1
|
Liu YJ, Jia GR, Zhang SH, Guo YL, Ma XZ, Xu HM, Xie JX. The role of microglia in neurodegenerative diseases: from the perspective of ferroptosis. Acta Pharmacol Sin 2025:10.1038/s41401-025-01560-4. [PMID: 40307457 DOI: 10.1038/s41401-025-01560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/06/2025] [Indexed: 05/02/2025]
Abstract
Iron plays a pivotal role in numerous fundamental biological processes in the brain. Among the various cell types in the central nervous system, microglia are recognized as the most proficient cells in accumulating and storing iron. Nonetheless, iron overload can induce inflammatory phenotype of microglia, leading to the production of proinflammatory cytokines and contributing to neurodegeneration. A growing body of evidence shows that disturbances in iron homeostasis in microglia is associated with a range of neurodegenerative disorders. Recent research has revealed that microglia are highly sensitive to ferroptosis, a form of iron-dependent cell death. How iron overload influences microglial function? Whether disbiosis in iron metabolism and ferroptosis in microglia are involved in neurodegenerative disorders and the underlying mechanisms remain to be elucidated. In this review we focus on the recent advances in research on microglial iron metabolism as well as ferroptosis in microglia. Meanwhile, we provide a comprehensive overview of the involvement of microglial ferroptosis in neurodegenerative disorders from the perspective of crosstalk between microglia and neuron, with a focus on Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Ying-Juan Liu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Guo-Rui Jia
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Sheng-Han Zhang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yun-Liang Guo
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Xi-Zhen Ma
- College of Life Sciences and Health, University of Health and Rehabilitation Science, Qingdao, 266113, China.
| | - Hua-Min Xu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
3
|
Tiwari SK, Wong WJ, Moreira M, Pasqualini C, Ginhoux F. Induced pluripotent stem cell-derived macrophages as a platform for modelling human disease. Nat Rev Immunol 2025; 25:108-124. [PMID: 39333753 DOI: 10.1038/s41577-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/30/2024]
Abstract
Macrophages are innate immune cells that are present in essentially all tissues, where they have vital roles in tissue development, homeostasis and pathogenesis. The importance of macrophages in tissue function is reflected by their association with various human diseases, and studying macrophage functions in both homeostasis and pathological tissue settings is a promising avenue for new targeted therapies that will improve human health. The ability to generate macrophages from induced pluripotent stem (iPS) cells has revolutionized macrophage biology, with the generation of iPS cell-derived macrophages (iMacs) providing unlimited access to genotype-specific cells that can be used to model various human diseases involving macrophage dysregulation. Such disease modelling is achieved by generating iPS cells from patient-derived cells carrying disease-related mutations or by introducing mutations into iPS cells from healthy donors using CRISPR-Cas9 technology. These iMacs that carry disease-related mutations can be used to study the aetiology of the particular disease in vitro. To achieve more physiological relevance, iMacs can be co-cultured in 2D systems with iPS cell-derived cells or in 3D systems with iPS cell-derived organoids. Here, we discuss the studies that have attempted to model various human diseases using iMacs, highlighting how these have advanced our knowledge about the role of macrophages in health and disease.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Jie Wong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marco Moreira
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudia Pasqualini
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Gonzales GA, Huang S, Wilkinson L, Nguyen JA, Sikdar S, Piot C, Naumenko V, Rajwani J, Wood CM, Dinh I, Moore M, Cedeño E, McKenna N, Polyak MJ, Amidian S, Ebacher V, Rosin NL, Carneiro MB, Surewaard B, Peters NC, Mody CH, Biernaskie J, Yates RM, Mahoney DJ, Canton J. The pore-forming apolipoprotein APOL7C drives phagosomal rupture and antigen cross-presentation by dendritic cells. Sci Immunol 2024; 9:eadn2168. [PMID: 39485861 DOI: 10.1126/sciimmunol.adn2168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/23/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
Conventional dendritic cells (cDCs) generate protective cytotoxic T lymphocyte (CTL) responses against extracellular pathogens and tumors. This is achieved through a process known as cross-presentation (XP), and, despite its biological importance, the mechanism(s) driving XP remains unclear. Here, we show that a cDC-specific pore-forming protein called apolipoprotein L 7C (APOL7C) is up-regulated in response to innate immune stimuli and is recruited to phagosomes. Association of APOL7C with phagosomes led to phagosomal rupture and escape of engulfed antigens to the cytosol, where they could be processed via the endogenous MHC class I antigen processing pathway. Accordingly, mice deficient in APOL7C did not efficiently prime CD8+ T cells in response to immunization with bead-bound and cell-associated antigens. Together, our data indicate the presence of dedicated apolipoproteins that mediate the delivery of phagocytosed proteins to the cytosol of activated cDCs to facilitate XP.
Collapse
Affiliation(s)
- Gerone A Gonzales
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Song Huang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Liam Wilkinson
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jenny A Nguyen
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Saif Sikdar
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Research Institute, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
| | - Cécile Piot
- Immunobiology Laboratory, Francis Crick Institute, London, UK
| | - Victor Naumenko
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
- Riddell Centre for Cancer Immunotherapy, Calgary, Alberta, Canada
| | - Jahanara Rajwani
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Research Institute, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
| | - Cassandra M Wood
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Irene Dinh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Moore
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eymi Cedeño
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Neil McKenna
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria J Polyak
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Sara Amidian
- Cell Imaging Core, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Nicole L Rosin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matheus B Carneiro
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Bas Surewaard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Nathan C Peters
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Christopher H Mody
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Douglas J Mahoney
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Research Institute, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
- Riddell Centre for Cancer Immunotherapy, Calgary, Alberta, Canada
| | - Johnathan Canton
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Riddell Centre for Cancer Immunotherapy, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Straumann N, Combes BF, Dean Ben XL, Sternke‐Hoffmann R, Gerez JA, Dias I, Chen Z, Watts B, Rostami I, Shi K, Rominger A, Baumann CR, Luo J, Noain D, Nitsch RM, Okamura N, Razansky D, Ni R. Visualizing alpha-synuclein and iron deposition in M83 mouse model of Parkinson's disease in vivo. Brain Pathol 2024; 34:e13288. [PMID: 38982662 PMCID: PMC11483525 DOI: 10.1111/bpa.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Abnormal alpha-synuclein (αSyn) and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim to visualize αSyn inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. The fluorescent pyrimidoindole derivative THK-565 probe was characterized by means of recombinant fibrils and brains from 10- to 11-month-old M83 mice. Concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging were subsequently performed in vivo. Structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 T as well as scanning transmission x-ray microscopy (STXM) were performed to characterize the iron deposits in the perfused brains. Immunofluorescence and Prussian blue staining were further performed on brain slices to validate the detection of αSyn inclusions and iron deposition. THK-565 showed increased fluorescence upon binding to recombinant αSyn fibrils and αSyn inclusions in post-mortem brain slices from patients with PD and M83 mice. Administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 min post-intravenous injection by wide-field fluorescence compared to nontransgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. In conclusion, we demonstrated in vivo mapping of αSyn by means of noninvasive epifluorescence and vMSOT imaging and validated the results by targeting the THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.
Collapse
Affiliation(s)
- Nadja Straumann
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Benjamin F. Combes
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Xose Luis Dean Ben
- Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
| | | | - Juan A. Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland
| | - Ines Dias
- Neurology DepartmentUniversity Hospital ZurichZurichSwitzerland
| | - Zhenyue Chen
- Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
| | - Benjamin Watts
- Photon Science DivisionPaul Scherrer InstituteVilligenSwitzerland
| | - Iman Rostami
- Microscopic Anatomy and Structural BiologyUniversity of BernBernSwitzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
| | - Axel Rominger
- Department of Nuclear Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
| | | | - Jinghui Luo
- Department of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
| | - Daniela Noain
- Neurology DepartmentUniversity Hospital ZurichZurichSwitzerland
| | - Roger M. Nitsch
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of MedicineTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Daniel Razansky
- Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
| | - Ruiqing Ni
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
- Department of Nuclear Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
| |
Collapse
|
6
|
Trainor AR, MacDonald DS, Penney J. Microglia: roles and genetic risk in Parkinson's disease. Front Neurosci 2024; 18:1506358. [PMID: 39554849 PMCID: PMC11564156 DOI: 10.3389/fnins.2024.1506358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
The prevalence of neurodegenerative disorders such as Parkinson's disease are increasing as world populations age. Despite this growing public health concern, the precise molecular and cellular mechanisms that culminate in neurodegeneration remain unclear. Effective treatment options for Parkinson's disease and other neurodegenerative disorders remain very limited, due in part to this uncertain disease etiology. One commonality across neurodegenerative diseases is sustained neuroinflammation, mediated in large part by microglia, the innate immune cells of the brain. Initially thought to simply react to neuron-derived pathology, genetic and functional studies in recent years suggest that microglia play a more active role in the neurodegenerative process than previously appreciated. Here, we review evidence for the roles of microglia in Parkinson's disease pathogenesis and progression, with a particular focus on microglial functions that are perturbed by disease associated genes and mutations.
Collapse
Affiliation(s)
| | | | - Jay Penney
- Department of Biomedical Sciences, AVC, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
7
|
Xiong Y, Yu J. LRRK2 in Parkinson's disease: upstream regulation and therapeutic targeting. Trends Mol Med 2024; 30:982-996. [PMID: 39153957 PMCID: PMC11466701 DOI: 10.1016/j.molmed.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/19/2024]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common causes of Parkinson's disease (PD) to date. Dysfunction in LRRK2 enzymatic activities and elevated protein levels are associated with the disease. How is LRRK2 activated, and what downstream molecular and cellular processes does LRRK2 regulate? Addressing these questions is crucial to decipher the disease mechanisms. In this review we focus on the upstream regulations and briefly discuss downstream substrates of LRRK2 as well as the cellular consequences caused by these regulations. Building on these basic findings, we discuss therapeutic strategies targeting LRRK2 and highlight the challenges in clinical trials. We further highlight the important questions that remains to be answered in the LRRK2 field.
