1
|
Welty Peachey AM, Moses ER, Johnson AJ, Lehman MGM, Yoder JM, De Faveri SG, Cheesman J, Manoukis NC, Siderhurst MS. Wind effects on individual male and female Bactrocera jarvisi (Diptera: Tephritidae) tracked using harmonic radar. ENVIRONMENTAL ENTOMOLOGY 2025; 54:1-14. [PMID: 39470151 DOI: 10.1093/ee/nvae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Wind affects the movement of most volant insects. While the effects of wind on dispersal are relatively well understood at the population level, how wind influences the movement parameters of individual insects in the wild is less clear. Tephritid fruit flies, such as Bactrocera jarvisi, are major horticultural pests worldwide and while most tephritids are nondispersive when host plants are plentiful, records exist for potentially wind-assisted movements up to 200 km. In this study, harmonic radar (HR) was used to track the movements of both male and female lab-reared B. jarvisi in a papaya field. Overall flight directions were found to be correlated with wind direction, as were the subset of between-tree movements, while within-tree movements were not. Furthermore, the effect of wind direction on fly trajectories varied by step-distance but not strongly with wind speed. Mean path distance, step distance, flight direction, turning angle, and flight propensity did not vary by sex. Both male and female movements are well fit by 2-state hidden Markov models further supporting the observation that B. jarvisi move differently within (short steps with random direction) and between (longer more directional steps) trees. Data on flight directionality and step-distances determined in this study provide parameters for models that may help enhance current surveillance, control, and eradication methods, such as optimizing trap placements and pesticide applications, determining release sites for parasitoids, and setting quarantine boundaries after incursions.
Collapse
Affiliation(s)
| | - Ethan R Moses
- Department of Biology and Environmental Science, Bridgewater College, Bridgewater, VA, USA
| | - Adesola J Johnson
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA,USA
| | | | - James M Yoder
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA,USA
| | - Stefano G De Faveri
- Department of Agriculture and Fisheries, Queensland Government, Mareeba, QLD, Australia
| | - Jodie Cheesman
- Department of Agriculture and Fisheries, Queensland Government, Mareeba, QLD, Australia
| | - Nicholas C Manoukis
- Daniel K. Inouye US Pacific Basin Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Hilo, HI, USA
| | - Matthew S Siderhurst
- Daniel K. Inouye US Pacific Basin Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Hilo, HI, USA
| |
Collapse
|
2
|
Kim J. Autonomous Lunar Rover Localization while Fully Scanning a Bounded Obstacle-Rich Workspace. SENSORS (BASEL, SWITZERLAND) 2024; 24:6400. [PMID: 39409440 PMCID: PMC11479029 DOI: 10.3390/s24196400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
This article addresses the scanning path plan strategy of a rover team composed of three rovers, such that the team explores unknown dark outer space environments. This research considers a dark outer space, where a rover needs to turn on its light and camera simultaneously to measure a limited space in front of the rover. The rover team is deployed from a symmetric base station, and the rover team's mission is to scan a bounded obstacle-rich workspace, such that there exists no remaining detection hole. In the team, only one rover, the hauler, can locate itself utilizing stereo cameras and Inertial Measurement Unit (IMU). Every other rover follows the hauler, while not locating itself. Since Global Navigation Satellite System (GNSS) is not available in outer space, the localization error of the hauler increases as time goes on. For rover's location estimate fix, one occasionally makes the rover home to the base station, whose shape and global position are known in advance. Once a rover is near the station, it uses its Lidar to measure the relative position of the base station. In this way, the rover fixes its localization error whenever it homes to the base station. In this research, one makes the rover team fully scan a bounded obstacle-rich workspace without detection holes, such that a rover's localization error is bounded by letting the rover home to the base station occasionally. To the best of our knowledge, this article is novel in addressing the scanning path plan strategy, so that a rover team fully scans a bounded obstacle-rich workspace without detection holes, while fixing the accumulated localization error occasionally. The efficacy of the proposed scanning and localization strategy is demonstrated utilizing MATLAB-based simulations.
Collapse
Affiliation(s)
- Jonghoek Kim
- System Engineering Department, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
3
|
Campeau W, Simons AM, Stevens B. Intermittent Search, Not Strict Lévy Flight, Evolves under Relaxed Foraging Distribution Constraints. Am Nat 2024; 203:513-527. [PMID: 38489781 DOI: 10.1086/729220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
AbstractThe survival of an animal depends on its success as a forager, and understanding the adaptations that result in successful foraging strategies is an enduring endeavour of behavioral ecology. Random walks are one of the primary mathematical descriptions of foraging behavior. Power law distributions are often used to model random walks, as they can characterize a wide range of behaviors, including Lévy walks. Empirical evidence indicates the prevalence and efficiency of Lévy walks as a foraging strategy, and theoretical work suggests an evolutionary origin. However, previous evolutionary models have assumed a priori that move lengths are drawn from a power law or other families of distributions. Here, we remove this restriction with a model that allows for the evolution of any distribution. Instead of Lévy walks, our model unfailingly results in the evolution of intermittent search, a random walk composed of two disjoint modes-frequent localized walks and infrequent extensive moves-that consistently outcompeted Lévy walks. We also demonstrate that foraging using intermittent search may resemble a Lévy walk because of interactions with the resources within an environment. These extrinsically generated Lévy-like walks belie an underlying behavior and may explain the prevalence of Lévy walks reported in the literature.
Collapse
|
4
|
Zhang N, Yong EH. Dynamics, statistics, and task allocation of foraging ants. Phys Rev E 2023; 108:054306. [PMID: 38115539 DOI: 10.1103/physreve.108.054306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
Ant foraging is one of the most fascinating examples of cooperative behavior observed in nature. It is well studied from an entomology viewpoint, but there is currently a lack of mathematical synthesis of this phenomenon. We address this by constructing an ant foraging model that incorporates simple behavioral rules within three task groups of the ant colony during foraging (foragers, transporters, and followers), pheromone trails, and memory effects. The motion of an ant is modeled as a discrete correlated random walk, with a characteristic zigzag path that is congruent with experimental data. We simulate the foraging cycle, which consists of ants searching for food, transporting food, and depositing chemical trails to recruit and orient more ants (en masse) to the food source. This allows us to gain insights into the basic mechanism of the cooperative interactions between ants and the dynamical division of labor within an ant colony during foraging to achieve optimal efficiency. We observe a disorder-order phase transition from the start to the end of a foraging process, signaling collective motion at the population level. Finally, we present a set of time delay ODEs that corroborates with numerical simulations.
Collapse
Affiliation(s)
- Nuoya Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Ee Hou Yong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
5
|
Kim J. Three-Dimensional Multi-Agent Foraging Strategy Based on Local Interaction. SENSORS (BASEL, SWITZERLAND) 2023; 23:8050. [PMID: 37836880 PMCID: PMC10575063 DOI: 10.3390/s23198050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
This paper considers a multi-agent foraging problem, where multiple autonomous agents find resources (called pucks) in a bounded workspace and carry the found resources to a designated location, called the base. This article considers the case where autonomous agents move in unknown 3-D workspace with many obstacles. This article describes 3-D multi-agent foraging based on local interaction, which does not rely on global localization of an agent. This paper proposes a 3-D foraging strategy which has the following two steps. The first step is to detect all pucks inside the 3-D cluttered unknown workspace, such that every puck in the workspace is detected in a provably complete manner. The next step is to generate a path from the base to every puck, followed by collecting every puck to the base. Since an agent cannot use global localization, each agent depends on local interaction to bring every puck to the base. In this article, every agent on a path to a puck is used for guiding an agent to reach the puck and to bring the puck to the base. To the best of our knowledge, this article is novel in letting multiple agents perform foraging and puck carrying in 3-D cluttered unknown workspace, while not relying on global localization of an agent. In addition, the proposed search strategy is provably complete in detecting all pucks in the 3-D cluttered bounded workspace. MATLAB simulations demonstrate the outperformance of the proposed multi-agent foraging strategy in 3-D cluttered workspace.
