1
|
Amini M, Stachon T, Hsu SL, Li Z, Chai N, Fries FN, Seitz B, Kundu S, Suiwal S, Szentmáry N. Effect of MiRNA 204-5P Mimics and Lipopolysaccharide-Induced Inflammation on Transcription Factor Levels, Cell Maintenance, and Retinoic Acid Signaling in Primary Limbal Epithelial Cells. Int J Mol Sci 2025; 26:3809. [PMID: 40332443 PMCID: PMC12027539 DOI: 10.3390/ijms26083809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
MicroRNA-204-5p (miR-204-5p) is a critical regulator of differentiation, structural maintenance, and inflammation in limbal epithelial cells (LECs). This study examined the role of miR-204-5p in modulating the gene expression related to transcription factors, cell structure, extracellular matrix remodeling, and retinoic acid signaling under normal and lipopolysaccharide (LPS)-induced inflammatory conditions. Using qPCR, we analyzed the mRNA levels of FOSL2, FOXC1, Meis2, PPARγ, ABCG2, PTGES2, IL-1β, IL-6, KRT3, KRT12, MMP2, MMP9, RARA, RARB, RXRA, RXRB, CRABP2, RBP1, RDH10, ADH7, ADH1A1, FABP5, CYP1B1, and CYP26A1, while changes in protein levels were assessed via Western blot or ELISA. Our data revealed that the overexpression of miR-204-5p reduced the mRNA levels of FOXC1, KRT12, and RDH10 under normal and inflammatory conditions (p ≤ 0.039). Additionally, it decreased FOSL2 and RXRA mRNA under normal conditions (p = 0.006, p = 0.011) and KRT3 and FABP5 mRNA under inflammatory conditions (p = 0.010, p = 0.001). The IL-6 mRNA expression was significantly increased following the LPS treatment in cells overexpressing miR-204-5p (p = 0.029). A protein analysis revealed significant reductions in FOXC1 and KRT3 in the miR-204-5p-transfected cells during LPS-induced inflammation (p = 0.020, p = 0.030). These findings suggest that miR-204-5p modulates genes critical to the differentiation, migration, and inflammatory response of LECs. The modulation of FOXC1 and KRT3 by miR-204-5p highlights these proteins as novel targets under inflammatory conditions.
Collapse
Affiliation(s)
- Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424 Homburg/Saar, Germany; (M.A.); (T.S.); (S.-L.H.); (Z.L.); (N.C.); (F.N.F.); (S.K.); (S.S.)
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424 Homburg/Saar, Germany; (M.A.); (T.S.); (S.-L.H.); (Z.L.); (N.C.); (F.N.F.); (S.K.); (S.S.)
| | - Shao-Lun Hsu
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424 Homburg/Saar, Germany; (M.A.); (T.S.); (S.-L.H.); (Z.L.); (N.C.); (F.N.F.); (S.K.); (S.S.)
| | - Zhen Li
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424 Homburg/Saar, Germany; (M.A.); (T.S.); (S.-L.H.); (Z.L.); (N.C.); (F.N.F.); (S.K.); (S.S.)
| | - Ning Chai
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424 Homburg/Saar, Germany; (M.A.); (T.S.); (S.-L.H.); (Z.L.); (N.C.); (F.N.F.); (S.K.); (S.S.)
| | - Fabian N. Fries
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424 Homburg/Saar, Germany; (M.A.); (T.S.); (S.-L.H.); (Z.L.); (N.C.); (F.N.F.); (S.K.); (S.S.)
- Department of Ophthalmology, Saarland University Medical Center, 66424 Homburg/Saar, Germany;
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, 66424 Homburg/Saar, Germany;
| | - Swarnali Kundu
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424 Homburg/Saar, Germany; (M.A.); (T.S.); (S.-L.H.); (Z.L.); (N.C.); (F.N.F.); (S.K.); (S.S.)
| | - Shweta Suiwal
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424 Homburg/Saar, Germany; (M.A.); (T.S.); (S.-L.H.); (Z.L.); (N.C.); (F.N.F.); (S.K.); (S.S.)
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424 Homburg/Saar, Germany; (M.A.); (T.S.); (S.-L.H.); (Z.L.); (N.C.); (F.N.F.); (S.K.); (S.S.)
| |
Collapse
|
2
|
Potemkin N, Cawood SMF, Guévremont D, Mockett B, Treece J, Stanton JAL, Williams JM. Whole Transcriptome RNA-Seq Reveals Drivers of Pathological Dysfunction in a Transgenic Model of Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04878-6. [PMID: 40186694 DOI: 10.1007/s12035-025-04878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
Alzheimer's disease (AD) affects more than 55 million people worldwide, yet current theories cannot fully explain its aetiology. Accordingly, gene expression profiling has been used to provide a holistic view of the biology underpinning AD. Focusing primarily on protein-coding genes, such approaches have highlighted a critical involvement of microglia-related inflammatory processes. Simultaneous investigation of transcriptional regulators and noncoding RNA (ncRNA) can offer further insight into AD biology and inform the development of disease-modifying therapies. We previously described a method for whole transcriptome sampling to simultaneously investigate protein-coding genes and ncRNA. Here, we use this technique to explore transcriptional changes in a murine model of AD (15-month-old APP/PS1 mice). We confirmed the extensive involvement of microglia-associated genes and gene networks, consistent with literature. We also report a wealth of differentially-expressed non-coding RNA - including microRNA, long non-coding RNA, small nuclear and small nucleolar RNA, and pseudogenes - many of which have been overlooked previously. Transcription factor analysis determined that six transcription factors likely regulate gene expression changes in this model (Irf8, Junb, c-Fos, Lmo2, Runx1, and Nfe2l2). We then utilised validated miRNA-target interactions, finding 60 interactions between 15 miRNA and 42 mRNA (messenger RNA) with largely consistent directionality. Furthermore, we found that eight transcription factors (Clock, Lmo2, Runx1, Nfe2l2, Egr2, c-Fos, Junb, and Nr4a1) are likely responsible for the regulation of miRNA expression. Taken together, these data indicate a complex interplay of coding and non-coding RNA, driven by a small number of specific transcription factors, contributing to transcriptional changes in 15-month-old APP/PS1 mice.
Collapse
Affiliation(s)
- Nikita Potemkin
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Sophie M F Cawood
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Diane Guévremont
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Bruce Mockett
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Jackson Treece
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand.
