundation Trust, London, United Kingdom.,King's College London, London, United Kingdom
| | | | - Kabir Mohammed
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Lesley Truelove
- The Institute of Cancer Research, London, United Kingdom.,The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Sharon M Gowan
- The Institute of Cancer Research, London, United Kingdom
| | - Jia Li
- Imperial College, London, United Kingdom
| | - Sarah L Gulliford
- The Institute of Cancer Research, London, United Kingdom.,University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Julian R Marchesi
- Imperial College, London, United Kingdom. .,Cardiff University, Cardiff, United Kingdom
| | - David P Dearnaley
- The Institute of Cancer Research, London, United Kingdom.,The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
26
|
Harris EV, de Roode JC, Gerardo NM. Diet-microbiome-disease: Investigating diet's influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathog 2019; 15:e1007891. [PMID: 31671152 PMCID: PMC6822718 DOI: 10.1371/journal.ppat.1007891] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abiotic and biotic factors can affect host resistance to parasites. Host diet and host gut microbiomes are two increasingly recognized factors influencing disease resistance. In particular, recent studies demonstrate that (1) particular diets can reduce parasitism; (2) diets can alter the gut microbiome; and (3) the gut microbiome can decrease parasitism. These three separate relationships suggest the existence of indirect links through which diets reduce parasitism through an alteration of the gut microbiome. However, such links are rarely considered and even more rarely experimentally validated. This is surprising because there is increasing discussion of the therapeutic potential of diets and gut microbiomes to control infectious disease. To elucidate these potential indirect links, we review and examine studies on a wide range of animal systems commonly used in diet, microbiome, and disease research. We also examine the relative benefits and disadvantages of particular systems for the study of these indirect links and conclude that mice and insects are currently the best animal systems to test for the effect of diet-altered protective gut microbiomes on infectious disease. Focusing on these systems, we provide experimental guidelines and highlight challenges that must be overcome. Although previous studies have recommended these systems for microbiome research, here we specifically recommend these systems because of their proven relationships between diet and parasitism, between diet and the microbiome, and between the microbiome and parasite resistance. Thus, they provide a sound foundation to explore the three-way interaction between diet, the microbiome, and infectious disease.
Collapse
Affiliation(s)
- Erica V. Harris
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Jacobus C. de Roode
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Nicole M. Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
27
|
Déjean G, Tauzin AS, Bennett SW, Creagh AL, Brumer H. Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Appl Environ Microbiol 2019; 85:e01491-19. [PMID: 31420336 PMCID: PMC6805095 DOI: 10.1128/aem.01491-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Genome sequencing has revealed substantial variation in the predicted abilities of individual species within animal gut microbiota to metabolize the complex carbohydrates comprising dietary fiber. At the same time, a currently limited body of functional studies precludes a richer understanding of how dietary glycan structures affect the gut microbiota composition and community dynamics. Here, using biochemical and biophysical techniques, we identified and characterized differences among recombinant proteins from syntenic xyloglucan utilization loci (XyGUL) of three Bacteroides and one Dysgonomonas species from the human gut, which drive substrate specificity and access to distinct polysaccharide side chains. Enzymology of four syntenic glycoside hydrolase family 5 subfamily 4 (GH5_4) endo-xyloglucanases revealed surprising differences in xyloglucan (XyG) backbone cleavage specificity, including the ability of some homologs to hydrolyze congested branched positions. Further, differences in the complement of GH43 alpha-l-arabinofuranosidases and GH95 alpha-l-fucosidases among syntenic XyGUL confer distinct abilities to fully saccharify plant species-specific arabinogalactoxyloglucan and/or fucogalactoxyloglucan. Finally, characterization of highly sequence-divergent cell surface glycan-binding proteins (SGBPs) across syntenic XyGUL revealed a novel group of XyG oligosaccharide-specific SGBPs encoded within select BacteroidesIMPORTANCE The catabolism of complex carbohydrates that otherwise escape the endogenous digestive enzymes of humans and other animals drives the composition and function of the gut microbiota. Thus, detailed molecular characterization of dietary glycan utilization systems is essential both to understand the ecology of these complex communities and to manipulate their compositions, e.g., to benefit human health. Our research reveals new insight into how ubiquitous members of the human gut microbiota have evolved a set of microheterogeneous gene clusters to efficiently respond to the structural variations of plant xyloglucans. The data here will enable refined functional prediction of xyloglucan utilization among diverse environmental taxa in animal guts and beyond.
Collapse
Affiliation(s)
- Guillaume Déjean
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexandra S Tauzin
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart W Bennett
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Louise Creagh
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Huggins LG, Koehler AV, Ng-Nguyen D, Wilcox S, Schunack B, Inpankaew T, Traub RJ. Assessment of a metabarcoding approach for the characterisation of vector-borne bacteria in canines from Bangkok, Thailand. Parasit Vectors 2019; 12:394. [PMID: 31395073 PMCID: PMC6686542 DOI: 10.1186/s13071-019-3651-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Globally, bacterial vector-borne disease (VBD) exerts a large toll on dogs in terms of morbidity and mortality but nowhere is this more pronounced than in the tropics. Tropical environments permit a burgeoning diversity and abundance of ectoparasites some of which can transmit an extensive range of infectious agents, including bacteria, amongst others. Although some of these vector-borne bacteria are responsible for both animal and human diseases in the tropics, there is a scarcity of epidemiological investigation into these pathogens' prevalence. The situation is further exacerbated by frequent canine co-infection, complicating symptomatology that regular diagnostic techniques may miss or be unable to fully characterise. Such limitations draw attention to the need to develop screening tools capable of detecting a wide range of pathogens from a host simultaneously. RESULTS Here, we detail the employment of a next-generation sequencing (NGS) metabarcoding methodology to screen for the spectrum of bacterial VBD that are infecting semi-domesticated dogs across temple communities in Bangkok, Thailand. Our NGS detection protocol was able to find high levels of Ehrlichia canis, Mycoplasma haemocanis and Anaplasma platys infection rates as well as less common pathogens, such as "Candidatus Mycoplasma haematoparvum", Mycoplasma turicensis and Bartonella spp. We also compared our high-throughput approach to conventional endpoint PCR methods, demonstrating an improved detection ability for some bacterial infections, such as A. platys but a reduced ability to detect Rickettsia. CONCLUSIONS Our methodology demonstrated great strength at detecting coinfections of vector-borne bacteria and rare pathogens that are seldom screened for in canines in the tropics, highlighting its advantages over traditional diagnostics to better characterise bacterial pathogens in environments where there is a dearth of research.
