1
|
Lee AR, Tangiyan A, Singh I, Choi PS. Incomplete paralog compensation generates selective dependency on TRA2A in cancer. PLoS Genet 2025; 21:e1011685. [PMID: 40367120 PMCID: PMC12077678 DOI: 10.1371/journal.pgen.1011685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Paralogs often exhibit functional redundancy, allowing them to effectively compensate for each other's loss. However, this buffering mechanism is frequently disrupted in cancer, exposing unique paralog-specific vulnerabilities. Here, we identify a selective dependency on the splicing factor TRA2A. We find that TRA2A and its paralog TRA2B are synthetic lethal partners that function as widespread and largely redundant activators of both alternative and constitutive splicing. While loss of TRA2A alone is typically neutral due to compensation by TRA2B, we discover that a subset of cancer cell lines are highly TRA2A-dependent. Upon TRA2A depletion, these cell lines exhibit a lack of paralog buffering specifically on shared splicing targets, leading to defects in mitosis and cell death. Notably, TRA2B overexpression rescues both the aberrant splicing and lethality associated with TRA2A loss, indicating that paralog compensation is dosage-sensitive. Together, these findings reveal a complex dosage-dependent relationship between paralogous splicing factors, and highlight how dysfunctional paralog buffering can create a selective dependency in cancer.
Collapse
Affiliation(s)
- Amanda R. Lee
- Department of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Anna Tangiyan
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Isha Singh
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Peter S. Choi
- Department of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Dalgliesh C, Aldalaqan S, Atallah C, Best A, Scott E, Ehrmann I, Merces G, Mannion J, Badurova B, Sandher R, Illing Y, Wirth B, Wells S, Codner G, Teboul L, Smith GR, Hedley A, Herbert M, de Rooij DG, Miles C, Reynard LN, Elliott DJ. An ultra-conserved poison exon in the Tra2b gene encoding a splicing activator is essential for male fertility and meiotic cell division. EMBO J 2025; 44:877-902. [PMID: 39748121 PMCID: PMC11791180 DOI: 10.1038/s44318-024-00344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
The cellular concentrations of splicing factors (SFs) are critical for controlling alternative splicing. Most serine and arginine-enriched (SR) protein SFs regulate their own concentration via a homeostatic feedback mechanism that involves regulation of inclusion of non-coding 'poison exons' (PEs) that target transcripts for nonsense-mediated decay. The importance of SR protein PE splicing during animal development is largely unknown despite PE ultra-conservation across animal genomes. To address this, we used mouse genetics to disrupt an ultra-conserved PE in the Tra2b gene encoding the SR protein Tra2β. Focussing on germ cell development, we found that Tra2b PE deletion causes azoospermia due to catastrophic cell death during meiotic prophase. Failure to proceed through meiosis was associated with increased Tra2b expression sufficient to drive aberrant Tra2β protein hyper-responsive splice patterns. Although critical for meiotic prophase, Tra2b PE deletion spared earlier mitotically active germ cells, even though these still required Tra2b gene function. Our data indicate that PE splicing control prevents the accumulation of toxic levels of Tra2β protein that are incompatible with meiotic prophase. This unexpected connection with male fertility helps explain Tra2b PE ultra-conservation and indicates the importance of evaluating PE function in animal models.
Collapse
Affiliation(s)
- Caroline Dalgliesh
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Saad Aldalaqan
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Christian Atallah
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew Best
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Emma Scott
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Ingrid Ehrmann
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - George Merces
- Newcastle University Biosciences Institute (NUBI), Innovation, Methodology and Application (IMA) Research Theme, Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle upon Tyne, UK
- Image Analysis Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joel Mannion
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Barbora Badurova
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Raveen Sandher
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Ylva Illing
- University of Cologne, Institute of Human Genetics, Kerpener Str. 34, 50931, Cologne, Germany
| | - Brunhilde Wirth
- University of Cologne, Institute of Human Genetics, Kerpener Str. 34, 50931, Cologne, Germany
- Center for Molecular Genetics, University of Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Sara Wells
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Gemma Codner
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Lydia Teboul
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Graham R Smith
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ann Hedley
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mary Herbert
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Colin Miles
- Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Louise N Reynard
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - David J Elliott
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK.
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK.
| |
Collapse
|
3
|
Sanoguera-Miralles L, Llinares-Burguet I, Bueno-Martínez E, Ramadane-Morchadi L, Stuani C, Valenzuela-Palomo A, García-Álvarez A, Pérez-Segura P, Buratti E, de la Hoya M, Velasco-Sampedro EA. Comprehensive splicing analysis of the alternatively spliced CHEK2 exons 8 and 10 reveals three enhancer/silencer-rich regions and 38 spliceogenic variants. J Pathol 2024; 262:395-409. [PMID: 38332730 DOI: 10.1002/path.6243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
Splicing is controlled by a large set of regulatory elements (SREs) including splicing enhancers and silencers, which are involved in exon recognition. Variants at these motifs may dysregulate splicing and trigger loss-of-function transcripts associated with disease. Our goal here was to study the alternatively spliced exons 8 and 10 of the breast cancer susceptibility gene CHEK2. For this purpose, we used a previously published minigene with exons 6-10 that produced the expected minigene full-length transcript and replicated the naturally occurring events of exon 8 [Δ(E8)] and exon 10 [Δ(E10)] skipping. We then introduced 12 internal microdeletions of exons 8 and 10 by mutagenesis in order to map SRE-rich intervals by splicing assays in MCF-7 cells. We identified three minimal (10-, 11-, 15-nt) regions essential for exon recognition: c.863_877del [ex8, Δ(E8): 75%] and c.1073_1083del and c.1083_1092del [ex10, Δ(E10): 97% and 62%, respectively]. Then 87 variants found within these intervals were introduced into the wild-type minigene and tested functionally. Thirty-eight of them (44%) impaired splicing, four of which (c.883G>A, c.883G>T, c.884A>T, and c.1080G>T) induced negligible amounts (<5%) of the minigene full-length transcript. Another six variants (c.886G>A, c.886G>T, c.1075G>A, c.1075G>T, c.1076A>T, and c.1078G>T) showed significantly strong impacts (20-50% of the minigene full-length transcript). Thirty-three of the 38 spliceogenic variants were annotated as missense, three as nonsense, and two as synonymous, underlying the fact that any exonic change is capable of disrupting splicing. Moreover, c.883G>A, c.883G>T, and c.884A>T were classified as pathogenic/likely pathogenic variants according to ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based criteria. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Lobna Ramadane-Morchadi
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Cristiana Stuani
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Emanuele Buratti
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Eladio A Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
4
|
Ilık İA, Glažar P, Tse K, Brändl B, Meierhofer D, Müller FJ, Smith ZD, Aktaş T. Autonomous transposons tune their sequences to ensure somatic suppression. Nature 2024; 626:1116-1124. [PMID: 38355802 PMCID: PMC10901741 DOI: 10.1038/s41586-024-07081-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Transposable elements (TEs) are a major constituent of human genes, occupying approximately half of the intronic space. During pre-messenger RNA synthesis, intronic TEs are transcribed along with their host genes but rarely contribute to the final mRNA product because they are spliced out together with the intron and rapidly degraded. Paradoxically, TEs are an abundant source of RNA-processing signals through which they can create new introns1, and also functional2 or non-functional chimeric transcripts3. The rarity of these events implies the existence of a resilient splicing code that is able to suppress TE exonization without compromising host pre-mRNA processing. Here we show that SAFB proteins protect genome integrity by preventing retrotransposition of L1 elements while maintaining splicing integrity, via prevention of the exonization of previously integrated TEs. This unique dual role is possible because of L1's conserved adenosine-rich coding sequences that are bound by SAFB proteins. The suppressive activity of SAFB extends to tissue-specific, giant protein-coding cassette exons, nested genes and Tigger DNA transposons. Moreover, SAFB also suppresses LTR/ERV elements in species in which they are still active, such as mice and flies. A significant subset of splicing events suppressed by SAFB in somatic cells are activated in the testis, coinciding with low SAFB expression in postmeiotic spermatids. Reminiscent of the division of labour between innate and adaptive immune systems that fight external pathogens, our results uncover SAFB proteins as an RNA-based, pattern-guided, non-adaptive defence system against TEs in the soma, complementing the RNA-based, adaptive Piwi-interacting RNA pathway of the germline.
Collapse
Affiliation(s)
- İbrahim Avşar Ilık
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Petar Glažar
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kevin Tse
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Björn Brändl
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie, Kiel, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Joint Facilities Scientific Service, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Franz-Josef Müller
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie, Kiel, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Tuğçe Aktaş
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
5
|
Cincotta SA, Richardson N, Foecke MH, Laird DJ. Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling. eLife 2024; 12:RP90164. [PMID: 38226689 PMCID: PMC10945581 DOI: 10.7554/elife.90164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here, we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.
Collapse
Affiliation(s)
- Steven A Cincotta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Nainoa Richardson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Mariko H Foecke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
6
|
Shatokhina O, Kovalskaia V, Sparber P, Sharkova I, Mishina I, Kuznetsova V, Ryzhkova O. TRA2B Gene Splice Variant Linked to Seizures and Neurodevelopmental Delay: A Second Case Study. Int J Mol Sci 2023; 24:15572. [PMID: 37958557 PMCID: PMC10648248 DOI: 10.3390/ijms242115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, we report a novel splice variant in the TRA2B gene identified in a patient presenting with seizures and neurodevelopmental delay. This paper represents the second investigation of pathogenic variants in the TRA2B gene in humans, reaffirming the conclusions of the initial study and underscoring the importance of this research. Comprehensive genetic testing, including whole genome sequencing, Sanger sequencing, and mRNA analysis, was performed on the proband and her parents. The proband harbored a de novo c.170+1G>A variant in the RS1 domain of Tra2β, which was confirmed to be pathogenic through mRNA analysis, resulting in exon 2 deletion and a frameshift (p.Glu13Valfs*2). The clinical presentation of the patient was consistent with phenotypes described in one of the previous studies. These findings contribute to the dissemination and reinforcement of prior discoveries in the context of TRA2B-related syndrome and highlight the need for further investigation into the functional consequences and underlying pathogenic mechanisms associated with TRA2B mutations.
