1
|
Khalid H, Mohamed H, Eltoukhy A, Saeed MT, Song Y. Harnessing marine resources for Alzheimer's therapy: A review integrating bioactivity and molecular docking. Eur J Pharmacol 2025; 997:177611. [PMID: 40216183 DOI: 10.1016/j.ejphar.2025.177611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition resulting in cognitive impairment and the formation of neurofibrillary tangles and plaques in the brain. The drivers of AD's molecular progression and pathology include the accumulation of amyloid β protein (Aβ); thus, Aβ is an intervention target. However, the limitations in clinical trials of Aβ-targeted medicine and the failure to intervene in disease progression have raised concerns about the use of this drug and its veracious route. In particular, we comprehensively reviewed the potential effect of marine compounds and the mechanism of isolation and extraction from marine organisms resulting in the optimization of AD treatment. Furthermore, the hub compounds were docked with Beta-secretase receptors to strengthen the extrapolation of mechanistic interactions thus inhibiting the activity of an enzyme. An extensive review revealed that marine aquaculture and its byproducts are a promising source and isolated with green methods or less investment, ensuring their sustainability. MNPs harbor specific pharmacological features that enable them to exert neuroprotective effects by minimizing events such as Aβ peptide formation and reactive oxygen species (ROS) generation.
Collapse
Affiliation(s)
- Hina Khalid
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| | - Hassan Mohamed
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.
| | - Adel Eltoukhy
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.
| | - Muhammad Tariq Saeed
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, 45750, Pakistan.
| | - Yuanda Song
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; School of Basic Medicine, Qilu Medical University, Renmin West Road No. 1678, University Town, Zibo 255300, Shandong, China.
| |
Collapse
|
2
|
Morel-Letelier I, Yuen B, Orellana LH, Kück AC, Camacho-García YE, Lara M, Leray M, Wilkins LGE. Seasonal transcriptomic shifts reveal metabolic flexibility of chemosynthetic symbionts in an upwelling region. mSystems 2025:e0168624. [PMID: 40401909 DOI: 10.1128/msystems.01686-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/25/2025] [Indexed: 05/23/2025] Open
Abstract
Upwelling in the Tropical Eastern Pacific profoundly affects marine coastal ecosystems by driving drastic seasonal changes in water temperature, oxygen levels, and nutrient availability. These conditions serve as a natural experiment that provides a unique opportunity to study how marine animals and their associated microorganisms respond in the face of environmental change. Lucinid bivalves host chemosynthetic Candidatus Thiodiazotropha symbionts equipped with diverse metabolic pathways for sulfur, carbon, and nitrogen use. However, how these symbionts employ their metabolic toolkit in a changing environment remains poorly understood. To address this question, we conducted metagenomic and metatranscriptomic analyses of Ctena cf. galapagana symbionts before and during a Papagayo upwelling event in Santa Elena Bay, Costa Rica. The C. cf. galapagana were co-colonized mainly by two Ca. Thiodiazotropha symbiont clades regardless of the sampling season. We observed a concerted shift in the transcriptomic profiles of both symbiont clades before and during upwelling, suggesting changes in energy source use. Dissimilatory methanol oxidation genes were upregulated before upwelling, while sulfide oxidation genes were upregulated during upwelling. These physiological changes were potentially driven by upwelling-induced changes in sediment biogeochemistry and resource availability. Our findings highlight the adaptability of the lucinid symbiosis and the crucial role of symbiont metabolic flexibility in their resilience to environmental challenges.IMPORTANCEThe oceans are undergoing rapid change, and marine animals together with their associated microorganisms must adjust to these changes. While microbes are known to play a critical role in animal health, we are only beginning to understand how symbiotic relationships help animals cope with environmental variability. Annual upwelling events cause drastic and abrupt increases in nutrient availability and productivity, while temperature and oxygen decrease. In this study, we investigated how bacterial symbionts of the lucinid bivalve Ctena cf. galapagana respond to upwelling in the Tropical Eastern Pacific. The symbionts, from the genus Candidatus Thiodiazotropha, are chemosynthetic (i.e., they use inorganic chemicals for energy and fix carbon) and provide nutrition to their host. Our results show that these symbionts adjust their use of different energy sources in response to environmental changes that affect resource availability. This metabolic flexibility underscores the resilience of animal-microbe relationships in coping with environmental change.
Collapse
Affiliation(s)
- Isidora Morel-Letelier
- Eco-Evolutionary Interactions Group, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Benedict Yuen
- Eco-Evolutionary Interactions Group, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Luis H Orellana
- Department of Molecular Ecology, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - A Carlotta Kück
- Eco-Evolutionary Interactions Group, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Yolanda E Camacho-García
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Minor Lara
- Diving Center Cuajiniquil, Provincia de Guanacaste, Cuajiniquil, Costa Rica
| | - Matthieu Leray
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| | - Laetitia G E Wilkins
- Eco-Evolutionary Interactions Group, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
3
|
Oliaro FJ, Ajileye O, George I, Lamsal S, Mosley IA, Ramirez B, Sanders TL, Vanitshavit V, Van Bonn W, Pinnell LJ. The Role of Ammonia-Oxidizing Archaea During Cycling and Animal Introduction in a Newly Commissioned Saltwater Aquarium. Animals (Basel) 2025; 15:1446. [PMID: 40427322 PMCID: PMC12108315 DOI: 10.3390/ani15101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Closed recirculating aquatic systems (aquariums) offer a multitude of benefits including the ability to observe and research aquatic animals ex situ, and under controlled environmental conditions [...].
Collapse
Affiliation(s)
- Francis J. Oliaro
- Animal Care and Science Division, John G. Shedd Aquarium, Chicago, IL 60605, USA; (F.J.O.); (W.V.B.)
| | - Oluwaseun Ajileye
- Ecology and Evolutionary Biology Program, Texas A&M University, College Station, TX 77843, USA;
| | - Iris George
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (I.G.); (T.L.S.); (V.V.)
| | - Sal Lamsal
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79015, USA; (S.L.); (B.R.)
| | - Ilana A. Mosley
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA;
| | - Bradly Ramirez
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79015, USA; (S.L.); (B.R.)
| | - Tiana L. Sanders
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (I.G.); (T.L.S.); (V.V.)
| | - Veerakit Vanitshavit
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (I.G.); (T.L.S.); (V.V.)
| | - William Van Bonn
- Animal Care and Science Division, John G. Shedd Aquarium, Chicago, IL 60605, USA; (F.J.O.); (W.V.B.)
| | - Lee J. Pinnell
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79015, USA; (S.L.); (B.R.)
| |
Collapse
|
4
|
Hayes C, Mitchell A, Huerlimann R, Jolly J, Li C, Booth DJ, Ravasi T, Nagelkerken I. Stomach Microbiome Simplification of a Coral Reef Fish at Its Novel Cold-Range Edge Under Climate Change. Mol Ecol 2025; 34:e17704. [PMID: 39985278 PMCID: PMC11934084 DOI: 10.1111/mec.17704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 02/24/2025]
Abstract
Climate-driven range extensions of animals into higher latitudes are often facilitated by phenotypic plasticity. Modifications to habitat preference, behaviour and diet can increase the persistence of range-extending species in novel high-latitude ecosystems. These strategies may be influenced by changes in their gut and stomach microbial communities that are critical to host fitness and potentially adaptive plasticity. Yet, it remains unknown if the gut and stomach microbiome of range-extending species is plastic in their novel ranges to help facilitate these modifications. Here, we categorised stomach microbiome communities of a prevalent range-extending coral reef fish along a 2000-km latitudinal gradient in a global warming hotspot, extending from their tropical core range to their temperate cold range edge. At their cold range edge, the coral reef fish's stomach microbiome showed a 59% decrease in bacterial diversity and a 164% increase in the relative abundance of opportunistic bacteria (Vibrio) compared to their core range. Microbiome diversity was unaffected by fish body size, water temperature, physiology (cellular defence and damage) and habitat type (turf, barren, oyster, kelp and coral) across their range. The observed shifts in microbiome composition suggest dysbiosis and low plasticity of tropical range-extending fishes to novel environmental conditions (e.g., temperate prey and lower seawater temperature) at their novel range edges, which may increase their susceptibility to disease in temperate ecosystems. We conclude that fishes extending their ranges to higher latitudes under ocean warming can experience a simplification (i.e., reduced diversity) of their stomach microbiome, which could restrict their current rate of range extensions or establishment in temperate ecosystems.
Collapse
Affiliation(s)
- Chloe Hayes
- Southern Seas Ecology Laboratories, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Angus Mitchell
- Southern Seas Ecology Laboratories, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Roger Huerlimann
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawaJapan
| | - Jeffrey Jolly
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawaJapan
| | - Chengze Li
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawaJapan
| | - David J. Booth
- School of the Life SciencesUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Timothy Ravasi
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawaJapan
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
5
|
Shao Z, Zhang J, Li J, Li J. Genomic insights into host -Endozoicomonadaceae cophylogeny. Microb Genom 2025; 11:001384. [PMID: 40178518 PMCID: PMC11968832 DOI: 10.1099/mgen.0.001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
The congruence between host and symbiont phylogenies reflects the evolutionary links among ecologically important interactions. As potential key symbionts, the members affiliated to the family Endozoicomonadaceae have previously been investigated for the cophylogenetic relationship with their hosts using their 16S rRNA gene sequences. However, this approach neglects the genomic features of symbionts that may influence the long-term associations between Endozoicomonadaceae members and their hosts. Here, we collected available high-quality genomes of Endozoicomonadaceae from diverse hosts and investigated their genomic features, including genome size, phages, insertion elements and the composition of functional genes. We also tested the host-Endozoicomonadaceae cophylogeny and examined the correlation between the cophylogenetic squared residuals and the genomic features of Endozoicomonadaceae members. Our results revealed a cophylogenetic pattern between members of the Endozoicomonadaceae family and their various hosts. Moreover, we found that the investigated genomes of Endozoicomonadaceae members were differentially eroded by phages and insertion elements. Additionally, Endozoicomonadaceae members with smaller, more eroded genomes tended to exhibit lower cophylogenetic residuals with their hosts. Gene function analysis further revealed that Endozoicomonadaceae members with closer associations with their hosts carried specific genes related to infection processes and host-symbiont interactions. This study suggests that the genomic features of Endozoicomonadaceae members may influence long-term host-Endozoicomonadaceae intimate associations.
Collapse
Affiliation(s)
- Zhuang Shao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Jiaxin Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| |
Collapse
|
6
|
Coolahan M, Whalen KE. A review of quorum-sensing and its role in mediating interkingdom interactions in the ocean. Commun Biol 2025; 8:179. [PMID: 39905218 PMCID: PMC11794697 DOI: 10.1038/s42003-025-07608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
Quorum sensing, first described in marine systems five decades ago, is a well-characterized chemical communication system used to coordinate bacterial gene expression and behavior; however, the impact of quorum sensing on interkingdom interactions has been vastly understudied. In this review, we examine how these molecules mediate communication between bacteria and marine eukaryotes; influencing processes such as development, disease pathogenesis, and microbiome regulation within marine ecosystems. We describe the varied mechanisms eukaryotes have evolved to interfere with bacterial quorum sensing signaling, the crucial role these signals play in host-virus interactions, and how their exchange may be governed by outer membrane vesicles, prevalent in marine systems. Here, we present a dynamic portrayal of the impact of quorum sensing signals beyond bacterial communication, laying the groundwork for future investigations on their roles in shaping marine ecosystem structure and function.
Collapse
Affiliation(s)
- Megan Coolahan
- Department of Biology, Haverford College, Haverford, PA, USA
| | | |
Collapse
|
7
|
Chess MM, Foley S, Ettensohn CA. Horizontal Transfer of msp130 Genes and the Evolution of Metazoan Biocalcification. Genome Biol Evol 2025; 17:evaf028. [PMID: 39960859 PMCID: PMC11878542 DOI: 10.1093/gbe/evaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 03/06/2025] Open
Abstract
The formation of calcified skeletons is crucial for the development, physiology, and ecology of many marine metazoans. The evolutionary origins of the genetic toolkit required for biocalcification are widely debated. MSP130 proteins, originally identified through their expression specifically by sea urchin skeletal cells, have been hypothesized to have been acquired by metazoans from bacteria through horizontal gene transfer. Here, we provide support for a horizontal gene transfer-based origin of metazoan MSP130 proteins by conducting phylogenetic and in silico protein analyses utilizing high-quality genomes. We show that msp130 genes underwent duplications within almost all biocalcifying bilaterian phyla and identify highly conserved intron-exon junctions specific to bilaterian msp130 genes. The absence of MSP130 proteins in calcifying, nonbilaterian metazoans and other basal eukaryotes suggests that an ancestral msp130 gene underwent a horizontal gene transfer event that predates bilaterians, but not metazoans. We report striking structural similarities between bilaterian and bacterial MSP130 proteins, with each containing a seven-bladed, barrel-like motif that encompasses a choice-of-anchor domain, and identify highly conserved, predicted Ca2+-binding sites associated with the barrels. These findings point to a conserved, ancient function for MSP130 proteins in biocalcification and support the view that lateral transfer of bacterial genes supported the appearance of calcified animal skeletons.