Collapse
Affiliation(s)
- Lucas G. Huggins
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052 Australia
| | - Anson V. Koehler
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052 Australia
| | - Dinh Ng-Nguyen
- Faculty of Animal Sciences and Veterinary Medicine, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000 Vietnam
| | - Stephen Wilcox
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia
| | | | - Tawin Inpankaew
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900 Thailand
| | - Rebecca J. Traub
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052 Australia
| |
Collapse
|
29
|
Sayyari E, Kawas B, Mirarab S. TADA: phylogenetic augmentation of microbiome samples enhances phenotype classification. Bioinformatics 2019; 35:i31-i40. [PMID: 31510701 PMCID: PMC6612822 DOI: 10.1093/bioinformatics/btz394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MOTIVATION Learning associations of traits with the microbial composition of a set of samples is a fundamental goal in microbiome studies. Recently, machine learning methods have been explored for this goal, with some promise. However, in comparison to other fields, microbiome data are high-dimensional and not abundant; leading to a high-dimensional low-sample-size under-determined system. Moreover, microbiome data are often unbalanced and biased. Given such training data, machine learning methods often fail to perform a classification task with sufficient accuracy. Lack of signal is especially problematic when classes are represented in an unbalanced way in the training data; with some classes under-represented. The presence of inter-correlations among subsets of observations further compounds these issues. As a result, machine learning methods have had only limited success in predicting many traits from microbiome. Data augmentation consists of building synthetic samples and adding them to the training data and is a technique that has proved helpful for many machine learning tasks. RESULTS In this paper, we propose a new data augmentation technique for classifying phenotypes based on the microbiome. Our algorithm, called TADA, uses available data and a statistical generative model to create new samples augmenting existing ones, addressing issues of low-sample-size. In generating new samples, TADA takes into account phylogenetic relationships between microbial species. On two real datasets, we show that adding these synthetic samples to the training set improves the accuracy of downstream classification, especially when the training data have an unbalanced representation of classes. AVAILABILITY AND IMPLEMENTATION TADA is available at https://github.com/tada-alg/TADA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Erfan Sayyari
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Ban Kawas
- IBM Research—Almaden Research Center, San Jose, CA, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Bewick S, Gurarie E, Weissman JL, Beattie J, Davati C, Flint R, Thielen P, Breitwieser F, Karig D, Fagan WF. Trait-based analysis of the human skin microbiome. MICROBIOME 2019; 7:101. [PMID: 31277701 PMCID: PMC6612184 DOI: 10.1186/s40168-019-0698-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 05/19/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND The past decade of microbiome research has concentrated on cataloging the diversity of taxa in different environments. The next decade is poised to focus on microbial traits and function. Most existing methods for doing this perform pathway analysis using reference databases. This has both benefits and drawbacks. Function can go undetected if reference databases are coarse-grained or incomplete. Likewise, detection of a pathway does not guarantee expression of the associated function. Finally, function cannot be connected to specific microbial constituents, making it difficult to ascertain the types of organisms exhibiting particular traits-something that is important for understanding microbial success in specific environments. A complementary approach to pathway analysis is to use the wealth of microbial trait information collected over years of lab-based, culture experiments. METHODS Here, we use journal articles and Bergey's Manual of Systematic Bacteriology to develop a trait-based database for 971 human skin bacterial taxa. We then use this database to examine functional traits that are over/underrepresented among skin taxa. Specifically, we focus on three trait classes-binary, categorical, and quantitative-and compare trait values among skin taxa and microbial taxa more broadly. We compare binary traits using a Chi-square test, categorical traits using randomization trials, and quantitative traits using a nonparametric relative effects test based on global rankings using Tukey contrasts. RESULTS We find a number of traits that are over/underrepresented within the human skin microbiome. For example, spore formation, acid phosphatase, alkaline phosphatase, pigment production, catalase, and oxidase are all less common among skin taxa. As well, skin bacteria are less likely to be aerobic, favoring, instead, a facultative strategy. They are also less likely to exhibit gliding motility, less likely to be spirillum or rod-shaped, and less likely to grow in chains. Finally, skin bacteria have more difficulty at high pH, prefer warmer temperatures, and are much less resilient to hypotonic conditions. CONCLUSIONS Our analysis shows how an approach that relies on information from culture experiments can both support findings from pathway analysis, and also generate new insights into the structuring principles of microbial communities.