Collapse
Affiliation(s)
- Olga Shatokhina
- Federal State Budgetary Institution “Research Centre For Medical Genetics”, 115478 Moscow, Russia; (O.S.); (V.K.); (P.S.); (I.S.); (I.M.)
| | - Valeriia Kovalskaia
- Federal State Budgetary Institution “Research Centre For Medical Genetics”, 115478 Moscow, Russia; (O.S.); (V.K.); (P.S.); (I.S.); (I.M.)
| | - Peter Sparber
- Federal State Budgetary Institution “Research Centre For Medical Genetics”, 115478 Moscow, Russia; (O.S.); (V.K.); (P.S.); (I.S.); (I.M.)
| | - Inna Sharkova
- Federal State Budgetary Institution “Research Centre For Medical Genetics”, 115478 Moscow, Russia; (O.S.); (V.K.); (P.S.); (I.S.); (I.M.)
| | - Irina Mishina
- Federal State Budgetary Institution “Research Centre For Medical Genetics”, 115478 Moscow, Russia; (O.S.); (V.K.); (P.S.); (I.S.); (I.M.)
| | | | - Oxana Ryzhkova
- Federal State Budgetary Institution “Research Centre For Medical Genetics”, 115478 Moscow, Russia; (O.S.); (V.K.); (P.S.); (I.S.); (I.M.)
| |
Collapse
|
7
|
Cincotta SA, Richardson N, Foecke MH, Laird DJ. Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547215. [PMID: 37425891 PMCID: PMC10327205 DOI: 10.1101/2023.06.30.547215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.
Collapse
Affiliation(s)
- Steven A. Cincotta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Nainoa Richardson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Mariko H. Foecke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Diana J. Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Xue J, Ma T, Zhang X. TRA2: The dominant power of alternative splicing in tumors. Heliyon 2023; 9:e15516. [PMID: 37151663 PMCID: PMC10161706 DOI: 10.1016/j.heliyon.2023.e15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The dysregulation of alternative splicing (AS) is frequently found in cancer and considered as key markers for cancer progression and therapy. Transformer 2 (TRA2), a nuclear RNA binding protein, consists of transformer 2 alpha homolog (TRA2A) and transformer 2 beta homolog (TRA2B), and plays a role in the regulation of pre-mRNA splicing. Growing evidence has been provided that TRA2A and TRA2B are dysregulated in several types of tumors, and participate in the regulation of proliferation, migration, invasion, and chemotherapy resistance in cancer cells through alteration of AS of cancer-related genes. In this review, we highlight the role of TRA2 in tumorigenesis and metastasis, and discuss potential molecular mechanisms how TRA2 influences tumorigenesis and metastasis via controlling AS of pre-mRNA. We propose that TRA2Ais a novel biomarker and therapeutic target for cancer progression and therapy.
Collapse
Affiliation(s)
- Jiancheng Xue
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Shenyang, China
| | - Tie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
- Corresponding author.
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Shenyang, China
- Corresponding author. Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
9
|
Fedoryshchak RO, Gorelik A, Shen M, Shchepinova MM, Pérez-Dorado I, Tate EW. Discovery of lipid-mediated protein-protein interactions in living cells using metabolic labeling with photoactivatable clickable probes. Chem Sci 2023; 14:2419-2430. [PMID: 36873846 PMCID: PMC9977449 DOI: 10.1039/d2sc06116c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Protein-protein interactions (PPIs) are essential and pervasive regulatory elements in biology. Despite the development of a range of techniques to probe PPIs in living systems, there is a dearth of approaches to capture interactions driven by specific post-translational modifications (PTMs). Myristoylation is a lipid PTM added to more than 200 human proteins, where it may regulate membrane localization, stability or activity. Here we report the design and synthesis of a panel of novel photocrosslinkable and clickable myristic acid analog probes, and their characterization as efficient substrates for human N-myristoyltransferases NMT1 and NMT2, both biochemically and through X-ray crystallography. We demonstrate metabolic incorporation of probes to label NMT substrates in cell culture and in situ intracellular photoactivation to form a covalent crosslink between modified proteins and their interactors, capturing a snapshot of interactions in the presence of the lipid PTM. Proteomic analyses revealed both known and multiple novel interactors of a series of myristoylated proteins, including ferroptosis suppressor protein 1 (FSP1) and spliceosome-associated RNA helicase DDX46. The concept exemplified by these probes offers an efficient approach for exploring the PTM-specific interactome without the requirement for genetic modification, which may prove broadly applicable to other PTMs.
Collapse
Affiliation(s)
- Roman O Fedoryshchak
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 80 Wood Lane London W12 0BZ UK .,The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | - Andrii Gorelik
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 80 Wood Lane London W12 0BZ UK .,The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | - Mengjie Shen
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Maria M Shchepinova
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Inmaculada Pérez-Dorado
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 80 Wood Lane London W12 0BZ UK .,The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| |
Collapse
|
10
|
Ramond F, Dalgliesh C, Grimmel M, Wechsberg O, Vetro A, Guerrini R, FitzPatrick D, Poole RL, Lebrun M, Bayat A, Grasshoff U, Bertrand M, Witt D, Turnpenny PD, Faundes V, Santa María L, Mendoza Fuentes C, Mabe P, Hussain SA, Mullegama SV, Torti E, Oehl-Jaschkowitz B, Salmon LB, Orenstein N, Shahar NR, Hagari O, Bazak L, Hoffjan S, Prada CE, Haack T, Elliott DJ. Clustered variants in the 5' coding region of TRA2B cause a distinctive neurodevelopmental syndrome. Genet Med 2022; 25:100003. [PMID: 36549593 DOI: 10.1016/j.gim.2022.100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Transformer2 proteins (Tra2α and Tra2β) control splicing patterns in human cells, and no human phenotypes have been associated with germline variants in these genes. The aim of this work was to associate germline variants in the TRA2B gene to a novel neurodevelopmental disorder. METHODS A total of 12 individuals from 11 unrelated families who harbored predicted loss-of-function monoallelic variants, mostly de novo, were recruited. RNA sequencing and western blot analyses of Tra2β-1 and Tra2β-3 isoforms from patient-derived cells were performed. Tra2β1-GFP, Tra2β3-GFP and CHEK1 exon 3 plasmids were transfected into HEK-293 cells. RESULTS All variants clustered in the 5' part of TRA2B, upstream of an alternative translation start site responsible for the expression of the noncanonical Tra2β-3 isoform. All affected individuals presented intellectual disability and/or developmental delay, frequently associated with infantile spasms, microcephaly, brain anomalies, autism spectrum disorder, feeding difficulties, and short stature. Experimental studies showed that these variants decreased the expression of the canonical Tra2β-1 isoform, whereas they increased the expression of the Tra2β-3 isoform, which is shorter and lacks the N-terminal RS1 domain. Increased expression of Tra2β-3-GFP were shown to interfere with the incorporation of CHEK1 exon 3 into its mature transcript, normally incorporated by Tra2β-1. CONCLUSION Predicted loss-of-function variants clustered in the 5' portion of TRA2B cause a new neurodevelopmental syndrome through an apparently dominant negative disease mechanism involving the use of an alternative translation start site and the overexpression of a shorter, repressive Tra2β protein.
Collapse
Affiliation(s)
- Francis Ramond
- Service de Génétique, Hôpital Nord, CHU Saint-Etienne, Saint-Etienne, France.
| | - Caroline Dalgliesh
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Oded Wechsberg
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Maccabi Healthcare Services, Tel Aviv, Israel
| | - Annalisa Vetro
- Neuroscience Department, Meyer Children's Hospital and University of Florence, Florence, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital and University of Florence, Florence, Italy
| | - David FitzPatrick
- MRC Human Genetics Unit, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Rebecca L Poole
- NHS Education for Scotland South East Region, South East of Scotland Clinical Genetics Service, Edinburgh, United Kingdom
| | - Marine Lebrun
- Service de Génétique, Hôpital Nord, CHU Saint-Etienne, Saint-Etienne, France
| | - Allan Bayat
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark; Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Dennis Witt
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Peter D Turnpenny
- Clinical Genetics, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Víctor Faundes
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Lorena Santa María
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Carolina Mendoza Fuentes
- Unidad de Endocrinología, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Mabe
- Unidad de Neurología, Hospital de Niños Dr. Exequiel González Cortés, Santiago, Chile
| | - Shaun A Hussain
- Division of Pediatric Neurology, University of California, Los Angeles, Los Angeles, CA
| | | | | | | | - Lina Basel Salmon
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel; Pediatric Immunogenetics, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Ruhrman Shahar
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Ofir Hagari
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Lily Bazak
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Sabine Hoffjan
- Abteilung für Humangenetik, Ruhr-Universitat Bochum, Bochum, Germany
| | - Carlos E Prada
- Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany; Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany
| | - David J Elliott
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
11
|
White LA, Bisom TC, Grimes HL, Hayashi M, Lanchy JM, Lodmell JS. Tra2beta-Dependent Regulation of RIO Kinase 3 Splicing During Rift Valley Fever Virus Infection Underscores the Links Between Alternative Splicing and Innate Antiviral Immunity. Front Cell Infect Microbiol 2022; 11:799024. [PMID: 35127560 PMCID: PMC8807687 DOI: 10.3389/fcimb.2021.799024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging pathogen that has potential to cause severe disease in humans and domestic livestock. Propagation of RVFV strain MP-12 is negatively impacted by the actions of RIOK3, a protein involved in the cellular immune response to viral infection. During RVFV infection, RIOK3 mRNA is alternatively spliced to produce an isoform that correlates with the inhibition of interferon β signaling. Here, we identify splicing factor TRA2-β (also known as TRA2beta and hTRA2-β) as a key regulator governing the relative abundance of RIOK3 splicing isoforms. Using RT-PCR and minigenes, we determined that TRA2-β interaction with RIOK3 pre-mRNA was necessary for constitutive splicing of RIOK3 mRNA, and conversely, lack of TRA2-β engagement led to increased alternative splicing. Expression of TRA2-β was found to be necessary for RIOK3's antiviral effect against RVFV. Intriguingly, TRA2-β mRNA is also alternatively spliced during RVFV infection, leading to a decrease in cellular TRA2-β protein levels. These results suggest that splicing modulation serves as an immune evasion strategy by RVFV and/or is a cellular mechanism to prevent excessive immune response. Furthermore, the results suggest that TRA2-β can act as a key regulator of additional steps of the innate immune response to viral infection.
Collapse
Affiliation(s)
- Luke Adam White
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Thomas C. Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Hunter L. Grimes
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Miyuki Hayashi
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| |
Collapse
|
12
|
Grzybowska EA, Wakula M. Protein Binding to Cis-Motifs in mRNAs Coding Sequence Is Common and Regulates Transcript Stability and the Rate of Translation. Cells 2021; 10:2910. [PMID: 34831133 PMCID: PMC8616275 DOI: 10.3390/cells10112910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022] Open
Abstract
Protein binding to the non-coding regions of mRNAs is relatively well characterized and its functionality has been described in many examples. New results obtained by high-throughput methods indicate that binding to the coding sequence (CDS) by RNA-binding proteins is also quite common, but the functions thereof are more obscure. As described in this review, CDS binding has a role in the regulation of mRNA stability, but it has also a more intriguing role in the regulation of translational efficiency. Global approaches, which suggest the significance of CDS binding along with specific examples of CDS-binding RBPs and their modes of action, are outlined here, pointing to the existence of a relatively less-known regulatory network controlling mRNA stability and translation on yet another level.