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
3
|
Stachon T, Fries FN, Li Z, Daas L, Nagy ZZ, Seitz B, Szentmáry N. Decreased PAX6 and DSG1 Protein Expression in Corneal Epithelium of Patients with Epithelial Basal Membrane Dystrophy, Salzmann Nodular Degeneration, and Pterygium. J Clin Med 2025; 14:1456. [PMID: 40094891 PMCID: PMC11900124 DOI: 10.3390/jcm14051456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Evaluation of stem cell, keratin, retinoic acid metabolism markers and non-coding micro-RNAs (miRNAs) in conjunctival and corneal samples of patients with epithelial basal membrane dystrophy (EBMD), Salzmann nodular degeneration (SND), pterygium and congenital aniridia (CA), to detect similarities and differences in their pathogenesis. Methods: Impression cytology (IC) samples and corneal epithelial samples (CEs) of patients with EBMD, SND, pterygium, congenital aniridia, and healthy control subjects have been analyzed. The IC samples were subjected to qPCR, and the epithelial samples were subjected to qPCR and WB. Limbal epithelial stem cell markers, keratins, retinoic acid metabolism markers, and miRNAs were analyzed. Results: In conjunctival IC samples, PAX6 mRNA expression was significantly lower in EBMD, SND, pterygium, and CA compared to healthy controls (p ≤ 0.02). KRT13 mRNA expression was significantly higher in EBMD, SND, and pterygium (p ≤ 0.018), and FABP5 was increased in pterygium samples (p = 0.007). MiRNA-138-5p was significantly higher in aniridia samples than in normal controls (p = 0.037). In corneal epithelial samples, PAX6 protein, DSG1 mRNA and protein, miRNA-138-5p, and miR-204-5p expression were significantly lower in EBMD, SND, and pterygium samples than in controls (p ≤ 0.02). ALDHA1 mRNA expression was significantly lower (p < 0.0001), and FABP5 mRNA expression was significantly higher (p = 0.014) in pterygium samples than in controls. Conclusions: PAX6, DSG1, miR-138-5p, and miR-204-5p expression is decreased in the corneal epithelium of epithelial basal membrane dystrophy, Salzmann nodular degeneration, and pterygium subjects. In addition, there is a dysregulation of markers of the retinoic acid signaling pathway, such as ADH1A1 and FABP5, in the corneal epithelium of pterygium subjects. These changes may offer therapeutic targets in the treatment of these ocular surface diseases.
Collapse
Affiliation(s)
- Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, 66421 Homburg, Saarland, Germany
| | - Fabian N. Fries
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, 66421 Homburg, Saarland, Germany
- Department of Ophthalmology, Saarland University Medical Center, 66421 Homburg, Saarland, Germany (B.S.)
| | - Zhen Li
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, 66421 Homburg, Saarland, Germany
| | - Loay Daas
- Department of Ophthalmology, Saarland University Medical Center, 66421 Homburg, Saarland, Germany (B.S.)
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, 66421 Homburg, Saarland, Germany (B.S.)
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, 66421 Homburg, Saarland, Germany
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
4
|
Nastaranpour M, Suiwal S, Stachon T, Fries FN, Amini M, Seitz B, Meese E, Ludwig N, Szentmáry N. miRNA Expression Profile in Primary Limbal Epithelial Cells of Aniridia Patients. Invest Ophthalmol Vis Sci 2025; 66:20. [PMID: 39786759 PMCID: PMC11725988 DOI: 10.1167/iovs.66.1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose This study evaluates the microRNA (miRNA) expression profile in primary limbal epithelial cells (pLECs) of patients with aniridia. Methods Primary human LECs were sampled and isolated from 10 patients with aniridia and 10 healthy donors. The miRNA profile was analyzed using miRNA microarrays. The biological roles of miRNA-validated target genes were delineated in silico by the enrichment analyses of the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The expression of the most deregulated miRNAs was analyzed using quantitative real-time PCR (qRT-PCR). Results Microarray analysis revealed 10 differentially expressed miRNAs in pLECs of patients with aniridia relative to healthy controls (fold change = ≤ -2 or ≥ +2), nevertheless these were only differentially expressed using an unadjusted P value < 0.05. The qRT-PCR validation confirmed the significantly altered expression of miR-138-5p in pLECs of patients with aniridia (P = 0.005). In silico GO analysis of miR-138-5p target genes revealed the potential biological functions of miR-138-5p in regulating various cellular and molecular processes, including the positive regulation of cell motility, G1/S phase cell cycle transition, and cell migration, as well as the negative role in regulating epithelial cell differentiation. Pathway analysis highlighted the main involvement of the PI3K-Akt, Hippo, Wnt, Focal adhesion, cAMP, p53, IL-17, Jak-STAT, and MAPK-signaling pathways. Conclusions This study revealed miRNA expression profile in pLECs of patients with aniridia using miRNA microarray and identified miRNAs that had not been previously reported for aniridia LECs. Our study also provides functional and pathway information that can be used to predict possible mechanism of miRNA function in LECs, thereby bridging the gap in the pathogenesis of AAK studies.
Collapse
Affiliation(s)
- Mahsa Nastaranpour
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany
| | - Shweta Suiwal
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany
| | - Fabian N. Fries
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany
- Department of Ophthalmology, Saarland University Medical Center, Saarland University, Homburg/Saar, Germany
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Saarland University, Homburg/Saar, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany; Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany; Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
5
|
Abbasi M, Amini M, Moustardas P, Gutsmiedl Q, Javidjam D, Suiwal S, Seitz B, Fries FN, Dashti A, Rautavaara Y, Stachon T, Szentmáry N, Lagali N. Effects of miR-204-5p modulation on PAX6 regulation and corneal inflammation. Sci Rep 2024; 14:26436. [PMID: 39488562 PMCID: PMC11531487 DOI: 10.1038/s41598-024-76654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
Congenital aniridia is a rare eye disease characterized by loss of PAX6 protein leading to aniridia-associated keratopathy that significantly reduces vision. The miR-204-5p is a possible regulator of PAX6 function and here we evaluate its effect in multiple in vitro and in vivo models. In vitro, miR-204-5p overexpression suppressed vascular factor ANGPT1 in human limbal stem cells (T-LSC) and Pax6-knockdown LSC (mut-LSC), and in primary human limbal epithelial cells (LEC) at the gene and protein levels and following LPS stimulation. However, miR-204-5p inhibited VEGFA expression only in mut-LSCs and LPS-stimulated LEC. Also, miR-204-5p increased PAX6 expression in mut-LSC and differentiated corneal epithelial cells, but not in LEC. Topical miR-204-5p after LPS-induced keratitis in mice failed to suppress Vegfa, Angpt1, Il-1β, and Tnf-α or rescue Pax6 levels in contrast to in vitro results, although it significantly reduced the inflammatory infiltrate in the cornea. In Pax6Sey/+ aniridia mice, miR-204-5p did not rescue PAX6 levels or suppress Vegfa, Angpt1, or inhibit the ERK1/2 pathway. While short-term miR-204-5p treatment effectively suppresses VEGFA and ANGPT1 and enhances PAX6 expression in multiple corneal epithelia, effects are variable across primary and immortalized cells. Effects of longer-term in vivo treatment, however, require further study.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Quirin Gutsmiedl
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Dina Javidjam
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Shweta Suiwal
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, 66424, Homburg/Saar, Germany
| | - Fabian N Fries
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
- Department of Ophthalmology, Saarland University Medical Center, 66424, Homburg/Saar, Germany
| | - Ava Dashti
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Yedizza Rautavaara
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
6
|
Mikula Mrstakova S, Kozmik Z. Genetic analysis of medaka fish illuminates conserved and divergent roles of Pax6 in vertebrate eye development. Front Cell Dev Biol 2024; 12:1448773. [PMID: 39512904 PMCID: PMC11541176 DOI: 10.3389/fcell.2024.1448773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
Landmark discovery of eye defects caused by Pax6 gene mutations in humans, rodents, and even fruit flies combined with Pax6 gene expression studies in various phyla, led to the master control gene hypothesis postulating that the gene is required almost universally for animal visual system development. However, this assumption has not been broadly tested in genetically trackable organisms such as vertebrates. Here, to determine the functional role of the fish orthologue of mammalian Pax6 in eye development we analyzed mutants in medaka Pax6.1 gene generated by genome editing. We found that transcription factors implicated in vertebrate lens development (Prox1a, MafB, c-Maf, FoxE3) failed to initiate expression in the presumptive lens tissue of Pax6.1 mutant fish resulting in aphakia, a phenotype observed previously in Pax6 mutant mice. Surprisingly, the overall differentiation potential of Pax6.1-deficient retinal progenitor cells (RPCs) is not severely compromised, and the only cell types affected by the absence of Pax6.1 transcription factor are retinal ganglion cells. This is in stark contrast to the situation in mice where the Pax6 gene is required cell-autonomously for the expansion of RPCs, and the differentiation of all retina cell types. Our results provide novel insight into the conserved and divergent roles of Pax6 gene orthologues in vertebrate eye development indicating that the lens-specific role is more evolutionarily conserved than the role in retina differentiation.