Collapse
Affiliation(s)
- Jonghoek Kim
- System Engineering Department, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
6
|
Formaglio P, Wosniack ME, Tromer RM, Polli JG, Matos YB, Zhong H, Raposo EP, da Luz MGE, Amino R. Plasmodium sporozoite search strategy to locate hotspots of blood vessel invasion. Nat Commun 2023; 14:2965. [PMID: 37221182 DOI: 10.1038/s41467-023-38706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Plasmodium sporozoites actively migrate in the dermis and enter blood vessels to infect the liver. Despite their importance for malaria infection, little is known about these cutaneous processes. We combine intravital imaging in a rodent malaria model and statistical methods to unveil the parasite strategy to reach the bloodstream. We determine that sporozoites display a high-motility mode with a superdiffusive Lévy-like pattern known to optimize the location of scarce targets. When encountering blood vessels, sporozoites frequently switch to a subdiffusive low-motility behavior associated with probing for intravasation hotspots, marked by the presence of pericytes. Hence, sporozoites present anomalous diffusive motility, alternating between superdiffusive tissue exploration and subdiffusive local vessel exploitation, thus optimizing the sequential tasks of seeking blood vessels and pericyte-associated sites of privileged intravasation.
Collapse
Affiliation(s)
- Pauline Formaglio
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity Unit, 75015, Paris, France
| | | | - Raphael M Tromer
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078- 970, Natal-RN, Brazil
| | - Jaderson G Polli
- Departamento de Física, Universidade Federal do Paraná, 81531-980, Curitiba-PR, Brazil
| | - Yuri B Matos
- Departamento de Física, Universidade Federal do Paraná, 81531-980, Curitiba-PR, Brazil
| | - Hang Zhong
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity Unit, 75015, Paris, France
| | - Ernesto P Raposo
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife-PE, Brazil
| | - Marcos G E da Luz
- Departamento de Física, Universidade Federal do Paraná, 81531-980, Curitiba-PR, Brazil.
| | - Rogerio Amino
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity Unit, 75015, Paris, France.
| |
Collapse
|
7
|
Golnaraghi F, Quint DA, Gopinathan A. Optimal foraging strategies for mutually avoiding competitors. J Theor Biol 2023; 570:111537. [PMID: 37207720 DOI: 10.1016/j.jtbi.2023.111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Many animals are known to exhibit foraging patterns where the distances they travel in a given direction are drawn from a heavy-tailed Lévy distribution. Previous studies have shown that, under sparse and random resource conditions, solitary non-destructive (with regenerating resources) foragers perform a maximally efficient search with Lévy exponent μ equal to 2, while for destructive foragers, efficiency decreases with μ monotonically and there is no optimal μ. However, in nature, there also exist situations where multiple foragers, displaying avoidance behavior, interact with each other competitively. To understand the effects of such competition, we develop a stochastic agent-based simulation that models competitive foraging among mutually avoiding individuals by incorporating an avoidance zone, or territory, of a certain size around each forager which is not accessible for foraging by other competitors. For non-destructive foraging, our results show that with increasing size of the territory and number of agents the optimal Lévy exponent is still approximately 2 while the overall efficiency of the search decreases. At low values of the Lévy exponent, however, increasing territory size actually increases efficiency. For destructive foraging, we show that certain kinds of avoidance can lead to qualitatively different behavior from solitary foraging, such as the existence of an optimal search with 1<μ<2. Finally, we show that the variance among the efficiencies of the agents increases with increasing Lévy exponent for both solitary and competing foragers, suggesting that reducing variance might be a selective pressure for foragers adopting lower values of μ. Taken together, our results suggest that, for multiple foragers, mutual avoidance and efficiency variance among individuals can lead to optimal Lévy searches with exponents different from those for solitary foragers.
Collapse
Affiliation(s)
- Farnaz Golnaraghi
- Department of Physics, University of California - Merced, 5200 North Lake Road, Merced, 95343, CA, USA
| | - David A Quint
- Physical and Life Sciences (PLS), Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, 94550, CA, USA
| | - Ajay Gopinathan
- Department of Physics, University of California - Merced, 5200 North Lake Road, Merced, 95343, CA, USA.
| |
Collapse
|
8
|
Jones SA, Barfield JH, Norman VK, Shew WL. Scale-free behavioral dynamics directly linked with scale-free cortical dynamics. eLife 2023; 12:e79950. [PMID: 36705565 PMCID: PMC9931391 DOI: 10.7554/elife.79950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure. Scale-free dynamics of both brain and behavior are important because each is associated with functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation. Here, we show that scale-free dynamics of mouse behavior and neurons in the visual cortex are strongly related. Surprisingly, the scale-free neural activity is limited to specific subsets of neurons, and these scale-free subsets exhibit stochastic winner-take-all competition with other neural subsets. This observation is inconsistent with prevailing theories of scale-free dynamics in neural systems, which stem from the criticality hypothesis. We develop a computational model which incorporates known cell-type-specific circuit structure, explaining our findings with a new type of critical dynamics. Our results establish neural underpinnings of scale-free behavior and clear behavioral relevance of scale-free neural activity.
Collapse
Affiliation(s)
- Sabrina A Jones
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - Jacob H Barfield
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - V Kindler Norman
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - Woodrow L Shew
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| |
Collapse
|
9
|
Tommasi F, Fini L, Focardi S, Martelli F, Santini G, Cavalieri S. On the mean path length invariance property for random walks of animals in open environment. Sci Rep 2022; 12:19800. [PMID: 36396773 PMCID: PMC9672306 DOI: 10.1038/s41598-022-24361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Random walks are common in nature and are at the basis of many different phenomena that span from neutrons and light scattering to the behaviour of animals. Despite the evident differences among all these phenomena, theory predicts that they all share a common fascinating feature known as Invariance Property (IP). In a nutshell, IP means that the mean length of the total path of a random walker inside a closed domain is fixed by the geometry and size of the medium. Such a property has been demonstrated to hold not only in optics, but recently also in the field of biology, by studying the movement of bacteria. However, the range of validity of such a universal property, strictly linked to the fulfilment of equilibrium conditions and to the statistical distributions of the steps of the random walkers, is not trivial and needs to be studied in different contexts, such as in the case of biological entities occupied in random foraging in an open environment. Hence, in this paper the IP in a virtual medium inside an open environment has been studied by using actual movements of animals recorded in nature. In particular, we analysed the behaviour of a grazer mollusc, the chiton Acanthopleura granulata. The results depart from those predicted by the IP when the dimension of the medium increases. Such findings are framed in both the condition of nonequilibrium of the walkers, which is typical of animals in nature, and the characteristics of actual animal movements.
Collapse
Affiliation(s)
- Federico Tommasi
- Dipartimento di Fisica e Astronomia, Università di Firenze, Via Giovanni Sansone 1, 50019, Sesto Fiorentino, Italy.
| | - Lorenzo Fini
- Dipartimento di Fisica e Astronomia, Università di Firenze, Via Giovanni Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Stefano Focardi
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Fabrizio Martelli
- Dipartimento di Fisica e Astronomia, Università di Firenze, Via Giovanni Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Giacomo Santini
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - Stefano Cavalieri
- Dipartimento di Fisica e Astronomia, Università di Firenze, Via Giovanni Sansone 1, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Caramês LGP, Matos YB, Bartumeus F, Bezerra CG, Macrì T, da Luz MGE, Raposo EP, Viswanathan GM. Lévy walkers inside spherical shells with absorbing boundaries: Towards settling the optimal Lévy walk strategy for random searches. Phys Rev E 2022; 106:054147. [PMID: 36559395 DOI: 10.1103/physreve.106.054147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/29/2022] [Indexed: 06/17/2023]
Abstract
The Lévy flight foraging hypothesis states that organisms must have evolved adaptations to exploit Lévy walk search strategies. Indeed, it is widely accepted that inverse square Lévy walks optimize the search efficiency in foraging with unrestricted revisits (also known as nondestructive foraging). However, a mathematically rigorous demonstration of this for dimensions D≥2 is still lacking. Here we study the very closely related problem of a Lévy walker inside annuli or spherical shells with absorbing boundaries. In the limit that corresponds to the foraging with unrestricted revisits, we show that inverse square Lévy walks optimize the search. This constitutes the strongest formal result to date supporting the optimality of inverse square Lévy walks search strategies.