Collapse
Affiliation(s)
- Sharon Bewick
- Department of Biological Sciences, Clemson University, Clemson, SC 29631 USA
| | - Eliezer Gurarie
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| | - JL Weissman
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| | - Jess Beattie
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| | - Cyrus Davati
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| | - Rachel Flint
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| | - Peter Thielen
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723 USA
| | - Florian Breitwieser
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - David Karig
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723 USA
- Department of Bioengineering, Clemson University, Clemson, SC 29631 USA
| | - William F. Fagan
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
31
|
Niu SY, Yang J, McDermaid A, Zhao J, Kang Y, Ma Q. Bioinformatics tools for quantitative and functional metagenome and metatranscriptome data analysis in microbes. Brief Bioinform 2019; 19:1415-1429. [PMID: 28481971 DOI: 10.1093/bib/bbx051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
Metagenomic and metatranscriptomic sequencing approaches are more frequently being used to link microbiota to important diseases and ecological changes. Many analyses have been used to compare the taxonomic and functional profiles of microbiota across habitats or individuals. While a large portion of metagenomic analyses focus on species-level profiling, some studies use strain-level metagenomic analyses to investigate the relationship between specific strains and certain circumstances. Metatranscriptomic analysis provides another important insight into activities of genes by examining gene expression levels of microbiota. Hence, combining metagenomic and metatranscriptomic analyses will help understand the activity or enrichment of a given gene set, such as drug-resistant genes among microbiome samples. Here, we summarize existing bioinformatics tools of metagenomic and metatranscriptomic data analysis, the purpose of which is to assist researchers in deciding the appropriate tools for their microbiome studies. Additionally, we propose an Integrated Meta-Function mapping pipeline to incorporate various reference databases and accelerate functional gene mapping procedures for both metagenomic and metatranscriptomic analyses.
Collapse
Affiliation(s)
- Sheng-Yong Niu
- Department of Biochemical Science and Technology, National Taiwan University, Taiwan
| | - Jinyu Yang
- Department of Mathematics and Statistics at South Dakota State University, Brookings, SD, USA
| | - Adam McDermaid
- Department of Mathematics and Statistics at South Dakota State University, Brookings, SD, USA
| | - Jing Zhao
- Department of Internal Medicine at University of South Dakota Sanford School of Medicine
| | - Yu Kang
- Beijing Institute of Genomics of Chinese Academy of Sciences
| | - Qin Ma
- Department of Mathematics and Statistics at South Dakota State University and BioSNTR, SD, USA
| |
Collapse
|
32
|
Glasl B, Bourne DG, Frade PR, Thomas T, Schaffelke B, Webster NS. Microbial indicators of environmental perturbations in coral reef ecosystems. MICROBIOME 2019; 7:94. [PMID: 31227022 PMCID: PMC6588946 DOI: 10.1186/s40168-019-0705-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/28/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Coral reefs are facing unprecedented pressure on local and global scales. Sensitive and rapid markers for ecosystem stress are urgently needed to underpin effective management and restoration strategies. Although the fundamental contribution of microbes to the stability and functioning of coral reefs is widely recognised, it remains unclear how different reef microbiomes respond to environmental perturbations and whether microbiomes are sensitive enough to predict environmental anomalies that can lead to ecosystem stress. However, the lack of coral reef microbial baselines hinders our ability to study the link between shifts in microbiomes and ecosystem stress. In this study, we established a comprehensive microbial reference database for selected Great Barrier Reef sites to assess the diagnostic value of multiple free-living and host-associated reef microbiomes to infer the environmental state of coral reef ecosystems. RESULTS A comprehensive microbial reference database, originating from multiple coral reef microbiomes (i.e. seawater, sediment, corals, sponges and macroalgae), was generated by 16S rRNA gene sequencing for 381 samples collected over the course of 16 months. By coupling this database to environmental parameters, we showed that the seawater microbiome has the greatest diagnostic value to infer shifts in the surrounding reef environment. In fact, 56% of the observed compositional variation in the microbiome was explained by environmental parameters, and temporal successions in the seawater microbiome were characterised by uniform community assembly patterns. Host-associated microbiomes, in contrast, were five-times less responsive to the environment and their community assembly patterns were generally less uniform. By applying a suite of indicator value and machine learning approaches, we further showed that seawater microbial community data provide an accurate prediction of temperature and eutrophication state (i.e. chlorophyll concentration and turbidity). CONCLUSION Our results reveal that free-living microbial communities have a high potential to infer environmental parameters due to their environmental sensitivity and predictability. This highlights the diagnostic value of microorganisms and illustrates how long-term coral reef monitoring initiatives could be enhanced by incorporating assessments of microbial communities in seawater. We therefore recommend timely integration of microbial sampling into current coral reef monitoring initiatives.
Collapse
Affiliation(s)
- Bettina Glasl
- Australian Institute of Marine Science, Townsville, QLD, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
- AIMS@JCU, Townsville, QLD, Australia.
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Pedro R Frade
- Centre of Marine Science, University of Algarve, Faro, Portugal
| | - Torsten Thomas
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | | | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
33
|
Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S, Winkler A, Xiao Y, Chaffron S, Van Der Vossen J, Tang S, Katase M, McClure P, Kimura B, Ching Chai L, Chapman J, Grant K. The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiol 2019; 79:96-115. [PMID: 30621881 PMCID: PMC6492263 DOI: 10.1016/j.fm.2018.11.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 01/06/2023]
Abstract
Next Generation Sequencing (NGS) combined with powerful bioinformatic approaches are revolutionising food microbiology. Whole genome sequencing (WGS) of single isolates allows the most detailed comparison possible hitherto of individual strains. The two principle approaches for strain discrimination, single nucleotide polymorphism (SNP) analysis and genomic multi-locus sequence typing (MLST) are showing concordant results for phylogenetic clustering and are complementary to each other. Metabarcoding and metagenomics, applied to total DNA isolated from either food materials or the production environment, allows the identification of complete microbial populations. Metagenomics identifies the entire gene content and when coupled to transcriptomics or proteomics, allows the identification of functional capacity and biochemical activity of microbial populations. The focus of this review is on the recent use and future potential of NGS in food microbiology and on current challenges. Guidance is provided for new users, such as public health departments and the food industry, on the implementation of NGS and how to critically interpret results and place them in a broader context. The review aims to promote the broader application of NGS technologies within the food industry as well as highlight knowledge gaps and novel applications of NGS with the aim of driving future research and increasing food safety outputs from its wider use.