Collapse
Affiliation(s)
- Macie M Chess
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Saoirse Foley
- Department of Biology, Marian University, Indianapolis, IN, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Schulz F, Yan Y, Weiner AK, Ahsan R, Katz LA, Woyke T. Protists as mediators of complex microbial and viral associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.630703. [PMID: 39803511 PMCID: PMC11722414 DOI: 10.1101/2024.12.29.630703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments. Our findings reveal unique microbiome compositions and hint at an intricate network of complex interactions and associations with bacterial symbionts and viruses. We observed stark differences between ciliates and amoebae in terms of microbiome and virome compositions, highlighting the specificity of protist-microbe interactions. Over 115 of the recovered microbial genomes were affiliated with known endosymbionts of eukaryotes, including diverse members of the Holosporales, Rickettsiales, Legionellales, Chlamydiae, Dependentiae , and more than 250 were affiliated with possible host-associated bacteria of the phylum Patescibacteria. We also identified more than 80 giant viruses belonging to diverse viral lineages, of which some were actively expressing genes in single cell transcriptomes, suggesting a possible association with the sampled protists. We also revealed a wide range of other viruses that were predicted to infect eukaryotes or host-associated bacteria. Our results provide further evidence that protists serve as mediators of complex microbial and viral associations, playing a critical role in ecological networks. The frequent co-occurrence of giant viruses and diverse microbial symbionts in our samples suggests multipartite associations, particularly among amoebae. Our study provides a preliminary assessment of the microbial diversity associated with lesser-known protist lineages and paves the way for a deeper understanding of protist ecology and their roles in environmental and human health.
Collapse
Affiliation(s)
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Agnes K.M. Weiner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Ragib Ahsan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, California, USA
- University of California Merced, Life and Environmental Sciences, Merced, California, USA
| |
Collapse
|
9
|
Neu AT, Torchin ME, Allen EE, Roy K. Microbiome divergence of marine gastropod species separated by the Isthmus of Panama. Appl Environ Microbiol 2024; 90:e0100324. [PMID: 39480095 PMCID: PMC11614449 DOI: 10.1128/aem.01003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 11/02/2024] Open
Abstract
The rise of the Isthmus of Panama separated the populations of many marine organisms, which then diverged into new geminate sister species currently living in the Eastern Pacific Ocean and the Caribbean Sea. However, we know very little about how such evolutionary divergences of host species have shaped the compositions of their microbiomes. Here, we compared the microbiomes of whole-body and shell-surface samples of geminate species of marine gastropods in the genera Cerithium and Cerithideopsis to those of congeneric outgroups. Our results suggest that the effects of ~3 million years of separation and isolation on microbiome composition varied among host genera and between sample types within the same hosts. In the whole-body samples, microbiome compositions of geminate species pairs tended to be similar, likely due to host filtering, although the strength of this relationship varied among the two groups and across similarity metrics. Shell-surface microbiomes show contrasting patterns, with co-divergence between the host taxa and a small number of microbial clades evident in Cerithideopsis but not Cerithium. These results suggest that (i) isolation of host populations after the rise of the Isthmus of Panama affected microbiomes of geminate hosts in a complex and host-specific manner, and (ii) host-associated microbial taxa respond differently to vicariance events than the hosts themselves.IMPORTANCEWhile considerable work has been done on evolutionary divergences of marine species in response to the rise of the Isthmus of Panama, which separated two previously connected oceans, how this event shaped the microbiomes of these marine hosts remains poorly known. Using whole-body and shell-surface microbiomes of closely related gastropod species from opposite sides of the Isthmus, we show that divergences of microbial taxa after the formation of the Isthmus are often not concordant with those of their gastropod hosts. Our results show that evolutionary responses of marine gastropod-associated microbiomes to major environmental perturbations are complex and are shaped more by local environments than host evolutionary history.
Collapse
Affiliation(s)
- Alexander T. Neu
- Department of Ecology,
Behavior and Evolution, School of Biological Sciences, University of
California San Diego, La
Jolla, California, USA
- Smithsonian Tropical
Research Institute, Ancon,
Balboa, Panama
| | - Mark E. Torchin
- Smithsonian Tropical
Research Institute, Ancon,
Balboa, Panama
| | - Eric E. Allen
- Department of
Molecular Biology, School of Biological Sciences, University of
California San Diego, La
Jolla, California, USA
- Marine Biology
Research Division, Scripps Institution of Oceanography, University of
California San Diego, La
Jolla, California, USA
| | - Kaustuv Roy
- Department of Ecology,
Behavior and Evolution, School of Biological Sciences, University of
California San Diego, La
Jolla, California, USA
| |
Collapse
|
10
|
Diner RE, Allard SM, Gilbert JA. Host-associated microbes mitigate the negative impacts of aquatic pollution. mSystems 2024; 9:e0086824. [PMID: 39207151 PMCID: PMC11495061 DOI: 10.1128/msystems.00868-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Pollution can negatively impact aquatic ecosystems, aquaculture operations, and recreational water quality. Many aquatic microbes can sequester or degrade pollutants and have been utilized for bioremediation. While planktonic and benthic microbes are well-studied, host-associated microbes likely play an important role in mitigating the negative impacts of aquatic pollution and represent an unrealized source of microbial potential. For example, aquatic organisms that thrive in highly polluted environments or concentrate pollutants may have microbiomes adapted to these selective pressures. Understanding microbe-pollutant interactions in sensitive and valuable species could help protect human well-being and improve ecosystem resilience. Investigating these interactions using appropriate experimental systems and overcoming methodological challenges will present novel opportunities to protect and improve aquatic systems. In this perspective, we review examples of how microbes could mitigate negative impacts of aquatic pollution, outline target study systems, discuss challenges of advancing this field, and outline implications in the face of global changes.
Collapse
Affiliation(s)
- Rachel E. Diner
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| | - Sarah M. Allard
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Jack A. Gilbert
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Davis KM, Parfrey LW, Harley CDG, Holmes K, Schaefer O, Gehman AL. Epibiont communities on mussels in relation to parasitism and location in the rocky intertidal zone. FEMS Microbiol Ecol 2024; 100:fiae101. [PMID: 39138059 PMCID: PMC11385189 DOI: 10.1093/femsec/fiae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/16/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
The factors shaping host-parasite interactions and epibiont communities in the variable rocky intertidal zone are poorly understood. California mussels, Mytilus californianus, are colonized by endolithic cyanobacterial parasites that erode the host shell. These cyanobacteria become mutualistic under certain abiotic conditions because shell erosion can protect mussels from thermal stress. How parasitic shell erosion affects or is affected by epibiotic microbial communities on mussel shells and the context dependency of these interactions is unknown. We used transplant experiments to characterize assemblages of epibiotic bacteria and endolithic parasites on mussel shells across intertidal elevation gradients. We hypothesized that living mussels, and associated epibacterial communities, could limit colonization and erosion by endolithic cyanobacteria compared with empty mussel shells. We hypothesized that shell erosion would be associated with compositional shifts in the epibacterial community and tidal elevation. We found that living mussels experienced less shell erosion than empty shells, demonstrating potential biotic regulation of endolithic parasites. Increased shell erosion was not associated with a distinct epibacterial community and was decoupled from the relative abundance of putatively endolithic taxa. Our findings suggest that epibacterial community structure is not directly impacted by the dynamic symbiosis between endolithic cyanobacteria and mussels throughout the rocky intertidal zone.
Collapse
Affiliation(s)
- Katherine M Davis
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Laura Wegener Parfrey
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Christopher D G Harley
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Keith Holmes
- Hakai Institute, PO Box 25039 Campbell River, BC V9W 0B7, Canada
| | - Olivia Schaefer
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alyssa-Lois Gehman
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Hakai Institute, PO Box 25039 Campbell River, BC V9W 0B7, Canada
| |
Collapse
|
12
|
Nahor O, Israel Á, Barger N, Rubin-Blum M, Luzzatto-Knaan T. Epiphytic microbiome associated with intertidal seaweeds in the Mediterranean Sea: comparative analysis of bacterial communities across seaweed phyla. Sci Rep 2024; 14:18631. [PMID: 39128929 PMCID: PMC11317491 DOI: 10.1038/s41598-024-69362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
The complex interactions between epiphytic bacteria and marine macroalgae are still poorly understood, with limited knowledge about their community structure, interactions, and functions. This study focuses on comparing epiphytic prokaryotes community structure between three seaweed phyla; Chlorophyta, Rhodophyta, and Heterokontophyta in an easternmost rocky intertidal site of the Mediterranean Sea. By taking a snapshot approach and simultaneously collecting seaweed samples from the same habitat, we minimize environmental variations that could affect epiphytic bacterial assembly, thereby emphasizing host specificity. Through 16S rRNA gene amplicon sequencing, we identified that the microbial community composition was more similar within the same seaweed phylum host compared to seaweed host from other phyla. Furthermore, exclusive Amplicon Sequence Variants (ASVs) were identified for each algal phyla despite sharing higher taxonomic classifications across the other phyla. Analysis of niche breadth indices uncovers distinctive affinities and potential specialization among seaweed host phyla, with 39% of all ASVs identified as phylum specialists and 13% as generalists. Using taxonomy function prediction, we observed that the taxonomic variability does not significantly impact functional redundancy, suggesting resilience to disturbance. The study concludes that epiphytic bacteria composition is connected to host taxonomy, possibly influenced by shared morphological and chemical traits among genetically related hosts, implying a potential coevolutionary relationship between specific bacteria and their host seaweeds.
Collapse
Affiliation(s)
- Omri Nahor
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Israel Oceanographic and Limnological Research, Tel Shikmona, Haifa, Israel
| | - Álvaro Israel
- Israel Oceanographic and Limnological Research, Tel Shikmona, Haifa, Israel
| | - Nataly Barger
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Maxim Rubin-Blum
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Israel Oceanographic and Limnological Research, Tel Shikmona, Haifa, Israel
| | - Tal Luzzatto-Knaan
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
13
|
Ma C, Xu C, Zhang T, Mu Q, Lv J, Xing Q, Yang Z, Xu Z, Guan Y, Chen C, Ni K, Dai X, Ding W, Hu J, Bao Z, Wang S, Liu P. Tracking the hologenome dynamics in aquatic invertebrates by the holo-2bRAD approach. Commun Biol 2024; 7:827. [PMID: 38972908 PMCID: PMC11228047 DOI: 10.1038/s42003-024-06509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/26/2024] [Indexed: 07/09/2024] Open
Abstract
The "hologenome" concept is an increasingly popular way of thinking about microbiome-host for marine organisms. However, it is challenging to track hologenome dynamics because of the large amount of material, with tracking itself usually resulting in damage or death of the research object. Here we show the simple and efficient holo-2bRAD approach for the tracking of hologenome dynamics in marine invertebrates (i.e., scallop and shrimp) from one holo-2bRAD library. The stable performance of our approach was shown with high genotyping accuracy of 99.91% and a high correlation of r > 0.99 for the species-level profiling of microorganisms. To explore the host-microbe association underlying mass mortality events of bivalve larvae, core microbial species changed with the stages were found, and two potentially associated host SNPs were identified. Overall, our research provides a powerful tool with various advantages (e.g., cost-effective, simple, and applicable for challenging samples) in genetic, ecological, and evolutionary studies.
Collapse
Affiliation(s)
- Cen Ma
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China
| | - Chang Xu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Tianqi Zhang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qianqian Mu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Jia Lv
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
| | - Qiang Xing
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China
| | - Zhihui Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Zhenyuan Xu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Yalin Guan
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chengqin Chen
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Kuo Ni
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Dai
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Wei Ding
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jingjie Hu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Zhenmin Bao
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Shi Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Pingping Liu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
14
|
Buschi E, Dell’Anno A, Tangherlini M, Candela M, Rampelli S, Turroni S, Palladino G, Esposito E, Martire ML, Musco L, Stefanni S, Munari C, Fiori J, Danovaro R, Corinaldesi C. Resistance to freezing conditions of endemic Antarctic polychaetes is enhanced by cryoprotective proteins produced by their microbiome. SCIENCE ADVANCES 2024; 10:eadk9117. [PMID: 38905343 PMCID: PMC11192080 DOI: 10.1126/sciadv.adk9117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
The microbiome plays a key role in the health of all metazoans. Whether and how the microbiome favors the adaptation processes of organisms to extreme conditions, such as those of Antarctica, which are incompatible with most metazoans, is still unknown. We investigated the microbiome of three endemic and widespread species of Antarctic polychaetes: Leitoscoloplos geminus, Aphelochaeta palmeri, and Aglaophamus trissophyllus. We report here that these invertebrates contain a stable bacterial core dominated by Meiothermus and Anoxybacillus, equipped with a versatile genetic makeup and a unique portfolio of proteins useful for coping with extremely cold conditions as revealed by pangenomic and metaproteomic analyses. The close phylosymbiosis between Meiothermus and Anoxybacillus and these Antarctic polychaetes indicates a connection with their hosts that started in the past to support holobiont adaptation to the Antarctic Ocean. The wide suite of bacterial cryoprotective proteins found in Antarctic polychaetes may be useful for the development of nature-based biotechnological applications.