Collapse
Affiliation(s)
- L G P Caramês
- Department of Physics, Federal University of Rio Grande do Norte, 59078-900 Natal-RN, Brazil
| | - Y B Matos
- Departamento de Física, Universidade Federal do Paraná, 81531-980 Curitiba-PR, Brazil
| | - F Bartumeus
- Centre d'Estudis Avançats de Blanes-CEAB-CSIC, Girona 17300, Spain
- CREAF, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - C G Bezerra
- Department of Physics, Federal University of Rio Grande do Norte, 59078-900 Natal-RN, Brazil
| | - T Macrì
- Department of Physics, Federal University of Rio Grande do Norte, 59078-900 Natal-RN, Brazil
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
| | - M G E da Luz
- Departamento de Física, Universidade Federal do Paraná, 81531-980 Curitiba-PR, Brazil
| | - E P Raposo
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, Recife-PE 50670-901, Brazil
| | - G M Viswanathan
- Department of Physics, Federal University of Rio Grande do Norte, 59078-900 Natal-RN, Brazil
- National Institute of Science and Technology of Complex Systems, Federal University of Rio Grande do Norte, 59078-900 Natal-RN, Brazil
| |
Collapse
|
11
|
Andreas J, Beguš G, Bronstein MM, Diamant R, Delaney D, Gero S, Goldwasser S, Gruber DF, de Haas S, Malkin P, Pavlov N, Payne R, Petri G, Rus D, Sharma P, Tchernov D, Tønnesen P, Torralba A, Vogt D, Wood RJ. Toward understanding the communication in sperm whales. iScience 2022; 25:104393. [PMID: 35663036 PMCID: PMC9160774 DOI: 10.1016/j.isci.2022.104393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Machine learning has been advancing dramatically over the past decade. Most strides are human-based applications due to the availability of large-scale datasets; however, opportunities are ripe to apply this technology to more deeply understand non-human communication. We detail a scientific roadmap for advancing the understanding of communication of whales that can be built further upon as a template to decipher other forms of animal and non-human communication. Sperm whales, with their highly developed neuroanatomical features, cognitive abilities, social structures, and discrete click-based encoding make for an excellent model for advanced tools that can be applied to other animals in the future. We outline the key elements required for the collection and processing of massive datasets, detecting basic communication units and language-like higher-level structures, and validating models through interactive playback experiments. The technological capabilities developed by such an undertaking hold potential for cross-applications in broader communities investigating non-human communication and behavioral research.
Collapse
Affiliation(s)
- Jacob Andreas
- MIT CSAIL, Cambridge, MA, USA
- Project CETI, New York, NY, USA
| | - Gašper Beguš
- Department of Linguistics, University of California, Berkeley, CA, USA
- Project CETI, New York, NY, USA
| | - Michael M. Bronstein
- Department of Computer Science, University of Oxford, Oxford, UK
- IDSIA, University of Lugano, Lugano, Switzerland
- Twitter, London, UK
- Project CETI, New York, NY, USA
| | - Roee Diamant
- Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Project CETI, New York, NY, USA
| | - Denley Delaney
- Exploration Technology Lab, National Geographic Society, Washington DC, USA
- Project CETI, New York, NY, USA
| | - Shane Gero
- Dominica Sperm Whale Project, Roseau, Commonwealth of Dominica
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Project CETI, New York, NY, USA
| | - Shafi Goldwasser
- Simons Institute for the Theory of Computing, University of California, Berkeley, CA, USA
| | - David F. Gruber
- Department of Natural Sciences, Baruch College and The Graduate Center, PhD Program in Biology, City University of New York, New York, NY, USA
- Project CETI, New York, NY, USA
| | - Sarah de Haas
- Google Research, Mountain View, CA USA
- Project CETI, New York, NY, USA
| | - Peter Malkin
- Google Research, Mountain View, CA USA
- Project CETI, New York, NY, USA
| | | | | | - Giovanni Petri
- ISI Foundation, Turin, Italy
- Project CETI, New York, NY, USA
| | - Daniela Rus
- MIT CSAIL, Cambridge, MA, USA
- Project CETI, New York, NY, USA
| | | | - Dan Tchernov
- Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Project CETI, New York, NY, USA
| | - Pernille Tønnesen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Project CETI, New York, NY, USA
| | | | - Daniel Vogt
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Project CETI, New York, NY, USA
| | - Robert J. Wood
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Project CETI, New York, NY, USA
| |
Collapse
|
12
|
Xu P, Metzler R, Wang W. Infinite density and relaxation for Lévy walks in an external potential: Hermite polynomial approach. Phys Rev E 2022; 105:044118. [PMID: 35590616 DOI: 10.1103/physreve.105.044118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Lévy walks are continuous-time random-walk processes with a spatiotemporal coupling of jump lengths and waiting times. We here apply the Hermite polynomial method to study the behavior of LWs with power-law walking time density for four different cases. First we show that the known result for the infinite density of an unconfined, unbiased LW is consistently recovered. We then derive the asymptotic behavior of the probability density function (PDF) for LWs in a constant force field, and we obtain the corresponding qth-order moments. In a harmonic external potential we derive the relaxation dynamic of the LW. For the case of a Poissonian walking time an exponential relaxation behavior is shown to emerge. Conversely, a power-law decay is obtained when the mean walking time diverges. Finally, we consider the case of an unconfined, unbiased LW with decaying speed v(τ)=v_{0}/sqrt[τ]. When the mean walking time is finite, a universal Gaussian law for the position-PDF of the walker is obtained explicitly.
Collapse
Affiliation(s)
- Pengbo Xu
- School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Wanli Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
13
|
Ando K, Yoshikawa T, Kozakai C, Yamazaki K, Naganuma T, Inagaki A, Koike S. Composite Brownian walks best explain the movement patterns of Asian black bears, irrespective of sex, seasonality, and food availability. Ecol Res 2022. [DOI: 10.1111/1440-1703.12310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyohei Ando
- Graduate School of Agriculture Tokyo University of Agriculture and Technology Tokyo Japan
| | - Tetsuro Yoshikawa
- Biodiversity Division National Institute for Environmental Studies Tsukuba Japan
| | - Chinatsu Kozakai
- Institute of Livestock and Grassland Science National Agriculture and Food Research Organization Tsukuba Japan
| | - Koji Yamazaki
- Faculty of Regional Environment Science Tokyo University of Agriculture Tokyo Japan
| | - Tomoko Naganuma
- Graduate School of Agriculture Tokyo University of Agriculture and Technology Tokyo Japan
| | - Akino Inagaki
- Graduate School of Agriculture Tokyo University of Agriculture and Technology Tokyo Japan
| | - Shinsuke Koike
- Graduate School of Agriculture Tokyo University of Agriculture and Technology Tokyo Japan
| |
Collapse
|
14
|
Castiblanco J, Cristaldo PF, Paiva LR, DeSouza O. Social context modulates scale-free movements in a social insect. J Theor Biol 2022; 542:111106. [DOI: 10.1016/j.jtbi.2022.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
|
15
|
Rajakaruna H, O'Connor JH, Cockburn IA, Ganusov VV. Liver Environment-Imposed Constraints Diversify Movement Strategies of Liver-Localized CD8 T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1292-1304. [PMID: 35131868 PMCID: PMC9250760 DOI: 10.4049/jimmunol.2100842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/17/2021] [Indexed: 05/11/2023]
Abstract
Pathogen-specific CD8 T cells face the problem of finding rare cells that present their cognate Ag either in the lymph node or in infected tissue. Although quantitative details of T cell movement strategies in some tissues such as lymph nodes or skin have been relatively well characterized, we still lack quantitative understanding of T cell movement in many other important tissues, such as the spleen, lung, liver, and gut. We developed a protocol to generate stable numbers of liver-located CD8 T cells, used intravital microscopy to record movement patterns of CD8 T cells in livers of live mice, and analyzed these and previously published data using well-established statistical and computational methods. We show that, in most of our experiments, Plasmodium-specific liver-localized CD8 T cells perform correlated random walks characterized by transiently superdiffusive displacement with persistence times of 10-15 min that exceed those observed for T cells in lymph nodes. Liver-localized CD8 T cells typically crawl on the luminal side of liver sinusoids (i.e., are in the blood); simulating T cell movement in digital structures derived from the liver sinusoids illustrates that liver structure alone is sufficient to explain the relatively long superdiffusive displacement of T cells. In experiments when CD8 T cells in the liver poorly attach to the sinusoids (e.g., 1 wk after immunization with radiation-attenuated Plasmodium sporozoites), T cells also undergo Lévy flights: large displacements occurring due to cells detaching from the endothelium, floating with the blood flow, and reattaching at another location. Our analysis thus provides quantitative details of movement patterns of liver-localized CD8 T cells and illustrates how structural and physiological details of the tissue may impact T cell movement patterns.