Collapse
Affiliation(s)
- Yulan Xiong
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| | - Jianzhong Yu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
8
|
Jiang Q, Wan R, Jiang J, Li T, Li Y, Yu S, Zhao B, Li Y. Interaction between macrophages and ferroptosis: Metabolism, function, and diseases. Chin Med J (Engl) 2024; 138:00029330-990000000-01224. [PMID: 39245648 PMCID: PMC11882282 DOI: 10.1097/cm9.0000000000003189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Indexed: 09/10/2024] Open
Abstract
ABSTRACT Ferroptosis, an iron-dependent programmed cell death process driven by reactive oxygen species-mediated lipid peroxidation, is regulated by several metabolic processes, including iron metabolism, lipid metabolism, and redox system. Macrophages are a group of innate immune cells that are widely distributed throughout the body, and play pivotal roles in maintaining metabolic balance by its phagocytic and efferocytotic effects. There is a profound association between the biological functions of macrophage and ferroptosis. Therefore, this review aims to elucidate three key aspects of the unique relationship between macrophages and ferroptosis, including macrophage metabolism and their regulation of cellular ferroptosis; ferroptotic stress that modulates functions of macrophage and promotion of inflammation; and the effects of macrophage ferroptosis and its role in diseases. Finally, we also summarize the possible mechanisms of macrophages in regulating the ferroptosis process at the global and local levels, as well as the role of ferroptosis in the macrophage-mediated inflammatory process, to provide new therapeutic insights for a variety of diseases.
Collapse
Affiliation(s)
- Qiaoling Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Rongjun Wan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Juan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Tiao Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yantong Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Steven Yu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Bingrong Zhao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yuanyuan Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| |
Collapse
|
9
|
Gupta S, Tielemans A, Guevara CA, Huntley GW, Benson DL. Parkinson's-linked LRRK2-G2019S derails AMPAR trafficking, mobility, and composition in striatum with cell-type and subunit specificity. Proc Natl Acad Sci U S A 2024; 121:e2317833121. [PMID: 38968112 PMCID: PMC11252801 DOI: 10.1073/pnas.2317833121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/27/2024] [Indexed: 07/07/2024] Open
Abstract
Parkinson's disease (PD) is a multifactorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal-based cognitive function are common, appear early, and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in Lrrk2 also exhibit deficits in fronto-striatal-based cognitive tasks. In mice and humans, cognitive functions require dynamic adjustments in glutamatergic synapse strength through cell-surface trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs), but it is unknown how LRRK2 mutation impacts dynamic features of AMPAR trafficking in striatal projection neurons (SPNs). Here, we used Lrrk2G2019S knockin mice to show that surface AMPAR subunit stoichiometry is altered biochemically and functionally in mutant SPNs in dorsomedial striatum to favor the incorporation of GluA1 over GluA2. GluA1-containing AMPARs were resistant to internalization from the cell surface, leaving an excessive accumulation of GluA1 on the surface within and outside synapses. This negatively impacted trafficking dynamics that normally support synapse strengthening, as GluA1-containing AMPARs failed to increase at synapses in response to a potentiating stimulus and showed significantly reduced surface mobility. Surface GluA2-containing AMPARs were expressed at normal levels in synapses, indicating subunit-selective impairment. Abnormal surface accumulation of GluA1 was independent of PKA activity and was limited to D1R SPNs. Since LRRK2 mutation is thought to be part of a common PD pathogenic pathway, our data suggest that sustained, striatal cell-type specific changes in AMPAR composition and trafficking contribute to cognitive or other impairments associated with PD.
Collapse
Affiliation(s)
- Swati Gupta
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Alexander Tielemans
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Christopher A. Guevara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - George W. Huntley
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Deanna L. Benson
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| |
Collapse
|
10
|
An J, Yang H, Park SM, Chwae YJ, Joe EH. The LRRK2-G2019S mutation attenuates repair of brain injury partially by reducing the release of osteopontin-containing monocytic exosome-like vesicles. Neurobiol Dis 2024; 197:106528. [PMID: 38740348 DOI: 10.1016/j.nbd.2024.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Brain injury has been suggested as a risk factor for neurodegenerative diseases. Accordingly, defects in the brain's intrinsic capacity to repair injury may result in the accumulation of damage and a progressive loss of brain function. The G2019S (GS) mutation in LRRK2 (leucine rich repeat kinase 2) is the most prevalent genetic alteration in Parkinson's disease (PD). Here, we sought to investigate how this LRRK2-GS mutation affects repair of the injured brain. METHODS Brain injury was induced by stereotaxic injection of ATP, a damage-associated molecular pattern (DAMP) component, into the striatum of wild-type (WT) and LRRK2-GS mice. Effects of the LRRK2-GS mutation on brain injury and the recovery from injury were examined by analyzing the molecular and cellular behavior of neurons, astrocytes, and monocytes. RESULTS Damaged neurons express osteopontin (OPN), a factor associated with brain repair. Following ATP-induced damage, monocytes entered injured brains, phagocytosing damaged neurons and producing exosome-like vesicles (EVs) containing OPN through activation of the inflammasome and subsequent pyroptosis. Following EV production, neurons and astrocytes processes elongated towards injured cores. In LRRK2-GS mice, OPN expression and monocytic pyroptosis were decreased compared with that in WT mice, resulting in diminished release of OPN-containing EVs and attenuated elongation of neuron and astrocyte processes. In addition, exosomes prepared from injured LRRK2-GS brains induced neurite outgrowth less efficiently than those from injured WT brains. CONCLUSIONS The LRRK2-GS mutation delays repair of injured brains through reduced expression of OPN and diminished release of OPN-containing EVs from monocytes. These findings suggest that the LRRK2-GS mutation may promote the development of PD by delaying the repair of brain injury.
Collapse
Affiliation(s)
- Jiawei An
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Department of Pharmacology, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Haijie Yang
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Department of Pharmacology, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Sang Myun Park
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Department of Pharmacology, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Yong-Joon Chwae
- Department of Microbiology, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Department of Pharmacology, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea.
| |
Collapse
|
11
|
Dou D, Aiken J, Holzbaur EL. RAB3 phosphorylation by pathogenic LRRK2 impairs trafficking of synaptic vesicle precursors. J Cell Biol 2024; 223:e202307092. [PMID: 38512027 PMCID: PMC10959120 DOI: 10.1083/jcb.202307092] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/01/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), characterized by debilitating motor and non-motor symptoms. Increased phosphorylation of a subset of RAB GTPases by LRRK2 is implicated in PD pathogenesis. We find that increased phosphorylation of RAB3A, a cardinal synaptic vesicle precursor (SVP) protein, disrupts anterograde axonal transport of SVPs in iPSC-derived human neurons (iNeurons) expressing hyperactive LRRK2-p.R1441H. Knockout of the opposing protein phosphatase 1H (PPM1H) in iNeurons phenocopies this effect. In these models, the compartmental distribution of synaptic proteins is altered; synaptophysin and synaptobrevin-2 become sequestered in the neuronal soma with decreased delivery to presynaptic sites along the axon. We find that RAB3A phosphorylation disrupts binding to the motor adaptor MADD, potentially preventing the formation of the RAB3A-MADD-KIF1A/1Bβ complex driving anterograde SVP transport. RAB3A hyperphosphorylation also disrupts interactions with RAB3GAP and RAB-GDI1. Our results reveal a mechanism by which pathogenic hyperactive LRRK2 may contribute to the altered synaptic homeostasis associated with characteristic non-motor and cognitive manifestations of PD.
Collapse
Affiliation(s)
- Dan Dou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayne Aiken
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erika L.F. Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Siddiqui T, Bhatt LK. Emerging autophagic endo-lysosomal targets in the management of Parkinson's disease. Rev Neurol (Paris) 2024; 180:477-485. [PMID: 37586941 DOI: 10.1016/j.neurol.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
Synucleopathies, specifically Parkinson's disease, are still incurable and available therapeutic options are scarce and symptomatic. The autophagy-lysosomal-endosomal system is an indigenous mechanism to manage the proteome. Excess/misfolded protein accumulation activates this system, which degrades the undesired proteins via lysosomes. Cells also eliminate these proteins by releasing them into the extracellular space via exosomes. However, the sutophagy-lysosomal-endosomal system becomes unfunctional in Parkinson's disease and there is accumulation and spread of pathogenic alpha-synuclein. Neuronal degeneration results Owing to pathogenic alpha-synuclein. Thus, the autophagy-lysosomal-endosomal system could be a promising target for neuroprotection. In the present review, we discuss the autophagy-lysosomal-endosomal system as an emerging target for the management of Parkinson's disease. Modulation of these targets associated with the autophagy-lysosomal-endosomal system can aid in clearing pathogenic alpha-synuclein and prevent the degeneration of neurons.