Collapse
Affiliation(s)
- Emanuela Buschi
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Erika Esposito
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Marco Lo Martire
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luigi Musco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Sergio Stefanni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| | - Cristina Munari
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Jessica Fiori
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
15
|
Rekadwad BN, Shouche YS, Jangid K. A culture-independent approach, supervised machine learning, and the characterization of the microbial community composition of coastal areas across the Bay of Bengal and the Arabian Sea. BMC Microbiol 2024; 24:162. [PMID: 38730339 PMCID: PMC11084130 DOI: 10.1186/s12866-024-03295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Coastal areas are subject to various anthropogenic and natural influences. In this study, we investigated and compared the characteristics of two coastal regions, Andhra Pradesh (AP) and Goa (GA), focusing on pollution, anthropogenic activities, and recreational impacts. We explored three main factors influencing the differences between these coastlines: The Bay of Bengal's shallower depth and lower salinity; upwelling phenomena due to the thermocline in the Arabian Sea; and high tides that can cause strong currents that transport pollutants and debris. RESULTS The microbial diversity in GA was significantly higher than that in AP, which might be attributed to differences in temperature, soil type, and vegetation cover. 16S rRNA amplicon sequencing and bioinformatics analysis indicated the presence of diverse microbial phyla, including candidate phyla radiation (CPR). Statistical analysis, random forest regression, and supervised machine learning models classification confirm the diversity of the microbiome accurately. Furthermore, we have identified 450 cultures of heterotrophic, biotechnologically important bacteria. Some strains were identified as novel taxa based on 16S rRNA gene sequencing, showing promising potential for further study. CONCLUSION Thus, our study provides valuable insights into the microbial diversity and pollution levels of coastal areas in AP and GA. These findings contribute to a better understanding of the impact of anthropogenic activities and climate variations on biology of coastal ecosystems and biodiversity.
Collapse
Affiliation(s)
- Bhagwan Narayan Rekadwad
- National Centre for Microbial Resource, DBT - National Centre for Cell Science (DBT-NCCS), NCCS-Complex, Savitribai Phule Pune University (SPPU) Campus, Ganeshkhind Road, Pune, Maharashtra, 411007, India.
- MicrobeAI Lab, Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| | - Yogesh Shreepad Shouche
- MicrobeAI Lab, Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, 575018, India
- Gut Microbiology Research Division, SKAN Research Trust, Bangalore, Karnataka, 560034, India
| | - Kamlesh Jangid
- Bioenergy Group, DST-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, Maharashtra, 411 004, India
| |
Collapse
|
16
|
Morel-Letelier I, Yuen B, Kück AC, Camacho-García YE, Petersen JM, Lara M, Leray M, Eisen JA, Osvatic JT, Gros O, Wilkins LGE. Adaptations to nitrogen availability drive ecological divergence of chemosynthetic symbionts. PLoS Genet 2024; 20:e1011295. [PMID: 38820540 PMCID: PMC11168628 DOI: 10.1371/journal.pgen.1011295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/12/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024] Open
Abstract
Bacterial symbionts, with their shorter generation times and capacity for horizontal gene transfer (HGT), play a critical role in allowing marine organisms to cope with environmental change. The closure of the Isthmus of Panama created distinct environmental conditions in the Tropical Eastern Pacific (TEP) and Caribbean, offering a "natural experiment" for studying how closely related animals evolve and adapt under environmental change. However, the role of bacterial symbionts in this process is often overlooked. We sequenced the genomes of endosymbiotic bacteria in two sets of sister species of chemosymbiotic bivalves from the genera Codakia and Ctena (family Lucinidae) collected on either side of the Isthmus, to investigate how differing environmental conditions have influenced the selection of symbionts and their metabolic capabilities. The lucinid sister species hosted different Candidatus Thiodiazotropha symbionts and only those from the Caribbean had the genetic potential for nitrogen fixation, while those from the TEP did not. Interestingly, this nitrogen-fixing ability did not correspond to symbiont phylogeny, suggesting convergent evolution of nitrogen fixation potential under nutrient-poor conditions. Reconstructing the evolutionary history of the nifHDKT operon by including other lucinid symbiont genomes from around the world further revealed that the last common ancestor (LCA) of Ca. Thiodiazotropha lacked nif genes, and populations in oligotrophic habitats later re-acquired the nif operon through HGT from the Sedimenticola symbiont lineage. Our study suggests that HGT of the nif operon has facilitated niche diversification of the globally distributed Ca. Thiodiazotropha endolucinida species clade. It highlights the importance of nitrogen availability in driving the ecological diversification of chemosynthetic symbiont species and the role that bacterial symbionts may play in the adaptation of marine organisms to changing environmental conditions.
Collapse
Affiliation(s)
- Isidora Morel-Letelier
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | - Benedict Yuen
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | - A. Carlotta Kück
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | - Yolanda E. Camacho-García
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro, San José, Costa Rica
- Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), Universidad de Costa Rica, San Pedro, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Jillian M. Petersen
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Minor Lara
- Diving Center Cuajiniquil, Provincia de Guanacaste, Cuajiniquil, Costa Rica
| | - Matthieu Leray
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panamá
| | - Jonathan A. Eisen
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| | - Jay T. Osvatic
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Olivier Gros
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, Université des Antilles, Pointe-à-Pitre, France
| | - Laetitia G. E. Wilkins
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| |
Collapse
|
17
|
Lavecchia A, Fosso B, Engelen AH, Borin S, Manzari C, Picardi E, Pesole G, Placido A. Macroalgal microbiomes unveil a valuable genetic resource for halogen metabolism. MICROBIOME 2024; 12:47. [PMID: 38454513 PMCID: PMC10919026 DOI: 10.1186/s40168-023-01740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Macroalgae, especially reds (Rhodophyta Division) and browns (Phaeophyta Division), are known for producing various halogenated compounds. Yet, the reasons underlying their production and the fate of these metabolites remain largely unknown. Some theories suggest their potential antimicrobial activity and involvement in interactions between macroalgae and prokaryotes. However, detailed investigations are currently missing on how the genetic information of prokaryotic communities associated with macroalgae may influence the fate of organohalogenated molecules. RESULTS To address this challenge, we created a specialized dataset containing 161 enzymes, each with a complete enzyme commission number, known to be involved in halogen metabolism. This dataset served as a reference to annotate the corresponding genes encoded in both the metagenomic contigs and 98 metagenome-assembled genomes (MAGs) obtained from the microbiome of 2 red (Sphaerococcus coronopifolius and Asparagopsis taxiformis) and 1 brown (Halopteris scoparia) macroalgae. We detected many dehalogenation-related genes, particularly those with hydrolytic functions, suggesting their potential involvement in the degradation of a wide spectrum of halocarbons and haloaromatic molecules, including anthropogenic compounds. We uncovered an array of degradative gene functions within MAGs, spanning various bacterial orders such as Rhodobacterales, Rhizobiales, Caulobacterales, Geminicoccales, Sphingomonadales, Granulosicoccales, Microtrichales, and Pseudomonadales. Less abundant than degradative functions, we also uncovered genes associated with the biosynthesis of halogenated antimicrobial compounds and metabolites. CONCLUSION The functional data provided here contribute to understanding the still largely unexplored role of unknown prokaryotes. These findings support the hypothesis that macroalgae function as holobionts, where the metabolism of halogenated compounds might play a role in symbiogenesis and act as a possible defense mechanism against environmental chemical stressors. Furthermore, bacterial groups, previously never connected with organohalogen metabolism, e.g., Caulobacterales, Geminicoccales, Granulosicoccales, and Microtrichales, functionally characterized through MAGs reconstruction, revealed a biotechnologically relevant gene content, useful in synthetic biology, and bioprospecting applications. Video Abstract.
Collapse
Affiliation(s)
- Anna Lavecchia
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Bruno Fosso
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Aschwin H Engelen
- Center of Marine Sciences (CCMar), University of Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Antonio Placido
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy.
| |
Collapse
|
18
|
Pearman WS, Morales SE, Vaux F, Gemmell NJ, Fraser CI. Host population crashes disrupt the diversity of associated marine microbiomes. Environ Microbiol 2024; 26:e16611. [PMID: 38519875 DOI: 10.1111/1462-2920.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 03/25/2024]
Abstract
Host-associated microbial communities are shaped by myriad factors ranging from host conditions, environmental conditions and other microbes. Disentangling the ecological impact of each of these factors can be particularly difficult as many variables are correlated. Here, we leveraged earthquake-induced changes in host population structure to assess the influence of population crashes on marine microbial ecosystems. A large (7.8 magnitude) earthquake in New Zealand in 2016 led to widespread coastal uplift of up to ~6 m, sufficient to locally extirpate some intertidal southern bull kelp populations. These uplifted populations are slowly recovering, but remain at much lower densities than at nearby, less-uplifted sites. By comparing the microbial communities of the hosts from disturbed and relatively undisturbed populations using 16S rRNA gene amplicon sequencing, we observed that disturbed host populations supported higher functional, taxonomic and phylogenetic microbial beta diversity than non-disturbed host populations. Our findings shed light on microbiome ecological assembly processes, particularly highlighting that large-scale disturbances that affect host populations can dramatically influence microbiome structure. We suggest that disturbance-induced changes in host density limit the dispersal opportunities of microbes, with host community connectivity declining with the density of host populations.
Collapse
Affiliation(s)
- William S Pearman
- Department of Marine Science, University of Otago, Dunedin, New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- National Institute of Water and Atmospheric Research Ltd, Auckland, New Zealand
| | - Sergio E Morales
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Felix Vaux
- National Institute of Water and Atmospheric Research Ltd, Auckland, New Zealand
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ceridwen I Fraser
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Ericson JA, Laroche O, Biessy L, Delorme NJ, Pochon X, Thomson-Laing J, Ragg NLC, Smith KF. Differential responses of selectively bred mussels ( Perna canaliculus) to heat stress-survival, immunology, gene expression and microbiome diversity. Front Physiol 2024; 14:1265879. [PMID: 38425477 PMCID: PMC10902150 DOI: 10.3389/fphys.2023.1265879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/15/2023] [Indexed: 03/02/2024] Open
Abstract
New Zealand's green-lipped mussel (Perna canaliculus) is an ecologically and economically important species. Marine heatwaves are increasing in frequency around NZ's coastline, and these events are correlated with increased stress and mortality of some aquaculture species. This study aimed to identify general biomarkers of heat stress in P. canaliculus and to assess whether responses differed between genetically distinct selectively bred mussels. We exposed three families of selectively bred mussels (families A, B and C) to three seawater temperature regimes in the laboratory: 1) a "control" treatment (ambient 12°C), 2) a 26°C heat challenge with a subsequent recovery period, and 3) a sustained 26°C heat challenge with no recovery. We investigated whether the survival, immune response (hemocyte concentration and viability, oxidative stress and total antioxidant capacity), hemocyte gene expression and gill microbiome differed between the families during the temperature challenges. In the sustained heat-stress treatment, family A had the highest survival rate (42% compared with 25% and 5% for families C and B, respectively). Gene expression levels significantly shifted during thermal stress and differed between families, with family A more dissimilar than families B and C. Family C had substantially more genes impacted by temperature treatment and timepoint than the other families, while family B had very little genes/pathways that responded to thermal stress. Genes related to heat shock proteins and immune responses (e.g., AIF1, CTSC, TOLL8, CASP9, FNTA, AHCY, CRYAB, PPIF) were upregulated in all families during heat stress. Microbiome species-richness differed between families before and during heat-stress, with family A having a distinctly different microbiome flora than the other families. Microbial diversity changed similarly in all families exposed to prolonged heat-stress, with species of Vibrio and Campylobacter increasing in these mussels. Our study highlights the use of non-lethal sampling of hemocytes as a diagnostic tool to explore the immune response and gene expression of selectively bred mussels, to predict their response to ocean warming. This approach can identify potential thermotolerant candidates for further selective breeding, which may increase the resilience of the mussel aquaculture industry in a warming ocean.