Collapse
Affiliation(s)
- Ewa A. Grzybowska
- Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland;
| | | |
Collapse
|
13
|
Multilevel Regulation of Protein Kinase CδI Alternative Splicing by Lithium Chloride. Mol Cell Biol 2021; 41:e0033820. [PMID: 33288642 PMCID: PMC8088272 DOI: 10.1128/mcb.00338-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lithium chloride (LiCl) is commonly used in treatment of mood disorders; however, its usage leads to weight gain, which promotes metabolic disorders. Protein kinase C delta (PKCδ), a serine/threonine kinase, is alternatively spliced to PKCδI and PKCδII in 3T3-L1 cells. We previously demonstrated that PKCδI is the predominantly expressed isoform in 3T3-L1 preadipocytes. Here, we demonstrate that LiCl treatment decreases PKCδI levels, increases formation of lipid droplets, and increases oxidative stress. Hence, we investigated the molecular mechanisms underlying the regulation of PKCδI alternative splicing by LiCl. We previously demonstrated that the splice factor SFRS10 is essential for PKCδI splicing. Our results demonstrate that glycogen synthase kinase 3 beta (GSK3β) phosphorylates SFRS10, and SFRS10 is in a complex with long noncoding RNA NEAT1 to promote PKCδI splicing. Using PKCδ splicing minigene and RNA immunoprecipitation assays, our results demonstrate that upon LiCl treatment, NEAT1 levels are reduced, GSK3β activity is inhibited, and SFRS10 phosphorylation is decreased, which leads to decreased expression of PKCδI. Integration of the GSK3β signaling pathway with the ribonucleoprotein complex of long noncoding RNA (lncRNA) NEAT1 and SFRS10 enables fine-tuning of PKCδI expression during adipogenesis. Knowledge of the molecular pathways impacted by LiCl provides an understanding of the ascent of obesity as a comorbidity in disease management.
Collapse
|
14
|
Leclair NK, Brugiolo M, Urbanski L, Lawson SC, Thakar K, Yurieva M, George J, Hinson JT, Cheng A, Graveley BR, Anczuków O. Poison Exon Splicing Regulates a Coordinated Network of SR Protein Expression during Differentiation and Tumorigenesis. Mol Cell 2020; 80:648-665.e9. [PMID: 33176162 PMCID: PMC7680420 DOI: 10.1016/j.molcel.2020.10.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
The RNA isoform repertoire is regulated by splicing factor (SF) expression, and alterations in SF levels are associated with disease. SFs contain ultraconserved poison exon (PE) sequences that exhibit greater identity across species than nearby coding exons, but their physiological role and molecular regulation is incompletely understood. We show that PEs in serine-arginine-rich (SR) proteins, a family of 14 essential SFs, are differentially spliced during induced pluripotent stem cell (iPSC) differentiation and in tumors versus normal tissues. We uncover an extensive cross-regulatory network of SR proteins controlling their expression via alternative splicing coupled to nonsense-mediated decay. We define sequences that regulate PE inclusion and protein expression of the oncogenic SF TRA2β using an RNA-targeting CRISPR screen. We demonstrate location dependency of RS domain activity on regulation of TRA2β-PE using CRISPR artificial SFs. Finally, we develop splice-switching antisense oligonucleotides to reverse the increased skipping of TRA2β-PE detected in breast tumors, altering breast cancer cell viability, proliferation, and migration.
Collapse
Affiliation(s)
- Nathan K Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Shane C Lawson
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - John Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Albert Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
15
|
Cerasuolo A, Buonaguro L, Buonaguro FM, Tornesello ML. The Role of RNA Splicing Factors in Cancer: Regulation of Viral and Human Gene Expression in Human Papillomavirus-Related Cervical Cancer. Front Cell Dev Biol 2020; 8:474. [PMID: 32596243 PMCID: PMC7303290 DOI: 10.3389/fcell.2020.00474] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The spliceosomal complex components, together with the heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins, regulate the process of constitutive and alternative splicing, the latter leading to the production of mRNA isoforms coding multiple proteins from a single pre-mRNA molecule. The expression of splicing factors is frequently deregulated in different cancer types causing the generation of oncogenic proteins involved in cancer hallmarks. Cervical cancer is caused by persistent infection with oncogenic human papillomaviruses (HPVs) and constitutive expression of viral oncogenes. The aberrant activity of hnRNPs and SR proteins in cervical neoplasia has been shown to trigger the production of oncoproteins through the processing of pre-mRNA transcripts either derived from human genes or HPV genomes. Indeed, hnRNP and SR splicing factors have been shown to regulate the production of viral oncoprotein isoforms necessary for the completion of viral life cycle and for cell transformation. Target-therapy strategies against hnRNPs and SR proteins, causing simultaneous reduction of oncogenic factors and inhibition of HPV replication, are under development. In this review, we describe the current knowledge of the functional link between RNA splicing factors and deregulated cellular as well as viral RNA maturation in cervical cancer and the opportunity of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumouri IRCCS–Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
16
|
Expression of TRA2B in endometrial carcinoma and its regulatory roles in endometrial carcinoma cells. Oncol Lett 2019; 18:2455-2463. [PMID: 31452736 PMCID: PMC6676653 DOI: 10.3892/ol.2019.10553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/16/2019] [Indexed: 12/24/2022] Open
Abstract
Expression levels of Transformer 2 protein homolog beta (TRA2B) in patients with endometrial carcinoma were assessed to investigate the impact of TRA2B on endometrial carcinoma cells. Furthermore, we analyzed the expression of several genes in the tissue samples from patients with endometrial cancer (EC) to identify whether cancer related genes we chose are differently expressed between the endometrial carcinoma tissues and adjacent normal tissues. The results of RT-qPCR analysis, western blot technology and immunofluorescence method consistently manifested that the expression of several genes in endometrial carcinoma tissue was significantly dysregulated between the two groups. Among the dysregulated genes, the strongly upregulated TRA2B in the tissues and serum from patients with EC was selected for further analysis. Endometrial carcinoma cells were transfected with chemically synthesized TRA2B plasmid, siRNA-TRA2B and their corresponding negative control respectively to assess the effects of TRA2B on the EC cells. Overexpression of TRA2B increased both the cell viability and proliferation potency of EC cells. Whereas, the viability and the proliferation ability of EC cells were strongly decreased by siRNA-TRA2B treatment. Furthermore, the invasion of EC cells was promoted by transfection of TRA2B and overexpression of TRA2B decreased the apoptosis of EC cells. Moreover, siRNA-TRA2B transfection inhibited the invasion but accelerated apoptosis of EC cells. Our results demonstrated that TRA2B is closely related to the development of endometrial carcinoma, and inhibition of TRA2B can decrease viability, proliferation and invasion of endometrial carcinoma, suggesting TRA2B is associated with the pathogenesis of human EC. Knockdown of TRA2B may be used for treatment of endometrial carcinoma, furthermore, these findings suggest an experimental foundation to clinical prognostic role of TRA2B in patients with endometrial carcinoma.
Collapse
|
17
|
Ehrmann I, Crichton JH, Gazzara MR, James K, Liu Y, Grellscheid SN, Curk T, de Rooij D, Steyn JS, Cockell S, Adams IR, Barash Y, Elliott DJ. An ancient germ cell-specific RNA-binding protein protects the germline from cryptic splice site poisoning. eLife 2019; 8:39304. [PMID: 30674417 PMCID: PMC6345566 DOI: 10.7554/elife.39304] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
Male germ cells of all placental mammals express an ancient nuclear RNA binding protein of unknown function called RBMXL2. Here we find that deletion of the retrogene encoding RBMXL2 blocks spermatogenesis. Transcriptome analyses of age-matched deletion mice show that RBMXL2 controls splicing patterns during meiosis. In particular, RBMXL2 represses the selection of aberrant splice sites and the insertion of cryptic and premature terminal exons. Our data suggest a Rbmxl2 retrogene has been conserved across mammals as part of a splicing control mechanism that is fundamentally important to germ cell biology. We propose that this mechanism is essential to meiosis because it buffers the high ambient concentrations of splicing activators, thereby preventing poisoning of key transcripts and disruption to gene expression by aberrant splice site selection. In humans and other mammals, a sperm from a male fuses with an egg cell from a female to produce an embryo that may ultimately grow into a new individual. Sperm and egg cells are made when certain cells in the body divide in a process called meiosis. Many proteins are required for meiosis to happen and these proteins are made using instructions provided by genes, which are made of a molecule called DNA. The DNA within a gene is transcribed to make molecules of ribonucleic acid (or RNA for short). The cell then modifies many of these RNAs in a process called splicing before using them as templates to make proteins. During splicing, segments of RNA known as introns are discarded and other segments termed exons are joined together. Some exons may also be removed from RNAs in different combinations to create different proteins from the same gene. A protein called RBMXL2 is able to bind to RNA molecules and is only made during and after meiosis in humans and most other mammals. RBMXL2 can also bind to other proteins that are known to be involved in controlling splicing of RNAs, but its role in splicing remains unclear. To address this question, Ehrmann et al. studied the gene that encodes the RBMXL2 protein in mice. Removing this gene prevented male mice from being able to make sperm. Further experiments using a technique called RNA sequencing showed that the RBMXL2 protein helps to ensure that splicing happens correctly by preventing bits of exons and introns in mouse genes from being rearranged. These findings suggest that the gene encoding RBMXL2 is part of a splicing control mechanism that is important for making sperm and egg cells. The work of Ehrmann et al. could eventually help some couples understand why they have problems conceiving children. Male infertility is poorly understood, and not knowing its causes can harm the mental health of affected men. Furthermore, these findings may help researchers to understand the role of a closely related protein called RBMY that has also been linked to infertility in men, but is much more difficult to study.
Collapse
Affiliation(s)
- Ingrid Ehrmann
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - James H Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew R Gazzara
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Katherine James
- Life Sciences, Natural History Museum, London, United Kingdom
| | - Yilei Liu
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom.,Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Sushma Nagaraja Grellscheid
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom.,School of Biological and Biomedical Sciences, University of Durham, Durham, United Kingdom
| | - Tomaž Curk
- Laboratory of Bioinformatics, Faculty of Computer and Information Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Dirk de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jannetta S Steyn
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Simon Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Computer and Information Science, University of Pennsylvania, Philadelphia, United States
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
18
|
Di C, Syafrizayanti, Zhang Q, Chen Y, Wang Y, Zhang X, Liu Y, Sun C, Zhang H, Hoheisel JD. Function, clinical application, and strategies of Pre-mRNA splicing in cancer. Cell Death Differ 2018; 26:1181-1194. [PMID: 30464224 PMCID: PMC6748147 DOI: 10.1038/s41418-018-0231-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Pre-mRNA splicing is a fundamental process that plays a considerable role in generating protein diversity. Pre-mRNA splicing is also the key to the pathology of numerous diseases, especially cancers. In this review, we discuss how aberrant splicing isoforms precisely regulate three basic functional aspects in cancer: proliferation, metastasis and apoptosis. Importantly, clinical function of aberrant splicing isoforms is also discussed, in particular concerning drug resistance and radiosensitivity. Furthermore, this review discusses emerging strategies how to modulate pathologic aberrant splicing isoforms, which are attractive, novel therapeutic agents in cancer. Last we outline current and future directions of isoforms diagnostic methodologies reported so far in cancer. Thus, it is highlighting significance of aberrant splicing isoforms as markers for cancer and as targets for cancer therapy.