Collapse
Affiliation(s)
- T Siddiqui
- Department of Pharmacology, SVKM's Doctor Bhanuben-Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| | - L K Bhatt
- Department of Pharmacology, SVKM's Doctor Bhanuben-Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India.
| |
Collapse
|
13
|
Zheng Z, Zhang S, Liu X, Wang X, Xue C, Wu X, Zhang X, Xu X, Liu Z, Yao L, Lu G. LRRK2 regulates ferroptosis through the system Xc-GSH-GPX4 pathway in the neuroinflammatory mechanism of Parkinson's disease. J Cell Physiol 2024; 239:e31250. [PMID: 38477420 DOI: 10.1002/jcp.31250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Parkinson's disease (PD) is the most prevalent neurodegenerative disorder. Neuroinflammation mediated by activated microglia and apoptosis of dopaminergic (DA) neurons in the midbrain are its primary pathological manifestations. Leucine-rich repeat protein kinase 2 (LRRK2) kinase has been observed to increase expression during neuroinflammation, however, the effect of LRRK2 on microglia activation remains poorly understood. In this study, we have established lipopolysaccharide (LPS) treated BV2 cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models for both in vivo and in vitro investigation. Our data in vivo reveal that LRRK2 can promote microglia activation by regulating ferroptosis and activating nuclear factor-κB. Inhibition of LRRK2 expression effectively suppressed the LPS-induced pro-inflammatory cytokines and facilitated the secretion of neuroprotective factors. Importantly, by co-overexpressing LRRK2 and glutathione peroxidase 4 (GPX4), we identified the system Xc-GSH-GPX4 pathway as a crucial component in LRRK2-mediated microglial ferroptosis and inflammatory responses. Using a microglial culture supernatant (MCS) transfer model, we found that inhibiting LRRK2 or downregulating ferroptosis in BV2 cells prevented SH-SY5Y cell apoptosis. Additionally, we observed abundant expression of LRRK2 and P-P65 in the midbrain, which was elevated in the MPTP-induced PD model, along with microglia activation. LRRK2 and P-P65 expression inhibition with PF-06447475 attenuated microglia activation in the nigrostriatal dense part of MPTP-treated mice. Based on our findings, it is evident that LRRK2 plays a critical role in promoting the neuroinflammatory response during the pathogenesis of PD by regulating the system Xc-GSH-GPX4 pathway. Taken together, our data highlights the potential research and therapeutic value of targeting LRRK2 to regulate neuroinflammatory response in PD through ferroptosis.
Collapse
Affiliation(s)
- Zijian Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shushan Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinjie Liu
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiangrong Wang
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Cheng Xue
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinran Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinping Xu
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zheng Liu
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Longping Yao
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Regeneration, Anatomy and Cel Biology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Lubben N, Brynildsen JK, Webb CM, Li HL, Leyns CEG, Changolkar L, Zhang B, Meymand ES, O'Reilly M, Madaj Z, DeWeerd D, Fell MJ, Lee VMY, Bassett DS, Henderson MX. LRRK2 kinase inhibition reverses G2019S mutation-dependent effects on tau pathology progression. Transl Neurodegener 2024; 13:13. [PMID: 38438877 PMCID: PMC10910783 DOI: 10.1186/s40035-024-00403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD). These mutations elevate the LRRK2 kinase activity, making LRRK2 kinase inhibitors an attractive therapeutic. LRRK2 kinase activity has been consistently linked to specific cell signaling pathways, mostly related to organelle trafficking and homeostasis, but its relationship to PD pathogenesis has been more difficult to define. LRRK2-PD patients consistently present with loss of dopaminergic neurons in the substantia nigra but show variable development of Lewy body or tau tangle pathology. Animal models carrying LRRK2 mutations do not develop robust PD-related phenotypes spontaneously, hampering the assessment of the efficacy of LRRK2 inhibitors against disease processes. We hypothesized that mutations in LRRK2 may not be directly related to a single disease pathway, but instead may elevate the susceptibility to multiple disease processes, depending on the disease trigger. To test this hypothesis, we have previously evaluated progression of α-synuclein and tau pathologies following injection of proteopathic seeds. We demonstrated that transgenic mice overexpressing mutant LRRK2 show alterations in the brain-wide progression of pathology, especially at older ages. METHODS Here, we assess tau pathology progression in relation to long-term LRRK2 kinase inhibition. Wild-type or LRRK2G2019S knock-in mice were injected with tau fibrils and treated with control diet or diet containing LRRK2 kinase inhibitor MLi-2 targeting the IC50 or IC90 of LRRK2 for 3-6 months. Mice were evaluated for tau pathology by brain-wide quantitative pathology in 844 brain regions and subsequent linear diffusion modeling of progression. RESULTS Consistent with our previous work, we found systemic alterations in the progression of tau pathology in LRRK2G2019S mice, which were most pronounced at 6 months. Importantly, LRRK2 kinase inhibition reversed these effects in LRRK2G2019S mice, but had minimal effect in wild-type mice, suggesting that LRRK2 kinase inhibition is likely to reverse specific disease processes in G2019S mutation carriers. Additional work may be necessary to determine the potential effect in non-carriers. CONCLUSIONS This work supports a protective role of LRRK2 kinase inhibition in G2019S carriers and provides a rational workflow for systematic evaluation of brain-wide phenotypes in therapeutic development.
Collapse
Affiliation(s)
- Noah Lubben
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Julia K Brynildsen
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Connor M Webb
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Institute On Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Howard L Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Institute On Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cheryl E G Leyns
- Neuroscience Discovery, Merck & Co., Inc., Boston, MA, 02115, USA
| | - Lakshmi Changolkar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Institute On Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Institute On Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emily S Meymand
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Institute On Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mia O'Reilly
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zach Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Daniella DeWeerd
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Matthew J Fell
- Neuroscience Discovery, Merck & Co., Inc., Boston, MA, 02115, USA
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Institute On Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dani S Bassett
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
15
|
Mamais A, Sanyal A, Fajfer A, Zykoski CG, Guldin M, Riley-DiPaolo A, Subrahmanian N, Gibbs W, Lin S, LaVoie MJ. The LRRK2 kinase substrates RAB8a and RAB10 contribute complementary but distinct disease-relevant phenotypes in human neurons. Stem Cell Reports 2024; 19:163-173. [PMID: 38307024 PMCID: PMC10874859 DOI: 10.1016/j.stemcr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024] Open
Abstract
Mutations in the LRRK2 gene cause familial Parkinson's disease presenting with pleomorphic neuropathology that can involve α-synuclein or tau accumulation. LRRK2 mutations are thought to converge upon a pathogenic increase in LRRK2 kinase activity. A subset of small RAB GTPases has been identified as LRRK2 substrates, with LRRK2-dependent phosphorylation resulting in RAB inactivation. We used CRISPR-Cas9 genome editing to generate a novel series of isogenic iPSC lines deficient in the two most well-validated LRRK2 substrates, RAB8a and RAB10, from deeply phenotyped healthy control lines. Thorough characterization of NGN2-induced neurons revealed opposing effects of RAB8a and RAB10 deficiency on lysosomal pH and Golgi organization, with isolated effects of RAB8a and RAB10 ablation on α-synuclein and tau, respectively. Our data demonstrate largely antagonistic effects of genetic RAB8a or RAB10 inactivation, which provide discrete insight into the pathologic features of their biochemical inactivation by pathogenic LRRK2 mutation in human disease.
Collapse
Affiliation(s)
- Adamantios Mamais
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Austin Fajfer
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Catherine G Zykoski
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael Guldin
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | | | - Nitya Subrahmanian
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Whitney Gibbs
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven Lin
- Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew J LaVoie
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Bailey HM, Cookson MR. How Parkinson's Disease-Linked LRRK2 Mutations Affect Different CNS Cell Types. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1331-1352. [PMID: 38905056 PMCID: PMC11492021 DOI: 10.3233/jpd-230432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/23/2024]
Abstract
LRRK2 is a relatively common genetic risk factor for Parkinson's disease (PD), with six coding variants known to cause familial PD. Non-coding variation at the same locus is also associated with sporadic PD. LRRK2 plays a role in many different intracellular signaling cascades including those involved in endolysosomal function, cytoskeletal dynamics, and Ca2+ homeostasis. PD-causing LRRK2 mutations cause hyperactive LRRK2 kinase activity, resulting in altered cellular signaling. Importantly, LRRK2 is lowly expressed in neurons and prominently expressed in non-neuronal cells in the brain. In this review, we will summarize recent and novel findings on the effects of PD-causing LRRK2 mutations in different nervous system cell types. This review will also provide novel insight into future areas of research at the intersection of LRRK2 cell biology, cell type specificity, and PD.
Collapse
Affiliation(s)
- Hannah M. Bailey
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Jäntti H, Kistemaker L, Buonfiglioli A, De Witte LD, Malm T, Hol EM. Emerging Models to Study Human Microglia In vitro. ADVANCES IN NEUROBIOLOGY 2024; 37:545-568. [PMID: 39207712 DOI: 10.1007/978-3-031-55529-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
New in vitro models provide an exciting opportunity to study live human microglia. Previously, a major limitation in understanding human microglia in health and disease has been their limited availability. Here, we provide an overview of methods to obtain human stem cell or blood monocyte-derived microglia-like cells that provide a nearly unlimited source of live human microglia for research. We address how understanding microglial ontogeny can help modeling microglial identity and function in a dish with increased accuracy. Moreover, we categorize stem cell-derived differentiation methods into embryoid body based, growth factor driven, and coculture-driven approaches, and review novel viral approaches to reprogram stem cells directly into microglia-like cells. Furthermore, we review typical readouts used in the field to verify microglial identity and characterize functional microglial phenotypes. We provide an overview of methods used to study microglia in environments more closely resembling the (developing) human CNS, such as cocultures and brain organoid systems with incorporated or innately developing microglia. We highlight how microglia-like cells can be utilized to reveal molecular and functional mechanisms in human disease context, focusing on Alzheimer's disease and other neurodegenerative diseases as well as neurodevelopmental diseases. Finally, we provide a critical overview of challenges and future opportunities to more accurately model human microglia in a dish and conclude that novel in vitro microglia-like cells provide an exciting potential to bring preclinical research of microglia to a new era.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lois Kistemaker
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Alice Buonfiglioli
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lot D De Witte
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Yao XY, Guan LN, Chen Q, Ren C. LRRK2 G2019S and Parkinson's disease: insight from Neuroinflammation. Postgrad Med J 2023; 100:4-11. [PMID: 37777187 DOI: 10.1093/postmj/qgad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 10/02/2023]
Abstract
The multiple hypothesis holds that the pathogenesis of Parkinson's disease (PD) requires many factors such as heredity, environment and ageing. Mutations in Leucine-rich repeat kinase 2 (LRRK2) are recognized the risk factors of PD, and closely related to sporadic and familial PD and can regulate a variety of cellular pathways and processes. An Increasing number of studies has shown that glial hyperactivation-mediated neuroinflammation participates in dopaminergic neuron degeneration and pathogenesis of PD. LRRK2 is essential to the regulaton of chronic inflammation, especially for the central nervous system. The review spotlights on the novel development of LRRK2 on microglia and astrocytes, and explore their potential therapeutic targets, in order to provide a new insights in PD. Key messages: What is already known on this topic The G2019S mutation of LRRK2 is now recognised as a pathogenic mutation in PD. Previous studies have focused on the relationship between neurons and LRRK2 G2019S. What this study adds Neuroinflammation mediated by LRRK2 G2019S of glial cells affects the progress and development of PD and attention must be paid to the role of LRRK2 G2019S in glial cells in PD. How this study might affect research, practice or policy Developing anti-inflammatory drugs from the perspective of LRRK2 G2019S of glial cells is a new direction for the treatment of PD.