Collapse
Affiliation(s)
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Bermúdez M, Martínez-Barajas MG, Bueno-Urquiza LJ, López-Gutiérrez JA, Villegas-Mercado CE, López-Camarillo C. Role of MicroRNA-204 in Regulating the Hallmarks of Breast Cancer: An Update. Cancers (Basel) 2024; 16:2814. [PMID: 39199587 PMCID: PMC11352763 DOI: 10.3390/cancers16162814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
microRNA-204-5p (miR-204) is a small noncoding RNA with diverse regulatory roles in breast cancer (BC) development and progression. miR-204 is implicated in the instauration of fundamental traits acquired during the multistep development of BC, known as the hallmarks of cancer. It may act as a potent tumor suppressor by inhibiting key cellular processes like angiogenesis, vasculogenic mimicry, invasion, migration, and metastasis. It achieves this by targeting multiple master genes involved in these processes, including HIF-1α, β-catenin, VEGFA, TGFBR2, FAK, FOXA1, among others. Additionally, miR-204 modulates signaling pathways like PI3K/AKT and interacts with HOTAIR and DSCAM-AS1 lncRNAs, further influencing tumor progression. Beyond its direct effects on tumor cells, miR-204 shapes the tumor microenvironment by regulating immune cell infiltration, suppressing pro-tumorigenic cytokine production, and potentially influencing immunotherapy response. Moreover, miR-204 plays a crucial role in metabolic reprogramming by directly suppressing metabolic genes within tumor cells, indirectly affecting metabolism through exosome signaling, and remodeling metabolic flux within the tumor microenvironment. This review aims to present an update on the current knowledge regarding the role of miR-204 in the hallmarks of BC. In conclusion, miR-204 is a potential therapeutic target and prognostic marker in BC, emphasizing the need for further research to fully elucidate its complex roles in orchestrating aggressive BC behavior.
Collapse
Affiliation(s)
- Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua 31000, Mexico;
| | | | - Lesly Jazmín Bueno-Urquiza
- University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico; (M.G.M.-B.); (L.J.B.-U.)
| | - Jorge Armando López-Gutiérrez
- Faculty of Dentistry, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Mexico;
| | | | - César López-Camarillo
- Genomic Sciences Program, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico
| |
Collapse
|
8
|
De Magalhães CG, Cvekl A, Jaeger RG, Yan CYI. Lens placode modulates extracellular matrix formation during early eye development. Differentiation 2024; 138:100792. [PMID: 38935992 PMCID: PMC11247415 DOI: 10.1016/j.diff.2024.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm and is regulated by transcription factor Pax6 and secreted BMP4. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2, a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.
Collapse
Affiliation(s)
- Cecília G De Magalhães
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruy G Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - C Y Irene Yan
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
9
|
Du SW, Komirisetty R, Lewandowski D, Choi EH, Panas D, Suh S, Tabaka M, Radu RA, Palczewski K. Conditional deletion of miR-204 and miR-211 in murine retinal pigment epithelium results in retinal degeneration. J Biol Chem 2024; 300:107344. [PMID: 38705389 PMCID: PMC11140208 DOI: 10.1016/j.jbc.2024.107344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024] Open
Abstract
MicroRNAs (miRs) are short, evolutionarily conserved noncoding RNAs that canonically downregulate expression of target genes. The miR family composed of miR-204 and miR-211 is among the most highly expressed miRs in the retinal pigment epithelium (RPE) in both mouse and human and also retains high sequence identity. To assess the role of this miR family in the developed mouse eye, we generated two floxed conditional KO mouse lines crossed to the RPE65-ERT2-Cre driver mouse line to perform an RPE-specific conditional KO of this miR family in adult mice. After Cre-mediated deletion, we observed retinal structural changes by optical coherence tomography; dysfunction and loss of photoreceptors by retinal imaging; and retinal inflammation marked by subretinal infiltration of immune cells by imaging and immunostaining. Single-cell RNA sequencing of diseased RPE and retinas showed potential miR-regulated target genes, as well as changes in noncoding RNAs in the RPE, rod photoreceptors, and Müller glia. This work thus highlights the role of miR-204 and miR-211 in maintaining RPE function and how the loss of miRs in the RPE exerts effects on the neural retina, leading to inflammation and retinal degeneration.
Collapse
Affiliation(s)
- Samuel W Du
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA.
| | - Ravikiran Komirisetty
- Department of Ophthalmology and UCLA Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Elliot H Choi
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Damian Panas
- International Centre for Translational Eye Research, Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Susie Suh
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Roxana A Radu
- Department of Ophthalmology and UCLA Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Chemistry, University of California, Irvine, Irvine, California, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA.