Collapse
Affiliation(s)
| | - James H O'Connor
- Division of Immunology, Inflammation and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; and
- Australian National University Medical School, Acton, Australian Capital Territory, Australia
| | - Ian A Cockburn
- Division of Immunology, Inflammation and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; and
| | - Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN;
| |
Collapse
|
16
|
Campeau W, Simons AM, Stevens B. The evolutionary maintenance of Lévy flight foraging. PLoS Comput Biol 2022; 18:e1009490. [PMID: 35041659 PMCID: PMC8797186 DOI: 10.1371/journal.pcbi.1009490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/28/2022] [Accepted: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
Lévy flight is a type of random walk that characterizes the behaviour of many natural phenomena studied across a multiplicity of academic disciplines; within biology specifically, the behaviour of fish, birds, insects, mollusks, bacteria, plants, slime molds, t-cells, and human populations. The Lévy flight foraging hypothesis states that because Lévy flights can maximize an organism's search efficiency, natural selection should result in Lévy-like behaviour. Empirical and theoretical research has provided ample evidence of Lévy walks in both extinct and extant species, and its efficiency across models with a diversity of resource distributions. However, no model has addressed the maintenance of Lévy flight foraging through evolutionary processes, and existing models lack ecological breadth. We use numerical simulations, including lineage-based models of evolution with a distribution of move lengths as a variable and heritable trait, to test the Lévy flight foraging hypothesis. We include biological and ecological contexts such as population size, searching costs, lifespan, resource distribution, speed, and consider both energy accumulated at the end of a lifespan and averaged over a lifespan. We demonstrate that selection often results in Lévy-like behaviour, although conditional; smaller populations, longer searches, and low searching costs increase the fitness of Lévy-like behaviour relative to Brownian behaviour. Interestingly, our results also evidence a bet-hedging strategy; Lévy-like behaviour reduces fitness variance, thus maximizing geometric mean fitness over multiple generations.
Collapse
Affiliation(s)
- Winston Campeau
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Andrew M. Simons
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Brett Stevens
- School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Paoluzzi M, Gnan N, Grassi F, Salvetti M, Vanacore N, Crisanti A. A single-agent extension of the SIR model describes the impact of mobility restrictions on the COVID-19 epidemic. Sci Rep 2021; 11:24467. [PMID: 34963680 PMCID: PMC8714823 DOI: 10.1038/s41598-021-03721-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/07/2021] [Indexed: 12/04/2022] Open
Abstract
Mobility restrictions are successfully used to contain the diffusion of epidemics. In this work we explore their effect on the epidemic growth by investigating an extension of the Susceptible-Infected-Removed (SIR) model in which individual mobility is taken into account. In the model individual agents move on a chessboard with a Lévy walk and, within each square, epidemic spreading follows the standard SIR model. These simple rules allow to reproduce the sub-exponential growth of the epidemic evolution observed during the Covid-19 epidemic waves in several countries and which cannot be captured by the standard SIR model. We show that we can tune the slowing-down of the epidemic spreading by changing the dynamics of the agents from Lévy to Brownian and we investigate how the interplay among different containment strategies mitigate the epidemic spreading. Finally we demonstrate that we can reproduce the epidemic evolution of the first and second COVID-19 waves in Italy using only 3 parameters, i.e , the infection rate, the removing rate, and the mobility in the country. We provide an estimate of the peak reduction due to imposed mobility restrictions, i. e., the so-called flattening the curve effect. Although based on few ingredients, the model captures the kinetic of the epidemic waves, returning mobility values that are consistent with a lock-down intervention during the first wave and milder limitations, associated to a weaker peak reduction, during the second wave.
Collapse
Affiliation(s)
- Matteo Paoluzzi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, C. Martí Franquès 1, 08028, Barcelona, Spain.
| | - Nicoletta Gnan
- CNR-ISC, Institute for Complex Systems UOS "Sapienza", Piazzale A. Moro 2, 00185, Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Francesca Grassi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Crisanti
- CNR-ISC, Institute for Complex Systems UOS "Sapienza", Piazzale A. Moro 2, 00185, Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Garcia-Saura C, Serrano E, Rodriguez FB, Varona P. Intrinsic and environmental factors modulating autonomous robotic search under high uncertainty. Sci Rep 2021; 11:24509. [PMID: 34972831 PMCID: PMC8720098 DOI: 10.1038/s41598-021-03826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/03/2021] [Indexed: 11/15/2022] Open
Abstract
Autonomous robotic search problems deal with different levels of uncertainty. When uncertainty is low, deterministic strategies employing available knowledge result in most effective searches. However, there are domains where uncertainty is always high since information about robot location, environment boundaries or precise reference points is unattainable, e.g., in cave, deep ocean, planetary exploration, or upon sensor or communications impairment. Furthermore, latency regarding when search targets move, appear or disappear add to uncertainty sources. Here we study intrinsic and environmental factors that affect low-informed robotic search based on diffusive Brownian, naive ballistic, and superdiffusive strategies (Lévy walks), and in particular, the effectiveness of their random exploration. Representative strategies were evaluated considering both intrinsic (motion drift, energy or memory limitations) and extrinsic factors (obstacles and search boundaries). Our results point towards minimum-knowledge based modulation approaches that can adjust distinct spatial and temporal aspects of random exploration to lead to effective autonomous search under uncertainty.
Collapse
|
19
|
Hunt LT, Daw ND, Kaanders P, MacIver MA, Mugan U, Procyk E, Redish AD, Russo E, Scholl J, Stachenfeld K, Wilson CRE, Kolling N. Formalizing planning and information search in naturalistic decision-making. Nat Neurosci 2021; 24:1051-1064. [PMID: 34155400 DOI: 10.1038/s41593-021-00866-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/23/2021] [Indexed: 02/05/2023]
Abstract
Decisions made by mammals and birds are often temporally extended. They require planning and sampling of decision-relevant information. Our understanding of such decision-making remains in its infancy compared with simpler, forced-choice paradigms. However, recent advances in algorithms supporting planning and information search provide a lens through which we can explain neural and behavioral data in these tasks. We review these advances to obtain a clearer understanding for why planning and curiosity originated in certain species but not others; how activity in the medial temporal lobe, prefrontal and cingulate cortices may support these behaviors; and how planning and information search may complement each other as means to improve future action selection.
Collapse
Affiliation(s)
- L T Hunt
- Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - N D Daw
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - P Kaanders
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - M A MacIver
- Center for Robotics and Biosystems, Department of Neurobiology, Department of Biomedical Engineering, Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - U Mugan
- Center for Robotics and Biosystems, Department of Neurobiology, Department of Biomedical Engineering, Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - E Procyk
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France
| | - A D Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - E Russo
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - J Scholl
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | | | - C R E Wilson
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France
| | - N Kolling
- Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Campos D, Cristín J, Méndez V. Optimal escape-and-feeding dynamics of random walkers: Rethinking the convenience of ballistic strategies. Phys Rev E 2021; 103:052109. [PMID: 34134199 DOI: 10.1103/physreve.103.052109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/13/2021] [Indexed: 11/07/2022]
Abstract
Excited random walks represent a convenient model to study food intake in a media which is progressively depleted by the walker. Trajectories in the model alternate between (i) feeding and (ii) escape (when food is missed and so it must be found again) periods, each governed by different movement rules. Here, we explore the case where the escape dynamics is adaptive, so at short times an area-restricted search is carried out, and a switch to extensive or ballistic motion occurs later if necessary. We derive for this case explicit analytical expressions of the mean escape time and the asymptotic growth of the depleted region in one dimension. These, together with numerical results in two dimensions, provide surprising evidence that ballistic searches are detrimental in such scenarios, a result which could explain why ballistic movement is barely observed in animal searches at microscopic and millimetric scales, therefore providing significant implications for biological foraging.
Collapse
Affiliation(s)
- Daniel Campos
- Grup de Física Estadística, Departament de Física. Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Javier Cristín
- Grup de Física Estadística, Departament de Física. Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Vicenç Méndez
- Grup de Física Estadística, Departament de Física. Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| |
Collapse
|
21
|
Fengler A, Govindarajan LN, Chen T, Frank MJ. Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience. eLife 2021; 10:e65074. [PMID: 33821788 PMCID: PMC8102064 DOI: 10.7554/elife.65074] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
In cognitive neuroscience, computational modeling can formally adjudicate between theories and affords quantitative fits to behavioral/brain data. Pragmatically, however, the space of plausible generative models considered is dramatically limited by the set of models with known likelihood functions. For many models, the lack of a closed-form likelihood typically impedes Bayesian inference methods. As a result, standard models are evaluated for convenience, even when other models might be superior. Likelihood-free methods exist but are limited by their computational cost or their restriction to particular inference scenarios. Here, we propose neural networks that learn approximate likelihoods for arbitrary generative models, allowing fast posterior sampling with only a one-off cost for model simulations that is amortized for future inference. We show that these methods can accurately recover posterior parameter distributions for a variety of neurocognitive process models. We provide code allowing users to deploy these methods for arbitrary hierarchical model instantiations without further training.