Collapse
Affiliation(s)
| | | | | | | | - Xavier Pochon
- Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | | | | | - Kirsty F. Smith
- Cawthron Institute, Nelson, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Graham OJ, Adamczyk EM, Schenk S, Dawkins P, Burke S, Chei E, Cisz K, Dayal S, Elstner J, Hausner ALP, Hughes T, Manglani O, McDonald M, Mikles C, Poslednik A, Vinton A, Wegener Parfrey L, Harvell CD. Manipulation of the seagrass-associated microbiome reduces disease severity. Environ Microbiol 2024; 26:e16582. [PMID: 38195072 DOI: 10.1111/1462-2920.16582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Host-associated microbes influence host health and function and can be a first line of defence against infections. While research increasingly shows that terrestrial plant microbiomes contribute to bacterial, fungal, and oomycete disease resistance, no comparable experimental work has investigated marine plant microbiomes or more diverse disease agents. We test the hypothesis that the eelgrass (Zostera marina) leaf microbiome increases resistance to seagrass wasting disease. From field eelgrass with paired diseased and asymptomatic tissue, 16S rRNA gene amplicon sequencing revealed that bacterial composition and richness varied markedly between diseased and asymptomatic tissue in one of the two years. This suggests that the influence of disease on eelgrass microbial communities may vary with environmental conditions. We next experimentally reduced the eelgrass microbiome with antibiotics and bleach, then inoculated plants with Labyrinthula zosterae, the causative agent of wasting disease. We detected significantly higher disease severity in eelgrass with a native microbiome than an experimentally reduced microbiome. Our results over multiple experiments do not support a protective role of the eelgrass microbiome against L. zosterae. Further studies of these marine host-microbe-pathogen relationships may continue to show new relationships between plant microbiomes and diseases.
Collapse
Affiliation(s)
- Olivia J Graham
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Emily M Adamczyk
- Department of Zoology and Biodiversity Research Centre, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siobhan Schenk
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Phoebe Dawkins
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Samantha Burke
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Emily Chei
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Kaitlyn Cisz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Sukanya Dayal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Jack Elstner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Taylor Hughes
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Omisha Manglani
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Miles McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Chloe Mikles
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Anna Poslednik
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Audrey Vinton
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Laura Wegener Parfrey
- Department of Zoology and Biodiversity Research Centre, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
21
|
Stevick RJ, Audrain B, Bedu S, Dray N, Ghigo JM, Pérez-Pascual D. Anti-diarrheal drug loperamide induces dysbiosis in zebrafish microbiota via bacterial inhibition. MICROBIOME 2023; 11:252. [PMID: 37951983 PMCID: PMC10638762 DOI: 10.1186/s40168-023-01690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Perturbations of animal-associated microbiomes from chemical stress can affect host physiology and health. While dysbiosis induced by antibiotic treatments and disease is well known, chemical, nonantibiotic drugs have recently been shown to induce changes in microbiome composition, warranting further exploration. Loperamide is an opioid-receptor agonist widely prescribed for treating acute diarrhea in humans. Loperamide is also used as a tool to study the impact of bowel dysfunction in animal models by inducing constipation, but its effect on host-associated microbiota is poorly characterized. RESULTS We used conventional and gnotobiotic larval zebrafish models to show that in addition to host-specific effects, loperamide also has anti-bacterial activities that directly induce changes in microbiota diversity. This dysbiosis is due to changes in bacterial colonization, since gnotobiotic zebrafish mono-colonized with bacterial strains sensitive to loperamide are colonized up to 100-fold lower when treated with loperamide. Consistently, the bacterial diversity of gnotobiotic zebrafish colonized by a mix of 5 representative bacterial strains is affected by loperamide treatment. CONCLUSION Our results demonstrate that loperamide, in addition to host effects, also induces dysbiosis in a vertebrate model, highlighting that established treatments can have underlooked secondary effects on microbiota structure and function. This study further provides insights for future studies exploring how common medications directly induce changes in host-associated microbiota. Video Abstract.
Collapse
Affiliation(s)
- Rebecca J Stevick
- Genetics of Biofilms Laboratory, UMR 6047, Institut Pasteur Université Paris Cité, CNRS, Paris, France
| | - Bianca Audrain
- Genetics of Biofilms Laboratory, UMR 6047, Institut Pasteur Université Paris Cité, CNRS, Paris, France
| | - Sébastien Bedu
- Zebrafish Neurogenetics Laboratory, UMR 3738, Institut Pasteur Université Paris Cité, CNRS, Paris, France
| | - Nicolas Dray
- Zebrafish Neurogenetics Laboratory, UMR 3738, Institut Pasteur Université Paris Cité, CNRS, Paris, France
| | - Jean-Marc Ghigo
- Genetics of Biofilms Laboratory, UMR 6047, Institut Pasteur Université Paris Cité, CNRS, Paris, France.
| | - David Pérez-Pascual
- Genetics of Biofilms Laboratory, UMR 6047, Institut Pasteur Université Paris Cité, CNRS, Paris, France.
| |
Collapse
|
22
|
King NG, Uribe R, Moore PJ, Earp HS, Gouraguine A, Hinostroza D, Perez-Matus A, Smith K, Smale DA. Multiscale Spatial Variability and Stability in the Structure and Diversity of Bacterial Communities Associated with the Kelp Eisenia cokeri in Peru. MICROBIAL ECOLOGY 2023; 86:2574-2582. [PMID: 37415044 DOI: 10.1007/s00248-023-02262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Ecological communities are structured by a range of processes that operate over a range of spatial scales. While our understanding of such biodiversity patterns in macro-communities is well studied, our understanding at the microbial level is still lacking. Bacteria can be free living or associated with host eukaryotes, forming part of a wider "microbiome," which is fundamental for host performance and health. For habitat forming foundation-species, host-bacteria relationships likely play disproportionate roles in mediating processes for the wider ecosystem. Here, we describe host-bacteria communities across multiple spatial scales (i.e., from 10s of m to 100s of km) in the understudied kelp, Eisenia cokeri, in Peru. We found that E. cokeri supports a distinct bacterial community compared to the surrounding seawater, but the structure of these communities varied markedly at the regional (~480 km), site (1-10 km), and individual (10s of m) scale. The marked regional-scale differences we observed may be driven by a range of processes, including temperature, upwelling intensity, or regional connectivity patterns. However, despite this variability, we observed consistency in the form of a persistent core community at the genus level. Here, the genera Arenicella, Blastopirellula, Granulosicoccus, and Litorimonas were found in >80% of samples and comprised ~53% of total sample abundance. These genera have been documented within bacterial communities associated with kelps and other seaweed species from around the world and may be important for host function and wider ecosystem health in general.
Collapse
Affiliation(s)
- Nathan G King
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, PL1 2PB, UK.
| | - Roberto Uribe
- Área de Macroalgas y Biodiversidad, Instituto del Mar del Perú - IMARPE, av. La Ribera # 805, Huanchaco, La Libertad, Perú
| | - Pippa J Moore
- Dove Marine Laboratory, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
| | - Hannah S Earp
- Dove Marine Laboratory, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
- Department of Life Science, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Adam Gouraguine
- Dove Marine Laboratory, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
| | - Diego Hinostroza
- Programa de Maestría en Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Perez-Matus
- Subtidal Ecology Laboratory (Subelab), Estación Costera de Investigaciones Marinas (ECIM), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114, -D, Santiago, Chile
| | - Kathryn Smith
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
23
|
McCauley M, Goulet TL, Jackson CR, Loesgen S. Systematic review of cnidarian microbiomes reveals insights into the structure, specificity, and fidelity of marine associations. Nat Commun 2023; 14:4899. [PMID: 37580316 PMCID: PMC10425419 DOI: 10.1038/s41467-023-39876-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/30/2023] [Indexed: 08/16/2023] Open
Abstract
Microorganisms play essential roles in the health and resilience of cnidarians. Understanding the factors influencing cnidarian microbiomes requires cross study comparisons, yet the plethora of protocols used hampers dataset integration. We unify 16S rRNA gene sequences from cnidarian microbiome studies under a single analysis pipeline. We reprocess 12,010 cnidarian microbiome samples from 186 studies, alongside 3,388 poriferan, 370 seawater samples, and 245 cultured Symbiodiniaceae, unifying ~6.5 billion sequence reads. Samples are partitioned by hypervariable region and sequencing platform to reduce sequencing variability. This systematic review uncovers an incredible diversity of 86 archaeal and bacterial phyla associated with Cnidaria, and highlights key bacteria hosted across host sub-phylum, depth, and microhabitat. Shallow (< 30 m) water Alcyonacea and Actinaria are characterized by highly shared and relatively abundant microbial communities, unlike Scleractinia and most deeper cnidarians. Utilizing the V4 region, we find that cnidarian microbial composition, richness, diversity, and structure are primarily influenced by host phylogeny, sampling depth, and ocean body, followed by microhabitat and sampling date. We identify host and geographical generalist and specific Endozoicomonas clades within Cnidaria and Porifera. This systematic review forms a framework for understanding factors governing cnidarian microbiomes and creates a baseline for assessing stress associated dysbiosis.
Collapse
Affiliation(s)
- M McCauley
- Department of Chemistry, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
- Department of Biology, University of Mississippi, University, MS, USA.
- U.S. Geological Survey, Wetland and Aquatic Research Centre, Gainesville, FL, USA.
| | - T L Goulet
- Department of Biology, University of Mississippi, University, MS, USA
| | - C R Jackson
- Department of Biology, University of Mississippi, University, MS, USA
| | - S Loesgen
- Department of Chemistry, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| |
Collapse
|
24
|
Diner RE, Zimmer-Faust A, Cooksey E, Allard S, Kodera SM, Kunselman E, Garodia Y, Verhougstraete MP, Allen AE, Griffith J, Gilbert JA. Host and Water Microbiota Are Differentially Linked to Potential Human Pathogen Accumulation in Oysters. Appl Environ Microbiol 2023; 89:e0031823. [PMID: 37318344 PMCID: PMC10370324 DOI: 10.1128/aem.00318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Oysters play an important role in coastal ecology and are a globally popular seafood source. However, their filter-feeding lifestyle enables coastal pathogens, toxins, and pollutants to accumulate in their tissues, potentially endangering human health. While pathogen concentrations in coastal waters are often linked to environmental conditions and runoff events, these do not always correlate with pathogen concentrations in oysters. Additional factors related to the microbial ecology of pathogenic bacteria and their relationship with oyster hosts likely play a role in accumulation but are poorly understood. In this study, we investigated whether microbial communities in water and oysters were linked to accumulation of Vibrio parahaemolyticus, Vibrio vulnificus, or fecal indicator bacteria. Site-specific environmental conditions significantly influenced microbial communities and potential pathogen concentrations in water. Oyster microbial communities, however, exhibited less variability in microbial community diversity and accumulation of target bacteria overall and were less impacted by environmental differences between sites. Instead, changes in specific microbial taxa in oyster and water samples, particularly in oyster digestive glands, were linked to elevated levels of potential pathogens. For example, increased levels of V. parahaemolyticus were associated with higher relative abundances of cyanobacteria, which could represent an environmental vector for Vibrio spp. transport, and with decreased relative abundance of Mycoplasma and other key members of the oyster digestive gland microbiota. These findings suggest that host and microbial factors, in addition to environmental variables, may influence pathogen accumulation in oysters. IMPORTANCE Bacteria in the marine environment cause thousands of human illnesses annually. Bivalves are a popular seafood source and are important in coastal ecology, but their ability to concentrate pathogens from the water can cause human illness, threatening seafood safety and security. To predict and prevent disease, it is critical to understand what causes pathogenic bacteria to accumulate in bivalves. In this study, we examined how environmental factors and host and water microbial communities were linked to potential human pathogen accumulation in oysters. Oyster microbial communities were more stable than water communities, and both contained the highest concentrations of Vibrio parahaemolyticus at sites with warmer temperatures and lower salinities. High oyster V. parahaemolyticus concentrations corresponded with abundant cyanobacteria, a potential vector for transmission, and a decrease in potentially beneficial oyster microbes. Our study suggests that poorly understood factors, including host and water microbiota, likely play a role in pathogen distribution and pathogen transmission.