Collapse
Affiliation(s)
- Balamurugan Jagadeesan
- Nestlé Research, Nestec Ltd, Route du Jorat 57, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland.
| | - Peter Gerner-Smidt
- Centers for Disease Control and Prevention, MS-CO-3, 1600 Clifton Road, 30329-4027, Atlanta, USA
| | - Marc W Allard
- US Food and Drug Administration, 5001 Campus Drive, College Park, MD, 02740, USA
| | - Sébastien Leuillet
- Institut Mérieux, Mérieux NutriSciences, 3 route de la Chatterie, 44800, Saint Herblain, France
| | - Anett Winkler
- Cargill Deutschland GmbH, Cerestarstr. 2, 47809, Krefeld, Germany
| | - Yinghua Xiao
- Arla Innovation Center, Agro Food Park 19, 8200, Aarhus, Denmark
| | - Samuel Chaffron
- Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS UMR 6004 - Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Jos Van Der Vossen
- The Netherlands Organisation for Applied Scientific Research, TNO, Utrechtseweg 48, 3704 HE, Zeist, NL, the Netherlands
| | - Silin Tang
- Mars Global Food Safety Center, Yanqi Economic Development Zone, 101407, Beijing, China
| | - Mitsuru Katase
- Fuji Oil Co., Ltd., Sumiyoshi-cho 1, Izumisano Osaka, 598-8540, Japan
| | - Peter McClure
- Mondelēz International, Linden 3, Bournville Lane, B30 2LU, Birmingham, United Kingdom
| | - Bon Kimura
- Tokyo University of Marine Science & Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Lay Ching Chai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - John Chapman
- Unilever Research & Development, Postbus, 114, 3130 AC, Vlaardingen, the Netherlands
| | - Kathie Grant
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom.
| |
Collapse
|
34
|
Day RLJ, Harper AJ, Woods RM, Davies OG, Heaney LM. Probiotics: current landscape and future horizons. Future Sci OA 2019; 5:FSO391. [PMID: 31114711 PMCID: PMC6511921 DOI: 10.4155/fsoa-2019-0004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
In recent years there has been a rapid rise in interest for the application of probiotic supplements to act as mediators in health and disease. This appeal is predominantly due to ever-increasing evidence of the interaction of the microbiota and pathophysiological processes of disease within the human host. This narrative review considers the current landscape of the probiotic industry and its research, and discusses current pitfalls in the lack of translation from laboratory science to clinical application. Future considerations into how industry and academia must adapt probiotic research to maximize success are suggested, including more targeted application of probiotic strains dependent on individual capabilities as well as application of multiple advanced analytical technologies to further understand and accelerate microbiome science.
Collapse
Affiliation(s)
| | | | - Rachel M Woods
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Owen G Davies
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Liam M Heaney
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
35
|
Eveillard D, Bouskill NJ, Vintache D, Gras J, Ward BB, Bourdon J. Probabilistic Modeling of Microbial Metabolic Networks for Integrating Partial Quantitative Knowledge Within the Nitrogen Cycle. Front Microbiol 2019; 9:3298. [PMID: 30745899 PMCID: PMC6360161 DOI: 10.3389/fmicb.2018.03298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/18/2018] [Indexed: 11/15/2022] Open
Abstract
Understanding the interactions between microbial communities and their environment sufficiently to predict diversity on the basis of physicochemical parameters is a fundamental pursuit of microbial ecology that still eludes us. However, modeling microbial communities is problematic, because (i) communities are complex, (ii) most descriptions are qualitative, and (iii) quantitative understanding of the way communities interact with their surroundings remains incomplete. One approach to overcoming such complications is the integration of partial qualitative and quantitative descriptions into more complex networks. Here we outline the development of a probabilistic framework, based on Event Transition Graph (ETG) theory, to predict microbial community structure across observed chemical data. Using reverse engineering, we derive probabilities from the ETG that accurately represent observations from experiments and predict putative constraints on communities within dynamic environments. These predictions can feedback into the future development of field experiments by emphasizing the most important functional reactions, and associated microbial strains, required to characterize microbial ecosystems.