Collapse
Affiliation(s)
- Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Syafrizayanti
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.,Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Kampus Limau Manis, Padang, Indonesia
| | - Qianjing Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yupei Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuetian Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Chao Sun
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| |
Collapse
|
19
|
TRA2A promotes proliferation, migration, invasion and epithelial mesenchymal transition of glioma cells. Brain Res Bull 2018; 143:138-144. [PMID: 30367895 DOI: 10.1016/j.brainresbull.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 11/23/2022]
Abstract
TRA2A, Transformer2A proteins, plays important roles in paclitaxel resistance and progression of breast cancer. However, whether TRA2A was involved in the progression of glioma remains to be elucidated. In this study, our results demonstrated that the expression of TRA2A was higher in the glioma tissue than that of normal tissue. Overexpression of TRA2A in glioma SHG44 cell lines promoted the tumor cells proliferation, migration, invasion and epithelial mesenchymal transition (EMT), while, knockdown of TRA2A showed the opposite effect. Thus, our findings provide new insights into the role of TRA2A in the progression of glioma, and implicate the potential application of TRA2A in glioma therapy.
Collapse
|
20
|
Ullah I, Liao Y, Wan R, Tang L, Feng J. Alternative Splicing of SMAD4 and Its Function in HaCaT Cells in Response to UVB Irradiation. J Cancer 2018; 9:3177-3186. [PMID: 30210641 PMCID: PMC6134820 DOI: 10.7150/jca.24756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Alternative splicing is one of the most common mechanisms of human gene regulation and plays a crucial role in increasing the diversity of functional proteins. Many diseases are linked to alternative splicing, especially cancer. SMAD4 is a member of the SMAD family and plays a critical role in mediating of TGF-β signal transduction and gene regulatory events. Smad4 is a tumour suppressor and acts as a shuttling protein between nucleus and cytoplasm. The splicing variants of Smad4 have been found in many cancers. The present study performed nested PCR to detect alternative splicing of Smad4 in HaCaT cells lines in response to UVB irradiation. The UVB induced a novel Smad4B isoform that led to decrease the Smad4 expression. The hnRNPA1 splicing factor is responsible for Smad4 alternative splicing in response to UVB. The UVB increased the expression of SF2 and hnRNPA1 Splicing factors. The hnRNPA1 overexpression induced Smad4B by regulating Smad4 alternative splicing. The Smad4B isoform supported the function of Smad4 full length in UVB resistance with certain limitation. The western blot analyses showed that the overexpressed Smad4 full length significantly increased N-cadherin expression while Smad4B overexpression decreased the expression the N-cadherin (P<0.05). Furthermore, overexpression of the isoform in HaCaT cells decreased cell invasion as compared to Smad4 full-length overexpression. These results will be helpful to understand the importance of Smad4 alternative splicing in skin tumorigenesis.
Collapse
Affiliation(s)
- Irfan Ullah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yi Liao
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University Chongqing, China
| | - Rongxue Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
21
|
Chen M, Lyu G, Han M, Nie H, Shen T, Chen W, Niu Y, Song Y, Li X, Li H, Chen X, Wang Z, Xia Z, Li W, Tian XL, Ding C, Gu J, Zheng Y, Liu X, Hu J, Wei G, Tao W, Ni T. 3' UTR lengthening as a novel mechanism in regulating cellular senescence. Genome Res 2018; 28:285-294. [PMID: 29440281 PMCID: PMC5848608 DOI: 10.1101/gr.224451.117] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/24/2018] [Indexed: 01/09/2023]
Abstract
Cellular senescence has been viewed as a tumor suppression mechanism and also as a contributor to individual aging. Widespread shortening of 3' untranslated regions (3' UTRs) in messenger RNAs (mRNAs) by alternative polyadenylation (APA) has recently been discovered in cancer cells. However, the role of APA in the process of cellular senescence remains elusive. Here, we found that hundreds of genes in senescent cells tended to use distal poly(A) (pA) sites, leading to a global lengthening of 3' UTRs and reduced gene expression. Genes that harbor longer 3' UTRs in senescent cells were enriched in senescence-related pathways. Rras2, a member of the Ras superfamily that participates in multiple signal transduction pathways, preferred longer 3' UTR usage and exhibited decreased expression in senescent cells. Depletion of Rras2 promoted senescence, while rescue of Rras2 reversed senescence-associated phenotypes. Mechanistically, splicing factor TRA2B bound to a core "AGAA" motif located in the alternative 3' UTR of Rras2, thereby reducing the RRAS2 protein level and causing senescence. Both proximal and distal poly(A) signals showed strong sequence conservation, highlighting the vital role of APA regulation during evolution. Our results revealed APA as a novel mechanism in regulating cellular senescence.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Guoliang Lyu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Miao Han
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Hongbo Nie
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Ting Shen
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Wei Chen
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Yichi Niu
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Yifan Song
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Xueping Li
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Huan Li
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Xinyu Chen
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Ziyue Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Zheng Xia
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiao-Li Tian
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, 330031 China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jun Gu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Yufang Zheng
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Xinhua Liu
- School of Pharmacy, Fudan University, Shanghai, 201203 China
| | - Jinfeng Hu
- School of Pharmacy, Fudan University, Shanghai, 201203 China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Wei Tao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| |
Collapse
|
22
|
Liu J, Bian T, Feng J, Qian L, Zhang J, Jiang D, Zhang Q, Li X, Liu Y, Shi J. miR-335 inhibited cell proliferation of lung cancer cells by target Tra2β. Cancer Sci 2017; 109:289-296. [PMID: 29161765 PMCID: PMC5797811 DOI: 10.1111/cas.13452] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence has suggested that the dysregulation of miRNA is an important factor in the pathogenesis of lung cancer. Here, we demonstrate that miR-335 expression is reduced in non-small cell lung cancer (NSCLC) tumors relative to non-cancerous adjacent tissues, while the expression of Tra2β is increased. In addition, clinical data revealed that the increased Tra2β and decreased miR-335 expression observed in NSCLC cells was associated with poor patient survival rates. In vitro experimentation showed that the overexpression of miR-335 inhibited the growth, invasion and migration capabilities of A459 lung cancer cells, by targeting Tra2β. In contrast, inhibition of miR-335 or overexpression of the Tra2β target gene stimulated the growth, invasion and migratory capabilities of A459 lung cancer cells in vitro. Furthermore, overexpression of miR-335 or inhibition of Tra2β decreased the phosphorylation of Rb-S780 and Rb-AKT. Overall, these findings suggest that the downregulation of miR-335 in A459 lung cancer cells promoted cell proliferation through upregulation of Tra2β, mediated via activation of the AKT/mTOR signaling pathway, and suggest that miR-335 may have potential as a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Tingting Bian
- Departments of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jia Feng
- Departments of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Li Qian
- Departments of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianguo Zhang
- Departments of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Daishan Jiang
- Departments of Emergency medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qing Zhang
- Departments of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaoli Li
- Departments of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yifei Liu
- Departments of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jiahai Shi
- Departments of Cardio-Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
23
|
Savisaar R, Hurst LD. Both Maintenance and Avoidance of RNA-Binding Protein Interactions Constrain Coding Sequence Evolution. Mol Biol Evol 2017; 34:1110-1126. [PMID: 28138077 PMCID: PMC5400389 DOI: 10.1093/molbev/msx061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
While the principal force directing coding sequence (CDS) evolution is selection on protein function, to ensure correct gene expression CDSs must also maintain interactions with RNA-binding proteins (RBPs). Understanding how our genes are shaped by these RNA-level pressures is necessary for diagnostics and for improving transgenes. However, the evolutionary impact of the need to maintain RBP interactions remains unresolved. Are coding sequences constrained by the need to specify RBP binding motifs? If so, what proportion of mutations are affected? Might sequence evolution also be constrained by the need not to specify motifs that might attract unwanted binding, for instance because it would interfere with exon definition? Here, we have scanned human CDSs for motifs that have been experimentally determined to be recognized by RBPs. We observe two sets of motifs-those that are enriched over nucleotide-controlled null and those that are depleted. Importantly, the depleted set is enriched for motifs recognized by non-CDS binding RBPs. Supporting the functional relevance of our observations, we find that motifs that are more enriched are also slower-evolving. The net effect of this selection to preserve is a reduction in the over-all rate of synonymous evolution of 2-3% in both primates and rodents. Stronger motif depletion, on the other hand, is associated with stronger selection against motif gain in evolution. The challenge faced by our CDSs is therefore not only one of attracting the right RBPs but also of avoiding the wrong ones, all while also evolving under selection pressures related to protein structure.
Collapse
Affiliation(s)
- Rosina Savisaar
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
24
|
Danilenko M, Dalgliesh C, Pagliarini V, Naro C, Ehrmann I, Feracci M, Kheirollahi-Chadegani M, Tyson-Capper A, Clowry GJ, Fort P, Dominguez C, Sette C, Elliott DJ. Binding site density enables paralog-specific activity of SLM2 and Sam68 proteins in Neurexin2 AS4 splicing control. Nucleic Acids Res 2017; 45:4120-4130. [PMID: 27994030 PMCID: PMC5397175 DOI: 10.1093/nar/gkw1277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/08/2016] [Indexed: 01/09/2023] Open
Abstract
SLM2 and Sam68 are splicing regulator paralogs that usually overlap in function, yet only SLM2 and not Sam68 controls the Neurexin2 AS4 exon important for brain function. Herein we find that SLM2 and Sam68 similarly bind to Neurexin2 pre-mRNA, both within the mouse cortex and in vitro. Protein domain-swap experiments identify a region including the STAR domain that differentiates SLM2 and Sam68 activity in splicing target selection, and confirm that this is not established via the variant amino acids involved in RNA contact. However, far fewer SLM2 and Sam68 RNA binding sites flank the Neurexin2 AS4 exon, compared with those flanking the Neurexin1 and Neurexin3 AS4 exons under joint control by both Sam68 and SLM2. Doubling binding site numbers switched paralog sensitivity, by placing the Neurexin2 AS4 exon under joint splicing control by both Sam68 and SLM2. Our data support a model where the density of shared RNA binding sites around a target exon, rather than different paralog-specific protein-RNA binding sites, controls functional target specificity between SLM2 and Sam68 on the Neurexin2 AS4 exon. Similar models might explain differential control by other splicing regulators within families of paralogs with indistinguishable RNA binding sites.