Collapse
Affiliation(s)
- Alexander Fengler
- Department of Cognitive, Linguistic and Psychological Sciences, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Lakshmi N Govindarajan
- Department of Cognitive, Linguistic and Psychological Sciences, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Tony Chen
- Psychology and Neuroscience Department, Boston CollegeChestnut HillUnited States
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| |
Collapse
|
22
|
Han D, da Silva MAA, Korabel N, Fedotov S. Self-reinforcing directionality generates truncated Lévy walks without the power-law assumption. Phys Rev E 2021; 103:022132. [PMID: 33735984 DOI: 10.1103/physreve.103.022132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/22/2021] [Indexed: 12/28/2022]
Abstract
We introduce a persistent random walk model with finite velocity and self-reinforcing directionality, which explains how exponentially distributed runs self-organize into truncated Lévy walks observed in active intracellular transport by Chen et al. [Nature Mater., 14, 589 (2015)10.1038/nmat4239]. We derive the nonhomogeneous in space and time, hyperbolic partial differential equation for the probability density function (PDF) of particle position. This PDF exhibits a bimodal density (aggregation phenomena) in the superdiffusive regime, which is not observed in classical linear hyperbolic and Lévy walk models. We find the exact solutions for the first and second moments and criteria for the transition to superdiffusion.
Collapse
Affiliation(s)
- Daniel Han
- Department of Mathematics, University of Manchester M13 9PL, United Kingdom
| | - Marco A A da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Ribeirão Preto 14040-900, Brazil
| | - Nickolay Korabel
- Department of Mathematics, University of Manchester M13 9PL, United Kingdom
| | - Sergei Fedotov
- Department of Mathematics, University of Manchester M13 9PL, United Kingdom
| |
Collapse
|
23
|
Reijers VC, Hoeks S, van Belzen J, Siteur K, de Rond AJA, van de Ven CN, Lammers C, van de Koppel J, van der Heide T. Sediment availability provokes a shift from Brownian to Lévy-like clonal expansion in a dune building grass. Ecol Lett 2021; 24:258-268. [PMID: 33179408 PMCID: PMC7839770 DOI: 10.1111/ele.13638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 01/03/2023]
Abstract
In biogeomorphic landscapes, plant traits can steer landscape development through plant-mediated feedback interactions. Interspecific differences in clonal expansion strategy can therefore lead to the emergence of different landscape organisations. Yet, whether landscape-forming plants adopt different clonal expansion strategies depending on their physical environment remains to be tested. Here, we use a field survey and a complementary mesocosm approach to investigate whether sediment deposition affects the clonal expansion strategy employed by dune-building marram grass individuals. Our results reveal a consistent shift in expansion pattern from more clumped, Brownian-like, movement in sediment-poor conditions, to patchier, Lévy-like, movement under high sediment supply rates. Additional model simulations illustrate that the sediment-dependent shift in movement strategies induces a shift in optimisation of the cost-benefit relation between landscape engineering (i.e. dune formation) and expansion. Plasticity in expansion strategy may therefore allow landscape-forming plants to optimise their engineering ability depending on their physical landscape.
Collapse
Affiliation(s)
- Valérie C. Reijers
- Department of Coastal SystemsRoyal Netherlands Institute for Sea Research and Utrecht UniversityP.O. Box 59Den Burg1790 ABthe Netherlands
- Department of Aquatic Ecology & Environmental BiologyFaculty of ScienceInstitute for Water and Wetland ResearchRadboud UniversityP.O. Box 9010Nijmegen6500 GLThe Netherlands
- Department of Physical GeographyFaculty of GeosciencesUtrecht UniversityUtrecht3508 TCthe Netherlands
| | - Selwyn Hoeks
- Department of Aquatic Ecology & Environmental BiologyFaculty of ScienceInstitute for Water and Wetland ResearchRadboud UniversityP.O. Box 9010Nijmegen6500 GLThe Netherlands
- Department of Environmental ScienceFaculty of ScienceInstitute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJthe Netherlands
| | - Jim van Belzen
- Department of Estuarine and Delta SystemsRoyal Netherlands Institute of Sea Research and Utrecht UniversityYerseke4401 NTthe Netherlands
| | - Koen Siteur
- Department of Estuarine and Delta SystemsRoyal Netherlands Institute of Sea Research and Utrecht UniversityYerseke4401 NTthe Netherlands
- Shanghai Key Laboratory for Urban Ecological Processes and Eco‐Restoration & Center for Global Change and Ecological ForecastingSchool of Ecological and Environmental ScienceEast China Normal UniversityShanghai200241China
| | - Anne J. A. de Rond
- Department of Aquatic Ecology & Environmental BiologyFaculty of ScienceInstitute for Water and Wetland ResearchRadboud UniversityP.O. Box 9010Nijmegen6500 GLThe Netherlands
| | - Clea N. van de Ven
- Department of Coastal SystemsRoyal Netherlands Institute for Sea Research and Utrecht UniversityP.O. Box 59Den Burg1790 ABthe Netherlands
| | - Carlijn Lammers
- Department of Coastal SystemsRoyal Netherlands Institute for Sea Research and Utrecht UniversityP.O. Box 59Den Burg1790 ABthe Netherlands
- Department of Aquatic Ecology & Environmental BiologyFaculty of ScienceInstitute for Water and Wetland ResearchRadboud UniversityP.O. Box 9010Nijmegen6500 GLThe Netherlands
| | - Johan van de Koppel
- Department of Estuarine and Delta SystemsRoyal Netherlands Institute of Sea Research and Utrecht UniversityYerseke4401 NTthe Netherlands
- Conservation Ecology GroupGroningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningen9700 CCthe Netherlands
| | - Tjisse van der Heide
- Department of Coastal SystemsRoyal Netherlands Institute for Sea Research and Utrecht UniversityP.O. Box 59Den Burg1790 ABthe Netherlands
- Department of Aquatic Ecology & Environmental BiologyFaculty of ScienceInstitute for Water and Wetland ResearchRadboud UniversityP.O. Box 9010Nijmegen6500 GLThe Netherlands
- Conservation Ecology GroupGroningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningen9700 CCthe Netherlands
| |
Collapse
|
24
|
López-Incera A, Ried K, Müller T, Briegel HJ. Development of swarm behavior in artificial learning agents that adapt to different foraging environments. PLoS One 2020; 15:e0243628. [PMID: 33338066 PMCID: PMC7748156 DOI: 10.1371/journal.pone.0243628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022] Open
Abstract
Collective behavior, and swarm formation in particular, has been studied from several perspectives within a large variety of fields, ranging from biology to physics. In this work, we apply Projective Simulation to model each individual as an artificial learning agent that interacts with its neighbors and surroundings in order to make decisions and learn from them. Within a reinforcement learning framework, we discuss one-dimensional learning scenarios where agents need to get to food resources to be rewarded. We observe how different types of collective motion emerge depending on the distance the agents need to travel to reach the resources. For instance, strongly aligned swarms emerge when the food source is placed far away from the region where agents are situated initially. In addition, we study the properties of the individual trajectories that occur within the different types of emergent collective dynamics. Agents trained to find distant resources exhibit individual trajectories that are in most cases best fit by composite correlated random walks with features that resemble Lévy walks. This composite motion emerges from the collective behavior developed under the specific foraging selection pressures. On the other hand, agents trained to reach nearby resources predominantly exhibit Brownian trajectories.
Collapse
Affiliation(s)
- Andrea López-Incera
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck, Austria
| | - Katja Ried
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck, Austria
| | - Thomas Müller
- Fachbereich Philosophie, Universität Konstanz, Konstanz, Germany
| | - Hans J. Briegel
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck, Austria
- Fachbereich Philosophie, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
25
|
Hunters, busybodies and the knowledge network building associated with deprivation curiosity. Nat Hum Behav 2020; 5:327-336. [PMID: 33257879 DOI: 10.1038/s41562-020-00985-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 09/24/2020] [Indexed: 11/08/2022]
Abstract
The open-ended and internally driven nature of curiosity makes characterizing the information seeking that accompanies it a daunting endeavour. We use a historico-philosophical taxonomy of information seeking coupled with a knowledge network building framework to capture styles of information-seeking in 149 participants as they explore Wikipedia for over 5 hours spanning 21 days. We create knowledge networks in which nodes represent distinct concepts and edges represent the similarity between concepts. We quantify the tightness of knowledge networks using graph theoretical indices and use a generative model of network growth to explore mechanisms underlying information-seeking. Deprivation curiosity (the tendency to seek information that eliminates knowledge gaps) is associated with the creation of relatively tight networks and a relatively greater tendency to return to previously visited concepts. With this framework in hand, future research can readily quantify the information seeking associated with curiosity.