Collapse
Affiliation(s)
- Xiao-Yan Yao
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Li-Na Guan
- Department of Neurosurgical Intensive Care Unit, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Qi Chen
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Chao Ren
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| |
Collapse
|
19
|
Dehestani M, Kozareva V, Blauwendraat C, Fraenkel E, Gasser T, Bansal V. Transcriptomic changes in oligodendrocytes and precursor cells predicts clinical outcomes of Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540329. [PMID: 37502982 PMCID: PMC10370193 DOI: 10.1101/2023.05.11.540329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Several prior studies have proposed the involvement of various brain regions and cell types in Parkinson's disease (PD) pathology. Here, we performed snRNA-seq on the prefrontal cortex and anterior cingulate regions from post-mortem control and PD brain tissue. We found a significant association of oligodendrocytes (ODCs) and oligodendrocyte precursor cells (OPCs) with PD-linked risk loci and report several dysregulated genes and pathways, including regulation of tau-protein kinase activity, regulation of inclusion body assembly and protein processing involved in protein targeting to mitochondria. In an independent PD cohort with clinical measures (681 cases and 549 controls), polygenic risk scores derived from the dysregulated genes significantly predicted Montreal Cognitive Assessment (MoCA)-, and Beck Depression Inventory-II (BDI-II)-scores but not motor impairment (UPDRS-III). We extended our analysis of clinical outcome prediction by incorporating three separate datasets that were previously published by different laboratories. In the first dataset from the anterior cingulate cortex, we identified a correlation between ODCs and BDI-II. In the second dataset obtained from the substantia nigra (SN), OPCs displayed notable predictive ability for UPDRS-III. In the third dataset from the SN region, a distinct subtype of OPCs, labeled OPC_ADM, exhibited predictive ability for UPDRS-III. Intriguingly, the OPC_ADM cluster also demonstrated a significant increase in PD samples. These results suggest that by expanding our focus to glial cells, we can uncover region-specific molecular pathways associated with PD symptoms.
Collapse
Affiliation(s)
- Mohammad Dehestani
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Velina Kozareva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cornelis Blauwendraat
- Laboratory for Neurogenetics, National Institute of Health NIH, Bethesda, Maryland, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Vikas Bansal
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| |
Collapse
|
20
|
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, Simon DK, Wang XL, Wang B. Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev 2023; 91:102077. [PMID: 37742785 DOI: 10.1016/j.arr.2023.102077] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Parkinson's Disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), leading to motor and non-motor symptoms. While the exact mechanisms remain complex and multifaceted, several molecular pathways have been implicated in PD pathology, including accumulation of misfolded proteins, impaired mitochondrial function, oxidative stress, inflammation, elevated iron levels, etc. Overall, PD's molecular mechanisms involve a complex interplay between genetic, environmental, and cellular factors that disrupt cellular homeostasis, and ultimately lead to the degeneration of dopaminergic neurons. Recently, emerging evidence highlights ferroptosis, an iron-dependent non-apoptotic cell death process, as a pivotal player in the advancement of PD. Notably, oligomeric α-synuclein (α-syn) generates reactive oxygen species (ROS) and lipid peroxides within cellular membranes, potentially triggering ferroptosis. The loss of dopamine, a hallmark of PD, could predispose neurons to ferroptotic vulnerability. This unique form of cell demise unveils fresh insights into PD pathogenesis, necessitating an exploration of the molecular intricacies connecting ferroptosis and PD progression. In this review, the molecular and regulatory mechanisms of ferroptosis and their connection with the pathological processes of PD have been systematically summarized. Furthermore, the features of ferroptosis in PD animal models and clinical trials targeting ferroptosis as a therapeutic approach in PD patients' management are scrutinized.
Collapse
Affiliation(s)
- Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zheng Han
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA
| | - Wei Shi
- Department of Neurosurgery, PLA 960th hospital, JiNan, Shandong Province, 250031, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zi-Yao Song
- Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA.
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
21
|
Gupta S, Guevara CA, Tielemans A, Huntley GW, Benson DL. Parkinson's-linked LRRK2-G2019S derails AMPAR trafficking, mobility and composition in striatum with cell-type and subunit specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562231. [PMID: 37905106 PMCID: PMC10614818 DOI: 10.1101/2023.10.13.562231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Parkinson's (PD) is a multi-factorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal based cognitive function are common, appear early and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in Lrrk2 also exhibit deficits in fronto-striatal-based cognitive tasks. In mice and humans, cognitive functions require dynamic adjustments in glutamatergic synapse strength through cell-surface trafficking of AMPA-type glutamate receptors (AMPARs), but it is unknown how LRRK2 mutation impacts dynamic features of AMPAR trafficking in striatal projection neurons (SPNs). Here, we used Lrrk2 G2019S knockin mice to show that surface AMPAR subunit stoichiometry is altered biochemically and functionally in mutant SPNs to favor incorporation of GluA1 over GluA2. GluA1-containing AMPARs were resistant to internalization from the cell surface, leaving an excessive accumulation of GluA1 on the surface within and outside synapses. This negatively impacted trafficking dynamics that normally support synapse strengthening, as GluA1-containing AMPARs failed to increase at synapses in response to a potentiating stimulus and showed significantly reduced surface mobility. Surface GluA2-containing AMPARs were expressed at normal levels in synapses, indicating subunit-selective impairment. Abnormal surface accumulation of GluA1 was independent of PKA activity and was limited to D 1 R SPNs. Since LRRK2 mutation is thought to be part of a common PD pathogenic pathway, our data suggest that sustained, striatal cell-type specific changes in AMPAR composition and trafficking contribute to cognitive or other impairments associated with PD. SIGNIFICANCE STATEMENT Mutations in LRRK2 are common genetic risks for PD. Lrrk2 G2019S mice fail to exhibit long-term potentiation at corticostriatal synapses and show significant deficits in frontal-striatal based cognitive tasks. While LRRK2 has been implicated generally in protein trafficking, whether G2019S derails AMPAR trafficking at synapses on striatal neurons (SPNs) is unknown. We show that surface GluA1-AMPARs fail to internalize and instead accumulate excessively within and outside synapses. This effect is selective to D 1 R SPNs and negatively impacts synapse strengthening as GluA1-AMPARs fail to increase at the surface in response to potentiation and show limited surface mobility. Thus, LRRK2-G2019S narrows the effective range of plasticity mechanisms, supporting the idea that cognitive symptoms reflect an imbalance in AMPAR trafficking mechanisms within cell-type specific projections.