| |
Collapse
|
10
|
Quinn S, Zhang N, Fenton TA, Brusel M, Muruganandam P, Peleg Y, Giladi M, Haitin Y, Lerche H, Bassan H, Liu Y, Ben-Shalom R, Rubinstein M. Complex biophysical changes and reduced neuronal firing in an SCN8A variant associated with developmental delay and epilepsy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167127. [PMID: 38519006 DOI: 10.1016/j.bbadis.2024.167127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Mutations in the SCN8A gene, encoding the voltage-gated sodium channel NaV1.6, are associated with a range of neurodevelopmental syndromes. The p.(Gly1625Arg) (G1625R) mutation was identified in a patient diagnosed with developmental epileptic encephalopathy (DEE). While most of the characterized DEE-associated SCN8A mutations were shown to cause a gain-of-channel function, we show that the G1625R variant, positioned within the S4 segment of domain IV, results in complex effects. Voltage-clamp analyses of NaV1.6G1625R demonstrated a mixture of gain- and loss-of-function properties, including reduced current amplitudes, increased time constant of fast voltage-dependent inactivation, a depolarizing shift in the voltage dependence of activation and inactivation, and increased channel availability with high-frequency repeated depolarization. Current-clamp analyses in transfected cultured neurons revealed that these biophysical properties caused a marked reduction in the number of action potentials when firing was driven by the transfected mutant NaV1.6. Accordingly, computational modeling of mature cortical neurons demonstrated a mild decrease in neuronal firing when mimicking the patients' heterozygous SCN8A expression. Structural modeling of NaV1.6G1625R suggested the formation of a cation-π interaction between R1625 and F1588 within domain IV. Double-mutant cycle analysis revealed that this interaction affects the voltage dependence of inactivation in NaV1.6G1625R. Together, our studies demonstrate that the G1625R variant leads to a complex combination of gain and loss of function biophysical changes that result in an overall mild reduction in neuronal firing, related to the perturbed interaction network within the voltage sensor domain, necessitating personalized multi-tiered analysis for SCN8A mutations for optimal treatment selection.
Collapse
Affiliation(s)
- Shir Quinn
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nan Zhang
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Timothy A Fenton
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Marina Brusel
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Preethi Muruganandam
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Yoav Peleg
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Haim Bassan
- Pediatric Neurology and Development Center, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
| | - Roy Ben-Shalom
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States.
| | - Moran Rubinstein
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Jiang B, Hong N, Guo D, Shen J, Qian X, Dong F. MiR-204-5p may regulate oxidative stress in myopia. Sci Rep 2024; 14:9770. [PMID: 38684840 PMCID: PMC11059383 DOI: 10.1038/s41598-024-60688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
The mechanisms underlying myopia remain not fully understood. We proposed to examine the function and underlying mechanisms of miR-204-5p in myopia development. The miR-204-5p expression level was assessed in the vitreous humor (VH) of a cohort consisting of 11 patients with high myopia (HM) and 16 control patients undergoing vitrectomy. Then the functional implications of miR-204-5p in ARPE-19 cells were assessed. Thioredoxin-interacting protein (TXNIP) was found as a possible target of miR-204-5p through mRNA sequencing, and its interaction with miR-204-5p was confirmed employing luciferase assay and western blotting. Furthermore, the miR-204-5p function in regulating oxidative stress was examined by measuring reactive oxygen species (ROS) accumulation. The results indicated a significant reduction of miR-204-5p in the VH of HM patients. Overexpression of miR-204-5p suppressed cell proliferation, migration, invasion, and apoptosis in ARPE-19 cells. The direct targeting of miR-204-5p on TXNIP has been confirmed, and its downregulation mediated the miR-204-5p impacts on ARPE-19 cells. Moreover, miR-204-5p overexpression significantly reduced ROS accumulation by targeting TXNIP. Our findings revealed the possible contribution of the miR-204-5p/TXNIP axis in myopia development by regulating oxidative stress, which may provide new targets to combat this prevalent and debilitating condition.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Shangcheng District, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Nan Hong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Shangcheng District, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Dongyu Guo
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Shangcheng District, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jianqin Shen
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Shangcheng District, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Xilin Qian
- Department of Clinical Medicine, Capital Medical University, Beijing, China
| | - Feng Dong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Shangcheng District, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Upreti A, Hoang TV, Li M, Tangeman JA, Dierker DS, Wagner BD, Tsonis PA, Liang C, Lachke SA, Robinson ML. miR-26 Deficiency Causes Alterations in Lens Transcriptome and Results in Adult-Onset Cataract. Invest Ophthalmol Vis Sci 2024; 65:42. [PMID: 38683565 PMCID: PMC11059818 DOI: 10.1167/iovs.65.4.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Despite strong evidence demonstrating that normal lens development requires regulation governed by microRNAs (miRNAs), the functional role of specific miRNAs in mammalian lens development remains largely unexplored. Methods A comprehensive analysis of miRNA transcripts in the newborn mouse lens, exploring both differential expression between lens epithelial cells and lens fiber cells and overall miRNA abundance, was conducted by miRNA sequencing. Mouse lenses lacking each of three abundantly expressed lens miRNAs (miR-184, miR-26, and miR-1) were analyzed to explore the role of these miRNAs in lens development. Results Mice lacking all three copies of miR-26 (miR-26TKO) developed postnatal cataracts as early as 4 to 6 weeks of age. RNA sequencing analysis of neonatal lenses from miR-26TKO mice exhibited abnormal reduced expression of a cohort of genes found to be lens enriched and linked to cataract (e.g., Foxe3, Hsf4, Mip, Tdrd7, and numerous crystallin genes) and abnormal elevated expression of genes related to neural development (Lhx3, Neurod4, Shisa7, Elavl3), inflammation (Ccr1, Tnfrsf12a, Csf2ra), the complement pathway, and epithelial to mesenchymal transition (Tnfrsf1a, Ccl7, Stat3, Cntfr). Conclusions miR-1, miR-184, and miR-26 are each dispensable for normal embryonic lens development. However, loss of miR-26 causes lens transcriptome changes and drives cataract formation.
Collapse
Affiliation(s)
- Anil Upreti
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Thanh V. Hoang
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Minghua Li
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Jared A. Tangeman
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - David S. Dierker
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Brad D. Wagner
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | | | - Chun Liang
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - Michael L. Robinson
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| |
Collapse
|
13
|
De Magalhães CG, Cvekl A, Jaeger RG, Yan CYI. Lens Placode Modulates Extracellular Matrix Formation During Early Eye Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569417. [PMID: 38076974 PMCID: PMC10705410 DOI: 10.1101/2023.11.30.569417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2 , a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.