Collapse
|
26
|
Zhou D, Lydon-Staley DM, Zurn P, Bassett DS. The growth and form of knowledge networks by kinesthetic curiosity. Curr Opin Behav Sci 2020; 35:125-134. [PMID: 34355045 PMCID: PMC8330694 DOI: 10.1016/j.cobeha.2020.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Throughout life, we might seek a calling, companions, skills, entertainment, truth, self-knowledge, beauty, and edification. The practice of curiosity can be viewed as an extended and open-ended search for valuable information with hidden identity and location in a complex space of interconnected information. Despite its importance, curiosity has been challenging to computationally model because the practice of curiosity often flourishes without specific goals, external reward, or immediate feedback. Here, we show how network science, statistical physics, and philosophy can be integrated into an approach that coheres with and expands the psychological taxonomies of specific-diversive and perceptual-epistemic curiosity. Using this interdisciplinary approach, we distill functional modes of curious information seeking as searching movements in information space. The kinesthetic model of curiosity offers a vibrant counterpart to the deliberative predictions of model-based reinforcement learning. In doing so, this model unearths new computational opportunities for identifying what makes curiosity curious.
Collapse
Affiliation(s)
- Dale Zhou
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M. Lydon-Staley
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania
- Annenberg School for Communication, University of Pennsylvania
- Leonard Davis Institute of Health Economics, University of Pennsylvania
| | - Perry Zurn
- Department of Philosophy & Religion, American University, Washington, D.C
| | - Danielle S. Bassett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania
- Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania
- Department of Electrical & Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania
- Santa Fe Institute, Santa Fe, NM 87501 USA
| |
Collapse
|
27
|
Chen C, Murphey TD, MacIver MA. Tuning movement for sensing in an uncertain world. eLife 2020; 9:e52371. [PMID: 32959777 PMCID: PMC7508562 DOI: 10.7554/elife.52371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 08/07/2020] [Indexed: 01/01/2023] Open
Abstract
While animals track or search for targets, sensory organs make small unexplained movements on top of the primary task-related motions. While multiple theories for these movements exist-in that they support infotaxis, gain adaptation, spectral whitening, and high-pass filtering-predicted trajectories show poor fit to measured trajectories. We propose a new theory for these movements called energy-constrained proportional betting, where the probability of moving to a location is proportional to an expectation of how informative it will be balanced against the movement's predicted energetic cost. Trajectories generated in this way show good agreement with measured trajectories of fish tracking an object using electrosense, a mammal and an insect localizing an odor source, and a moth tracking a flower using vision. Our theory unifies the metabolic cost of motion with information theory. It predicts sense organ movements in animals and can prescribe sensor motion for robots to enhance performance.
Collapse
Affiliation(s)
- Chen Chen
- Center for Robotics and Biosystems, Northwestern UniversityEvanstonUnited States
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Todd D Murphey
- Center for Robotics and Biosystems, Northwestern UniversityEvanstonUnited States
- Department of Mechanical Engineering, Northwestern UniversityEvanstonUnited States
| | - Malcolm A MacIver
- Center for Robotics and Biosystems, Northwestern UniversityEvanstonUnited States
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
- Department of Mechanical Engineering, Northwestern UniversityEvanstonUnited States
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
28
|
Abstract
A special class of random walks, so-called Lévy walks, has been observed in a variety of organisms ranging from cells, insects, fishes, and birds to mammals, including humans. Although their prevalence is considered to be a consequence of natural selection for higher search efficiency, some findings suggest that Lévy walks might also be epiphenomena that arise from interactions with the environment. Therefore, why they are common in biological movements remains an open question. Based on some evidence that Lévy walks are spontaneously generated in the brain and the fact that power-law distributions in Lévy walks can emerge at a critical point, we hypothesized that the advantages of Lévy walks might be enhanced by criticality. However, the functional advantages of Lévy walks are poorly understood. Here, we modeled nonlinear systems for the generation of locomotion and showed that Lévy walks emerging near a critical point had optimal dynamic ranges for coding information. This discovery suggested that Lévy walks could change movement trajectories based on the magnitude of environmental stimuli. We then showed that the high flexibility of Lévy walks enabled switching exploitation/exploration based on the nature of external cues. Finally, we analyzed the movement trajectories of freely moving Drosophila larvae and showed empirically that the Lévy walks may emerge near a critical point and have large dynamic range and high flexibility. Our results suggest that the commonly observed Lévy walks emerge near a critical point and could be explained on the basis of these functional advantages.
Collapse
|
29
|
Nauta J, Khaluf Y, Simoens P. Hybrid foraging in patchy environments using spatial memory. J R Soc Interface 2020; 17:20200026. [PMID: 32429823 DOI: 10.1098/rsif.2020.0026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Efficient random searches are essential to the survival of foragers searching for sparsely distributed targets. Lévy walks have been found to optimize the search over a wide range of constraints. When targets are distributed within patches, generating a spatial memory over the detected targets can be beneficial towards optimizing the search efficiency. Because foragers have limited memory, storing each target location separately is unrealistic. Instead, we propose incrementally learning a spatial distribution in favour of memorizing target locations. We demonstrate that an ensemble of Gaussian mixture models is a suitable candidate for such a spatial distribution. Using this, a hybrid foraging strategy is proposed, which interchanges random searches with informed movement. Informed movement results in displacements towards target locations, and is more likely to occur if the learned spatial distribution is correct. We show that, depending on the strength of the memory effects, foragers optimize search efficiencies by continuous revisitation of non-destructive targets. However, this negatively affects both the target and patch diversity, indicating that memory does not necessarily optimize multi-objective searches. Hence, the benefits of memory depend on the specific goals of the forager. Furthermore, through analysis of the distribution over walking distances of the forager, we show that memory changes the underlying walk characteristics. Specifically, the forager resorts to Brownian motion instead of Lévy walks, due to truncation of the long straight line displacements resulting from memory effects. This study provides a framework that opens up new avenues for investigating memory effects on foraging in sparse environments.
Collapse
Affiliation(s)
- Johannes Nauta
- Department of Information Technology-IDLab, Ghent University-imec, Technologiepark Zwijnaarde 126, 9052 Ghent, Belgium
| | - Yara Khaluf
- Department of Information Technology-IDLab, Ghent University-imec, Technologiepark Zwijnaarde 126, 9052 Ghent, Belgium
| | - Pieter Simoens
- Department of Information Technology-IDLab, Ghent University-imec, Technologiepark Zwijnaarde 126, 9052 Ghent, Belgium
| |
Collapse
|
30
|
Levernier N, Textor J, Bénichou O, Voituriez R. Inverse Square Lévy Walks are not Optimal Search Strategies for d≥2. PHYSICAL REVIEW LETTERS 2020; 124:080601. [PMID: 32167352 DOI: 10.1103/physrevlett.124.080601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The Lévy hypothesis states that inverse square Lévy walks are optimal search strategies because they maximize the encounter rate with sparse, randomly distributed, replenishable targets. It has served as a theoretical basis to interpret a wealth of experimental data at various scales, from molecular motors to animals looking for resources, putting forward the conclusion that many living organisms perform Lévy walks to explore space because of their optimal efficiency. Here we provide analytically the dependence on target density of the encounter rate of Lévy walks for any space dimension d; in particular, this scaling is shown to be independent of the Lévy exponent α for the biologically relevant case d≥2, which proves that the founding result of the Lévy hypothesis is incorrect. As a consequence, we show that optimizing the encounter rate with respect to α is irrelevant: it does not change the scaling with density and can lead virtually to any optimal value of α depending on system dependent modeling choices. The conclusion that observed inverse square Lévy patterns are the result of a common selection process based purely on the kinetics of the search behavior is therefore unfounded.