Collapse
Affiliation(s)
- Marina Danilenko
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Caroline Dalgliesh
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Chiara Naro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Ingrid Ehrmann
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Mikael Feracci
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK
| | | | - Alison Tyson-Capper
- Institute for Cellular Medicine, Newcastle University, Framlington Place, Newcastle NE2 4HH, UK
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle, UK
| | - Philippe Fort
- Université Montpellier, UMR 5237, Centre de Recherche de Biologie cellulaire de Montpellier, CNRS, 34293 Montpellier, France
| | - Cyril Dominguez
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| |
Collapse
|
25
|
Brillen AL, Schöneweis K, Walotka L, Hartmann L, Müller L, Ptok J, Kaisers W, Poschmann G, Stühler K, Buratti E, Theiss S, Schaal H. Succession of splicing regulatory elements determines cryptic 5΄ss functionality. Nucleic Acids Res 2017; 45:4202-4216. [PMID: 28039323 PMCID: PMC5397162 DOI: 10.1093/nar/gkw1317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022] Open
Abstract
A critical step in exon definition is the recognition of a proper splice donor (5΄ss) by the 5’ end of U1 snRNA. In the selection of appropriate 5΄ss, cis-acting splicing regulatory elements (SREs) are indispensable. As a model for 5΄ss recognition, we investigated cryptic 5΄ss selection within the human fibrinogen Bβ-chain gene (FGB) exon 7, where we identified several exonic SREs that simultaneously acted on up- and downstream cryptic 5΄ss. In the FGB exon 7 model system, 5΄ss selection iteratively proceeded along an alternating sequence of U1 snRNA binding sites and interleaved SREs which in principle supported different 3’ exon ends. Like in a relay race, SREs either suppressed a potential 5΄ss and passed the splicing baton on or splicing actually occurred. From RNA-Seq data, we systematically selected 19 genes containing exons with silent U1 snRNA binding sites competing with nearby highly used 5΄ss. Extensive SRE analysis by different algorithms found authentic 5΄ss significantly more supported by SREs than silent U1 snRNA binding sites, indicating that our concept may permit generalization to a model for 5΄ss selection and 3’ exon end definition.
Collapse
Affiliation(s)
- Anna-Lena Brillen
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katrin Schöneweis
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lara Walotka
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Linda Hartmann
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johannes Ptok
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Kaisers
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.,Institute for Molecular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, 34149 Trieste, Italy
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University Düsseldorf, 40225
| | - Heiner Schaal
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
26
|
Analysis of Competing HIV-1 Splice Donor Sites Uncovers a Tight Cluster of Splicing Regulatory Elements within Exon 2/2b. J Virol 2017; 91:JVI.00389-17. [PMID: 28446664 DOI: 10.1128/jvi.00389-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/18/2017] [Indexed: 12/24/2022] Open
Abstract
The HIV-1 accessory protein Vif is essential for viral replication by counteracting the host restriction factor APOBEC3G (A3G), and balanced levels of both proteins are required for efficient viral replication. Noncoding exons 2/2b contain the Vif start codon between their alternatively used splice donors 2 and 2b (D2 and D2b). For vif mRNA, intron 1 must be removed while intron 2 must be retained. Thus, splice acceptor 1 (A1) must be activated by U1 snRNP binding to either D2 or D2b, while splicing at D2 or D2b must be prevented. Here, we unravel the complex interactions between previously known and novel components of the splicing regulatory network regulating HIV-1 exon 2/2b inclusion in viral mRNAs. In particular, using RNA pulldown experiments and mass spectrometry analysis, we found members of the heterogeneous nuclear ribonucleoparticle (hnRNP) A/B family binding to a novel splicing regulatory element (SRE), the exonic splicing silencer ESS2b, and the splicing regulatory proteins Tra2/SRSF10 binding to the nearby exonic splicing enhancer ESE2b. Using a minigene reporter, we performed bioinformatics HEXplorer-guided mutational analysis to narrow down SRE motifs affecting splice site selection between D2 and D2b. Eventually, the impacts of these SREs on the viral splicing pattern and protein expression were exhaustively analyzed in viral particle production and replication experiments. Masking of these protein binding sites by use of locked nucleic acids (LNAs) impaired Vif expression and viral replication.IMPORTANCE Based on our results, we propose a model in which a dense network of SREs regulates vif mRNA and protein expression, crucial to maintain viral replication within host cells with varying A3G levels and at different stages of infection. This regulation is maintained by several serine/arginine-rich splicing factors (SRSF) and hnRNPs binding to those elements. Targeting this cluster of SREs with LNAs may lead to the development of novel effective therapeutic strategies.
Collapse
|
27
|
Li Y, Zhou J. Roles of silent information regulator 1-serine/arginine-rich splicing factor 10-lipin 1 axis in the pathogenesis of alcohol fatty liver disease. Exp Biol Med (Maywood) 2017; 242:1117-1125. [PMID: 28467182 DOI: 10.1177/1535370217707729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alcohol exposure is a major reason of morbidity and mortality all over the world, with much of detrimental consequences attributing to alcoholic liver disease (ALD). With the continued ethanol consumption, alcoholic fatty liver disease (AFLD, the earliest and reversible form of ALD) can further develop to more serious forms of alcoholic liver damage, including alcoholic steatohepatitis, fibrosis/cirrhosis, and even eventually progress to hepatocellular carcinoma and liver failure. Furthermore, cell trauma, inflammation, oxidative stress, regeneration, and bacterial translocation are crucial promoters of ethanol-mediated liver lesions. AFLD is characterized by excessive fat deposition in liver induced by excessive drinking, which is related closely to the raised synthesis of fatty acids and triglyceride, reduction of mitochondrial fatty acid β-oxidation, and the aggregation of very-low-density lipoprotein (VLDL). Although little is known about the cellular and molecular mechanisms of AFLD, it seems to be correlated to diverse signal channels. Massive studies have suggested that liver steatosis is closely associated with the inhibition of silent information regulator 1 (SIRT1) and the augment of lipin1 β/α ratio mediated by ethanol. Recently, serine/arginine-rich splicing factor 10 (SFRS10), a specific molecule functioning in alternative splicing of lipin 1 (LPIN1) pre-mRNAs, has emerged as the central connection between SIRT1 and lipin1 signaling. It seems a new signaling axis, SIRT1-SFRS10-LPIN1 axis, acting in the pathogenesis of AFLD exists. This article aims to further explore the interactions among the above three molecules and their influences on the development of AFLD. Impact statement ALD is a major health burden in industrialized countries as well as China. AFLD, the earliest and reversible form of ALD, can progress to hepatitis, fibrosis/cirrhosis, even hepatoma. While the mechanisms, by which ethanol consumption leads to AFLD, are complicated and multiple, and remain incompletely understood. SIRT1, SFRS10, and LIPIN1 had been separately reported to participate in lipid metabolism and the pathogenesis of AFLD. Noteworthy, we found the connection among them via searching articles in PubMed and we had elaborated the connection in detail in this minireview. It seems a new signaling axis, SIRT1-SFRS10-LIPIN1 axis, acting in the pathogenesis of AFLD exists. Further study aimed at SIRT1-SFRS10-LIPIN1 signaling system will possibly offer a more effective therapeutic target for AFLD.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Infectious Disease, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Junying Zhou
- Department of Infectious Disease, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| |
Collapse
|
28
|
Liu T, Sun H, Zhu D, Dong X, Liu F, Liang X, Chen C, Shao B, Wang M, Wang Y, Sun B. TRA2A Promoted Paclitaxel Resistance and Tumor Progression in Triple-Negative Breast Cancers via Regulating Alternative Splicing. Mol Cancer Ther 2017; 16:1377-1388. [PMID: 28416606 DOI: 10.1158/1535-7163.mct-17-0026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 12/07/2016] [Accepted: 04/07/2017] [Indexed: 11/16/2022]
Abstract
Treatment of triple-negative breast cancer (TNBC) has been challenging, and paclitaxel resistance is one of the major obstacles to the better prognosis. Deregulation of alternative splicing (AS) may contribute to tumor progression and chemotherapy resistance. Human AS factor TRA2 has two separate gene paralogs encoding TRA2A and TRA2B proteins. TRA2B is associated with cancer cell survival and therapeutic sensitivity. However, the individual role of TRA2A in cancer progression has not been reported. Here we report that TRA2A facilitates proliferation and survival and migration and invasion of TNBC cells. In addition, TRA2A promotes paclitaxel resistance of TNBC by specifically controlling cancer-related splicing, which is independent of other splicing factors. TRA2A overexpression could promote AS of CALU, RSRC2, and PALM during paclitaxel treatment of TNBC cells. The isoform shift of RSRC2 from RSRC2s to RSRC2l leads to a decreased RSRC2 protein expression, which could contribute to TNBC paclitaxel resistance. TRA2A can regulate RSRC2 AS by specifically binding upstream intronic sequence of exon4. Strikingly, TRA2A expression is increased dramatically in patients with TNBC, and has a close relationship with decreased RSRC2 expression; both are associated with poor survival of TNBC. Collectively, our findings suggest that paclitaxel targets the TRA2A-RSRC2 splicing pathway, and deregulated TRA2A and RSRC2 expression may confer paclitaxel resistance. In addition to providing a novel molecular mechanism of cancer-related splicing dysregulation, our study demonstrates that expression of TRA2A in conjunction with RSRC2 may provide valuable molecular biomarker evidence for TNBC clinical treatment decisions and patient outcome. Mol Cancer Ther; 16(7); 1377-88. ©2017 AACR.
Collapse
Affiliation(s)
- Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Huizhi Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Dongwang Zhu
- Stomatology Hospital of Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaohui Liang
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Chen Chen
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Bing Shao
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Meili Wang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yi Wang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
29
|
Abstract
MDM4, an essential negative regulator of the P53 tumor suppressor, is frequently overexpressed in cancer cells that harbor a wild-type P53. By a mechanism based on alternative splicing, the MDM4 gene generates two mutually exclusive isoforms: MDM4-FL, which encodes the full-length MDM4 protein, and a shorter splice variant called MDM4-S. Previous results suggested that the MDM4-S isoform could be an important driver of tumor development. In this short review, we discuss a recent set of data indicating that MDM4-S is more likely a passenger isoform during tumorigenesis and that targeting MDM4 splicing to prevent MDM4-FL protein expression appears as a promising strategy to reactivate p53 in cancer cells. The benefits and risks associated with this strategy are also discussed.