Collapse
|
14
|
Zhou Y, Bennett TM, Ruzycki PA, Guo Z, Cao YQ, Shahidullah M, Delamere NA, Shiels A. A Cataract-Causing Mutation in the TRPM3 Cation Channel Disrupts Calcium Dynamics in the Lens. Cells 2024; 13:257. [PMID: 38334649 PMCID: PMC10854584 DOI: 10.3390/cells13030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
TRPM3 belongs to the melastatin sub-family of transient receptor potential (TRPM) cation channels and has been shown to function as a steroid-activated, heat-sensitive calcium ion (Ca2+) channel. A missense substitution (p.I65M) in the TRPM3 gene of humans (TRPM3) and mice (Trpm3) has been shown to underlie an inherited form of early-onset, progressive cataract. Here, we model the pathogenetic effects of this cataract-causing mutation using 'knock-in' mutant mice and human cell lines. Trpm3 and its intron-hosted micro-RNA gene (Mir204) were strongly co-expressed in the lens epithelium and other non-pigmented and pigmented ocular epithelia. Homozygous Trpm3-mutant lenses displayed elevated cytosolic Ca2+ levels and an imbalance of sodium (Na+) and potassium (K+) ions coupled with increased water content. Homozygous TRPM3-mutant human lens epithelial (HLE-B3) cell lines and Trpm3-mutant lenses exhibited increased levels of phosphorylated mitogen-activated protein kinase 1/extracellular signal-regulated kinase 2 (MAPK1/ERK2/p42) and MAPK3/ERK1/p44. Mutant TRPM3-M65 channels displayed an increased sensitivity to external Ca2+ concentration and an altered dose response to pregnenolone sulfate (PS) activation. Trpm3-mutant lenses shared the downregulation of genes involved in insulin/peptide secretion and the upregulation of genes involved in Ca2+ dynamics. By contrast, Trpm3-deficient lenses did not replicate the pathophysiological changes observed in Trpm3-mutant lenses. Collectively, our data suggest that a cataract-causing substitution in the TRPM3 cation channel elicits a deleterious gain-of-function rather than a loss-of-function mechanism in the lens.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A. Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhaohua Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mohammad Shahidullah
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Nicholas A. Delamere
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
15
|
Upreti A, Hoang TV, Li M, Tangeman JA, Dierker DS, Wagner BD, Tsonis PA, Liang C, Lachke SA, Robinson ML. miR-26 deficiency causes alterations in lens transcriptome and results in adult-onset cataract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577818. [PMID: 38352453 PMCID: PMC10862774 DOI: 10.1101/2024.01.29.577818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Purpose Despite strong evidence demonstrating that normal lens development requires regulation governed by miRNAs, the functional role of specific miRNAs in mammalian lens development remains largely unexplored. Methods A comprehensive analysis of miRNA transcripts in the newborn mouse lens, exploring both differential expression between lens epithelial cells and lens fiber cells and overall miRNA abundance was conducted by miRNA-seq. Mouse lenses lacking each of three abundantly expressed lens miRNAs: miR-184, miR-26 and miR-1 were analyzed to explore the role of these miRNAs in lens development. Results Mice lacking all three copies of miR-26 (miR-26TKO) developed postnatal cataracts as early as 4-6 weeks of age. RNA-seq analysis of neonatal lenses from miR-26TKO mice exhibited abnormal reduced expression of a cohort of genes found to be lens-enriched and linked to cataract (e.g. Foxe3, Hsf4, Mip, Tdrd7, and numerous crystallin genes), and abnormal elevated expression of genes related to neural development (Lhx3, Neurod4, Shisa7, Elavl3 ), inflammation (Ccr1, Tnfrsf12a, Csf2ra), the complement pathway, and epithelial to mesenchymal transition (Tnfrsf1a, Ccl7, Stat3, Cntfr). Conclusion miR-1, miR-184 and miR-26 are each dispensable for normal embryonic lens development. However, loss of miR-26 causes lens transcriptome changes and drives cataract formation.
Collapse
Affiliation(s)
- Anil Upreti
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Thanh V Hoang
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Minghua Li
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Jared A Tangeman
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - David S Dierker
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Brad D Wagner
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | | | - Chun Liang
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Michael L Robinson
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
16
|
Benotmane MA, Trott KR. Epidemiological and experimental evidence for radiation-induced health effects in the progeny after exposure in utero. Int J Radiat Biol 2023; 100:1264-1275. [PMID: 38079348 DOI: 10.1080/09553002.2023.2283088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 08/30/2024]
Abstract
PURPOSE It has been known for many decades that radiation exposure of the developing embryo or fetus may cause two fundamentally different types of severe health effects: on the one hand, radiation may interfere with the normal intrauterine development, on the other hand, radiation may induce leukemia and cancer which become manifest in childhood. A large amount of epidemiological and experimental data has recently been presented which might be used to improve our understanding of underlying mechanisms and setting radiation protection standards. Yet, ecological studies in the populations exposed to increased levels of radiation in regions contaminated by radioactivity released from reactor accidents (Chernobyl, Fukushima) do not provide solid evidence which would contribute to this aim. On the other hand, well designed experimental studies demonstrated the multifactorial mechanisms which lead to different health effects after radiation exposure in utero. CONCLUSION There is no convincing evidence, neither from epidemiological nor experimental data of the existence of a dose threshold for developmental defects after radiation exposure in utero. This must be taken into account in the revision of rules and regulations of radiation protection in medicine.
Collapse
Affiliation(s)
| | - Klaus Ruediger Trott
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| |
Collapse
|
17
|
Jedlickova J, Vajter M, Barta T, Black GCM, Perveen R, Mares J, Fichtl M, Kousal B, Dudakova L, Liskova P. MIR204 n.37C>T variant as a cause of chorioretinal dystrophy variably associated with iris coloboma, early-onset cataracts and congenital glaucoma. Clin Genet 2023; 104:418-426. [PMID: 37321975 DOI: 10.1111/cge.14391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Four members of a three-generation Czech family with early-onset chorioretinal dystrophy were shown to be heterozygous carriers of the n.37C>T in MIR204. The identification of this previously reported pathogenic variant confirms the existence of a distinct clinical entity caused by a sequence change in MIR204. Chorioretinal dystrophy was variably associated with iris coloboma, congenital glaucoma, and premature cataracts extending the phenotypic range of the condition. In silico analysis of the n.37C>T variant revealed 713 novel targets. Additionally, four family members were shown to be affected by albinism resulting from biallelic pathogenic OCA2 variants. Haplotype analysis excluded relatedness with the original family reported to harbour the n.37C>T variant in MIR204. Identification of a second independent family confirms the existence of a distinct MIR204-associated clinical entity and suggests that the phenotype may also involve congenital glaucoma.
Collapse
Affiliation(s)
- Jana Jedlickova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marie Vajter
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Graeme C M Black
- Division of Evolution, and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rahat Perveen
- Division of Evolution, and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jan Mares
- Department of Ophthalmology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Marek Fichtl
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Bohdan Kousal
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
18
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
19
|
Ciaglia T, Vestuto V, Bertamino A, González-Muñiz R, Gómez-Monterrey I. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Front Oncol 2023; 12:1065935. [PMID: 36844925 PMCID: PMC9948629 DOI: 10.3389/fonc.2022.1065935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
The transient melastatin receptor potential (TRPM) ion channel subfamily functions as cellular sensors and transducers of critical biological signal pathways by regulating ion homeostasis. Some members of TRPM have been cloned from cancerous tissues, and their abnormal expressions in various solid malignancies have been correlated with cancer cell growth, survival, or death. Recent evidence also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming. These implications support TRPM channels as potential molecular targets and their modulation as an innovative therapeutic approach against cancer. Here, we discuss the general characteristics of the different TRPMs, focusing on current knowledge about the connection between TRPM channels and critical features of cancer. We also cover TRPM modulators used as pharmaceutical tools in biological trials and an indication of the only clinical trial with a TRPM modulator about cancer. To conclude, the authors describe the prospects for TRPM channels in oncology.