Collapse
Affiliation(s)
- Rachel E. Diner
- University of California, San Diego, Department of Pediatrics, La Jolla, California, USA
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Amy Zimmer-Faust
- Southern California Coastal Water Research Project, Microbiology Group, Costa Mesa, California, USA
| | - Emily Cooksey
- Environment, Exposure Science and Risk Assessment Center, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Sarah Allard
- University of California, San Diego, Department of Pediatrics, La Jolla, California, USA
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Sho M. Kodera
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Emily Kunselman
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Yash Garodia
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Marc P. Verhougstraete
- Environment, Exposure Science and Risk Assessment Center, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Andrew E. Allen
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- J. Craig Venter Institute, Environmental and Microbial Genomics Group, La Jolla, California, USA
| | - John Griffith
- Southern California Coastal Water Research Project, Microbiology Group, Costa Mesa, California, USA
| | - Jack A. Gilbert
- University of California, San Diego, Department of Pediatrics, La Jolla, California, USA
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| |
Collapse
|
25
|
King NG, Moore PJ, Thorpe JM, Smale DA. Consistency and Variation in the Kelp Microbiota: Patterns of Bacterial Community Structure Across Spatial Scales. MICROBIAL ECOLOGY 2023; 85:1265-1275. [PMID: 35589992 DOI: 10.1007/s00248-022-02038-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/09/2022] [Indexed: 05/10/2023]
Abstract
Kelp species are distributed along ~ 25% of the world's coastlines and the forests they form represent some of the world's most productive and diverse ecosystems. Like other marine habitat-formers, the associated microbial community is fundamental for host and, in turn, wider ecosystem functioning. Given there are thousands of bacteria-host associations, determining which relationships are important remains a major challenge. We characterised the associated bacteria of two habitat-forming kelp species, Laminaria hyperborea and Saccharina latissima, from eight sites across a range of spatial scales (10 s of metres to 100 s of km) in the northeast Atlantic. We found no difference in diversity or community structure between the two kelps, but there was evidence of regional structuring (across 100 s km) and considerable variation between individuals (10 s of metres). Within sites, individuals shared few amplicon sequence variants (ASVs) and supported a very small proportion of diversity found across the wider study area. However, consistent characteristics between individuals were observed with individual host communities containing a small conserved "core" (8-11 ASVs comprising 25 and 32% of sample abundances for L. hyperborea and S. latissima, respectively). At a coarser taxonomic resolution, communities were dominated by four classes (Planctomycetes, Gammaproteobacteria, Alphaproteobacteria and Bacteroidia) that made up ~ 84% of sample abundances. Remaining taxa (47 classes) made up very little contribution to overall abundance but the majority of taxonomic diversity. Overall, our study demonstrates the consistent features of kelp bacterial communities across large spatial scales and environmental gradients and provides an ecologically meaningful baseline to track environmental change.
Collapse
Affiliation(s)
- Nathan G King
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, PL1 2PB, UK.
| | - Pippa J Moore
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jamie M Thorpe
- Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, LL59 5AB, UK
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, PL1 2PB, UK
| |
Collapse
|
26
|
Schenck FR, DuBois K, Kardish MR, Stachowicz JJ, Hughes AR. The effect of warming on seagrass wasting disease depends on host genotypic identity and diversity. Ecology 2023; 104:e3959. [PMID: 36530038 DOI: 10.1002/ecy.3959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 12/23/2022]
Abstract
Temperature increases due to climate change have affected the distribution and severity of diseases in natural systems, causing outbreaks that can destroy host populations. Host identity, diversity, and the associated microbiome can affect host responses to both infection and temperature, but little is known about how they could function as important mediators of disease in altered thermal environments. We conducted an 8-week warming experiment to test the independent and interactive effects of warming, host genotypic identity, and host genotypic diversity on the prevalence and intensity of infections of seagrass (Zostera marina) by the wasting disease parasite (Labyrinthula zosterae). At elevated temperatures, we found that genotypically diverse host assemblages had reduced infection intensity, but not reduced prevalence, relative to less diverse assemblages. This dilution effect on parasite intensity was the result of both host composition effects as well as emergent properties of biodiversity. In contrast with the benefits of genotypic diversity under warming, diversity actually increased parasite intensity slightly in ambient temperatures. We found mixed support for the hypothesis that a growth-defense trade-off contributed to elevated disease intensity under warming. Changes in the abundance (but not composition) of a few taxa in the host microbiome were correlated with genotype-specific responses to wasting disease infections under warming, consistent with the emerging evidence linking changes in the host microbiome to the outcome of host-parasite interactions. This work emphasizes the context dependence of biodiversity-disease relationships and highlights the potential importance of interactions among biodiversity loss, climate change, and disease outbreaks in a key foundation species.
Collapse
Affiliation(s)
- Forest R Schenck
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA.,Massachusetts Division of Marine Fisheries, Gloucester, Massachusetts, USA
| | - Katherine DuBois
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Melissa R Kardish
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - John J Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, USA.,Center for Population Biology, University of California, Davis, California, USA
| | - A Randall Hughes
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
| |
Collapse
|
27
|
Petrelli S, Buglione M, Rivieccio E, Ricca E, Baccigalupi L, Scala G, Fulgione D. Reprogramming of the gut microbiota following feralization in Sus scrofa. Anim Microbiome 2023; 5:14. [PMID: 36823657 PMCID: PMC9951470 DOI: 10.1186/s42523-023-00235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Wild boar has experienced several evolutionary trajectories from which domestic (under artificial selection) and the feral pig (under natural selection) originated. Strong adaptation deeply affects feral population's morphology and physiology, including the microbiota community. The gut microbiota is generally recognized to play a crucial role in maintaining host health and metabolism. To date, it is unclear whether feral populations' phylogeny, development stages or lifestyle have the greatest impact in shaping the gut microbiota, as well as how this can confer adaptability to new environments. Here, in order to deepen this point, we characterized the gut microbiota of feral population discriminating between juvenile and adult samples, and we compared it to the microbiota structure of wild boar and domestic pig as the references. Gut microbiota composition was estimated through the sequencing of the partial 16S rRNA gene by DNA metabarcoding and High Throughput Sequencing on DNA extracted from fecal samples. RESULTS The comparison of microbiota communities among the three forms showed significant differences. The feral form seems to carry some bacteria of both domestic pigs, derived from its ancestral condition, and wild boars, probably as a sign of a recent re-adaptation strategy to the natural environment. In addition, interestingly, feral pigs show some exclusive bacterial taxa, also suggesting an innovative nature of the evolutionary trajectories and an ecological segregation in feral populations, as already observed for other traits. CONCLUSIONS The feral pig showed a significant change between juvenile and adult microbiota suggesting an influence of the wild environment in which these populations segregate. However, it is important to underline that we certainly cannot overlook that these variations in the structure of the microbiota also depended on the different development stages of the animal, which in fact influence the composition of the intestinal microbiota. Concluding, the feral pigs represent a new actor living in the same geographical space as the wild boars, in which its gut microbial structure suggests that it is mainly the result of environmental segregation, most different from its closest relative. This gives rise to interesting fields of exploration regarding the changed ecological complexity and the consequent evolutionary destiny of the animal communities involved in this phenomenon.
Collapse
Affiliation(s)
- Simona Petrelli
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, NA Italy
| | - Maria Buglione
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, NA Italy
| | - Eleonora Rivieccio
- grid.4691.a0000 0001 0790 385XDepartment of Humanities, University of Naples Federico II, Via Porta Di Massa 1, 80133 Naples, Italy
| | - Ezio Ricca
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, NA Italy ,grid.4691.a0000 0001 0790 385XTask Force On Microbiome Studies, University of Naples Federico II, 80100 Naples, NA Italy
| | - Loredana Baccigalupi
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, NA Italy
| | - Giovanni Scala
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, NA Italy
| | - Domenico Fulgione
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, NA, Italy. .,Task Force On Microbiome Studies, University of Naples Federico II, 80100, Naples, NA, Italy.
| |
Collapse
|
28
|
Adade EE, Stevick RJ, Pérez-Pascual D, Ghigo JM, Valm AM. Gnotobiotic zebrafish microbiota display inter-individual variability affecting host physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526612. [PMID: 36778358 PMCID: PMC9915576 DOI: 10.1101/2023.02.01.526612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gnotobiotic animal models reconventionalized under controlled laboratory conditions with multi-species bacterial communities are commonly used to study host-microbiota interactions under presumably more reproducible conditions than conventional animals. The usefulness of these models is however limited by inter-animal variability in bacterial colonization and our general lack of understanding of the inter-individual fluctuation and spatio-temporal dynamics of microbiota assemblies at the micron to millimeter scale. Here, we show underreported variability in gnotobiotic models by analyzing differences in gut colonization efficiency, bacterial composition, and host intestinal mucus production between conventional and gnotobiotic zebrafish larvae re-conventionalized with a mix of 9 bacteria isolated from conventional microbiota. Despite similar bacterial community composition, we observed high variability in the spatial distribution of bacteria along the intestinal tract in the reconventionalized model. We also observed that, whereas bacteria abundance and intestinal mucus per fish were not correlated, reconventionalized fish had lower intestinal mucus compared to conventional animals, indicating that the stimulation of mucus production depends on the microbiota composition. Our findings, therefore, suggest that variable colonization phenotypes affect host physiology and impact the reproducibility of experimental outcomes in studies that use gnotobiotic animals. This work provides insights into the heterogeneity of gnotobiotic models and the need to accurately assess re-conventionalization for reproducibility in host-microbiota studies.
Collapse
Affiliation(s)
- Emmanuel E. Adade
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA
- The RNA Institute, State University of New York at Albany, Albany, NY 12222, USA
| | - Rebecca J. Stevick
- Institut Pasteur, Université de Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris F-75015, France
| | - David Pérez-Pascual
- Institut Pasteur, Université de Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris F-75015, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris F-75015, France
| | - Alex M. Valm
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA
- The RNA Institute, State University of New York at Albany, Albany, NY 12222, USA
| |
Collapse
|
29
|
Nelson CE, Wegley Kelly L, Haas AF. Microbial Interactions with Dissolved Organic Matter Are Central to Coral Reef Ecosystem Function and Resilience. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:431-460. [PMID: 36100218 DOI: 10.1146/annurev-marine-042121-080917] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To thrive in nutrient-poor waters, coral reefs must retain and recycle materials efficiently. This review centers microbial processes in facilitating the persistence and stability of coral reefs, specifically the role of these processes in transforming and recycling the dissolved organic matter (DOM) that acts as an invisible currency in reef production, nutrient exchange, and organismal interactions. The defining characteristics of coral reefs, including high productivity, balanced metabolism, high biodiversity, nutrient retention, and structural complexity, are inextricably linked to microbial processing of DOM. The composition of microbes and DOM in reefs is summarized, and the spatial and temporal dynamics of biogeochemical processes carried out by microorganisms in diverse reef habitats are explored in a variety of key reef processes, including decomposition, accretion, trophictransfer, and macronutrient recycling. Finally, we examine how widespread habitat degradation of reefs is altering these important microbe-DOM interactions, creating feedbacks that reduce reef resilience to global change.
Collapse
Affiliation(s)
- Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, and Sea Grant College Program, School of Ocean and Earth Sciences and Technology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA;
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA;
| | - Andreas F Haas
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands;
| |
Collapse
|
30
|
Conte C, Apostolaki ET, Vizzini S, Migliore L. A Tight Interaction between the Native Seagrass Cymodocea nodosa and the Exotic Halophila stipulacea in the Aegean Sea Highlights Seagrass Holobiont Variations. PLANTS (BASEL, SWITZERLAND) 2023; 12:350. [PMID: 36679063 PMCID: PMC9863530 DOI: 10.3390/plants12020350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Seagrasses harbour bacterial communities with which they constitute a functional unit called holobiont that responds as a whole to environmental changes. Epiphytic bacterial communities rapidly respond to both biotic and abiotic factors, potentially contributing to the host fitness. The Lessepsian migrant Halophila stipulacea has a high phenotypical plasticity and harbours a highly diverse epiphytic bacterial community, which could support its invasiveness in the Mediterranean Sea. The current study aimed to evaluate the Halophila/Cymodocea competition in the Aegean Sea by analysing each of the two seagrasses in a meadow zone where these intermingled, as well as in their monospecific zones, at two depths. Differences in holobionts were evaluated using seagrass descriptors (morphometric, biochemical, elemental, and isotopic composition) to assess host changes, and 16S rRNA gene to identify bacterial community structure and composition. An Indicator Species Index was used to identify bacteria significantly associated with each host. In mixed meadows, native C. nodosa was shown to be affected by the presence of exotic H. stipulacea, in terms of both plant descriptors and bacterial communities, while H. stipulacea responded only to environmental factors rather than C. nodosa proximity. This study provided evidence of the competitive advantage of H. stipulacea on C. nodosa in the Aegean Sea and suggests the possible use of associated bacterial communities as an ecological seagrass descriptor.