Collapse
Affiliation(s)
- Damien Eveillard
- LS2N, UMR6004 CNRS, Université de Nantes, Centrale Nantes, IMTA, Nantes, France.,Research Federation (FR2022) Tara Oceans GO-SEE, Paris, France
| | - Nicholas J Bouskill
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Damien Vintache
- LS2N, UMR6004 CNRS, Université de Nantes, Centrale Nantes, IMTA, Nantes, France.,Research Federation (FR2022) Tara Oceans GO-SEE, Paris, France
| | - Julien Gras
- LS2N, UMR6004 CNRS, Université de Nantes, Centrale Nantes, IMTA, Nantes, France
| | - Bess B Ward
- Geoscience Department, Princeton University, Princeton, NJ, United States
| | - Jérémie Bourdon
- LS2N, UMR6004 CNRS, Université de Nantes, Centrale Nantes, IMTA, Nantes, France
| |
Collapse
|
36
|
Farhat M, Alkharsah KR, Alkhamis FI, Bukharie HA. Metagenomic study on the composition of culturable and non-culturable bacteria in tap water and biofilms at intensive care units. JOURNAL OF WATER AND HEALTH 2019; 17:72-83. [PMID: 30758305 DOI: 10.2166/wh.2018.213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial community diversity of bulk water and corresponding biofilms of four intensive care units' (ICUs) drinking water systems were studied and compared using 16S rRNA gene amplicons and next generation sequencing. Proteobacteria, mainly Alphaproteobacteria and Betaproteobacteria were dominant in the bulk water and biofilms. Principal component analysis showed different bacterial communities characterizing each of the bulk water and the biofilms in three of the studied ICUs. Taxonomic classification and comparison of different genera between samples highlighted the dominance of Aquabacterium (80%) and Novosphingobium (72%) in bulk water while biofilms harbored different bacteria affiliated to Pelomonas (97%) and Caulobacter (96%), Porphyrobacter (78%) and Staphylococcus (74%). Staphylococcus aureus was the only possible pathogen found with low percentage (2.32%) in three of the ICUs' biofilm and only in one of the ICU's bulk water. This study sheds light on the prevalence of unculturable bacterial flora in the biofilm ignored by the microbiological standard methods. This study was performed on tap and bulk water from ICUs; however, it indicates the need for further studies to investigate the function and activity of the microbial diversity in order to assess the real risk presented by this water microflora on patients' health.
Collapse
Affiliation(s)
- Maha Farhat
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Kingdom of Saudi Arabia E-mail: ; Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Kingdom of Saudi Arabia
| | - Khaled R Alkharsah
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Kingdom of Saudi Arabia E-mail: ; Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Kingdom of Saudi Arabia
| | - Fatimah I Alkhamis
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Kingdom of Saudi Arabia E-mail:
| | - Huda A Bukharie
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
37
|
Sozańska B. Microbiome in the primary prevention of allergic diseases and bronchial asthma. Allergol Immunopathol (Madr) 2019; 47:79-84. [PMID: 29980403 DOI: 10.1016/j.aller.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/19/2018] [Accepted: 03/05/2018] [Indexed: 12/27/2022]
Abstract
Tremendous progress in the ability to identify and test the function of microorganisms in recent years has led to a much better understanding of the role of environmental and host microbiome in the development of immune function, allergic sensitization and asthma. In this review, the most recent findings on the relationships between environmental microbiota, respiratory, intestinal microbiome, the consequences of early-life microbial exposure type and gut-lung microbial axis and the development of asthma and atopy are summarized. The current perspective on gut and airway microbiome manipulation for the primary prevention of allergic diseases and asthma is also discussed.
Collapse
|
38
|
Wang J, Huang Y, Xu K, Zhang X, Sun H, Fan L, Yan M. White spot syndrome virus (WSSV) infection impacts intestinal microbiota composition and function in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 84:130-137. [PMID: 30278220 DOI: 10.1016/j.fsi.2018.09.076] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Intestinal microbiota homeostasis is crucial to the health of host. Pathogen invasion results in dynamics of microbiota composition and structure, disrupting their function in maintaining host health. WSSV is the most prevalent viral pathogen and is able to cause extremely high mortality in Litopenaeus vannamei. However, the changes of intestinal microbiota induced by WSSV are yet to be elucidated. In this study, we analyzed and compared the microbiota of healthy and WSSV-challenged shrimp intestines. Though the richness and diversity of microbiota was barely affected by WSSV, the abundance of predominant phyla like Proteobacteria and Fusobacteria were upregulated significantly, while Bacteroidetes and Tenericutes were significantly decreased in WSSV-infected shrimps. At the genus level, significant increase was observed in Photobacterium, Propionigenium and Arcobacter, as well as significant decrease in Candidatus Bacilloplasma and Flavobacterium in WSSV-infected shrimps. Additionally, metagenomic predictions by PICRUSt suggested that the altered microbiota was mainly related to metabolism, human diseases, genetic information processing, environmental information processing and cellular processes. These results suggested that the invasion of WSSV could impact intestinal microbiota composition and function in L. vannamei.
Collapse
Affiliation(s)
- Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China
| | - Youjia Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China
| | - Kaihang Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China
| | - Xiaoyong Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China
| | - Hongyan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China.
| |
Collapse
|
39
|
Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre- and post-weaned calves. Sci Rep 2018; 8:14147. [PMID: 30237565 PMCID: PMC6148029 DOI: 10.1038/s41598-018-32375-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
This study investigated the effect of supplementing the diet of calves with two direct fed microbials (DFMs) (Saccharomyces cerevisiae boulardii CNCM I-1079 (SCB) and Lactobacillus acidophilus BT1386 (LA)), and an antibiotic growth promoter (ATB). Thirty-two dairy calves were fed a control diet (CTL) supplemented with SCB or LA or ATB for 96 days. On day 33 (pre-weaning, n = 16) and day 96 (post-weaning, n = 16), digesta from the rumen, ileum, and colon, and mucosa from the ileum and colon were collected. The bacterial diversity and composition of the gastrointestinal tract (GIT) of pre- and post-weaned calves were characterized by sequencing the V3-V4 region of the bacterial 16S rRNA gene. The DFMs had significant impact on bacteria community structure with most changes associated with treatment occurring in the pre-weaning period and mostly in the ileum but less impact on bacteria diversity. Both SCB and LA significantly reduced the potential pathogenic bacteria genera, Streptococcus and Tyzzerella_4 (FDR ≤ 8.49E-06) and increased the beneficial bacteria, Fibrobacter (FDR ≤ 5.55E-04) compared to control. Other potential beneficial bacteria, including Rumminococcaceae UCG 005, Roseburia and Olsenella, were only increased (FDR ≤ 1.30E-02) by SCB treatment compared to control. Furthermore, the pathogenic bacterium, Peptoclostridium, was reduced (FDR = 1.58E-02) by SCB only while LA reduced (FDR = 1.74E-05) Ruminococcus_2. Functional prediction analysis suggested that both DFMs impacted (p < 0.05) pathways such as cell cycle, bile secretion, proteasome, cAMP signaling pathway, thyroid hormone synthesis pathway and dopaminergic synapse pathway. Compared to the DFMs, ATB had similar impact on bacterial diversity in all GIT sites but greater impact on the bacterial composition of the ileum. Overall, this study provides an insight on the bacteria genera impacted by DFMs and the potential mechanisms by which DFMs affect the GIT microbiota and may therefore facilitate development of DFMs as alternatives to ATB use in dairy calf management.