Collapse
|
30
|
Abstract
Tumor-associated alterations in RNA splicing result either from mutations in splicing-regulatory elements or changes in components of the splicing machinery. This review summarizes our current understanding of the role of splicing-factor alterations in human cancers. We describe splicing-factor alterations detected in human tumors and the resulting changes in splicing, highlighting cell-type-specific similarities and differences. We review the mechanisms of splicing-factor regulation in normal and cancer cells. Finally, we summarize recent efforts to develop novel cancer therapies, based on targeting either the oncogenic splicing events or their upstream splicing regulators.
Collapse
Affiliation(s)
- Olga Anczuków
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
31
|
Chalmel F, Rolland AD. Linking transcriptomics and proteomics in spermatogenesis. Reproduction 2016; 150:R149-57. [PMID: 26416010 DOI: 10.1530/rep-15-0073] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Spermatogenesis is a complex and tightly regulated process leading to the continuous production of male gametes, the spermatozoa. This developmental process requires the sequential and coordinated expression of thousands of genes, including many that are testis-specific. The molecular networks underlying normal and pathological spermatogenesis have been widely investigated in recent decades, and many high-throughput expression studies have studied genes and proteins involved in male fertility. In this review, we focus on studies that have attempted to correlate transcription and translation during spermatogenesis by comparing the testicular transcriptome and proteome. We also discuss the recent development and use of new transcriptomic approaches that provide a better proxy for the proteome, from both qualitative and quantitative perspectives. Finally, we provide illustrations of how testis-derived transcriptomic and proteomic data can be integrated to address new questions and how the 'proteomics informed by transcriptomics' technique, by combining RNA-seq and MS-based proteomics, can contribute significantly to the discovery of new protein-coding genes or new protein isoforms expressed during spermatogenesis.
Collapse
Affiliation(s)
- Frédéric Chalmel
- Inserm U1085-IrsetUniversité de Rennes 1, F-35042 Rennes, France
| | | |
Collapse
|
32
|
Shen S, Wang Y, Wang C, Wu YN, Xing Y. SURVIV for survival analysis of mRNA isoform variation. Nat Commun 2016; 7:11548. [PMID: 27279334 PMCID: PMC4906168 DOI: 10.1038/ncomms11548] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/07/2016] [Indexed: 01/07/2023] Open
Abstract
The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq data. Simulation studies suggest that SURVIV outperforms the conventional Cox regression survival analysis, especially for data sets with modest sequencing depth. We applied SURVIV to TCGA RNA-seq data of invasive ductal carcinoma as well as five additional cancer types. Alternative splicing-based survival predictors consistently outperform gene expression-based survival predictors, and the integration of clinical, gene expression and alternative splicing profiles leads to the best survival prediction. We anticipate that SURVIV will have broad utilities for analysing diverse types of mRNA isoform variation in large-scale clinical RNA-seq projects.
Collapse
Affiliation(s)
- Shihao Shen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Yuanyuan Wang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chengyang Wang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Ying Nian Wu
- Department of Statistics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
33
|
Small Molecule Modulators of Pre-mRNA Splicing in Cancer Therapy. Trends Mol Med 2015; 22:28-37. [PMID: 26700537 DOI: 10.1016/j.molmed.2015.11.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022]
Abstract
Pre-mRNA splicing is a fundamental process in mammalian gene expression and alternative RNA splicing plays a considerable role in generating protein diversity. RNA splicing events are also key to the pathology of numerous diseases, particularly cancers. Some tumors are molecularly addicted to specific RNA splicing isoforms making interference with pre-mRNA processing a viable therapeutic strategy. Several RNA splicing modulators have recently been characterized, some showing promise in preclinical studies. While the targets of most splicing modulators are constitutive RNA processing components, possibly leading to undesirable side effects, selectivity for individual splicing events has been observed. Given the high prevalence of splicing defects in cancer, small molecule modulators of RNA processing represent a potentially promising novel therapeutic strategy in cancer treatment. Here, we review their reported effects, mechanisms, and limitations.
Collapse
|
34
|
Ghosh P, Grellscheid SN, Sowdhamini R. A tale of two paralogs: human Transformer2 proteins with differential RNA-binding affinities. J Biomol Struct Dyn 2015; 34:1979-86. [PMID: 26414300 DOI: 10.1080/07391102.2015.1100551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Transformer2 (Tra2) proteins in humans are homologues of the Drosophila Tra2 protein. One of the two RNA-binding paralogs, Tra2β, has been very well-studied over the past decade, but not much is known about Tra2α. It was very recently shown that the two proteins demonstrate the phenomenon of paralog compensation. Here, we provide a structural basis for this genetic backup circuit, using molecular modelling and dynamics studies. We show that the two proteins display similar binding specificities, but differential affinities to a short GAA-rich RNA stretch. Starting from the 6-nucleotide RNA in the solution structure, close to 4000 virtual mutations were modelled on RNA and the domain-RNA interactions were studied after energy minimisation to convergence. Separately, another known 13-nucleotide stretch was docked and the domain-RNA interactions were observed through a 100-ns dynamics trajectory. We have also demonstrated the 'compensatory' mechanism at the level of domains in one of the domain repeat-containing RNA-binding proteins.
Collapse
Affiliation(s)
- Pritha Ghosh
- a National Centre for Biological Sciences , Tata Institute of Fundamental Research , GKVK Campus, Bellary Road, Bangalore 560065 , Karnataka , India
| | | | - R Sowdhamini
- a National Centre for Biological Sciences , Tata Institute of Fundamental Research , GKVK Campus, Bellary Road, Bangalore 560065 , Karnataka , India
| |
Collapse
|
35
|
Transformer2 proteins protect breast cancer cells from accumulating replication stress by ensuring productive splicing of checkpoint kinase 1. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1540-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Platt C, Calimano M, Nemet J, Bubenik J, Cochrane A. Differential Effects of Tra2ß Isoforms on HIV-1 RNA Processing and Expression. PLoS One 2015; 10:e0125315. [PMID: 25970345 PMCID: PMC4430212 DOI: 10.1371/journal.pone.0125315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/16/2015] [Indexed: 12/03/2022] Open
Abstract
Balanced processing of HIV-1 RNA is critical to virus replication and is regulated by host factors. In this report, we demonstrate that overexpression of either Tra2α or Tra2β results in a marked reduction in HIV-1 Gag/ Env expression, an effect associated with changes in HIV-1 RNA accumulation, altered viral splice site usage, and a block to export of HIV-1 genomic RNA. A natural isoform of Tra2β (Tra2ß3), lacking the N-terminal RS domain, also suppressed HIV-1 expression but had different effects on viral RNA processing. The functional differences between the Tra2β isoforms were also observed in the context of another RNA substrate indicating that these factors have distinct functions within the cell. Finally, we demonstrate that Tra2ß depletion results in a selective reduction in HIV-1 Env expression as well as an increase in multiply spliced viral RNA. Together, the findings indicate that Tra2α/β can play important roles in regulating HIV-1 RNA metabolism and expression.
Collapse
MESH Headings
- Gene Expression Regulation
- HEK293 Cells
- HIV-1/genetics
- HIV-1/metabolism
- HeLa Cells
- Host-Pathogen Interactions
- Humans
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA Splice Sites
- RNA Splicing
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/antagonists & inhibitors
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Serine-Arginine Splicing Factors
- Signal Transduction
- Virus Replication
- env Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/metabolism
- gag Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Craig Platt
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Maria Calimano
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Josip Nemet
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jodi Bubenik
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alan Cochrane
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
37
|
Abstract
Tra2 proteins regulate pre-mRNA splicing in vertebrates and invertebrates, and are involved in important processes ranging from brain development in mice to sex determination in fruitflies. In structure Tra2 proteins contain two RS domains (domains enriched in arginine and serine residues) flanking a central RRM (RNA recognition motif). Understanding the mechanisms of how Tra2 proteins work to control splicing is one of the key requirements to understand their biology. In the present article, we review what is known about how Tra2 proteins regulate splicing decisions in mammals and fruitflies.
Collapse
|
38
|
Abstract
RRM-containing proteins are involved in most of the RNA metabolism steps. Their functions are closely related to their mode of RNA recognition, which has been studied by structural biologists for more than 20 years. In this chapter, we report on high-resolution structures of single and multi RRM-RNA complexes to explain the numerous strategies used by these domains to interact specifically with a large repertoire of RNA sequences. We show that multiple variations of their canonical fold can be used to adapt to different single-stranded sequences with a large range of affinities. Furthermore, we describe the consequences on RNA binding of the different structural arrangements found in tandem RRMs and higher order RNPs. Importantly, these structures also reveal with very high accuracy the RNA motifs bound specifically by RRM-containing proteins, which correspond very often to consensus sequences identified with genome-wide approaches. Finally, we show how structural and cellular biology can benefit from each other and pave a way for understanding, defining, and predicting a code of RNA recognition by the RRMs.
Collapse
|
39
|
Zheng X, Reho JJ, Wirth B, Fisher SA. TRA2β controls Mypt1 exon 24 splicing in the developmental maturation of mouse mesenteric artery smooth muscle. Am J Physiol Cell Physiol 2015; 308:C289-96. [PMID: 25428883 PMCID: PMC4329427 DOI: 10.1152/ajpcell.00304.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/17/2014] [Indexed: 01/19/2023]
Abstract
Diversity of smooth muscle within the vascular system is generated by alternative splicing of exons, yet there is limited understanding of its timing or control mechanisms. We examined splicing of myosin phosphatase regulatory subunit (Mypt1) exon 24 (E24) in relation to smooth muscle myosin heavy chain (Smmhc) and smoothelin (Smtn) alternative exons (Smmhc E6 and Smtn E20) during maturation of mouse mesenteric artery (MA) smooth muscle. The role of transformer 2β (Tra2β), a master regulator of splicing in flies, in maturation of arterial smooth muscle was tested through gene inactivation. Splicing of alternative exons in bladder smooth muscle was examined for comparative purposes. MA smooth muscle maturation began after postnatal week 2 and was complete at maturity, as indicated by switching to Mypt1 E24+ and Smtn E20- splice variants and 11-fold induction of Smmhc. Similar changes in bladder were complete by postnatal day 3. Splicing of Smmhc E6 was temporally dissociated from Mypt1 E24 and Smtn E20 and discordant between arteries and bladder. Tamoxifen-induced smooth muscle-specific inactivation of Tra2β within the first week of life but not in maturity reduced splicing of Mypt1 E24 in MAs. Inactivation of Tra2β causing a switch to the isoform of MYPT1 containing the COOH-terminal leucine zipper motif (E24-) increased arterial sensitivity to cGMP-mediated relaxation. In conclusion, maturation of mouse MA smooth muscle begins postnatally and continues until sexual maturity. TRA2β is required for specification during this period of maturation, and its inactivation alters the contractile properties of mature arterial smooth muscle.