Collapse
Affiliation(s)
- Tania Ciaglia
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Vincenzo Vestuto
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Alessia Bertamino
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
20
|
Navarro-Calvo J, Esquiva G, Gómez-Vicente V, Valor LM. MicroRNAs in the Mouse Developing Retina. Int J Mol Sci 2023; 24:ijms24032992. [PMID: 36769311 PMCID: PMC9918188 DOI: 10.3390/ijms24032992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The retina is among the highest organized tissues of the central nervous system. To achieve such organization, a finely tuned regulation of developmental processes is required to form the retinal layers that contain the specialized neurons and supporting glial cells to allow precise phototransduction. MicroRNAs are a class of small RNAs with undoubtful roles in fundamental biological processes, including neurodevelopment of the brain and the retina. This review provides a short overview of the most important findings regarding microRNAs in the regulation of retinal development, from the developmental-dependent rearrangement of the microRNA expression program to the key roles of particular microRNAs in the differentiation and maintenance of retinal cell subtypes.
Collapse
Affiliation(s)
- Jorge Navarro-Calvo
- Unidad de Investigación, Hospital General Universitario Dr. Balmis, ISABIAL, 03010 Alicante, Spain
| | - Gema Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Violeta Gómez-Vicente
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Luis M. Valor
- Unidad de Investigación, Hospital General Universitario Dr. Balmis, ISABIAL, 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-913-988
| |
Collapse
|
21
|
Yang F, Bian Z, Xu P, Sun S, Huang Z. MicroRNA-204-5p: A pivotal tumor suppressor. Cancer Med 2023; 12:3185-3200. [PMID: 35908280 PMCID: PMC9939231 DOI: 10.1002/cam4.5077] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules with a length of approximately 18-25 nt nucleotides that regulate gene expression post-transcriptionally. MiR-204-5p originates from the sixth intron of the transient receptor potential cation channel subfamily M member 3 (TRPM3) gene. MiR-204-5p is frequently downregulated in various cancer types and is related to the clinicopathological characteristics and prognosis of cancer patients. So far, many studies have determined that miR-204-5p functions as a tumor suppressor for its extensive and powerful capacity to inhibit tumor proliferation, metastasis, autophagy, and chemoresistance in multiple cancer types. MiR-204-5p appears to be a promising prognostic biomarker and a therapeutic target for human cancers. This review summarized the latest advances on the role of miR-204-5p in human cancers.
Collapse
Affiliation(s)
- Fan Yang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Peiwen Xu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Shengbai Sun
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
22
|
Cohen-Gulkar M, David A, Messika-Gold N, Eshel M, Ovadia S, Zuk-Bar N, Idelson M, Cohen-Tayar Y, Reubinoff B, Ziv T, Shamay M, Elkon R, Ashery-Padan R. The LHX2-OTX2 transcriptional regulatory module controls retinal pigmented epithelium differentiation and underlies genetic risk for age-related macular degeneration. PLoS Biol 2023; 21:e3001924. [PMID: 36649236 PMCID: PMC9844853 DOI: 10.1371/journal.pbio.3001924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023] Open
Abstract
Tissue-specific transcription factors (TFs) control the transcriptome through an association with noncoding regulatory regions (cistromes). Identifying the combination of TFs that dictate specific cell fate, their specific cistromes and examining their involvement in complex human traits remain a major challenge. Here, we focus on the retinal pigmented epithelium (RPE), an essential lineage for retinal development and function and the primary tissue affected in age-related macular degeneration (AMD), a leading cause of blindness. By combining mechanistic findings in stem-cell-derived human RPE, in vivo functional studies in mice and global transcriptomic and proteomic analyses, we revealed that the key developmental TFs LHX2 and OTX2 function together in transcriptional module containing LDB1 and SWI/SNF (BAF) to regulate the RPE transcriptome. Importantly, the intersection between the identified LHX2-OTX2 cistrome with published expression quantitative trait loci, ATAC-seq data from human RPE, and AMD genome-wide association study (GWAS) data, followed by functional validation using a reporter assay, revealed a causal genetic variant that affects AMD risk by altering TRPM1 expression in the RPE through modulation of LHX2 transcriptional activity on its promoter. Taken together, the reported cistrome of LHX2 and OTX2, the identified downstream genes and interacting co-factors reveal the RPE transcription module and uncover a causal regulatory risk single-nucleotide polymorphism (SNP) in the multifactorial common blinding disease AMD.
Collapse
Affiliation(s)
- Mazal Cohen-Gulkar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Ahuvit David
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Naama Messika-Gold
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Mai Eshel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Nitay Zuk-Bar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Maria Idelson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy and Department of Gynecology, Jerusalem, Israel
| | - Yamit Cohen-Tayar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy and Department of Gynecology, Jerusalem, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Meir Shamay
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (RE); (RAP)
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (RE); (RAP)
| |
Collapse
|
23
|
Shirvani H, Ghanavi J, Aliabadi A, Mousavinasab F, Talebi M, Majidpoor J, Najafi S, Miryounesi SM, Aghaei Zarch SM. MiR-211 plays a dual role in cancer development: From tumor suppressor to tumor enhancer. Cell Signal 2023; 101:110504. [PMID: 36309329 DOI: 10.1016/j.cellsig.2022.110504] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2022]
Abstract
Cancer is a general term for more than 100 unique malignancies in different organs of the body. Each cancer type and subtype has its own unique genetic, epigenetic, and cellular factors accountable for malignant progression and metastasis. Small non-coding RNAs called miRNAs target mRNAs and play a vital part in the pathogenesis of human diseases, specifically cancer. Recent investigations provided knowledge of the deregulation of miR-211 in various cancer types and disclosed that miR-211 has an oncogenic or tumor-suppressive impact on tumourigenesis and cancer development. Moreover, recent discoveries which clarify the essential functions of miR-211 might provide proof for its prognosis, diagnostic and therapeutic impact on cancer. Thereby, this review will discuss recent findings regarding miR-211 expression level, target genes, and mechanisms in different cancers. In addition, the most recent results that propose miR-211 usefulness as a noninvasive biomarker and therapeutic factor for the diagnosis and treatment of cancer will be explained.
Collapse
Affiliation(s)
- Hanieh Shirvani
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Jalaledin Ghanavi
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Aliabadi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Mousavinasab
- Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyyed Mohammad Miryounesi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
25
|
Autoregulation of Pax6 in neuronal cells is mediated by Pax6(5a), Pax6(ΔPD), SPARC, and p53. Mol Biol Rep 2022; 49:3271-3279. [PMID: 35103896 DOI: 10.1007/s11033-022-07164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Pax6, a multifunctional protein and a transcriptional regulator is critical for optimal functioning of neuronal cells. It is known that alternatively spliced Pax6 isoforms and co-expressed interacting proteins mediate cell/tissue specific autoregulation of Pax6, however, underlying mechanism(s) are poorly understood. METHODS AND RESULTS We used Neuro-2a cells to explore the mechanism of autoregulation of Pax6 in neuronal cells whereas NIH/3T3 cells were used as control. We first studied the transcript expression of the three Pax6 isoforms: Pax6, Pax6(5a), and Pax6(ΔPD); and the two co-expressed Pax6-interacting partners: SPARC and p53 in normal and overexpressed conditions, through the semi-quantitative RT-PCR. Further, we used the luciferase reporter assay to study the binding and transactivation of the three Pax6 isoforms: Pax6, Pax6(5a), and Pax6(ΔPD) to their respective promoters: P0, P1, and Pα; followed by that of the two co-expressed Pax6-interacting partners: SPARC and p53 to the Pax6-P1 promoter. Expression and distribution of Pax6, Pax6(5a) and Pax6(ΔPD), their binding to Pax6-promoters (P0, P1, and Pα) and transactivation were modulated in transfected Neuro-2a cells. CONCLUSION Our results suggest that autoregulation of Pax6 in neuronal cells is driven by a promoter dependent mechanism which is mediated by spliced variants [Pax6(5a) and Pax6(ΔPD)] and interacting proteins (SPARC and p53) of Pax6.