Collapse
|
22
|
Yao L, Lu F, Koc S, Zheng Z, Wang B, Zhang S, Skutella T, Lu G. LRRK2 Gly2019Ser Mutation Promotes ER Stress via Interacting with THBS1/TGF-β1 in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303711. [PMID: 37672887 PMCID: PMC10602550 DOI: 10.1002/advs.202303711] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Indexed: 09/08/2023]
Abstract
The gene mutations of LRRK2, which encodes leucine-rich repeat kinase 2 (LRRK2), are associated with one of the most prevalent monogenic forms of Parkinson's disease (PD). However, the potential effectors of the Gly2019Ser (G2019S) mutation remain unknown. In this study, the authors investigate the effects of LRRK2 G2019S on endoplasmic reticulum (ER) stress in induced pluripotent stem cell (iPSC)-induced dopamine neurons and explore potential therapeutic targets in mice model. These findings demonstrate that LRRK2 G2019S significantly promotes ER stress in neurons and mice. Interestingly, inhibiting LRRK2 activity can ameliorate ER stress induced by the mutation. Moreover, LRRK2 mutation can induce ER stress by directly interacting with thrombospondin-1/transforming growth factor beta1 (THBS1/TGF-β1). Inhibition of LRRK2 kinase activity can effectively suppress ER stress and the expression of THBS1/TGF-β1. Knocking down THBS1 can rescue ER stress by interacting with TGF-β1 and behavior burden caused by the LRRK2 mutation, while suppression of TGF-β1 has a similar effect. Overall, it is demonstrated that the LRRK2 mutation promotes ER stress by directly interacting with THBS1/TGF-β1, leading to neural death in PD. These findings provide valuable insights into the pathogenesis of PD, highlighting potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Longping Yao
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Fengfei Lu
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Sumeyye Koc
- Department of NeuroscienceInstitute of Health SciencesOndokuz Mayıs UniversitySamsun55139Turkey
| | - Zijian Zheng
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| | - Baoyan Wang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Shizhong Zhang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Thomas Skutella
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Guohui Lu
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| |
Collapse
|
23
|
Unapanta A, Shavarebi F, Porath J, Shen Y, Balen C, Nguyen A, Tseng J, Leong WS, Liu M, Lis P, Di Pietro SM, Hiniker A. Endogenous Rab38 regulates LRRK2's membrane recruitment and substrate Rab phosphorylation in melanocytes. J Biol Chem 2023; 299:105192. [PMID: 37625589 PMCID: PMC10551901 DOI: 10.1016/j.jbc.2023.105192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Point mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease and augment LRRK2's kinase activity. However, cellular pathways that endogenously enhance LRRK2 kinase function have not been identified. While overexpressed Rab29 draws LRRK2 to Golgi membranes to increase LRRK2 kinase activity, there is little evidence that endogenous Rab29 performs this function under physiological conditions. Here, we identify Rab38 as a novel physiologic regulator of LRRK2 in melanocytes. In mouse melanocytes, which express high levels of Rab38, Rab32, and Rab29, knockdown (or CRISPR knockout) of Rab38, but not Rab32 or Rab29, decreases phosphorylation of multiple LRRK2 substrates, including Rab10 and Rab12, by both endogenous LRRK2 and exogenous Parkinson's disease-mutant LRRK2. In B16-F10 mouse melanoma cells, Rab38 drives LRRK2 membrane association and overexpressed kinase-active LRRK2 shows striking pericentriolar recruitment, which is dependent on the presence of endogenous Rab38 but not Rab32 or Rab29. Consistently, knockdown or mutation of BLOC-3, the guanine nucleotide exchange factor for Rab38 and Rab32, inhibits Rab38's regulation of LRRK2. Deletion or mutation of LRRK2's Rab38-binding site in the N-terminal armadillo domain decreases LRRK2 membrane association, pericentriolar recruitment, and ability to phosphorylate Rab10. In sum, our data identify Rab38 as a physiologic regulator of LRRK2 function and lend support to a model in which LRRK2 plays a central role in Rab GTPase coordination of vesicular trafficking.
Collapse
Affiliation(s)
- Alexandra Unapanta
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Farbod Shavarebi
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Jacob Porath
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Yiyi Shen
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Carson Balen
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Albert Nguyen
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Josh Tseng
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Weng Si Leong
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Michelle Liu
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Pawel Lis
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| | - Santiago M Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Annie Hiniker
- Department of Pathology, University of California San Diego, San Diego, California, USA.
| |
Collapse
|
24
|
Nazish I, Mamais A, Mallach A, Bettencourt C, Kaganovich A, Warner T, Hardy J, Lewis PA, Pocock J, Cookson MR, Bandopadhyay R. Differential LRRK2 signalling and gene expression in WT-LRRK2 and G2019S-LRRK2 mouse microglia treated with zymosan and MLi2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557532. [PMID: 37745519 PMCID: PMC10515904 DOI: 10.1101/2023.09.14.557532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Introduction Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene cause autosomal dominant Parkinson's disease (PD) with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells suggest involvement of microglia and macrophages in inflammation related to PD. LRRK2 is known to respond to extracellular signalling including TLR4 resulting in alterations in gene expression, with the response to TLR2 signalling through zymosan being less known. Methods Here, we investigated the effects of zymosan, a TLR2 agonist and the potent and specific LRRK2 kinase inhibitor MLi-2 on gene expression in microglia from LRRK2-WT and LRRK2 p.G2019S knock-in mice by RNA-Sequencing analysis. Results We observed both overlapping and distinct zymosan and MLi-2 mediated gene expression profiles in microglia. At least two candidate Genome-Wide Association (GWAS) hits for PD, CathepsinB (Ctsb) and Glycoprotein-nmb (Gpnmb), were notably downregulated by zymosan treatment. Genes involved in inflammatory response and nervous system development were up and downregulated respectively with zymosan treatment while MLi-2 treatment particularly exhibited upregulated genes for ion transmembrane transport regulation. Furthermore, we observed the top twenty most significantly differentially expressed genes in LRRK2 p.G2019S microglia show enriched biological processes in iron transport and response to oxidative stress. Discussion Overall, these results suggest that microglial LRRK2 may contribute to PD pathogenesis through altered inflammatory pathways. Our findings should encourage future investigations of these putative avenues in the context of PD pathogenesis.
Collapse
Affiliation(s)
- Iqra Nazish
- Reta Lila Weston Institute of Neurological Studies and Department of movement neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ
| | - Adamantios Mamais
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Anna Mallach
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, WC1N 1PJ, UK
| | | | | | - Tom Warner
- Reta Lila Weston Institute of Neurological Studies and Department of movement neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ
| | - John Hardy
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology
| | - Patrick A. Lewis
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology
- Royal Veterinary College, University of London
| | - Jennifer Pocock
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, WC1N 1PJ, UK
| | - Mark R Cookson
- Cell Biology and Gene Expression section, NIA, Maryland, USA
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies and Department of movement neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ
| |
Collapse
|
25
|
Yu H, Chang Q, Sun T, He X, Wen L, An J, Feng J, Zhao Y. Metabolic reprogramming and polarization of microglia in Parkinson's disease: Role of inflammasome and iron. Ageing Res Rev 2023; 90:102032. [PMID: 37572760 DOI: 10.1016/j.arr.2023.102032] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Parkinson's disease (PD) is a slowly progressive neurodegenerative disease characterized by α-synuclein aggregation and dopaminergic neuronal death. Recent evidence suggests that neuroinflammation is an early event in the pathogenesis of PD. Microglia are resident immune cells in the central nervous system that can be activated into either pro-inflammatory M1 or anti-inflammatory M2 phenotypes as found in peripheral macrophages. To exert their immune functions, microglia respond to various stimuli, resulting in the flexible regulation of their metabolic pathways. Inflammasomes activation in microglia induces metabolic shift from oxidative phosphorylation to glycolysis, and leads to the polarization of microglia to pro-inflammatory M1 phenotype, finally causing neuroinflammation and neurodegeneration. In addition, iron accumulation induces microglia take an inflammatory and glycolytic phenotype. M2 phenotype microglia is more sensitive to ferroptosis, inhibition of which can attenuate neuroinflammation. Therefore, this review highlights the interplay between microglial polarization and metabolic reprogramming of microglia. Moreover, it will interpret how inflammasomes and iron regulate microglial metabolism and phenotypic shifts, which provides a promising therapeutic target to modulate neuroinflammation and neurodegeneration in PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
26
|
Yadavalli N, Ferguson SM. LRRK2 suppresses lysosome degradative activity in macrophages and microglia through MiT-TFE transcription factor inhibition. Proc Natl Acad Sci U S A 2023; 120:e2303789120. [PMID: 37487100 PMCID: PMC10400961 DOI: 10.1073/pnas.2303789120] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/12/2023] [Indexed: 07/26/2023] Open
Abstract
Cells maintain optimal levels of lysosome degradative activity to protect against pathogens, clear waste, and generate nutrients. Here, we show that LRRK2, a protein that is tightly linked to Parkinson's disease, negatively regulates lysosome degradative activity in macrophages and microglia via a transcriptional mechanism. Depletion of LRRK2 and inhibition of LRRK2 kinase activity enhanced lysosomal proteolytic activity and increased the expression of multiple lysosomal hydrolases. Conversely, the kinase hyperactive LRRK2 G2019S Parkinson's disease mutant suppressed lysosomal degradative activity and gene expression. We identified MiT-TFE transcription factors (TFE3, TFEB, and MITF) as mediators of LRRK2-dependent control of lysosomal gene expression. LRRK2 negatively regulated the abundance and nuclear localization of these transcription factors and their depletion prevented LRRK2-dependent changes in lysosome protein levels. These observations define a role for LRRK2 in controlling lysosome degradative activity and support a model wherein LRRK2 hyperactivity may increase Parkinson's disease risk by suppressing lysosome degradative activity.
Collapse
Affiliation(s)
- Narayana Yadavalli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Shawn M. Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
27
|
Dou D, Aiken J, Holzbaur ELF. RAB3 phosphorylation by pathogenic LRRK2 impairs trafficking of synaptic vesicle precursors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550521. [PMID: 37546777 PMCID: PMC10402060 DOI: 10.1101/2023.07.25.550521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), characterized by debilitating motor and non-motor symptoms. Increased phosphorylation of a subset of RAB GTPases by LRRK2 is implicated in PD pathogenesis. We find that increased phosphorylation of RAB3A, a cardinal synaptic vesicle precursor (SVP) protein, disrupts anterograde axonal transport of SVPs in iPSC-derived human neurons (iNeurons) expressing hyperactive LRRK2-p.R1441H. Knockout of the opposing protein phosphatase 1H (PPM1H) in iNeurons phenocopies this effect. In these models, the compartmental distribution of synaptic proteins is altered; synaptophysin and synaptobrevin-2 become sequestered in the neuronal soma with decreased delivery to presynaptic sites along the axon. We find that RAB3A phosphorylation disrupts binding to the motor adapter MADD, potentially preventing formation of the RAB3A-MADD-KIF1A/1Bβ complex driving anterograde SVP transport. RAB3A hyperphosphorylation also disrupts interactions with RAB3GAP and RAB-GDI1. Our results reveal a mechanism by which pathogenic hyperactive LRRK2 may contribute to the altered synaptic homeostasis associated with characteristic non-motor and cognitive manifestations of PD.