Collapse
Affiliation(s)
- Chiara Conte
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Ecology and Ecotoxicology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eugenia T. Apostolaki
- Institute of Oceanography, Hellenic Centre for Marine Research, P.O. Box 2214, 71003 Heraklion, Crete, Greece
| | - Salvatrice Vizzini
- Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
- CoNISMa, National Interuniversity Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Roma, Italy
| | - Luciana Migliore
- Laboratory of Ecology and Ecotoxicology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- eCampus University, Via Isimbardi 10, 22060 Novedrate (CO), Italy
| |
Collapse
|
31
|
Dharamshi JE, Köstlbacher S, Schön ME, Collingro A, Ettema TJG, Horn M. Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat Microbiol 2023; 8:40-54. [PMID: 36604515 PMCID: PMC9816063 DOI: 10.1038/s41564-022-01284-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/07/2022] [Indexed: 01/07/2023]
Abstract
Chlamydiae is a bacterial phylum composed of obligate animal and protist endosymbionts. However, other members of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum are primarily free living. How Chlamydiae transitioned to an endosymbiotic lifestyle is still largely unresolved. Here we reconstructed Planctomycetes-Verrucomicrobia-Chlamydiae species relationships and modelled superphylum genome evolution. Gene content reconstruction from 11,996 gene families suggests a motile and facultatively anaerobic last common Chlamydiae ancestor that had already gained characteristic endosymbiont genes. Counter to expectations for genome streamlining in strict endosymbionts, we detected substantial gene gain within Chlamydiae. We found that divergence in energy metabolism and aerobiosis observed in extant lineages emerged later during chlamydial evolution. In particular, metabolic and aerobic genes characteristic of the more metabolically versatile protist-infecting chlamydiae were gained, such as respiratory chain complexes. Our results show that metabolic complexity can increase during endosymbiont evolution, adding an additional perspective for understanding symbiont evolutionary trajectories across the tree of life.
Collapse
Affiliation(s)
- Jennah E Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria.
| |
Collapse
|
32
|
Kerr EN, Papudeshi B, Haggerty M, Wild N, Goodman AZ, Lima LFO, Hesse RD, Skye A, Mallawaarachchi V, Johri S, Parker S, Dinsdale EA. Stingray epidermal microbiomes are species-specific with local adaptations. Front Microbiol 2023; 14:1031711. [PMID: 36937279 PMCID: PMC10017458 DOI: 10.3389/fmicb.2023.1031711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Marine host-associated microbiomes are affected by a combination of species-specific (e.g., host ancestry, genotype) and habitat-specific features (e.g., environmental physiochemistry and microbial biogeography). The stingray epidermis provides a gradient of characteristics from high dermal denticles coverage with low mucus to reduce dermal denticles and high levels of mucus. Here we investigate the effects of host phylogeny and habitat by comparing the epidermal microbiomes of Myliobatis californica (bat rays) with a mucus rich epidermis, and Urobatis halleri (round rays) with a mucus reduced epidermis from two locations, Los Angeles and San Diego, California (a 150 km distance). We found that host microbiomes are species-specific and distinct from the water column, however composition of M. californica microbiomes showed more variability between individuals compared to U. halleri. The variability in the microbiome of M. californica caused the microbial taxa to be similar across locations, while U. halleri microbiomes were distinct across locations. Despite taxonomic differences, Shannon diversity is the same across the two locations in U. halleri microbiomes suggesting the taxonomic composition are locally adapted, but diversity is maintained by the host. Myliobatis californica and U. halleri microbiomes maintain functional similarity across Los Angeles and San Diego and each ray showed several unique functional genes. Myliobatis californica has a greater relative abundance of RNA Polymerase III-like genes in the microbiome than U. halleri, suggesting specific adaptations to a heavy mucus environment. Construction of Metagenome Assembled Genomes (MAGs) identified novel microbial species within Rhodobacteraceae, Moraxellaceae, Caulobacteraceae, Alcanivoracaceae and Gammaproteobacteria. All MAGs had a high abundance of active RNA processing genes, heavy metal, and antibiotic resistant genes, suggesting the stingray mucus supports high microbial growth rates, which may drive high levels of competition within the microbiomes increasing the antimicrobial properties of the microbes.
Collapse
Affiliation(s)
- Emma N. Kerr
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- *Correspondence: Emma N. Kerr,
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Miranda Haggerty
- California Department of Fish and Wildlife, San Diego, CA, United States
| | - Natasha Wild
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Asha Z. Goodman
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Lais F. O. Lima
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Ryan D. Hesse
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Amber Skye
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Shaili Johri
- Hopkins Maine Station, Stanford University, Stanford, CA, United States
| | - Sophia Parker
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Elizabeth A. Dinsdale,
| |
Collapse
|
33
|
Breusing C, Osborn KJ, Girguis PR, Reese AT. Composition and metabolic potential of microbiomes associated with mesopelagic animals from Monterey Canyon. ISME COMMUNICATIONS 2022; 2:117. [PMID: 37938735 PMCID: PMC9723714 DOI: 10.1038/s43705-022-00195-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2023]
Abstract
There is growing recognition that microbiomes play substantial roles in animal eco-physiology and evolution. To date, microbiome research has largely focused on terrestrial animals, with far fewer studies on aquatic organisms, especially pelagic marine species. Pelagic animals are critical for nutrient cycling, yet are also subject to nutrient limitation and might thus rely strongly on microbiome digestive functions to meet their nutritional requirements. To better understand the composition and metabolic potential of midwater host-associated microbiomes, we applied amplicon and shotgun metagenomic sequencing to eleven mesopelagic animal species. Our analyses reveal that mesopelagic animal microbiomes are typically composed of bacterial taxa from the phyla Proteobacteria, Firmicutes, Bacteroidota and, in some cases, Campylobacterota. Overall, compositional and functional microbiome variation appeared to be primarily governed by host taxon and depth and, to a lesser extent, trophic level and diel vertical migratory behavior, though the impact of host specificity seemed to differ between migrating and non-migrating species. Vertical migrators generally showed lower intra-specific microbiome diversity (i.e., higher host specificity) than their non-migrating counterparts. These patterns were not linked to host phylogeny but may reflect differences in feeding behaviors, microbial transmission mode, environmental adaptations and other ecological traits among groups. The results presented here further our understanding of the factors shaping mesopelagic animal microbiomes and also provide some novel, genetically informed insights into their diets.
Collapse
Affiliation(s)
- Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Karen J Osborn
- Smithsonian National Museum of Natural History, Washington, DC, USA
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Aspen T Reese
- Division of Biological Sciences, University of California San Diego, San Diego, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
34
|
Correia Costa I, Amorim de Oliveira M, Wosnick N, Ann Hauser-Davis R, Siciliano S, Nunes JLS. Elasmobranch-associated microbiota: a scientometric literature review. PeerJ 2022; 10:e14255. [PMID: 36345481 PMCID: PMC9636872 DOI: 10.7717/peerj.14255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Elasmobranchs provide greatly relevant ecosystem services for the balance of the environments in which they are inserted. In recent decades, sharp population declines have been reported for many species in different regions worldwide, making this taxonomic group currently one of the most threatened with extinction. This scenario is almost entirely due to excessive fishing pressure, but any contributing factor that may cause additional mortality to populations must be mapped and monitored. In a fast-changing world, emerging marine pollution associated with climate change display the potential to increase the spread of infectious agents. These can, in turn, lead to mortality events, both directly and indirectly, by reducing immune responses and the physical and nutritional condition of affected individuals. In this context, the present study aimed to analyze data concerning elasmobranch-associated microbiota, identifying study trends and knowledge gaps in order to direct future studies on this topic of growing relevance for the health of wild populations, as well as individuals maintained in captivity, considering the zoonotic potential of these microorganisms.
Collapse
Affiliation(s)
- Ivana Correia Costa
- Laboratório de Organismos Aquáticos, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Mariene Amorim de Oliveira
- Laboratório de Genética e Biologia Molecular, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Natascha Wosnick
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Salvatore Siciliano
- Departamento de Ciências Biológicas, Escola Nacional de Saúde Pública/FIOCRUZ, Rio de Janeiro, Brazil
| | - Jorge Luiz Silva Nunes
- Laboratório de Organismos Aquáticos, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| |
Collapse
|
35
|
Beatty DS, Aoki LR, Rappazzo B, Bergman C, Domke LK, Duffy JE, Dubois K, Eckert GL, Gomes C, Graham OJ, Harper L, Harvell CD, Hawthorne TL, Hessing-Lewis M, Hovel K, Monteith ZL, Mueller RS, Olson AM, Prentice C, Tomas F, Yang B, Stachowicz JJ. Predictable Changes in Eelgrass Microbiomes with Increasing Wasting Disease Prevalence across 23° Latitude in the Northeastern Pacific. mSystems 2022; 7:e0022422. [PMID: 35856664 PMCID: PMC9426469 DOI: 10.1128/msystems.00224-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Predicting outcomes of marine disease outbreaks presents a challenge in the face of both global and local stressors. Host-associated microbiomes may play important roles in disease dynamics but remain understudied in marine ecosystems. Host-pathogen-microbiome interactions can vary across host ranges, gradients of disease, and temperature; studying these relationships may aid our ability to forecast disease dynamics. Eelgrass, Zostera marina, is impacted by outbreaks of wasting disease caused by the opportunistic pathogen Labyrinthula zosterae. We investigated how Z. marina phyllosphere microbial communities vary with rising wasting disease lesion prevalence and severity relative to plant and meadow characteristics like shoot density, longest leaf length, and temperature across 23° latitude in the Northeastern Pacific. We detected effects of geography (11%) and smaller, but distinct, effects of temperature (30-day max sea surface temperature, 4%) and disease (lesion prevalence, 3%) on microbiome composition. Declines in alpha diversity on asymptomatic tissue occurred with rising wasting disease prevalence within meadows. However, no change in microbiome variability (dispersion) was detected between asymptomatic and symptomatic tissues. Further, we identified members of Cellvibrionaceae, Colwelliaceae, and Granulosicoccaceae on asymptomatic tissue that are predictive of wasting disease prevalence across the geographic range (3,100 kilometers). Functional roles of Colwelliaceae and Granulosicoccaceae are not known. Cellvibrionaceae, degraders of plant cellulose, were also enriched in lesions and adjacent green tissue relative to nonlesioned leaves. Cellvibrionaceae may play important roles in disease progression by degrading host tissues or overwhelming plant immune responses. Thus, inclusion of microbiomes in wasting disease studies may improve our ability to understand variable rates of infection, disease progression, and plant survival. IMPORTANCE The roles of marine microbiomes in disease remain poorly understood due, in part, to the challenging nature of sampling at appropriate spatiotemporal scales and across natural gradients of disease throughout host ranges. This is especially true for marine vascular plants like eelgrass (Zostera marina) that are vital for ecosystem function and biodiversity but are susceptible to rapid decline and die-off from pathogens like eukaryotic slime-mold Labyrinthula zosterae (wasting disease). We link bacterial members of phyllosphere tissues to the prevalence of wasting disease across the broadest geographic range to date for a marine plant microbiome-disease study (3,100 km). We identify Cellvibrionaceae, plant cell wall degraders, enriched (up to 61% relative abundance) within lesion tissue, which suggests this group may be playing important roles in disease progression. These findings suggest inclusion of microbiomes in marine disease studies will improve our ability to predict ecological outcomes of infection across variable landscapes spanning thousands of kilometers.
Collapse
Affiliation(s)
- Deanna S. Beatty
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Lillian R. Aoki
- Data Science Initiative, University of Oregon, Eugene, Oregon, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Brendan Rappazzo
- Department of Computer Science, Cornell University, Ithaca, New York, USA
| | - Chelsea Bergman
- Department of Biology and Coastal & Marine Institute, San Diego State University, San Diego, California, USA
| | - Lia K. Domke
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - J. Emmett Duffy
- MarineGEO Program and Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Katie Dubois
- Department of Evolution and Ecology, University of California, Davis, California, USA
- Biology Department, Bowdoin College, Brunswick, Maine, USA
| | - Ginny L. Eckert
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - Carla Gomes
- Department of Computer Science, Cornell University, Ithaca, New York, USA
| | - Olivia J. Graham
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Leah Harper
- MarineGEO Program and Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - C. Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Timothy L. Hawthorne
- Department of Sociology and College of Sciences GIS Cluster, University of Central Florida, Orlando, Florida, USA
| | - Margot Hessing-Lewis
- Nearshore Marine Ecology, Hakai Institute, Heriot Bay, British Columbia, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Hovel
- Department of Biology and Coastal & Marine Institute, San Diego State University, San Diego, California, USA
| | - Zachary L. Monteith
- Nearshore Marine Ecology, Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Ryan S. Mueller
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Angeleen M. Olson
- Nearshore Marine Ecology, Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Carolyn Prentice
- Nearshore Marine Ecology, Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Fiona Tomas
- Instituto Mediterráneo de Estudios Avanzados (UIB-CSIC), Esporles, Spain
| | - Bo Yang
- Department of Sociology and College of Sciences GIS Cluster, University of Central Florida, Orlando, Florida, USA
- Department of Urban and Regional Planning, San Jose State University, San Jose, California, USA
| | - John J. Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
36
|
The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs. Commun Biol 2022; 5:770. [PMID: 35908086 PMCID: PMC9338936 DOI: 10.1038/s42003-022-03679-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/07/2022] [Indexed: 12/25/2022] Open
Abstract
Environmental degradation has the potential to alter key mutualisms that underlie the structure and function of ecological communities. How microbial communities associated with fishes vary across populations and in relation to habitat characteristics remains largely unknown despite their fundamental roles in host nutrition and immunity. We find significant differences in the gut microbiome composition of a facultative coral-feeding butterflyfish (Chaetodon capistratus) across Caribbean reefs that differ markedly in live coral cover (∼0–30%). Fish gut microbiomes were significantly more variable at degraded reefs, a pattern driven by changes in the relative abundance of the most common taxa potentially associated with stress. We also demonstrate that fish gut microbiomes on severely degraded reefs have a lower abundance of Endozoicomonas and a higher diversity of anaerobic fermentative bacteria, which may suggest a less coral dominated diet. The observed shifts in fish gut bacterial communities across the habitat gradient extend to a small set of potentially beneficial host associated bacteria (i.e., the core microbiome) suggesting essential fish-microbiome interactions may be vulnerable to severe coral degradation. The gut microbiome composition of the coral-feeding butterflyfish across Caribbean reefs is more variable at degraded reefs. These microbiomes have a lower abundance of Endozoicomonas and a higher diversity of anaerobic fermentative bacteria.