Collapse
MESH Headings
- Age Factors
- Alternative Splicing
- Animals
- Cell Differentiation
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/pharmacology
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Dose-Response Relationship, Drug
- Exons
- Female
- Gene Expression Regulation, Developmental
- Genotype
- In Vitro Techniques
- Male
- Mesenteric Arteries/enzymology
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Myosin-Light-Chain Kinase/genetics
- Myosin-Light-Chain Kinase/metabolism
- Myosin-Light-Chain Phosphatase
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Serine-Arginine Splicing Factors
- Smooth Muscle Myosins/genetics
- Smooth Muscle Myosins/metabolism
- Vasodilation
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Xiaoxu Zheng
- Division of Cardiovascular Medicine, School of Medicine, University of Maryland, Baltimore, Maryland
| | - John J Reho
- Division of Cardiovascular Medicine, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, Cologne, Germany; Institute for Genetics, University of Cologne, Cologne, Germany; and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Steven A Fisher
- Division of Cardiovascular Medicine, School of Medicine, University of Maryland, Baltimore, Maryland;
| |
Collapse
|
40
|
Kuwano Y, Nishida K, Kajita K, Satake Y, Akaike Y, Fujita K, Kano S, Masuda K, Rokutan K. Transformer 2β and miR-204 regulate apoptosis through competitive binding to 3' UTR of BCL2 mRNA. Cell Death Differ 2014; 22:815-25. [PMID: 25342468 DOI: 10.1038/cdd.2014.176] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/10/2023] Open
Abstract
RNA-binding proteins and microRNAs are potent post-transcriptional regulators of gene expression. Human transformer 2β (Tra2β) is a serine/arginine-rich-like protein splicing factor and is now implicated to have wide-ranging roles in gene expression as an RNA-binding protein. RNA immunoprecipitation (RIP) with an anti-Tra2β antibody and microarray analysis identified a subset of Tra2β-associated mRNAs in HCT116 human colon cancer cells, many of which encoded cell death-related proteins including Bcl-2 (B-cell CLL/lymphoma 2). Tra2β knockdown in HCT116 cells decreased Bcl-2 expression and induced apoptosis. Tra2β knockdown accelerated the decay of BCL2α mRNA that encodes Bcl-2 and full-length 3' UTR, while it did not affect the stability of BCL2β mRNA having a short, alternatively spliced 3' UTR different from BCL2α 3' UTR. RIP assays with anti-Tra2β and anti-Argonaute 2 antibodies, respectively, showed that Tra2β bound to BCL2α 3' UTR, and that Tra2β knockdown facilitated association of miR-204 with BCL2α 3' UTR. The consensus sequence (GAA) for Tra2β-binding lies within the miR-204-binding site of BCL2 3' UTR. Mutation of the consensus sequence canceled the binding of Tra2β to BCL2 3' UTR without disrupting miR-204-binding to BCL2 3' UTR. Transfection of an anti-miR-204 or introduction of three-point mutations into the miR-204-binding site increased BCL2 mRNA and Bcl-2 protein levels. Inversely, transfection of precursor miR-204 reduced their levels. Experiments with Tra2β-silenced or overexpressed cells revealed that Tra2β antagonized the effects of miR-204 and upregulated Bcl-2 expression. Furthermore, TRA2β mRNA expression was significantly upregulated in 22 colon cancer tissues compared with paired normal tissues and positively correlated with BCL2 mRNA expression. Tra2β knockdown in human lung adenocarcinoma cells (A549) increased their sensitivity to anticancer drugs. Taken together, our findings suggest that Tra2β regulates apoptosis by modulating Bcl-2 expression through its competition with miR-204. This novel function may have a crucial role in tumor growth.
Collapse
Affiliation(s)
- Y Kuwano
- Department of Stress Science, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - K Nishida
- Department of Stress Science, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - K Kajita
- Department of Stress Science, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Y Satake
- Department of Stress Science, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Y Akaike
- Department of Stress Science, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - K Fujita
- Department of Stress Science, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - S Kano
- Department of Stress Science, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - K Masuda
- Department of Stress Science, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - K Rokutan
- Department of Stress Science, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
41
|
Patel RS, Carter G, Cooper DR, Apostolatos H, Patel NA. Transformer 2β homolog (Drosophila) (TRA2B) regulates protein kinase C δI (PKCδI) splice variant expression during 3T3L1 preadipocyte cell cycle. J Biol Chem 2014; 289:31662-31672. [PMID: 25261467 DOI: 10.1074/jbc.m114.592337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Obesity is characterized by adipocyte hyperplasia and hypertrophy. We previously showed that PKCδ expression is dysregulated in obesity (Carter, G., Apostolatos, A., Patel, R., Mathur, A., Cooper, D., Murr, M., and Patel, N. A. (2013) ISRN Obes. 2013, 161345). Using 3T3L1 preadipocytes, we studied adipogenesis in vitro and showed that expression of PKCδ splice variants, PKCδI and PKCδII, have different expression patterns during adipogenesis (Patel, R., Apostolatos, A., Carter, G., Ajmo, J., Gali, M., Cooper, D. R., You, M., Bisht, K. S., and Patel, N. A. (2013) J. Biol. Chem. 288, 26834-26846). Here, we evaluated the role of PKCδI splice variant during adipogenesis. Our results indicate that PKCδI expression level is high in preadipocytes and decreasing PKCδI accelerated terminal differentiation. Our results indicate that PKCδI is required for mitotic clonal expansion of preadipocytes. We next evaluated the splice factor regulating the expression of PKCδI during 3T3L1 adipogenesis. Our results show TRA2B increased PKCδI expression. To investigate the molecular mechanism, we cloned a heterologous splicing PKCδ minigene and showed that inclusion of PKCδ exon 9 is increased by TRA2B. Using mutagenesis and a RNA-immunoprecipitation assay, we evaluated the binding of Tra2β on PKCδI exon 9 and show that its association is required for PKCδI splicing. These results provide a better understanding of the role of PKCδI in adipogenesis. Determination of this molecular mechanism of alternative splicing presents a novel therapeutic target in the management of obesity and its co-morbidities.
Collapse
Affiliation(s)
- Rekha S Patel
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612
| | - Gay Carter
- James A. Haley Veterans Hospital and University of South Florida, Tampa, Florida 33612
| | - Denise R Cooper
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612; James A. Haley Veterans Hospital and University of South Florida, Tampa, Florida 33612
| | - Hercules Apostolatos
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612
| | - Niketa A Patel
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612; James A. Haley Veterans Hospital and University of South Florida, Tampa, Florida 33612.
| |
Collapse
|
42
|
Best A, James K, Dalgliesh C, Hong E, Kheirolahi-Kouhestani M, Curk T, Xu Y, Danilenko M, Hussain R, Keavney B, Wipat A, Klinck R, Cowell IG, Cheong Lee K, Austin CA, Venables JP, Chabot B, Santibanez Koref M, Tyson-Capper A, Elliott DJ. Human Tra2 proteins jointly control a CHEK1 splicing switch among alternative and constitutive target exons. Nat Commun 2014; 5:4760. [PMID: 25208576 PMCID: PMC4175592 DOI: 10.1038/ncomms5760] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/22/2014] [Indexed: 01/11/2023] Open
Abstract
Alternative splicing--the production of multiple messenger RNA isoforms from a single gene--is regulated in part by RNA binding proteins. While the RBPs transformer2 alpha (Tra2α) and Tra2β have both been implicated in the regulation of alternative splicing, their relative contributions to this process are not well understood. Here we find simultaneous--but not individual--depletion of Tra2α and Tra2β induces substantial shifts in splicing of endogenous Tra2β target exons, and that both constitutive and alternative target exons are under dual Tra2α-Tra2β control. Target exons are enriched in genes associated with chromosome biology including CHEK1, which encodes a key DNA damage response protein. Dual Tra2 protein depletion reduces expression of full-length CHK1 protein, results in the accumulation of the DNA damage marker γH2AX and decreased cell viability. We conclude Tra2 proteins jointly control constitutive and alternative splicing patterns via paralog compensation to control pathways essential to the maintenance of cell viability.
Collapse
Affiliation(s)
- Andrew Best
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Katherine James
- School of Computing Science, Claremont Tower, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Caroline Dalgliesh
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Elaine Hong
- Institute for Cellular Medicine, Newcastle University, Framlington Place, Newcastle NE2 4HH, UK
| | | | - Tomaz Curk
- Faculty of Computer and Information Science, University of Ljubljana, Trzaska cesta 25, SI-1000, Ljubljana, Slovenia
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Marina Danilenko
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Rafiq Hussain
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Bernard Keavney
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
- Institute of Cardiovascular Sciences, The University of Manchester, Manchester M13 9NT, UK
| | - Anil Wipat
- School of Computing Science, Claremont Tower, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Roscoe Klinck
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Ian G. Cowell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Ka Cheong Lee
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Caroline A. Austin
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Julian P. Venables
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Mauro Santibanez Koref
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Alison Tyson-Capper
- Institute for Cellular Medicine, Newcastle University, Framlington Place, Newcastle NE2 4HH, UK
| | - David J. Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| |
Collapse
|
43
|
Transformer 2β (Tra2β/SFRS10) positively regulates the progression of NSCLC via promoting cell proliferation. J Mol Histol 2014; 45:573-82. [DOI: 10.1007/s10735-014-9582-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
|
44
|
Moursy A, Allain FHT, Cléry A. Characterization of the RNA recognition mode of hnRNP G extends its role in SMN2 splicing regulation. Nucleic Acids Res 2014; 42:6659-72. [PMID: 24692659 PMCID: PMC4041419 DOI: 10.1093/nar/gku244] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Regulation of SMN2 exon 7 splicing is crucial for the production of active SMN protein and the survival of Spinal Muscular Atrophy (SMA) patients. One of the most efficient activators of exon 7 inclusion is hnRNP G, which is recruited to the exon by Tra2-β1. We report that in addition to the C-terminal region of hnRNP G, the RNA Recognition Motif (RRM) and the middle part of the protein containing the Arg–Gly–Gly (RGG) box are important for this function. To better understand the mode of action of hnRNP G in this context we determined the structure of its RRM bound to an SMN2 derived RNA. The RRM interacts with a 5′-AAN-3′ motif and specifically recognizes the two consecutive adenines. By testing the effect of mutations in hnRNP G RRM and in its putative binding sites on the splicing of SMN2 exon 7, we show that it specifically binds to exon 7. This interaction is required for hnRNP G splicing activity and we propose its recruitment to a polyA tract located upstream of the Tra2-β1 binding site. Finally, our data suggest that hnRNP G plays a major role in the recruitment of the Tra2-β1/hnRNP G/SRSF9 trimeric complex to SMN2 exon 7.