Collapse
Affiliation(s)
- Dan Dou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jayne Aiken
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Taymans JM, Fell M, Greenamyre T, Hirst WD, Mamais A, Padmanabhan S, Peter I, Rideout H, Thaler A. Perspective on the current state of the LRRK2 field. NPJ Parkinsons Dis 2023; 9:104. [PMID: 37393318 PMCID: PMC10314919 DOI: 10.1038/s41531-023-00544-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023] Open
Abstract
Almost 2 decades after linking LRRK2 to Parkinson's disease, a vibrant research field has developed around the study of this gene and its protein product. Recent studies have begun to elucidate molecular structures of LRRK2 and its complexes, and our understanding of LRRK2 has continued to grow, affirming decisions made years ago to therapeutically target this enzyme for PD. Markers of LRRK2 activity, with potential to monitor disease progression or treatment efficacy, are also under development. Interestingly, there is a growing understanding of the role of LRRK2 outside of the central nervous system in peripheral tissues such as gut and immune cells that may also contribute to LRRK2 mediated pathology. In this perspective, our goal is to take stock of LRRK2 research by discussing the current state of knowledge and critical open questions in the field.
Collapse
Affiliation(s)
- Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-LilNCog-Lille Neuroscience & Cognition, F-59000, Lille, France.
| | - Matt Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, 3501 Fifth Avenue, Suite 7039, Pittsburgh, PA, 15260, USA
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, 115 Broadway, Cambridge, MA, 02142, USA
| | - Adamantios Mamais
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Shalini Padmanabhan
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, P.O. Box 4777, New York, NY, 10120, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Hardy Rideout
- Centre for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Avner Thaler
- Movement Disorders Unit and Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Faculty of medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
29
|
Straumann N, Combes BF, Dean Ben XL, Sternke-Hoffmann R, Gerez JA, Dias I, Chen Z, Watts B, Rostami I, Shi K, Rominger A, Baumann CR, Luo J, Noain D, Nitsch RM, Okamura N, Razansky D, Ni R. Visualizing alpha-synuclein and iron deposition in M83 mouse model of Parkinson's disease in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546962. [PMID: 37425954 PMCID: PMC10327184 DOI: 10.1101/2023.06.28.546962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Abnormal alpha-synuclein and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim at visualizing alpha-synuclein inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. Methods Fluorescently labelled pyrimidoindole-derivative THK-565 was characterized by using recombinant fibrils and brains from 10-11 months old M83 mice, which subsequently underwent in vivo concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging. The in vivo results were verified against structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 Tesla and scanning transmission X-ray microscopy (STXM) of perfused brains. Brain slice immunofluorescence and Prussian blue staining were further performed to validate the detection of alpha-synuclein inclusions and iron deposition in the brain, respectively. Results THK-565 showed increased fluorescence upon binding to recombinant alpha-synuclein fibrils and alpha-synuclein inclusions in post-mortem brain slices from patients with Parkinson's disease and M83 mice. i.v. administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 minutes post-injection by wide-field fluorescence compared to non-transgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. Conclusion We demonstrated in vivo mapping of alpha-synuclein by means of non-invasive epifluorescence and vMSOT imaging assisted with a targeted THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.
Collapse
Affiliation(s)
- Nadja Straumann
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Benjamin F. Combes
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Xose Luis Dean Ben
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | | | - Juan A. Gerez
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Ines Dias
- Neurology Department, University Hospital Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Benjamin Watts
- Photon Science Division, Paul Scherrer Institute, Villigen, Switzerland
| | - Iman Rostami
- Microscopic Anatomy and Structural Biology, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Daniela Noain
- Neurology Department, University Hospital Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daniel Razansky
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Hu J, Zhang D, Tian K, Ren C, Li H, Lin C, Huang X, Liu J, Mao W, Zhang J. Small-molecule LRRK2 inhibitors for PD therapy: Current achievements and future perspectives. Eur J Med Chem 2023; 256:115475. [PMID: 37201428 DOI: 10.1016/j.ejmech.2023.115475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein that orchestrates a diverse array of cellular processes, including vesicle transport, autophagy, lysosome degradation, neurotransmission, and mitochondrial activity. Hyperactivation of LRRK2 triggers vesicle transport dysfunction, neuroinflammation, accumulation of α-synuclein, mitochondrial dysfunction, and the loss of cilia, ultimately leading to Parkinson's disease (PD). Therefore, targeting LRRK2 protein is a promising therapeutic strategy for PD. The clinical translation of LRRK2 inhibitors was historically impeded by issues surrounding tissue specificity. Recent studies have identified LRRK2 inhibitors that have no effect on peripheral tissues. Currently, there are four small-molecule LRRK2 inhibitors undergoing clinical trials. This review provides a summary of the structure and biological functions of LRRK2, along with an overview of the binding modes and structure-activity relationships (SARs) of small-molecule inhibitors targeting LRRK2. It offers valuable references for developing novel drugs targeting LRRK2.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changyu Ren
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Heng Li
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoli Huang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wuyu Mao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Mamais A, Sanyal A, Fajfer A, Zykoski CG, Guldin M, Riley-DiPaolo A, Subrahmanian N, Gibbs W, Lin S, LaVoie MJ. The LRRK2 kinase substrates Rab8a and Rab10 contribute complementary but distinct disease-relevant phenotypes in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.30.538317. [PMID: 37163109 PMCID: PMC10168414 DOI: 10.1101/2023.04.30.538317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutations in the LRRK2 gene cause familial Parkinson's disease presenting with pleomorphic neuropathology that can involve α-synuclein or tau accumulation. LRRK2 mutations are thought to converge toward a pathogenic increase in LRRK2 kinase activity. A subset of small Rab GTPases have been identified as LRRK2 substrates, with LRRK2-dependent phosphorylation resulting in Rab inactivation. We used CRISPR/Cas9 genome editing to generate a novel series of isogenic iPSC lines deficient in the two most well validated LRRK2 substrates, Rab8a and Rab10, from two independent, deeply phenotyped healthy control lines. Thorough characterization of NGN2-induced neurons revealed divergent effects of Rab8a and Rab10 deficiency on lysosomal pH, LAMP1 association with Golgi, α-synuclein insolubility and tau phosphorylation, while parallel effects on lysosomal numbers and Golgi clustering were observed. Our data demonstrate largely antagonistic effects of genetic Rab8a or Rab10 inactivation which provide discrete insight into the pathologic features of their biochemical inactivation by pathogenic LRRK2 mutation.
Collapse
Affiliation(s)
- Adamantios Mamais
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Austin Fajfer
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Catherine G. Zykoski
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Michael Guldin
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Alexis Riley-DiPaolo
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Nitya Subrahmanian
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Whitney Gibbs
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Steven Lin
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Matthew J. LaVoie
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Insights into the cellular consequences of LRRK2-mediated Rab protein phosphorylation. Biochem Soc Trans 2023; 51:587-595. [PMID: 36929701 DOI: 10.1042/bst20201145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Point mutations in leucine-rich repeat kinase 2 (LRRK2) which cause Parkinson's disease increase its kinase activity, and a subset of Rab GTPases have been identified as endogenous LRRK2 kinase substrates. Their phosphorylation correlates with a loss-of-function for the membrane trafficking steps they are normally involved in, but it also allows them to bind to a novel set of effector proteins with dominant cellular consequences. In this brief review, we will summarize novel findings related to the LRRK2-mediated phosphorylation of Rab GTPases and its various cellular consequences in vitro and in the intact brain, and we will highlight major outstanding questions in the field.
Collapse
|
33
|
Placidi G, Mattu C, Ciardelli G, Campa CC. Small molecules targeting endocytic uptake and recycling pathways. Front Cell Dev Biol 2023; 11:1125801. [PMID: 36968200 PMCID: PMC10036367 DOI: 10.3389/fcell.2023.1125801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Over the past years a growing number of studies highlighted the pivotal role of intracellular trafficking in cell physiology. Among the distinct transport itineraries connecting the endocytic system, both internalization (endocytosis) and recycling (endocytic recycling) pathways were found fundamental to ensure cellular sensing, cell-to-cell communication, cellular division, and collective cell migration in tissue specific-contexts. Consistently, the dysregulation of endocytic trafficking pathways is correlated with several human diseases including both cancers and neurodegeneration. Aimed at suppress specific intracellular trafficking routes involved in disease onset and progression, huge efforts have been made to identify small molecule inhibitors with suitable pharmacological properties for in vivo administration. Here, we review most used drugs and recently discovered small molecules able to block endocytosis and endocytic recycling pathways. We characterize such pharmacological inhibitors by emphasizing their target specificity, molecular affinity, biological activity and efficacy in both in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Giampaolo Placidi
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Chemical-Physical Processes, National Research Council (CNR-IPCF), Pisa, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
34
|
Mamais A, Wallings R, Rocha EM. Disease mechanisms as subtypes: Lysosomal dysfunction in the endolysosomal Parkinson's disease subtype. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:33-51. [PMID: 36803821 DOI: 10.1016/b978-0-323-85555-6.00009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Parkinson's disease (PD) remains one of the most prevalent neurodegenerative disorders. It has become increasingly recognized that PD is not one disease but a constellation of many, with distinct cellular mechanisms driving pathology and neuronal loss in each given subtype. Endolysosomal trafficking and lysosomal degradation are crucial to maintain neuronal homeostasis and vesicular trafficking. It is clear that deficits in endolysosomal signaling data support the existence of an endolysosomal PD subtype. This chapter describes how cellular pathways involved in endolysosomal vesicular trafficking and lysosomal degradation in neurons and immune cells can contribute to PD. Last, as inflammatory processes including phagocytosis and cytokine release are central in glia-neuron interactions, a spotlight on the role of neuroinflammation plays in the pathogenesis of this PD subtype is also explored.