Collapse
Affiliation(s)
- Nicolas Levernier
- Department of Theoretical Physics, University of Geneva, 1211 Geneva 4, Switzerland
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Johannes Textor
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 EZ Nijmegen, Netherlands
- Institute for Computing and Information Sciences, Radboud University, 6525 EZ Nijmegen, Netherlands
| | - Olivier Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS/UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS/UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
- Laboratoire Jean Perrin, UMR 8237 CNRS/UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
| |
Collapse
|
31
|
Sims DW, Humphries NE, Hu N, Medan V, Berni J. Optimal searching behaviour generated intrinsically by the central pattern generator for locomotion. eLife 2019; 8:e50316. [PMID: 31674911 PMCID: PMC6879304 DOI: 10.7554/elife.50316] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/24/2019] [Indexed: 01/01/2023] Open
Abstract
Efficient searching for resources such as food by animals is key to their survival. It has been proposed that diverse animals from insects to sharks and humans adopt searching patterns that resemble a simple Lévy random walk, which is theoretically optimal for 'blind foragers' to locate sparse, patchy resources. To test if such patterns are generated intrinsically, or arise via environmental interactions, we tracked free-moving Drosophila larvae with (and without) blocked synaptic activity in the brain, suboesophageal ganglion (SOG) and sensory neurons. In brain-blocked larvae, we found that extended substrate exploration emerges as multi-scale movement paths similar to truncated Lévy walks. Strikingly, power-law exponents of brain/SOG/sensory-blocked larvae averaged 1.96, close to a theoretical optimum (µ ≅ 2.0) for locating sparse resources. Thus, efficient spatial exploration can emerge from autonomous patterns in neural activity. Our results provide the strongest evidence so far for the intrinsic generation of Lévy-like movement patterns.
Collapse
Affiliation(s)
- David W Sims
- The Marine Biological Association of the United KingdomPlymouthUnited Kingdom
- Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUnited Kingdom
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Nicolas E Humphries
- The Marine Biological Association of the United KingdomPlymouthUnited Kingdom
| | - Nan Hu
- Department of ZoologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Violeta Medan
- Departamento de Fisiología, Biología Molecular y CelularFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET)Buenos AiresArgentina
| | - Jimena Berni
- Department of ZoologyUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
32
|
Reijers VC, Siteur K, Hoeks S, van Belzen J, Borst ACW, Heusinkveld JHT, Govers LL, Bouma TJ, Lamers LPM, van de Koppel J, van der Heide T. A Lévy expansion strategy optimizes early dune building by beach grasses. Nat Commun 2019; 10:2656. [PMID: 31201336 PMCID: PMC6572860 DOI: 10.1038/s41467-019-10699-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/28/2019] [Indexed: 01/22/2023] Open
Abstract
Lifeforms ranging from bacteria to humans employ specialized random movement patterns. Although effective as optimization strategies in many scientific fields, random walk application in biology has remained focused on search optimization by mobile organisms. Here, we report on the discovery that heavy-tailed random walks underlie the ability of clonally expanding plants to self-organize and dictate the formation of biogeomorphic landscapes. Using cross-Atlantic surveys, we show that congeneric beach grasses adopt distinct heavy-tailed clonal expansion strategies. Next, we demonstrate with a spatially explicit model and a field experiment that the Lévy-type strategy of the species building the highest dunes worldwide generates a clonal network with a patchy shoot organization that optimizes sand trapping efficiency. Our findings demonstrate Lévy-like movement in plants, and emphasize the role of species-specific expansion strategies in landscape formation. This mechanistic understanding paves the way for tailor-made planting designs to successfully construct and restore biogeomorphic landscapes and their services.
Collapse
Affiliation(s)
- Valérie C Reijers
- Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University, Faculty of Science, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands.
| | - Koen Siteur
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration & Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Science, East China Normal University, 200241, Shanghai, China
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research and Utrecht University, Yerseke, NT, 4401, The Netherlands
| | - Selwyn Hoeks
- Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University, Faculty of Science, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, Faculty of Science, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Jim van Belzen
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research and Utrecht University, Yerseke, NT, 4401, The Netherlands
- Ecosystem Management Research Group, University of Antwerp, Wilrijk, 2610, Belgium
| | - Annieke C W Borst
- Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University, Faculty of Science, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | | | - Laura L Govers
- Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University, Faculty of Science, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, CC, 9700, The Netherlands
| | - Tjeerd J Bouma
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research and Utrecht University, Yerseke, NT, 4401, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, CC, 9700, The Netherlands
- Faculty of Geosciences, Department of Physical Geography, Utrecht University, Utrecht, TC, 3508, Netherlands
| | - Leon P M Lamers
- Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University, Faculty of Science, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Johan van de Koppel
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research and Utrecht University, Yerseke, NT, 4401, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, CC, 9700, The Netherlands
| | - Tjisse van der Heide
- Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University, Faculty of Science, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, CC, 9700, The Netherlands
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, AB, 1790, The Netherlands
| |
Collapse
|
33
|
Murakami H, Feliciani C, Nishinari K. Lévy walk process in self-organization of pedestrian crowds. J R Soc Interface 2019; 16:20180939. [PMID: 30966950 DOI: 10.1098/rsif.2018.0939] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Similar to other animal groups, human crowds exhibit various collective patterns that emerge from self-organization. Recent studies have emphasized that individuals anticipate their neighbours' motions to seek their paths in dynamical pedestrian flow. This path-seeking behaviour results in deviation of pedestrians from their desired directions (i.e. the direct path to their destination). However, the strategies that individuals adopt for the behaviour and how the deviation of individual movements impact the emergent organization are poorly understood. We here show that the path-seeking behaviour is performed through a scale-free movement strategy called a Lévy walk, which might facilitate transition to the group-level behaviour. In an experiment of lane formation, a striking example of self-organized patterning in human crowds, we observed how flows of oppositely moving pedestrians spontaneously separate into several unidirectional lanes. We found that before (but not after) lane formation, pedestrians deviate from the desired direction by Lévy walk process, which is considered optimal when searching unpredictably distributed resources. Pedestrians balance a trade-off between seeking their direct paths and reaching their goals as quickly as possible; they may achieve their optimal paths through Lévy walk process, facilitating the emergent lane formation.
Collapse
Affiliation(s)
- Hisashi Murakami
- 1 Research Center for Advanced Science and Technology, The University of Tokyo , Meguro-ku, Tokyo , Japan
| | - Claudio Feliciani
- 1 Research Center for Advanced Science and Technology, The University of Tokyo , Meguro-ku, Tokyo , Japan
| | - Katsuhiro Nishinari
- 1 Research Center for Advanced Science and Technology, The University of Tokyo , Meguro-ku, Tokyo , Japan.,2 Department of Aeronautics and Astronautics, Graduate School of Engineering, The University of Tokyo , Bunkyo-ku, Tokyo , Japan
| |
Collapse
|
34
|
Loaiza-Monsalve D, Riascos AP. Human mobility in bike-sharing systems: Structure of local and non-local dynamics. PLoS One 2019; 14:e0213106. [PMID: 30840674 PMCID: PMC6402762 DOI: 10.1371/journal.pone.0213106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/14/2019] [Indexed: 12/27/2022] Open
Abstract
The understanding of human mobility patterns in different transportation modes is an interdisciplinary research field with a direct impact in aspects as varied as urban planning, traffic optimization, sustainability, the reduction of operating costs as well as the mitigation of pollution in urban areas. In this paper, we study the global activity of users in bike-sharing systems operating in the cities of Chicago and New York. For this transportation mode, we explore the temporal and spatial characteristics of the mobility of cyclists. In particular, through the analysis of origin-destination matrices, we characterize the spatial structure of the displacements of users. We apply a mobility model for the global activity of the system that classifies the displacements between stations in local and non-local transitions. In local transitions, cyclists move in a region around each station whereas, in the non-local case, bike users travel with long-range displacements in a similar way to Lévy flights. We reproduce the spatial dynamics by using Monte Carlo simulations. The obtained results are similar to the observed in real data and reveal that the model implemented captures important characteristics of the global spatial dynamics in the systems analyzed.
Collapse
Affiliation(s)
- D. Loaiza-Monsalve
- Department of Civil Engineering, Universidad Mariana, San Juan de Pasto, Colombia
| | - A. P. Riascos
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail:
| |
Collapse
|
35
|
Ríos-Uzeda B, Brigatti E, Vieira MV. Lévy like patterns in the small-scale movements of marsupials in an unfamiliar and risky environment. Sci Rep 2019; 9:2737. [PMID: 30804363 PMCID: PMC6389917 DOI: 10.1038/s41598-019-39045-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 08/28/2018] [Indexed: 11/14/2022] Open
Abstract
We investigate the movement patterns of three different Neotropical marsupials in an unfamiliar and risky environment. Animals are released in a matrix from which they try to reach a patch of forest. Their movements, performed on a small spacial scale, are best approximated by Lévy flights. Patterns of oriented and non-oriented individuals - with forest patches within or beyond their perceptual range - differ only slightly in the value of their exponents. These facts suggest that, for these species, the appearance of Lévy flights is the product of animals innate behaviour that emerges spontaneously, as a neutral characteristic proper of a default movement mode for alerted animals.