Collapse
Affiliation(s)
- Ahmed Moursy
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH), 8093 Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH), 8093 Zürich, Switzerland
| | - Antoine Cléry
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH), 8093 Zürich, Switzerland
| |
Collapse
|
45
|
Raponi M, Smith LD, Silipo M, Stuani C, Buratti E, Baralle D. BRCA1 exon 11 a model of long exon splicing regulation. RNA Biol 2014; 11:351-9. [PMID: 24658338 DOI: 10.4161/rna.28458] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BRCA1 exon 11 is one of the biggest human exons, spanning 3426 bases. This gene is potentially involved in DNA repair as well as cell growth and cell cycle control. Exon 11 is regulated at the splicing level producing three main different combinations of BRCA1 mature transcripts; one including the whole of exon 11 (full isoform), one skipping the entire exon (D11 isoform), and one including only 117 base pairs of exon 11 (D11q isoform). Using minigene and deletion analyses, we have previously described important splicing regulatory sequences located at the beginning of this exon (5' end). We have now found additional important sequences located at its 3' end. In particular, we describe the presence of a strong splicing enhancer adjacent to the downstream 5' splice site, which minimizes competition from an upstream 5' splice site and so ensures long exon inclusion. Analyses of the proteins binding these RNA sequences have revealed that Tra2beta and hnRNP L are involved in the regulation of BRCA1 exon 11 by influencing the recognition of donor sites. Interestingly, BRCA1 exon 11 carrying deletion of the regulatory sequences bound by these factors also showed unexpected responses to up- or downregulation of these regulatory proteins, suggesting that they can also bind elsewhere in this large exon and elicit different effects on its recognition. The identification of sequences and proteins relevant for the regulation of BRCA1 exon 11 now provides better knowledge on how this exon is recognized and may represent an important step toward understanding how large exons are regulated.
Collapse
Affiliation(s)
| | | | - Marco Silipo
- University of Southampton; Southampton, United Kingdom
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology; Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology; Trieste, Italy
| | - Diana Baralle
- University of Southampton; Southampton, United Kingdom
| |
Collapse
|
46
|
Elliott DJ. Illuminating the Transcriptome through the Genome. Genes (Basel) 2014; 5:235-53. [PMID: 24705295 PMCID: PMC3978521 DOI: 10.3390/genes5010235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 02/01/2023] Open
Abstract
Sequencing the human genome was a huge milestone in genetic research that revealed almost the total DNA sequence required to create a human being. However, in order to function, the DNA genome needs to be expressed as an RNA transcriptome. This article reviews how knowledge of genome sequence information has led to fundamental discoveries in how the transcriptome is processed, with a focus on new system-wide insights into how pre-mRNAs that are encoded by split genes in the genome are rearranged by splicing into functional mRNAs. These advances have been made possible by the development of new post-genome technologies to probe splicing patterns. Transcriptome-wide approaches have characterised a "splicing code" that is embedded within and has a significant role in deciphering the genome, and is deciphered by RNA binding proteins. These analyses have also found that most human genes encode multiple mRNA isoforms, and in some cases proteins, leading in turn to a re-assessment of what exactly a gene is. Analysis of the transcriptome has given insights into how the genome is packaged and transcribed, and is helping to explain important aspects of genome evolution.
Collapse
Affiliation(s)
- David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle, NE1 3BZ, UK.
| |
Collapse
|
47
|
Storbeck M, Hupperich K, Gaspar JA, Meganathan K, Martínez Carrera L, Wirth R, Sachinidis A, Wirth B. Neuronal-specific deficiency of the splicing factor Tra2b causes apoptosis in neurogenic areas of the developing mouse brain. PLoS One 2014; 9:e89020. [PMID: 24586484 PMCID: PMC3929626 DOI: 10.1371/journal.pone.0089020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/13/2014] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing (AS) increases the informational content of the genome and is more prevalent in the brain than in any other tissue. The splicing factor Tra2b (Sfrs10) can modulate splicing inclusion of exons by specifically detecting GAA-rich binding motifs and its absence causes early embryonic lethality in mice. TRA2B has been shown to be involved in splicing processes of Nasp (nuclear autoantigenic sperm protein), MAPT (microtubule associated protein tau) and SMN (survival motor neuron), and is therefore implicated in spermatogenesis and neurological diseases like Alzheimer’s disease, dementia, Parkinson’s disease and spinal muscular atrophy. Here we generated a neuronal-specific Tra2b knock-out mouse that lacks Tra2b expression in neuronal and glial precursor cells by using the Nestin-Cre. Neuronal-specific Tra2b knock-out mice die immediately after birth and show severe abnormalities in cortical development, which are caused by massive apoptotic events in the ventricular layers of the cortex, demonstrating a pivotal role of Tra2b for the developing central nervous system. Using whole brain RNA on exon arrays we identified differentially expressed alternative exons of Tubulinδ1 and Shugoshin-like2 as in vivo targets of Tra2b. Most interestingly, we found increased expression of the cyclin dependent kinase inhibitor 1a (p21) which we could functionally link to neuronal precursor cells in the affected brain regions. We provide further evidence that the absence of Tra2b causes p21 upregulation and ultimately cell death in NSC34 neuronal-like cells. These findings demonstrate that Tra2b regulates splicing events essential for maintaining neuronal viability during development. Apoptotic events triggered via p21 might not be restricted to the developing brain but could possibly be generalized to the whole organism and explain early embryonic lethality in Tra2b-depleted mice.
Collapse
Affiliation(s)
- Markus Storbeck
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Kristina Hupperich
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | | | | | - Lilian Martínez Carrera
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Radu Wirth
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | | | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
48
|
Roberts JM, Ennajdaoui H, Edmondson C, Wirth B, Sanford J, Chen B. Splicing factor TRA2B is required for neural progenitor survival. J Comp Neurol 2014; 522:372-92. [PMID: 23818142 PMCID: PMC3855887 DOI: 10.1002/cne.23405] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 01/08/2023]
Abstract
Alternative splicing of pre-mRNAs can rapidly regulate the expression of large groups of proteins. The RNA binding protein TRA2B (SFRS10) plays well-established roles in developmentally regulated alternative splicing during Drosophila sexual differentiation. TRA2B is also essential for mammalian embryogenesis and is implicated in numerous human diseases. Precise regulation of alternative splicing is critical to the development and function of the central nervous system; however, the requirements for specific splicing factors in neurogenesis are poorly understood. This study focuses on the role of TRA2B in mammalian brain development. We show that, during murine cortical neurogenesis, TRA2B is expressed in both neural progenitors and cortical projection neurons. Using cortex-specific Tra2b mutant mice, we show that TRA2B depletion results in apoptosis of the neural progenitor cells as well as disorganization of the cortical plate. Thus, TRA2B is essential for proper development of the cerebral cortex.
Collapse
Affiliation(s)
- Jacqueline M Roberts
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Hanane Ennajdaoui
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Carina Edmondson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany
| | - Jeremy Sanford
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Bin Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
49
|
Mallinjoud P, Villemin JP, Mortada H, Polay Espinoza M, Desmet FO, Samaan S, Chautard E, Tranchevent LC, Auboeuf D. Endothelial, epithelial, and fibroblast cells exhibit specific splicing programs independently of their tissue of origin. Genome Res 2013; 24:511-21. [PMID: 24307554 PMCID: PMC3941115 DOI: 10.1101/gr.162933.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alternative splicing is the main mechanism of increasing the proteome diversity coded by a limited number of genes. It is well established that different tissues or organs express different splicing variants. However, organs are composed of common major cell types, including fibroblasts, epithelial, and endothelial cells. By analyzing large-scale data sets generated by The ENCODE Project Consortium and after extensive RT-PCR validation, we demonstrate that each of the three major cell types expresses a specific splicing program independently of its organ origin. Furthermore, by analyzing splicing factor expression across samples, publicly available splicing factor binding site data sets (CLIP-seq), and exon array data sets after splicing factor depletion, we identified several splicing factors, including ESRP1 and 2, MBNL1, NOVA1, PTBP1, and RBFOX2, that contribute to establishing these cell type–specific splicing programs. All of the analyzed data sets are freely available in a user-friendly web interface named FasterDB, which describes all known splicing variants of human and mouse genes and their splicing patterns across several dozens of normal and cancer cells as well as across tissues. Information regarding splicing factors that potentially contribute to individual exon regulation is also provided via a dedicated CLIP-seq and exon array data visualization interface. To the best of our knowledge, FasterDB is the first database integrating such a variety of large-scale data sets to enable functional genomics analyses at exon-level resolution.
Collapse
Affiliation(s)
- Pierre Mallinjoud
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Karunakaran DKP, Banday AR, Wu Q, Kanadia R. Expression analysis of an evolutionarily conserved alternative splicing factor, Sfrs10, in age-related macular degeneration. PLoS One 2013; 8:e75964. [PMID: 24098751 PMCID: PMC3786888 DOI: 10.1371/journal.pone.0075964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 08/19/2013] [Indexed: 11/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness in the elderly population. Hypoxic stress created in the micro-environment of the photoreceptors is thought to be the underlying cause that results in the pathophysiology of AMD. However, association of AMD with alternative splicing mediated gene regulation is not well explored. Alternative Splicing is one of the primary mechanisms in humans by which fewer protein coding genes are able to generate a vast proteome. Here, we investigated the expression of a known stress response gene and an alternative splicing factor called Serine-Arginine rich splicing factor 10 (Sfrs10). Sfrs10 is a member of the serine-arginine (SR) rich protein family and is 100% identical at the amino acid level in most mammals. Immunoblot analysis on retinal extracts from mouse, rat, and chicken showed a single immunoreactive band. Further, immunohistochemistry on adult mouse, rat and chicken retinae showed pan-retinal expression. However, SFRS10 was not detected in normal human retina but was observed as distinct nuclear speckles in AMD retinae. This is in agreement with previous reports that show Sfrs10 to be a stress response gene, which is upregulated under hypoxia. The difference in the expression of Sfrs10 between humans and lower mammals and the upregulation of SFRS10 in AMD is further reflected in the divergence of the promoter sequence between these species. Finally, SFRS10+ speckles were independent of the SC35+ SR protein speckles or the HSF1+ stress granules. In all, our data suggests that SFRS10 is upregulated and forms distinct stress-induced speckles and might be involved in AS of stress response genes in AMD.
Collapse
Affiliation(s)
| | - Abdul Rouf Banday
- University of Connecticut, Physiology and Neurobiology, Storrs, Connecticut, United States of America
| | - Qian Wu
- University of Connecticut Health Center, Department of Pathology and Laboratory Medicine, Farmington, Connecticut, United States of America
| | - Rahul Kanadia
- University of Connecticut, Physiology and Neurobiology, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|