Collapse
Affiliation(s)
- Adamantios Mamais
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Rebecca Wallings
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
35
|
Nik Akhtar S, Bunner WP, Brennan E, Lu Q, Szatmari EM. Crosstalk between the Rho and Rab family of small GTPases in neurodegenerative disorders. Front Cell Neurosci 2023; 17:1084769. [PMID: 36779014 PMCID: PMC9911442 DOI: 10.3389/fncel.2023.1084769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Neurodegeneration is associated with defects in cytoskeletal dynamics and dysfunctions of the vesicular trafficking and sorting systems. In the last few decades, studies have demonstrated that the key regulators of cytoskeletal dynamics are proteins from the Rho family GTPases, meanwhile, the central hub for vesicle sorting and transport between target membranes is the Rab family of GTPases. In this regard, the role of Rho and Rab GTPases in the induction and maintenance of distinct functional and morphological neuronal domains (such as dendrites and axons) has been extensively studied. Several members belonging to these two families of proteins have been associated with many neurodegenerative disorders ranging from dementia to motor neuron degeneration. In this analysis, we attempt to present a brief review of the potential crosstalk between the Rab and Rho family members in neurodegenerative pathologies such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington disease, and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Shayan Nik Akhtar
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Wyatt P. Bunner
- Laboratory of Neuroscience, Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States
| | - Elizabeth Brennan
- Laboratory of Neuroscience, Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States
| | - Qun Lu
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States,*Correspondence: Erzsebet M. Szatmari Qun Lu
| | - Erzsebet M. Szatmari
- Laboratory of Neuroscience, Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States,*Correspondence: Erzsebet M. Szatmari Qun Lu
| |
Collapse
|
36
|
Zhong X, Chen R. Detection of Ferroptosis by Immunohistochemistry and Immunofluorescence. Methods Mol Biol 2023; 2712:211-222. [PMID: 37578709 DOI: 10.1007/978-1-0716-3433-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ferroptosis is a type of regulated cell death driven by oxidative damage, characterized by iron overload and lipid peroxidation, and regulated by a network of distinct molecules and organelles. Impaired ferroptotic response is implicated in multiple physiological and pathological processes, including tumorigenesis, neurodegeneration, and ischemia-reperfusion damage. Classical techniques of immunohistochemistry (IHC) and immunofluorescence (IF) can be employed to exhibit antigen expression and location in tissues observed with microscopy, making them powerful tools in studying the ferroptosis process. In this chapter, we introduce commonly used protocols and summarize typical markers used in IHC and IF to monitor ferroptosis.
Collapse
Affiliation(s)
- Xiao Zhong
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
Iron-induced cytotoxicity mediated by endolysosomal TRPML1 channels is reverted by TFEB. Cell Death Dis 2022; 13:1047. [PMID: 36522443 PMCID: PMC9755144 DOI: 10.1038/s41419-022-05504-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Increased brain iron content has been consistently reported in sporadic Parkinson's disease (PD) patients, and an increase in cytosolic free iron is known to cause oxidative stress and cell death. However, whether iron also accumulates in susceptible brain areas in humans or in mouse models of familial PD remains unknown. In addition, whilst the lysosome functions as a critical intracellular iron storage organelle, little is known about the mechanisms underlying lysosomal iron release and how this process is influenced by lysosome biogenesis and/or lysosomal exocytosis. Here, we report an increase in brain iron content also in PD patients due to the common G2019S-LRRK2 mutation as compared to healthy age-matched controls, whilst differences in iron content are not observed in G2019S-LRRK2 knockin as compared to control mice. Chemically triggering iron overload in cultured cells causes cytotoxicity via the endolysosomal release of iron which is mediated by TRPML1. TFEB expression reverts the iron overload-associated cytotoxicity by causing lysosomal exocytosis, which is dependent on a TRPML1-mediated increase in cytosolic calcium levels. Therefore, approaches aimed at increasing TFEB levels, or pharmacological TRPML1 activation in conjunction with iron chelation may prove beneficial against cell death associated with iron overload conditions such as those associated with PD.
Collapse
|
38
|
Kolicheski A, Turcano P, Tamvaka N, McLean PJ, Springer W, Savica R, Ross OA. Early-Onset Parkinson's Disease: Creating the Right Environment for a Genetic Disorder. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2353-2367. [PMID: 36502340 PMCID: PMC9837689 DOI: 10.3233/jpd-223380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) by its common understanding is a late-onset sporadic movement disorder. However, there is a need to recognize not only the fact that PD pathogenesis expands beyond (or perhaps to) the brain but also that many early-onset patients develop motor signs before the age of 50 years. Indeed, studies have shown that it is likely the protein aggregation observed in the brains of patients with PD precedes the motor symptoms by perhaps a decade. Studies on early-onset forms of PD have shown it to be a heterogeneous disease with multiple genetic and environmental factors determining risk of different forms of disease. Genetic and neuropathological evidence suggests that there are α-synuclein centric forms (e.g., SNCA genomic triplication), and forms that are driven by a breakdown in mitochondrial function and specifically in the process of mitophagy and clearance of damaged mitochondria (e.g., PARKIN and PINK1 recessive loss-of-function mutations). Aligning genetic forms with recognized environmental influences will help better define patients, aid prognosis, and hopefully lead to more accurately targeted clinical trial design. Work is now needed to understand the cross-talk between these two pathomechanisms and determine a sense of independence, it is noted that autopsies studies for both have shown the presence or absence of α-synuclein aggregation. The integration of genetic and environmental data is critical to understand the etiology of early-onset forms of PD and determine how the different pathomechanisms crosstalk.
Collapse
Affiliation(s)
- Ana Kolicheski
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Pierpaolo Turcano
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA,
Department of Medicine, University College Dublin, Dublin, Ireland,
Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA,Department of Biology, University of NorthFlorida, Jacksonville, FL, USA,Correspondence to: Owen A. Ross, PhD, Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 6280; Fax: +1 904 953 7370; E-mail:
| |
Collapse
|
39
|
Mechanisms of Autoimmune Cell in DA Neuron Apoptosis of Parkinson's Disease: Recent Advancement. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7965433. [PMID: 36567855 PMCID: PMC9771667 DOI: 10.1155/2022/7965433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that manifests as motor and nonmotor symptoms due to the selective loss of midbrain DArgic (DA) neurons. More and more studies have shown that pathological reactions initiated by autoimmune cells play an essential role in the progression of PD. Autoimmune cells exist in the brain parenchyma, cerebrospinal fluid, and meninges; they are considered inducers of neuroinflammation and regulate the immune in the human brain in PD. For example, T cells can recognize α-synuclein presented by antigen-presenting cells to promote neuroinflammation. In addition, B cells will accelerate the apoptosis of DA neurons in the case of PD-related gene mutations. Activation of microglia and damage of DA neurons even form the self-degeneration cycle to deteriorate PD. Numerous autoimmune cells have been considered regulators of apoptosis, α-synuclein misfolding and aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation of DA neurons in PD. The evidence is mounting that autoimmune cells promote DA neuron apoptosis. In this review, we discuss the current knowledge regarding the regulation and function of B cell, T cell, and microglia as well as NK cell in PD pathogenesis, focusing on DA neuron apoptosis to understand the disease better and propose potential target identification for the treatment in the early stages of PD. However, there are still some limitations in our work, for example, the specific mechanism of PD progression caused by autoimmune cells in mitochondrial dysfunction, ferroptosis, and autophagy has not been clarified in detail, which needs to be summarized in further work.
Collapse
|
40
|
Edavettal S, Cejudo-Martin P, Dasgupta B, Yang D, Buschman MD, Domingo D, Van Kolen K, Jaiprasat P, Gordon R, Schutsky K, Geist B, Taylor N, Soubrane CH, Van Der Helm E, LaCombe A, Ainekulu Z, Lacy E, Aligo J, Ho J, He Y, Lebowitz PF, Patterson JT, Scheer JM, Singh S. Enhanced delivery of antibodies across the blood-brain barrier via TEMs with inherent receptor-mediated phagocytosis. MED 2022; 3:860-882.e15. [PMID: 36257298 DOI: 10.1016/j.medj.2022.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/28/2022] [Accepted: 09/22/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND The near impermeability of the blood-brain barrier (BBB) and the unique neuroimmune environment of the CNS prevents the effective use of antibodies in neurological diseases. Delivery of biotherapeutics to the brain can be enabled through receptor-mediated transcytosis via proteins such as the transferrin receptor, although limitations such as the ability to use Fc-mediated effector function to clear pathogenic targets can introduce safety liabilities. Hence, novel delivery approaches with alternative clearance mechanisms are warranted. METHODS Binders that optimized transport across the BBB, known as transcytosis-enabling modules (TEMs), were identified using a combination of antibody discovery techniques and pharmacokinetic analyses. Functional activity of TEMs were subsequently evaluated by imaging for the ability of myeloid cells to phagocytose target proteins and cells. FINDINGS We demonstrated significantly enhanced brain exposure of therapeutic antibodies using optimal transferrin receptor or CD98 TEMs. We found that these modules also mediated efficient clearance of tau aggregates and HER2+ tumor cells via a non-classical phagocytosis mechanism through direct engagement of myeloid cells. This mode of clearance potentially avoids the known drawbacks of FcγR-mediated antibody mechanisms in the brain such as the neurotoxic release of proinflammatory cytokines and immune cell exhaustion. CONCLUSIONS Our study reports a new brain delivery platform that harnesses receptor-mediated transcytosis to maximize brain uptake and uses a non-classical phagocytosis mechanism to efficiently clear pathologic proteins and cells. We believe these findings will transform therapeutic approaches to treat CNS diseases. FUNDING This research was funded by Janssen, Pharmaceutical Companies of Johnson & Johnson.