Collapse
Affiliation(s)
- B Ríos-Uzeda
- Laboratório de Vertebrados, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Caixa Postal 68020, 21941-590, Rio de Janeiro, RJ, Brazil
| | - E Brigatti
- Instituto de Física, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitária, 21941-972, Rio de Janeiro, RJ, Brazil.
| | - M V Vieira
- Laboratório de Vertebrados, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Caixa Postal 68020, 21941-590, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
36
|
Ross CT, Winterhalder B. Evidence for encounter-conditional, area-restricted search in a preliminary study of Colombian blowgun hunters. PLoS One 2018; 13:e0207633. [PMID: 30540780 PMCID: PMC6291100 DOI: 10.1371/journal.pone.0207633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/02/2018] [Indexed: 11/21/2022] Open
Abstract
Active search for prey is energetically costly, so understanding how foragers optimize search has been central to foraging theory. Some theoretical work has suggested that foragers of randomly distributed prey should search using Lévy flights, while work on area-restricted and intermittent search strategies has demonstrated that foragers can use the information provided by prey encounters to more effectively adapt search direction and velocity. Previous empirical comparisons of these search modes have tended to rely on distribution-level analyses, due to the difficulty of collecting event-level data on encounters linked to the GPS tracks of foragers. Here we use a preliminary event-level data-set (18.7 hours of encounter-annotated focal follows over 6 trips) to show that two Colombian blowgun hunters use adaptive encounter-conditional heuristics, not non-conditional Lévy flights, when searching for prey. Using a theoretically derived Bayesian model, we estimate changes in turning-angle and search velocity as a function of encounters with prey at lagged time-steps, and find that: 1) hunters increase average turning-angle in response to encounters, producing a more tortuous search of patches of higher prey density, but adopt more efficient uni-directional, inter-patch movement after failing to encounter prey over a sufficient period of time; and, 2) hunters reduce search velocity in response to encounters, causing them to spend more of their search time in patches with demonstrably higher prey density. These results illustrate the importance of using event-level data to contrast encounter-conditional, area-restricted search and Lévy flights in explaining the search behavior of humans and other organisms.
Collapse
Affiliation(s)
- Cody T. Ross
- Max Planck Institute for Evolutionary Anthropology, Department of Human Behavior, Ecology and Culture, Leipzig, Germany
- * E-mail:
| | - Bruce Winterhalder
- University of California Davis, Department of Anthropology, Davis, CA, United States of America
| |
Collapse
|
37
|
Huda S, Weigelin B, Wolf K, Tretiakov KV, Polev K, Wilk G, Iwasa M, Emami FS, Narojczyk JW, Banaszak M, Soh S, Pilans D, Vahid A, Makurath M, Friedl P, Borisy GG, Kandere-Grzybowska K, Grzybowski BA. Lévy-like movement patterns of metastatic cancer cells revealed in microfabricated systems and implicated in vivo. Nat Commun 2018; 9:4539. [PMID: 30382086 PMCID: PMC6208440 DOI: 10.1038/s41467-018-06563-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/13/2018] [Indexed: 12/12/2022] Open
Abstract
Metastatic cancer cells differ from their non-metastatic counterparts not only in terms of molecular composition and genetics, but also by the very strategy they employ for locomotion. Here, we analyzed large-scale statistics for cells migrating on linear microtracks to show that metastatic cancer cells follow a qualitatively different movement strategy than their non-invasive counterparts. The trajectories of metastatic cells display clusters of small steps that are interspersed with long "flights". Such movements are characterized by heavy-tailed, truncated power law distributions of persistence times and are consistent with the Lévy walks that are also often employed by animal predators searching for scarce prey or food sources. In contrast, non-metastatic cancerous cells perform simple diffusive movements. These findings are supported by preliminary experiments with cancer cells migrating away from primary tumors in vivo. The use of chemical inhibitors targeting actin-binding proteins allows for "reprogramming" the Lévy walks into either diffusive or ballistic movements.
Collapse
Affiliation(s)
- Sabil Huda
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Bettina Weigelin
- Department of Cell Biology (283) RIMLS, Radboud University Medical Centre, Geert Grooteplein 28, 6525, GA, Nijmegen, The Netherlands
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katarina Wolf
- Department of Cell Biology (283) RIMLS, Radboud University Medical Centre, Geert Grooteplein 28, 6525, GA, Nijmegen, The Netherlands
| | - Konstantin V Tretiakov
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17/19, 60-179, Poznań, Poland
| | - Konstantin Polev
- IBS Center for Soft and Living Matter, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 689-798, South Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 689-798, South Korea
| | - Gary Wilk
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Masatomo Iwasa
- Center for General Education, Aichi Institute of Technology, 1247 Yachigusa Yakusacho, Toyota, 470-0392, Japan
| | - Fateme S Emami
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Jakub W Narojczyk
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17/19, 60-179, Poznań, Poland
| | - Michal Banaszak
- Faculty of Physics and NanoBioMedicine Centre, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | - Siowling Soh
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Didzis Pilans
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Amir Vahid
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Monika Makurath
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Peter Friedl
- Department of Cell Biology (283) RIMLS, Radboud University Medical Centre, Geert Grooteplein 28, 6525, GA, Nijmegen, The Netherlands
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Genomics Centre Netherlands (CG.nl), Utrecht, Netherlands
| | - Gary G Borisy
- The Forsyth Institute, 245 First St., Cambridge, MA, 02142, USA
| | - Kristiana Kandere-Grzybowska
- IBS Center for Soft and Living Matter, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 689-798, South Korea.
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 689-798, South Korea.
| | - Bartosz A Grzybowski
- IBS Center for Soft and Living Matter, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 689-798, South Korea.
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 689-798, South Korea.
| |
Collapse
|
38
|
Ross C, Pacheco-Cobos L, Winterhalder B. A general model of forager search: Adaptive encounter-conditional heuristics outperform Lévy flights in the search for patchily distributed prey. J Theor Biol 2018; 455:357-369. [PMID: 30053387 DOI: 10.1016/j.jtbi.2018.07.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
A theoretical and applied literature has suggested that foragers search using Lévy flights, since Lévy flights can maximize the efficiency of search in the absence of information on the location of randomly distributed prey. Foragers, however, often have available to them at least some information about the distribution of prey, gained either through evolved mechanisms, experience and memory, or social transmission of information. As such, we might expect selection for heuristics that make use of such information to further improve the efficiency of random search. Here we present a general model of random search behavior that includes as special cases: area-restricted search, correlated random walks, Brownian search, and Lévy flights. This generative model allows foragers to adjust search parameters based on encounter-conditional and other heuristics. Using a simulation model, we demonstrate the efficiency gains of these search heuristics, and illustrate the resulting differences in the distributions of step-size and heading angle change they imply, relative to Lévy flights. We conclude by presenting a statistical model that can be fit to empirical data and a set of testable, quantitative predictions that contrast our model of adaptive search with the Lévy flight foraging hypothesis.
Collapse
Affiliation(s)
- Cody Ross
- Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany.
| | - Luis Pacheco-Cobos
- Facultad de Biología, Cuerpo Académico Biología y Ecología del Comportamiento, Universidad Veracruzana, México.
| | - Bruce Winterhalder
- Department of Anthropology and Graduate Group in Ecology, University of California, Davis, United States.
| |
Collapse
|
39
|
Modelling the Immune Response to Cancer: An Individual-Based Approach Accounting for the Difference in Movement Between Inactive and Activated T Cells. Bull Math Biol 2018. [DOI: 10.1007/s11538-018-0412-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Kuśmierz Ł, Toyoizumi T. Emergence of Lévy Walks from Second-Order Stochastic Optimization. PHYSICAL REVIEW LETTERS 2017; 119:250601. [PMID: 29303344 DOI: 10.1103/physrevlett.119.250601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Indexed: 06/07/2023]
Abstract
In natural foraging, many organisms seem to perform two different types of motile search: directed search (taxis) and random search. The former is observed when the environment provides cues to guide motion towards a target. The latter involves no apparent memory or information processing and can be mathematically modeled by random walks. We show that both types of search can be generated by a common mechanism in which Lévy flights or Lévy walks emerge from a second-order gradient-based search with noisy observations. No explicit switching mechanism is required-instead, continuous transitions between the directed and random motions emerge depending on the Hessian matrix of the cost function. For a wide range of scenarios, the Lévy tail index is α=1, consistent with previous observations in foraging organisms. These results suggest that adopting a second-order optimization method can be a useful strategy to combine efficient features of directed and random search.
Collapse
Affiliation(s)
- Łukasz Kuśmierz
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Taro Toyoizumi
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|