Collapse
|
40
|
Farhat M, Shaheed RA, Al-Ali HH, Al-Ghamdi AS, Al-Hamaqi GM, Maan HS, Al-Mahfoodh ZA, Al-Seba HZ. Legionella confirmation in cooling tower water. Comparison of culture, real-time PCR and next generation sequencing. Saudi Med J 2018; 39:137-141. [PMID: 29436561 PMCID: PMC5885089 DOI: 10.15537/smj.2018.2.21587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objectives: To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires’ disease. Methods: Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. Results: All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Conclusion: Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods.
Collapse
Affiliation(s)
- Maha Farhat
- Department of Biochemistry, Imam Abdulrahman Bin Faisal University, Dammam, Kindgdom of Saudi Arabia. E-mail.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Resident microbial communities likely modify risk for allergic disorders, including food allergy. We review epidemiologic studies linking microbial exposures to food allergy risk and discuss the mechanisms by which the microbiome may modulate oral tolerance. We additionally address ongoing translational efforts in human microbiome studies. RECENT FINDINGS Epidemiologic studies and murine models support that altered microbial exposures and colonization in early life modify food allergy risk. Differential microbiota confer protection or susceptibility to food allergy by modulating the regulatory tone of the mucosal immune system. Recent efforts are focused on the identification of bacterial strains necessary for oral tolerance in human and microbial-based clinical trials. Early childhood appears to be critical for the colonization of a diverse microbiota necessary for the induction and maintenance of oral tolerance. Identification and functional evaluation of protective commensal microbes will inform strategies for the prevention and treatment of food allergy.
Collapse
Affiliation(s)
- Hsi-En Ho
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, Box 1498, New York, NY, 10029, USA.
| |
Collapse
|
42
|
Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? ZOOLOGY 2018; 127:1-19. [DOI: 10.1016/j.zool.2018.02.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
|
43
|
Cammack KM, Austin KJ, Lamberson WR, Conant GC, Cunningham HC. RUMINANT NUTRITION SYMPOSIUM: Tiny but mighty: the role of the rumen microbes in livestock production. J Anim Sci 2018; 96:752-770. [PMID: 29385535 PMCID: PMC6140983 DOI: 10.1093/jas/skx053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
The microbes inhabiting the rumen convert low-quality, fibrous, plant material into useable energy for the host ruminant. Consisting of bacteria, protozoa, fungi, archaea, and viruses, the rumen microbiome composes a sophisticated network of symbiosis essential to maintenance, immune function, and overall production efficiency of the host ruminant. Robert Hungate laid the foundation for rumen microbiome research. This area of research has expanded immensely with advances in methodology and technology that have not only improved the ability to describe microbes in taxonomic and density terms but also characterize populations of microbes, their functions, and their interactions with each other and the host. The interplay between the rumen microbiome and the host contributes to variation in many phenotypic traits expressed by the host animal. A better understanding of how the rumen microbiome influences host health and performance may lead to novel strategies and treatments for trait improvement. Furthermore, elucidation of maternal, genetic, and environmental factors that influence rumen microbiome establishment and development may provide novel insights into possible mechanisms for manipulating the rumen microbial composition to enhance long-term host health and performance. The potential for these tiny but mighty rumen microbes to play a role in improving livestock production is appreciated despite being relatively obscure.
Collapse
Affiliation(s)
- Kristi M Cammack
- Department of Animal Science and West River Ag Center, South Dakota State University, Rapid City, SD
| | | | | | - Gavin C Conant
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | | |
Collapse
|
44
|
Medicinal Application of Synthetic Biology. Synth Biol (Oxf) 2018. [DOI: 10.1007/978-981-10-8693-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
Gonzalez-Recio O, Zubiria I, García-Rodríguez A, Hurtado A, Atxaerandio R. Short communication: Signs of host genetic regulation in the microbiome composition in 2 dairy breeds: Holstein and Brown Swiss. J Dairy Sci 2017; 101:2285-2292. [PMID: 29274973 DOI: 10.3168/jds.2017-13179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
Abstract
This study aimed to evaluate whether the host genotype exerts any genetic control on the microbiome composition of the rumen in cattle. Microbial DNA was extracted from 18 samples of ruminal content from 2 breeds (Holstein and Brown Swiss). Reads were processed using mothur (https://www.mothur.org/) in 16S and 18S rRNA gene-based analyses. Then, reads were classified at the genus clade, resulting in 3,579 operational taxonomic units (OTU) aligned against the 16S database and 184 OTU aligned against the 18S database. After filtering on relative abundance (>0.1%) and penetrance (95%), 25 OTU were selected for the analyses (17 bacteria, 1 archaea, and 7 ciliates). Association with the genetic background of the host animal based on the principal components of a genomic relationship matrix based on single nucleotide polymorphism markers was analyzed using Bayesian methods. Fifty percent of the bacteria and archaea genera were associated with the host genetic background, including Butyrivibrio, Prevotella, Paraprevotella, and Methanobrevibacter as main genera. Forty-three percent of the ciliates analyzed were also associated with the genetic background of the host. In total, 48% of microbes were associated with the host genetic background. The results in this study support the hypothesis and provide some evidence that there exists a host genetic component in cattle that can partially regulate the composition of the microbiome.