Collapse
Affiliation(s)
| | | | | | - Danlin Yang
- Janssen Research and Development, Spring House, PA 19477, USA
| | | | | | | | | | - Renata Gordon
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Keith Schutsky
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Brian Geist
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Natalie Taylor
- Janssen Research and Development, San Diego, CA 92121, USA
| | | | | | - Ann LaCombe
- Janssen Research and Development, San Diego, CA 92121, USA
| | | | - Eilyn Lacy
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Jason Aligo
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Jason Ho
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Yingbo He
- Janssen Research and Development, San Diego, CA 92121, USA
| | | | | | - Justin M Scheer
- Janssen Research and Development, Spring House, PA 19477, USA.
| | - Sanjaya Singh
- Janssen Research and Development, Spring House, PA 19477, USA
| |
Collapse
|
41
|
Oun A, Soliman A, Trombetta-Lima M, Tzepapadaki A, Tsagkari D, Kortholt A, Dolga AM. LRRK2 protects immune cells against erastin-induced Ferroptosis. Neurobiol Dis 2022; 175:105917. [DOI: 10.1016/j.nbd.2022.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
|
42
|
Maguire E, Connor-Robson N, Shaw B, O’Donoghue R, Stöberl N, Hall-Roberts H. Assaying Microglia Functions In Vitro. Cells 2022; 11:3414. [PMID: 36359810 PMCID: PMC9654693 DOI: 10.3390/cells11213414] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Microglia, the main immune modulators of the central nervous system, have key roles in both the developing and adult brain. These functions include shaping healthy neuronal networks, carrying out immune surveillance, mediating inflammatory responses, and disposing of unwanted material. A wide variety of pathological conditions present with microglia dysregulation, highlighting the importance of these cells in both normal brain function and disease. Studies into microglial function in the context of both health and disease thus have the potential to provide tremendous insight across a broad range of research areas. In vitro culture of microglia, using primary cells, cell lines, or induced pluripotent stem cell derived microglia, allows researchers to generate reproducible, robust, and quantifiable data regarding microglia function. A broad range of assays have been successfully developed and optimised for characterizing microglial morphology, mediation of inflammation, endocytosis, phagocytosis, chemotaxis and random motility, and mediation of immunometabolism. This review describes the main functions of microglia, compares existing protocols for measuring these functions in vitro, and highlights common pitfalls and future areas for development. We aim to provide a comprehensive methodological guide for researchers planning to characterise microglial functions within a range of contexts and in vitro models.
Collapse
Affiliation(s)
- Emily Maguire
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | | | | | | |
Collapse
|
43
|
Oun A, Sabogal-Guaqueta AM, Galuh S, Alexander A, Kortholt A, Dolga AM. The multifaceted role of LRRK2 in Parkinson's disease: From human iPSC to organoids. Neurobiol Dis 2022; 173:105837. [PMID: 35963526 DOI: 10.1016/j.nbd.2022.105837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease affecting elderly people. Pathogenic mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are the most common cause of autosomal dominant PD. LRRK2 activity is enhanced in both familial and idiopathic PD, thereby studies on LRRK2-related PD research are essential for understanding PD pathology. Finding an appropriate model to mimic PD pathology is crucial for revealing the molecular mechanisms underlying disease progression, and aiding drug discovery. In the last few years, the use of human-induced pluripotent stem cells (hiPSCs) grew exponentially, especially in studying neurodegenerative diseases like PD, where working with brain neurons and glial cells was mainly possible using postmortem samples. In this review, we will discuss the use of hiPSCs as a model for PD pathology and research on the LRRK2 function in both neuronal and immune cells, together with reviewing the recent advances in 3D organoid models and microfluidics.
Collapse
Affiliation(s)
- Asmaa Oun
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands; Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology (GBB), University of Groningen, Groningen, the Netherlands; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Angelica Maria Sabogal-Guaqueta
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Sekar Galuh
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Anastasia Alexander
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology (GBB), University of Groningen, Groningen, the Netherlands; YETEM-Innovative Technologies Application and Research Centre Suleyman Demirel University, Isparta, Turkey.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
44
|
Herbst S, Lewis P, Morris H. The emerging role of LRRK2 in tauopathies. Clin Sci (Lond) 2022; 136:1071-1079. [PMID: 35815712 PMCID: PMC9274527 DOI: 10.1042/cs20220067] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/11/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is conventionally described as an α-synuclein aggregation disorder, defined by Lewy bodies and neurites, and mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common autosomal dominant cause of PD. However, LRRK2 mutations may be associated with diverse pathologies in patients with Parkinson's syndrome including tau pathology resembling progressive supranuclear palsy (PSP). The recent discovery that variation at the LRRK2 locus is associated with the progression of PSP highlights the potential importance of LRRK2 in tauopathies. Here, we review the emerging evidence and discuss the potential impact of LRRK2 dysfunction on tau aggregation, lysosomal function, and endocytosis and exocytosis.
Collapse
Affiliation(s)
- Susanne Herbst
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, U.K
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| | - Patrick A. Lewis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, U.K
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| | - Huw R. Morris
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, U.K
| |
Collapse
|
45
|
Bose A, Petsko GA, Studer L. Induced pluripotent stem cells: a tool for modeling Parkinson's disease. Trends Neurosci 2022; 45:608-620. [PMID: 35667922 PMCID: PMC9576003 DOI: 10.1016/j.tins.2022.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. Among its pathologies, progressive loss of dopaminergic (DA) neurons in the substantia nigra is characteristic and contributes to many of the most severe symptoms of PD. Recent advances in induced pluripotent stem cell (iPSC) technology have made it possible to generate patient-derived DA neuronal cell culture and organoid models of PD. These models have contributed to understanding disease mechanisms and the identification of novel targets and therapeutic candidates. Still needed are better ways to model the age-related aspects of PD, as well as a deeper understanding of the interactions among disease-modifying genes and between genetic and environmental contributions to the etiology and progression of PD.
Collapse
Affiliation(s)
- Anindita Bose
- Ann Romney Institute of Neurological Diseases, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, USA; The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA.
| | - Gregory A Petsko
- Ann Romney Institute of Neurological Diseases, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, USA; The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| |
Collapse
|
46
|
Zhang X, Zhang R, Nisa Awan MU, Bai J. The Mechanism and Function of Glia in Parkinson's Disease. Front Cell Neurosci 2022; 16:903469. [PMID: 35722618 PMCID: PMC9205200 DOI: 10.3389/fncel.2022.903469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that primarily affects elderly people. The mechanism on onset and progression of PD is unknown. Currently, there are no effective treatment strategies for PD. PD is thought to be the loss of midbrain dopaminergic neurons, but it has recently been discovered that glia also affects brain tissue homeostasis, defense, and repair in PD. The neurodegenerative process is linked to both losses of glial supportive-defensive functions and toxic gain of glial functions. In this article, we reviewed the roles of microglia, astrocytes, and oligodendrocytes in the development of PD, as well as the potential use of glia-related medications in PD treatment.
Collapse
|
47
|
Kluss JH, Bonet-Ponce L, Lewis PA, Cookson MR. Directing LRRK2 to membranes of the endolysosomal pathway triggers RAB phosphorylation and JIP4 recruitment. Neurobiol Dis 2022; 170:105769. [PMID: 35580815 DOI: 10.1016/j.nbd.2022.105769] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Coding mutations in the Leucine-rich repeat kinase 2 (LRRK2) gene, which are associated with dominantly inherited Parkinson's disease (PD), lead to an increased activity of the encoded LRRK2 protein kinase. As such, kinase inhibitors are being considered as therapeutic agents for PD. It is therefore of interest to understand the mechanism(s) by which LRRK2 is activated during cellular signaling. Lysosomal membrane damage represents one way of activating LRRK2 and leads to phosphorylation of downstream RAB substrates and recruitment of the motor adaptor protein JIP4. However, it is unclear whether the activation of LRRK2 would be seen at other membranes of the endolysosomal system, where LRRK2 has also shown to be localized, or whether these signaling events can be induced without membrane damage. Here, we use a rapamycin-dependent oligomerization system to direct LRRK2 to various endomembranes including the Golgi apparatus, lysosomes, the plasma membrane, recycling, early, and late endosomes. Irrespective of membrane location, the recruitment of LRRK2 to membranes results in local accumulation of phosphorylated RAB10, RAB12, and JIP4. We also show that endogenous RAB29, previously nominated as an activator of LRRK2 based on overexpression, is not required for activation of LRRK2 at the Golgi nor lysosome. We therefore conclude that LRRK2 signaling to RAB10, RAB12, and JIP4 can be activated once LRRK2 is accumulated at any cellular organelle along the endolysosomal pathway.
Collapse
Affiliation(s)
- Jillian H Kluss
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707, USA; School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | - Luis Bonet-Ponce
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707, USA
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK; Royal Veterinary College, Royal College Street, London, UK; UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707, USA.
| |
Collapse
|
48
|
Mamais A, Kluss JH, Bonet-Ponce L, Landeck N, Langston RG, Smith N, Beilina A, Kaganovich A, Ghosh MC, Pellegrini L, Kumaran R, Papazoglou I, Heaton GR, Harvey K, Bandopadhyay R, Maio N, Kim C, LaVoie MJ, Gershlick DC, Cookson MR. Correction: Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia. PLoS Biol 2022; 20:e3001621. [PMID: 35507910 PMCID: PMC9068230 DOI: 10.1371/journal.pbio.3001621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pbio.3001480.].
Collapse
|
49
|
Ramadesikan S, Lee J, Aguilar RC. The Future of Genetic Disease Studies: Assembling an Updated Multidisciplinary Toolbox. Front Cell Dev Biol 2022; 10:886448. [PMID: 35573700 PMCID: PMC9096115 DOI: 10.3389/fcell.2022.886448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
|
50
|
Russo I, Bubacco L, Greggio E. LRRK2 as a target for modulating immune system responses. Neurobiol Dis 2022; 169:105724. [DOI: 10.1016/j.nbd.2022.105724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/08/2023] Open
|