Collapse
|
26
|
The Challenges and Opportunities in the Development of MicroRNA Therapeutics: A Multidisciplinary Viewpoint. Cells 2021; 10:cells10113097. [PMID: 34831320 PMCID: PMC8619171 DOI: 10.3390/cells10113097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRs) are emerging as attractive therapeutic targets because of their small size, specific targetability, and critical role in disease pathogenesis. However, <20 miR targeting molecules have entered clinical trials, and none progressed to phase III. The difficulties in miR target identification, the moderate efficacy of miR inhibitors, cell type-specific delivery, and adverse outcomes have impeded the development of miR therapeutics. These hurdles are rooted in the functional complexity of miR's role in disease and sequence complementarity-dependent/-independent effects in nontarget tissues. The advances in understanding miR's role in disease, the development of efficient miR inhibitors, and innovative delivery approaches have helped resolve some of these hurdles. In this review, we provide a multidisciplinary viewpoint on the challenges and opportunities in the development of miR therapeutics.
Collapse
|
27
|
Du SW, Palczewski K. MicroRNA regulation of critical retinal pigment epithelial functions. Trends Neurosci 2021; 45:78-90. [PMID: 34753606 DOI: 10.1016/j.tins.2021.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs are short, evolutionarily conserved noncoding RNAs that are critical for the control of normal cellular physiology. In the retina, photoreceptors are highly specialized neurons that transduce light into electrical signals. Photoreceptors, however, are unable to process visual stimuli without the support of the retinal pigment epithelium (RPE). The RPE performs numerous functions to aid the retina, including the generation of visual chromophore and metabolic support. Recent work has underscored how microRNAs enable vision through their contributions to RPE functions. This review focuses on the biogenesis and control of microRNAs in rodents and humans, the roles microRNAs play in RPE function and degeneration, and how microRNAs could serve as potential therapeutics and biomarkers for visual diseases.
Collapse
Affiliation(s)
- Samuel W Du
- Center for Translational Vision Research, University of California, Irvine School of Medicine, CA, USA; Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine School of Medicine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine School of Medicine, CA, USA
| | - Krzysztof Palczewski
- Center for Translational Vision Research, University of California, Irvine School of Medicine, CA, USA; Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine School of Medicine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine School of Medicine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine, CA, USA; Department of Chemistry, University of California, Irvine School of Medicine, CA, USA.
| |
Collapse
|
28
|
Latta L, Figueiredo FC, Ashery-Padan R, Collinson JM, Daniels J, Ferrari S, Szentmáry N, Solá S, Shalom-Feuerstein R, Lako M, Xapelli S, Aberdam D, Lagali N. Pathophysiology of aniridia-associated keratopathy: Developmental aspects and unanswered questions. Ocul Surf 2021; 22:245-266. [PMID: 34520870 DOI: 10.1016/j.jtos.2021.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Aniridia, a rare congenital disease, is often characterized by a progressive, pronounced limbal insufficiency and ocular surface pathology termed aniridia-associated keratopathy (AAK). Due to the characteristics of AAK and its bilateral nature, clinical management is challenging and complicated by the multiple coexisting ocular and systemic morbidities in aniridia. Although it is primarily assumed that AAK originates from a congenital limbal stem cell deficiency, in recent years AAK and its pathogenesis has been questioned in the light of new evidence and a refined understanding of ocular development and the biology of limbal stem cells (LSCs) and their niche. Here, by consolidating and comparing the latest clinical and preclinical evidence, we discuss key unanswered questions regarding ocular developmental aspects crucial to AAK. We also highlight hypotheses on the potential role of LSCs and the ocular surface microenvironment in AAK. The insights thus gained lead to a greater appreciation for the role of developmental and cellular processes in the emergence of AAK. They also highlight areas for future research to enable a deeper understanding of aniridia, and thereby the potential to develop new treatments for this rare but blinding ocular surface disease.
Collapse
Affiliation(s)
- L Latta
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany; Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - F C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - R Ashery-Padan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - J M Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - J Daniels
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - S Ferrari
- The Veneto Eye Bank Foundation, Venice, Italy
| | - N Szentmáry
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - S Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - R Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - M Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - S Xapelli
- Instituto Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - D Aberdam
- Centre de Recherche des Cordeliers, INSERM U1138, Team 17, France; Université de Paris, 75006, Paris, France.
| | - N Lagali
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
29
|
Thompson B, Chen Y, Davidson EA, Garcia-Milian R, Golla JP, Apostolopoulos N, Orlicky DJ, Schey K, Thompson DC, Vasiliou V. Impaired GSH biosynthesis disrupts eye development, lens morphogenesis and PAX6 function. Ocul Surf 2021; 22:190-203. [PMID: 34425299 DOI: 10.1016/j.jtos.2021.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study was to elucidate the role and molecular consequences of impaired glutathione (GSH) biosynthesis on eye development. METHODS GSH biosynthesis was impaired in surface ectoderm-derived ocular tissues by crossing Gclcf/f mice with hemizygous Le-Cre transgenic mice to produce Gclcf/f/Le-CreTg/- (KO) mice. Control mice included Gclcf/fand Gclcwt/wt/Le-CreTg/- mice (CRE). Eyes from all mice (at various stages of eye development) were subjected to histological, immunohistochemical, Western blot, RT-qPCR, RNA-seq, and subsequent Gene Ontology, Ingenuity Pathway Analysis and TRANSFAC analyses. PAX6 transactivation activity was studied using a luciferase reporter assay in HEK293T cells depleted of GSH using buthionine sulfoximine (BSO). RESULTS Deletion of Gclc diminished GSH levels, increased reactive oxygen species (ROS), and caused an overt microphthalmia phenotype characterized by malformation of the cornea, iris, lens, and retina that is distinct from and much more profound than the one observed in CRE mice. In addition, only the lenses of KO mice displayed reduced crystallin (α, β), PITX3 and Foxe3 expression. RNA-seq analyses at postnatal day 1 revealed 1552 differentially expressed genes (DEGs) in the lenses of KO mice relative to those from Gclcf/f mice, with Crystallin and lens fiber cell identity genes being downregulated while lens epithelial cell identity and immune response genes were upregulated. Bioinformatic analysis of the DEGs implicated PAX6 as a key upstream regulator. PAX6 transactivation activity was impaired in BSO-treated HEK293T cells. CONCLUSIONS These data suggest that impaired ocular GSH biosynthesis may disrupt eye development and PAX6 function.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Medicine, Yale University School of Medicine, New Haven, CT, USA; Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | | | - David J Orlicky
- Department of Pathology, Anschutz School of Medicine, University of Colorado, Aurora, CO, USA
| | - Kevin Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA.