Collapse
|
37
|
King NG, Smale DA, Thorpe JM, McKeown NJ, Andrews AJ, Browne R, Malham SK. Core Community Persistence Despite Dynamic Spatiotemporal Responses in the Associated Bacterial Communities of Farmed Pacific Oysters. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02083-9. [PMID: 35881247 DOI: 10.1007/s00248-022-02083-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
A breakdown in host-bacteria relationships has been associated with the progression of a number of marine diseases and subsequent mortality events. For the Pacific oyster, Crassostrea gigas, summer mortality syndrome (SMS) is one of the biggest constraints to the growth of the sector and is set to expand into temperate systems as ocean temperatures rise. Currently, a lack of understanding of natural spatiotemporal dynamics of the host-bacteria relationship limits our ability to develop microbially based monitoring approaches. Here, we characterised the associated bacterial community of C. gigas, at two Irish oyster farms, unaffected by SMS, over the course of a year. We found C. gigas harboured spatiotemporally variable bacterial communities that were distinct from bacterioplankton in surrounding seawater. Whilst the majority of bacteria-oyster associations were transient and highly variable, we observed clear patterns of stability in the form of a small core consisting of six persistent amplicon sequence variants (ASVs). This core made up a disproportionately large contribution to sample abundance (34 ± 0.14%), despite representing only 0.034% of species richness across the study, and has been associated with healthy oysters in other systems. Overall, our study demonstrates the consistent features of oyster bacterial communities across spatial and temporal scales and provides an ecologically meaningful baseline to track environmental change.
Collapse
Affiliation(s)
- Nathan G King
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, PL1 2PB, UK.
- Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, LL59 5AB, UK.
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, PL1 2PB, UK
| | - Jamie M Thorpe
- Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, LL59 5AB, UK
| | - Niall J McKeown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Adam J Andrews
- Bord Iascaigh Mhara, Dún Laoghaire, County Dublin, Ireland
| | - Ronan Browne
- Bord Iascaigh Mhara, Dún Laoghaire, County Dublin, Ireland
| | - Shelagh K Malham
- Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, LL59 5AB, UK
| |
Collapse
|
38
|
Peixoto RS, Voolstra CR, Sweet M, Duarte CM, Carvalho S, Villela H, Lunshof JE, Gram L, Woodhams DC, Walter J, Roik A, Hentschel U, Thurber RV, Daisley B, Ushijima B, Daffonchio D, Costa R, Keller-Costa T, Bowman JS, Rosado AS, Reid G, Mason CE, Walke JB, Thomas T, Berg G. Harnessing the microbiome to prevent global biodiversity loss. Nat Microbiol 2022; 7:1726-1735. [PMID: 35864220 DOI: 10.1038/s41564-022-01173-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
Global biodiversity loss and mass extinction of species are two of the most critical environmental issues the world is currently facing, resulting in the disruption of various ecosystems central to environmental functions and human health. Microbiome-targeted interventions, such as probiotics and microbiome transplants, are emerging as potential options to reverse deterioration of biodiversity and increase the resilience of wildlife and ecosystems. However, the implementation of these interventions is urgently needed. We summarize the current concepts, bottlenecks and ethical aspects encompassing the careful and responsible management of ecosystem resources using the microbiome (termed microbiome stewardship) to rehabilitate organisms and ecosystem functions. We propose a real-world application framework to guide environmental and wildlife probiotic applications. This framework details steps that must be taken in the upscaling process while weighing risks against the high toll of inaction. In doing so, we draw parallels with other aspects of contemporary science moving swiftly in the face of urgent global challenges.
Collapse
Affiliation(s)
- Raquel S Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Christian R Voolstra
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Helena Villela
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jeantine E Lunshof
- Department of Global Health and Social Medicine, Center for Bioethics, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland
| | - Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany
| | - Ute Hentschel
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | - Brendan Daisley
- Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Jeff S Bowman
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | - Alexandre S Rosado
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gregor Reid
- Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, USA
| | - Torsten Thomas
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.,University of Postdam and Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| |
Collapse
|
39
|
Ferchiou S, Caza F, Villemur R, Betoulle S, St-Pierre Y. Species- and site-specific circulating bacterial DNA in Subantarctic sentinel mussels Aulacomya atra and Mytilus platensis. Sci Rep 2022; 12:9547. [PMID: 35681072 PMCID: PMC9184546 DOI: 10.1038/s41598-022-13774-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/29/2022] [Indexed: 11/27/2022] Open
Abstract
Impacts of climate changes are particularly severe in polar regions where warmer temperatures and reductions in sea-ice covers threaten the ecological integrity of marine coastal ecosystems. Because of their wide distribution and their ecological importance, mussels are currently used as sentinel organisms in monitoring programs of coastal ecosystems around the world. In the present study, we exploited the concept of liquid biopsy combined to a logistically friendly sampling method to study the hemolymphatic bacterial microbiome in two mussel species (Aulacomya atra and Mytilus platensis) in Kerguelen Islands, a remote Subantarctic volcanic archipelago. We found that the circulating microbiome signatures of both species differ significantly even though their share the same mussel beds. We also found that the microbiome differs significantly between sampling sites, often correlating with the particularity of the ecosystem. Predictive models also revealed that both species have distinct functional microbiota, and that the circulating microbiome of Aulacomya atra was more sensitive to changes induced by acute thermal stress when compared to Mytilus platensis. Taken together, our study suggests that defining circulating microbiome is a useful tool to assess the health status of marine ecosystems and to better understand the interactions between the sentinel species and their habitat.
Collapse
Affiliation(s)
- Sophia Ferchiou
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - France Caza
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Richard Villemur
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Stéphane Betoulle
- UMR-I 02 SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Université Reims Champagne-Ardenne, Campus Moulin de la Housse, 51687, Reims, France
| | - Yves St-Pierre
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
40
|
Wood G, Steinberg PD, Campbell AH, Vergés A, Coleman MA, Marzinelli EM. Host genetics, phenotype and geography structure the microbiome of a foundational seaweed. Mol Ecol 2022; 31:2189-2206. [PMID: 35104026 PMCID: PMC9540321 DOI: 10.1111/mec.16378] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/18/2022] [Indexed: 12/01/2022]
Abstract
Interactions between hosts and their microbiota are vital to the functioning and resilience of macro-organisms. Critically, for hosts that play foundational roles in communities, understanding what drives host-microbiota interactions is essential for informing ecosystem restoration and conservation. We investigated the relative influence of host traits and the surrounding environment on microbial communities associated with the foundational seaweed Phyllospora comosa. We quantified 16 morphological and functional phenotypic traits, including host genetics (using 354 single nucleotide polymorphisms) and surface-associated microbial communities (using 16S rRNA gene amplicon sequencing) from 160 individuals sampled from eight sites spanning Phyllospora's entire latitudinal distribution (1,300 km). Combined, these factors explained 54% of the overall variation in Phyllospora's associated microbial community structure, much of which was related to the local environment (~32%). We found that putative "core" microbial taxa (i.e., present on all Phyllospora individuals sampled) exhibited slightly higher associations with host traits when compared to "variable" taxa (not present on all individuals). We identified several key genetic loci and phenotypic traits in Phyllospora that were strongly related to multiple microbial amplicon sequence variants, including taxa with known associations to seaweed defence, disease and tissue degradation. This information on how host-associated microbial communities vary with host traits and the environment enhances our current understanding of how "holobionts" (hosts plus their microbiota) are structured. Such understanding can be used to inform management strategies of these important and vulnerable habitats.
Collapse
Affiliation(s)
- Georgina Wood
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Centre for Marine Science and InnovationSchool of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Peter D. Steinberg
- Centre for Marine Science and InnovationSchool of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
- Sydney Institute of Marine ScienceSydneyNew South WalesAustralia
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Alexandra H. Campbell
- USC Seaweed Research GroupUniversity of the Sunshine CoastSunshine CoastQueenslandAustralia
| | - Adriana Vergés
- Centre for Marine Science and InnovationSchool of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Melinda A. Coleman
- Department of Primary IndustriesNational Marine Science CentreCoffs HarbourNew South WalesAustralia
| | - Ezequiel M. Marzinelli
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Sydney Institute of Marine ScienceSydneyNew South WalesAustralia
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
41
|
Jorge F, Dheilly NM, Froissard C, Wainwright E, Poulin R. Consistency of Bacterial Communities in a Parasitic Worm: Variation Throughout the Life Cycle and Across Geographic Space. MICROBIAL ECOLOGY 2022; 83:724-738. [PMID: 34136952 DOI: 10.1007/s00248-021-01774-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Microbial communities within metazoans are increasingly linked with development, health and behaviour, possibly functioning as integrated evolutionary units with the animal in which they live. This would require microbial communities to show some consistency both ontogenetically (across life stages) and geographically (among populations). We characterise the bacteriome of the parasitic trematode Philophthalmus attenuatus, which undergoes major life cycle transitions, and test whether its bacteriome remains consistent on developmental and spatial scales. Based on sequencing the prokaryotic 16S SSU rRNA gene, we compared the parasite bacteriome (i) across three life stages (rediae in snails, cercariae exiting snails, adults in birds) in one locality and (ii) among three geographic localities for rediae only. We found that each life stage harbours a bacteriome different from that of its host (except the adult stage) and the external environment. Very few bacterial taxa were shared among life stages, suggesting substantial ontogenetic turnover in bacteriome composition. Rediae from the three different localities also had different bacteriomes, with dissimilarities increasing with geographical distance. However, rediae from different localities nevertheless shared more bacterial taxa than did different life stages from the same locality. Changes in the bacteriome along the parasite's developmental history but some degree of geographical stability within a given life stage point toward non-random, stage-specific acquisition, selection and/or propagation of bacteria.
Collapse
Affiliation(s)
- Fátima Jorge
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Nolwenn M Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
- ANSES, Agence Nationale de Sécurité Sanitaire de L'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, Ploufragan, France
| | - Céline Froissard
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Eleanor Wainwright
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
42
|
Breusing C, Castel J, Yang Y, Broquet T, Sun J, Jollivet D, Qian P, Beinart RA. Global 16S rRNA diversity of provannid snail endosymbionts from Indo-Pacific deep-sea hydrothermal vents. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:299-307. [PMID: 35170217 PMCID: PMC9303550 DOI: 10.1111/1758-2229.13051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Symbioses between invertebrate animals and chemosynthetic bacteria build the foundation of deep-sea hydrothermal ecosystems worldwide. Despite the importance of these symbioses for ecosystem functioning, the diversity of symbionts within and between host organisms and geographic regions is still poorly understood. In this study we used 16S rRNA amplicon sequencing to determine the diversity of gill endosymbionts in provannid snails of the genera Alviniconcha and Ifremeria, which are key species at deep-sea hydrothermal vents in the Indo-Pacific Ocean. Our analysis of 761 snail samples across the distributional range of these species confirms previous findings that symbiont lineages are strongly partitioned by host species and broad-scale geography. Less structuring was observed within geographic regions, probably due to insufficient strain resolution of the 16S rRNA gene. Symbiont richness in individual hosts appeared to be unrelated to host size, suggesting that provannid snails might acquire their symbionts only during a permissive time window in early developmental stages in contrast to other vent molluscs that obtain their symbionts throughout their lifetime. Despite the extent of our dataset, symbiont accumulation curves did not reach saturation, highlighting the need for increased sampling efforts to uncover the full diversity of symbionts within these and other hydrothermal vent species.