Collapse
Affiliation(s)
- O Gonzalez-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; Departamento de Produccion Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - I Zubiria
- Departamento de Producción Animal, NEIKER-Tecnalia, Granja Modelo de Arkaute Apartado 46, 01080 Vitoria-Gasteiz, Spain
| | - A García-Rodríguez
- Departamento de Producción Animal, NEIKER-Tecnalia, Granja Modelo de Arkaute Apartado 46, 01080 Vitoria-Gasteiz, Spain
| | - A Hurtado
- Departamento de Sanidad Animal, NEIKER-Tecnalia, Berreaga 1, 48160 Derio, Spain
| | - R Atxaerandio
- Departamento de Producción Animal, NEIKER-Tecnalia, Granja Modelo de Arkaute Apartado 46, 01080 Vitoria-Gasteiz, Spain
| |
Collapse
|
46
|
Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nat Commun 2017; 8:1563. [PMID: 29146901 PMCID: PMC5691134 DOI: 10.1038/s41467-017-01407-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/13/2017] [Indexed: 12/05/2022] Open
Abstract
Metabolite exchanges in microbial communities give rise to ecological interactions that govern ecosystem diversity and stability. It is unclear, however, how the rise of these interactions varies across metabolites and organisms. Here we address this question by integrating genome-scale models of metabolism with evolutionary game theory. Specifically, we use microbial fitness values estimated by metabolic models to infer evolutionarily stable interactions in multi-species microbial “games”. We first validate our approach using a well-characterized yeast cheater-cooperator system. We next perform over 80,000 in silico experiments to infer how metabolic interdependencies mediated by amino acid leakage in Escherichia coli vary across 189 amino acid pairs. While most pairs display shared patterns of inter-species interactions, multiple deviations are caused by pleiotropy and epistasis in metabolism. Furthermore, simulated invasion experiments reveal possible paths to obligate cross-feeding. Our study provides genomically driven insight into the rise of ecological interactions, with implications for microbiome research and synthetic ecology. The rise of metabolic interdependencies among microbes is still poorly understood. Here, taking the underlying biochemical networks into consideration, Zomorrodi and Segrè integrate genome-scale metabolic models with evolutionary game theory to study the rise of cross-feeding in microbial communities.
Collapse
|
47
|
Li J, Fu R, Yang Y, Horz HP, Guan Y, Lu Y, Lou H, Tian L, Zheng S, Liu H, Shi M, Tang K, Wang S, Xu S. A metagenomic approach to dissect the genetic composition of enterotypes in Han Chinese and two Muslim groups. Syst Appl Microbiol 2017; 41:1-12. [PMID: 29129355 DOI: 10.1016/j.syapm.2017.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Distinct enterotypes have been observed in the human gut but little is known about the genetic basis of the microbiome. Moreover, it is not clear how many genetic differences exist between enterotypes within or between populations. In this study, both the 16S rRNA gene and the metagenomes of the gut microbiota were sequenced from 48 Han Chinese, 48 Kazaks, and 96 Uyghurs, and taxonomies were assigned after de novo assembly. Single nucleotide polymorphisms were also identified by referring to data from the Human Microbiome Project. Systematic analysis of the gut communities in terms of their abundance and genetic composition was also performed, together with a genome-wide association study of the host genomes. The gut microbiota of 192 subjects was clearly classified into two enterotypes (Bacteroides and Prevotella). Interestingly, both enterotypes showed a clear genetic differentiation in terms of their functional catalogue of genes, especially for genes involved in amino acid and carbohydrate metabolism. In addition, several differentiated genera and genes were found among the three populations. Notably, one human variant (rs878394) was identified that showed significant association with the abundance of Prevotella, which is linked to LYPLAL1, a gene associated with body fat distribution, the waist-hip ratio and insulin sensitivity. Taken together, considerable differentiation was observed in gut microbes between enterotypes and among populations that was reflected in both the taxonomic composition and the genetic makeup of their functional genes, which could have been influenced by a variety of factors, such as diet and host genetic variation.
Collapse
Affiliation(s)
- Jing Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruiqing Fu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hans-Peter Horz
- Institute of Medical Microbiology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Yaqun Guan
- Department of Biochemistry, Preclinical Medicine College, XinJiang Medical University, Urumqi 830011, China
| | - Yan Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Haiyi Lou
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Lei Tian
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Zheng
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Hongjiao Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Meng Shi
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Sijia Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China.
| |
Collapse
|
48
|
Sousa A, Ramiro RS, Barroso-Batista J, Güleresi D, Lourenço M, Gordo I. Recurrent Reverse Evolution Maintains Polymorphism after Strong Bottlenecks in Commensal Gut Bacteria. Mol Biol Evol 2017; 34:2879-2892. [PMID: 28961745 PMCID: PMC5850726 DOI: 10.1093/molbev/msx221] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of new strains within the gut ecosystem is poorly understood. We used a natural but controlled system to follow the emergence of intraspecies diversity of commensal Escherichia coli, during three rounds of adaptation to the mouse gut (∼1,300 generations). We previously showed that, in the first round, a strongly beneficial phenotype (loss-of-function for galactitol consumption; gat-negative) spread to >90% frequency in all colonized mice. Here, we show that this loss-of-function is repeatedly reversed when a gat-negative clone colonizes new mice. The regain of function occurs via compensatory mutation and reversion, the latter leaving no trace of past adaptation. We further show that loss-of-function adaptive mutants reevolve, after colonization with an evolved gat-positive clone. Thus, even under strong bottlenecks a regime of strong-mutation-strong-selection dominates adaptation. Coupling experiments and modeling, we establish that reverse evolution recurrently generates two coexisting phenotypes within the microbiota that can or not consume galactitol (gat-positive and gat-negative, respectively). Although the abundance of the dominant strain, the gat-negative, depends on the microbiota composition, gat-positive abundance is independent of the microbiota composition and can be precisely manipulated by supplementing the diet with galactitol. These results show that a specific diet is able to change the abundance of specific strains. Importantly, we find polymorphism for these phenotypes in indigenous Enterobacteria of mice and man. Our results demonstrate that natural selection can greatly overwhelm genetic drift at structuring the strain diversity of gut commensals and that competition for limiting resources may be a key mechanism for maintaining polymorphism in the gut.
Collapse
Affiliation(s)
- Ana Sousa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Medical Sciences, Institute for Biomedicine, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
49
|
Shamarina D, Stoyantcheva I, Mason CE, Bibby K, Elhaik E. Communicating the promise, risks, and ethics of large-scale, open space microbiome and metagenome research. MICROBIOME 2017; 5:132. [PMID: 28978331 PMCID: PMC5628477 DOI: 10.1186/s40168-017-0349-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/20/2017] [Indexed: 05/07/2023]
Abstract
The public commonly associates microorganisms with pathogens. This suspicion of microorganisms is understandable, as historically microorganisms have killed more humans than any other agent while remaining largely unknown until the late seventeenth century with the works of van Leeuwenhoek and Kircher. Despite our improved understanding regarding microorganisms, the general public are apt to think of diseases rather than of the majority of harmless or beneficial species that inhabit our bodies and the built and natural environment. As long as microbiome research was confined to labs, the public's exposure to microbiology was limited. The recent launch of global microbiome surveys, such as the Earth Microbiome Project and MetaSUB (Metagenomics and Metadesign of Subways and Urban Biomes) project, has raised ethical, financial, feasibility, and sustainability concerns as to the public's level of understanding and potential reaction to the findings, which, done improperly, risk negative implications for ongoing and future investigations, but done correctly, can facilitate a new vision of "smart cities." To facilitate improved future research, we describe here the major concerns that our discussions with ethics committees, community leaders, and government officials have raised, and we expound on how to address them. We further discuss ethical considerations of microbiome surveys and provide practical recommendations for public engagement.
Collapse
Affiliation(s)
- Daria Shamarina
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - Iana Stoyantcheva
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021 USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY 10021 USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021 USA
| | - Kyle Bibby
- University of Notre Dame Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dameᅟ, IN 46556 USA
| | - Eran Elhaik
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN UK
| |
Collapse
|
50
|
Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 2017; 5:e3817. [PMID: 28948103 PMCID: PMC5610896 DOI: 10.7717/peerj.3817] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/26/2017] [Indexed: 12/20/2022] Open
Abstract
Background Viral metagenomics (viromics) is increasingly used to obtain uncultivated viral genomes, evaluate community diversity, and assess ecological hypotheses. While viromic experimental methods are relatively mature and widely accepted by the research community, robust bioinformatics standards remain to be established. Here we used in silico mock viral communities to evaluate the viromic sequence-to-ecological-inference pipeline, including (i) read pre-processing and metagenome assembly, (ii) thresholds applied to estimate viral relative abundances based on read mapping to assembled contigs, and (iii) normalization methods applied to the matrix of viral relative abundances for alpha and beta diversity estimates. Results Tools specifically designed for metagenomes, specifically metaSPAdes, MEGAHIT, and IDBA-UD, were the most effective at assembling viromes. Read pre-processing, such as partitioning, had virtually no impact on assembly output, but may be useful when hardware is limited. Viral populations with 2–5 × coverage typically assembled well, whereas lesser coverage led to fragmented assembly. Strain heterogeneity within populations hampered assembly, especially when strains were closely related (average nucleotide identity, or ANI ≥97%) and when the most abundant strain represented <50% of the population. Viral community composition assessments based on read recruitment were generally accurate when the following thresholds for detection were applied: (i) ≥10 kb contig lengths to define populations, (ii) coverage defined from reads mapping at ≥90% identity, and (iii) ≥75% of contig length with ≥1 × coverage. Finally, although data are limited to the most abundant viruses in a community, alpha and beta diversity patterns were robustly estimated (±10%) when comparing samples of similar sequencing depth, but more divergent (up to 80%) when sequencing depth was uneven across the dataset. In the latter cases, the use of normalization methods specifically developed for metagenomes provided the best estimates. Conclusions These simulations provide benchmarks for selecting analysis cut-offs and establish that an optimized sample-to-ecological-inference viromics pipeline is robust for making ecological inferences from natural viral communities. Continued development to better accessing RNA, rare, and/or diverse viral populations and improved reference viral genome availability will alleviate many of viromics remaining limitations.
Collapse
Affiliation(s)
- Simon Roux
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Joanne B Emerson
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Emiley A Eloe-Fadrosh
- Joint Genome Institute, Department of Energy, Walnut Creek, CA, United States of America
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America.,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|