Collapse
Affiliation(s)
- Corinna Breusing
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRIUSA
| | - Jade Castel
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffRoscoffFrance
| | - Yi Yang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)The Hong Kong University of Science and TechnologyHong KongChina
| | - Thomas Broquet
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffRoscoffFrance
| | - Jin Sun
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Didier Jollivet
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffRoscoffFrance
| | - Pei‐Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)The Hong Kong University of Science and TechnologyHong KongChina
| | - Roxanne A. Beinart
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRIUSA
| |
Collapse
|
43
|
Ramírez-Puebla ST, Weigel BL, Jack L, Schlundt C, Pfister CA, Mark Welch JL. Spatial organization of the kelp microbiome at micron scales. MICROBIOME 2022; 10:52. [PMID: 35331334 PMCID: PMC8944128 DOI: 10.1186/s40168-022-01235-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/21/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Elucidating the spatial structure of host-associated microbial communities is essential for understanding taxon-taxon interactions within the microbiota and between microbiota and host. Macroalgae are colonized by complex microbial communities, suggesting intimate symbioses that likely play key roles in both macroalgal and bacterial biology, yet little is known about the spatial organization of microbes associated with macroalgae. Canopy-forming kelp are ecologically significant, fixing teragrams of carbon per year in coastal kelp forest ecosystems. We characterized the micron-scale spatial organization of bacterial communities on blades of the kelp Nereocystis luetkeana using fluorescence in situ hybridization and spectral imaging with a probe set combining phylum-, class-, and genus-level probes to localize and identify > 90% of the microbial community. RESULTS We show that kelp blades host a dense microbial biofilm composed of disparate microbial taxa in close contact with one another. The biofilm is spatially differentiated, with clustered cells of the dominant symbiont Granulosicoccus sp. (Gammaproteobacteria) close to the kelp surface and filamentous Bacteroidetes and Alphaproteobacteria relatively more abundant near the biofilm-seawater interface. A community rich in Bacteroidetes colonized the interior of kelp tissues. Microbial cell density increased markedly along the length of the kelp blade, from sparse microbial colonization of newly produced tissues at the meristematic base of the blade to an abundant microbial biofilm on older tissues at the blade tip. Kelp from a declining population hosted fewer microbial cells compared to kelp from a stable population. CONCLUSIONS Imaging revealed close association, at micrometer scales, of different microbial taxa with one another and with the host. This spatial organization creates the conditions necessary for metabolic exchange among microbes and between host and microbiota, such as provisioning of organic carbon to the microbiota and impacts of microbial nitrogen metabolisms on host kelp. The biofilm coating the surface of the kelp blade is well-positioned to mediate interactions between the host and surrounding organisms and to modulate the chemistry of the surrounding water column. The high density of microbial cells on kelp blades (105-107 cells/cm2), combined with the immense surface area of kelp forests, indicates that biogeochemical functions of the kelp microbiome may play an important role in coastal ecosystems. Video abstract.
Collapse
Affiliation(s)
- S. Tabita Ramírez-Puebla
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
- Present Address: The Forsyth Institute, Cambridge, MA USA
| | - Brooke L. Weigel
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL USA
- Present Address: Friday Harbor Laboratories, University of Washington, Friday Harbor, WA USA
| | - Loretha Jack
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
- Present Address: Wisconsin’s Green Fire, Rhinelander, WI USA
| | - Cathleen Schlundt
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
- Present Address: GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
| | | | - Jessica L. Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| |
Collapse
|
44
|
Gobler CJ, Jankowiak JG. Dynamic Responses of Endosymbiotic Microbial Communities Within Microcystis Colonies in North American Lakes to Altered Nitrogen, Phosphorus, and Temperature Levels. Front Microbiol 2022; 12:781500. [PMID: 35222297 PMCID: PMC8867038 DOI: 10.3389/fmicb.2021.781500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022] Open
Abstract
The toxic cyanobacterium, Microcystis, is a pervasive cyanobacterial harmful algal bloom (CHAB) - forming genus that naturally occurs in colonies that harbor diverse microbiomes of heterotrophic bacteria. While the effects of nutrient loading and climatic warming on CHABs are well-known, little is known regarding how these environmental drivers alter the structural and functional potential of the microbial assemblages associated with blooms that, in turn, may impact cyanobacterial growth. Here, we used next-generation sequencing of 16S ribosomal rRNA genes to characterize the dynamics of the bacterial assemblages within Microcystis colonies in two temperate North American lakes: Lake Erie and Lake Agawam (NY, United States) and quantified their responses to experimentally increased levels of nitrogen (N), phosphorus (P) and temperature. Across experiments, Microcystis populations were consistently and significantly promoted by N and, to a lesser extent, elevated temperature (p < 0.05). In contrast, bacterial assemblages within Microcystis colonies were more resilient to environmental perturbations, with the relative abundance of 7–16% of amplicon sequence variants changing and several individual taxa displaying significant (p < 0.05) increases and decreases in relative abundance, primarily in response to elevated temperature and to a lesser extent, N. In contrast to individual taxa, community diversity was not significantly altered by individual treatments during experiments but rather was inversely correlated with the intensity of Microcystis blooms (p < 0.001). While predicted metabolic function was even less impacted by environmental drivers than microbial diversity, the predicted abundance of nitrogenase (nifH), alkaline phosphatase (phoX), and urease (ure) genes significantly increased in response to N but decreased in response to increased temperature (p < 0.05). Collectively, the resilience of microbial community structure and function within colonies suggests they may support the ability of Microcystis to persist through short-term fluctuations in environmental conditions by supplying essential nutrients.
Collapse
|
45
|
Banker RMW, Lipovac J, Stachowicz JJ, Gold DA. Sodium molybdate does not inhibit sulfate-reducing bacteria but increases shell growth in the Pacific oyster Magallana gigas. PLoS One 2022; 17:e0262939. [PMID: 35139090 PMCID: PMC8827440 DOI: 10.1371/journal.pone.0262939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
Recent work on microbe-host interactions has revealed an important nexus between the environment, microbiome, and host fitness. Marine invertebrates that build carbonate skeletons are of particular interest in this regard because of predicted effects of ocean acidification on calcified organisms, and the potential of microbes to buffer these impacts. Here we investigate the role of sulfate-reducing bacteria, a group well known to affect carbonate chemistry, in Pacific oyster (Magallana gigas) shell formation. We reared oyster larvae to 51 days post fertilization and exposed organisms to control and sodium molybdate conditions, the latter of which is thought to inhibit bacterial sulfate reduction. Contrary to expectations, we found that sodium molybdate did not uniformly inhibit sulfate-reducing bacteria in oysters, and oysters exposed to molybdate grew larger shells over the experimental period. Additionally, we show that microbiome composition, host gene expression, and shell size were distinct between treatments earlier in ontogeny, but became more similar by the end of the experiment. Although additional testing is required to fully elucidate the mechanisms, our work provides preliminary evidence that M. gigas is capable of regulating microbiome dysbiosis caused by environmental perturbations, which is reflected in shell development.
Collapse
Affiliation(s)
- Roxanne M. W. Banker
- Department of Earth and Planetary Sciences, University of California, Davis, California, United States of America
| | - Jacob Lipovac
- Department of Earth and Planetary Sciences, University of California, Davis, California, United States of America
| | - John J. Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - David A. Gold
- Department of Earth and Planetary Sciences, University of California, Davis, California, United States of America
| |
Collapse
|
46
|
Koch MJ, Hesketh-Best PJ, Smerdon G, Warburton PJ, Howell K, Upton M. Impact of growth media and pressure on the diversity and antimicrobial activity of isolates from two species of hexactinellid sponge. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34898418 PMCID: PMC8744994 DOI: 10.1099/mic.0.001123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Access to deep-sea sponges brings with it the potential to discover novel antimicrobial candidates, as well as novel cold- and pressure-adapted bacteria with further potential clinical or industrial applications. In this study, we implemented a combination of different growth media, increased pressure and high-throughput techniques to optimize recovery of isolates from two deep-sea hexactinellid sponges, Pheronema carpenteri and Hertwigia sp., in the first culture-based microbial analysis of these two sponges. Using 16S rRNA gene sequencing for isolate identification, we found a similar number of cultivable taxa from each sponge species, as well as improved recovery of morphotypes from P. carpenteri at 22-25 °C compared to other temperatures, which allows a greater potential for screening for novel antimicrobial compounds. Bacteria recovered under conditions of increased pressure were from the phyla Proteobacteria, Actinobacteria and Firmicutes, except at 4 %O2/5 bar, when the phylum Firmicutes was not observed. Cultured isolates from both sponge species displayed antimicrobial activity against Micrococcus luteus, Staphylococcus aureus and Escherichia coli.
Collapse
Affiliation(s)
- Matthew J Koch
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Poppy J Hesketh-Best
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Gary Smerdon
- Diving Diseases Research Centre Healthcare, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK
| | - Philip J Warburton
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Kerry Howell
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
47
|
Abstract
Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eslam O Osman
- Biology Department, Eberly College, Pennsylvania State University, State College, Pennsylvania, USA; .,Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Biology Lab, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alexis M Weinnig
- Biology Department, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
The Future Is Big-and Small: Remote Sensing Enables Cross-Scale Comparisons of Microbiome Dynamics and Ecological Consequences. mSystems 2021; 6:e0110621. [PMID: 34726484 PMCID: PMC8562476 DOI: 10.1128/msystems.01106-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coupling remote sensing with microbial omics-based approaches provides a promising new frontier for scientists to scale microbial interactions across space and time. These data-rich, interdisciplinary methods allow us to better understand interactions between microbial communities and their environments and, in turn, their impact on ecosystem structure and function. Here, we highlight current and novel examples of applying remote sensing, machine learning, spatial statistics, and omics data approaches to marine, aquatic, and terrestrial systems. We emphasize the importance of integrating biochemical and spatiotemporal environmental data to move toward a predictive framework of microbiome interactions and their ecosystem-level effects. Finally, we emphasize lessons learned from our collaborative research with recommendations to foster productive and interdisciplinary teamwork.
Collapse
|
49
|
Martin K, Schmidt K, Toseland A, Boulton CA, Barry K, Beszteri B, Brussaard CPD, Clum A, Daum CG, Eloe-Fadrosh E, Fong A, Foster B, Foster B, Ginzburg M, Huntemann M, Ivanova NN, Kyrpides NC, Lindquist E, Mukherjee S, Palaniappan K, Reddy TBK, Rizkallah MR, Roux S, Timmermans K, Tringe SG, van de Poll WH, Varghese N, Valentin KU, Lenton TM, Grigoriev IV, Leggett RM, Moulton V, Mock T. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat Commun 2021; 12:5483. [PMID: 34531387 PMCID: PMC8446083 DOI: 10.1038/s41467-021-25646-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic phytoplankton are responsible for at least 20% of annual global carbon fixation. Their diversity and activity are shaped by interactions with prokaryotes as part of complex microbiomes. Although differences in their local species diversity have been estimated, we still have a limited understanding of environmental conditions responsible for compositional differences between local species communities on a large scale from pole to pole. Here, we show, based on pole-to-pole phytoplankton metatranscriptomes and microbial rDNA sequencing, that environmental differences between polar and non-polar upper oceans most strongly impact the large-scale spatial pattern of biodiversity and gene activity in algal microbiomes. The geographic differentiation of co-occurring microbes in algal microbiomes can be well explained by the latitudinal temperature gradient and associated break points in their beta diversity, with an average breakpoint at 14 °C ± 4.3, separating cold and warm upper oceans. As global warming impacts upper ocean temperatures, we project that break points of beta diversity move markedly pole-wards. Hence, abrupt regime shifts in algal microbiomes could be caused by anthropogenic climate change.
Collapse
Affiliation(s)
- Kara Martin
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Katrin Schmidt
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew Toseland
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bánk Beszteri
- Department of Biology, University of Duisburg-Essen, Essen, Essen, Germany
| | | | - Alicia Clum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris G Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emiley Eloe-Fadrosh
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Allison Fong
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Brian Foster
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bryce Foster
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Ginzburg
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Marcel Huntemann
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia N Ivanova
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C Kyrpides
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Erika Lindquist
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Supratim Mukherjee
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Krishnaveni Palaniappan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - T B K Reddy
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mariam R Rizkallah
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Simon Roux
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Klaas Timmermans
- Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Susannah G Tringe
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Willem H van de Poll
- Centre for Isotope Research - Oceans, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, AG Groningen, The Netherlands
| | - Neha Varghese
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Klaus U Valentin
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | | | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Plant and Microbial Biology Department, University of California, Berkeley, CA, USA
| | | | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
50
|
Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution. PLoS Biol 2021; 19:e3001322. [PMID: 34411089 PMCID: PMC8376202 DOI: 10.1371/journal.pbio.3001322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host’s physiological capacities; however, the identity and functional role(s) of key members of the microbiome (“core microbiome”) in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems’ capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts’ plastic and adaptive responses to environmental change requires (i) recognizing that individual host–microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions. This Essay argues that in order to truly understand how marine hosts benefit from the immense diversity of microbes, we need to expand towards long-term, multi-disciplinary research focussing on few areas of the world’s ocean that we refer to as “natural experiments,” where processes can be studied at scales that far exceed those captured in laboratory experiments.
Collapse
|