| |
Collapse
|
30
|
Peng C, Wang Y, Ji L, Kuang L, Yu Z, Li H, Zhang J, Zhao J. LncRNA-MALAT1/miRNA-204-5p/Smad4 Axis Regulates Epithelial-Mesenchymal Transition, Proliferation and Migration of Lens Epithelial Cells. Curr Eye Res 2021; 46:1137-1147. [PMID: 33327804 DOI: 10.1080/02713683.2020.1857778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
MATERIALS AND METHODS LECs were cultured and induced with TGF-β2 (10 ng/mL). SiRNA against MALAT1 (Si-MALAT1) was transfected into LECs to knockdown the expression of MALAT1. To overexpress or knockdown miR-204-5p, miR-204-5p mimics (miR-204-5p mimics) and anti-miR-204-5p (miR-204-5p inhibitor) were transfected into LECs. We used RNA FISH to identify the location of MALAT1. RNA levels of MALAT1 and miR-204-5p were analyzed by RT-qPCR. Additionally, target protein levels of Smad4, epithelial differentiation and mesenchymal markers were analyzed with Western blot. We employed EdU Labeling to measured cell proliferation and performed Transwell Assay to analyze the cell migration. Dual-luciferase reporter assays in LECs were conducted to verify whether miRNA-204-5p was negatively regulated by MALAT1 and Smad4 was a direct target of miR-204-5p. RESULTS The expression of MALAT1 was upregulated in PCO specimens. MALAT1 was overexpressed in TGF-β2 induced LECs, and the knockdown of MALAT1 could attenuate TGF-β2 induced EMT. Besides, the upregulation of MALAT1 was correlated with the downregulation of miR-204-5p and upregulation of Smad4. Importantly, MALAT1 was revealed to be located in the cytoplasm of LECs. Furthermore, luciferase reporter assays confirmed that MALAT1 could negatively regulate the expression of miR-204-5p and then regulate its direct target Smad4. Finally, the knockdown of MALAT1 could inhibit the EMT, proliferation, and migration of LECs; however, those can be reversed by anti-miR-204-5p. CONCLUSIONS Our findings reveal that MALAT1 may regulate EMT, proliferation, and migration of LECs as a ceRNA by "sponging" miR-204-5p and targeting Smad4, and serve as a promising therapeutic target in preventing PCO.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Yuchi Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Liyang Ji
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Liangju Kuang
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Ziyan Yu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Hanrong Li
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Jinsong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Jiangyue Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| |
Collapse
|
31
|
Liu J, Liu Y, Wang F, Liang M. miR-204: Molecular Regulation and Role in Cardiovascular and Renal Diseases. Hypertension 2021; 78:270-281. [PMID: 34176282 DOI: 10.1161/hypertensionaha.121.14536] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of microRNA research has evolved from studies aiming to gauge the importance of microRNAs to those focusing on understanding a subset of specific microRNAs that have emerged as potent regulators of molecular systems and pathophysiological conditions. In this article, we review the molecular features and regulation of miR-204 and the growing body of evidence for an important role of miR-204 in the regulation of cardiovascular and renal physiology and pathophysiological processes. miR-204 exhibits a highly tissue-specific expression pattern, and miR-204 abundance is regulated by several transcriptional and posttranscriptional mechanisms. Strong evidence supports a role for miR-204 in attenuating pulmonary arterial hypertension and hypertensive and diabetic renal injury while promoting hypertension and endothelial dysfunction in a wide range of model systems. miR-204 may influence these disease processes by targeting several biological pathways in a tissue-specific manner. miR-204 is dysregulated in patients with cardiovascular and renal diseases. The unequivocal functional roles and clear clinical relevance indicate that miR-204 is a high-value microRNA in cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Jing Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Yong Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Feng Wang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Mingyu Liang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
32
|
Anand D, Al Saai S, Shrestha SK, Barnum CE, Chuma S, Lachke SA. Genome-Wide Analysis of Differentially Expressed miRNAs and Their Associated Regulatory Networks in Lenses Deficient for the Congenital Cataract-Linked Tudor Domain Containing Protein TDRD7. Front Cell Dev Biol 2021; 9:615761. [PMID: 33665188 PMCID: PMC7921330 DOI: 10.3389/fcell.2021.615761] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Mutations/deficiency of TDRD7, encoding a tudor domain protein involved in post-transcriptional gene expression control, causes early onset cataract in humans. While Tdrd7 is implicated in the control of key lens mRNAs, the impact of Tdrd7 deficiency on microRNAs (miRNAs) and how this contributes to transcriptome misexpression and to cataracts, is undefined. We address this critical knowledge-gap by investigating Tdrd7-targeted knockout (Tdrd7-/-) mice that exhibit fully penetrant juvenile cataracts. We performed Affymetrix miRNA 3.0 microarray analysis on Tdrd7-/- mouse lenses at postnatal day (P) 4, a stage preceding cataract formation. This analysis identifies 22 miRNAs [14 over-expressed (miR-15a, miR-19a, miR-138, miR-328, miR-339, miR-345, miR-378b, miR-384, miR-467a, miR-1224, miR-1935, miR-1946a, miR-3102, miR-3107), 8 reduced (let-7b, miR-34c, miR-298, miR-382, miR-409, miR-1198, miR-1947, miR-3092)] to be significantly misexpressed (fold-change ≥ ± 1.2, p-value < 0.05) in Tdrd7-/- lenses. To understand how these misexpressed miRNAs impact Tdrd7-/- cataract, we predicted their mRNA targets and examined their misexpression upon Tdrd7-deficiency by performing comparative transcriptomics analysis on P4 and P30 Tdrd7-/- lens. To prioritize these target mRNAs, we used various stringency filters (e.g., fold-change in Tdrd7-/- lens, iSyTE-based lens-enriched expression) and identified 98 reduced and 89 elevated mRNA targets for overexpressed and reduced miRNAs, respectively, which were classified as “top-priority” “high-priority,” and “promising” candidates. For Tdrd7-/- lens overexpressed miRNAs, this approach identified 18 top-priority reduced target mRNAs: Alad, Ankrd46, Ceacam10, Dgat2, Ednrb, H2-Eb1, Klhl22, Lin7a, Loxl1, Lpin1, Npc1, Olfm1, Ppm1e, Ppp1r1a, Rgs8, Shisa4, Snx22 and Wnk2. Majority of these targets were also altered in other gene-specific perturbation mouse models (e.g., Brg1, E2f1/E2f2/E2f3, Foxe3, Hsf4, Klf4, Mafg/Mafk, Notch) of lens defects/cataract, suggesting their importance to lens biology. Gene ontology (GO) provided further insight into their relevance to lens pathology. For example, the Tdrd7-deficient lens capsule defect may be explained by reduced mRNA targets (e.g., Col4a3, Loxl1, Timp2, Timp3) associated with “basement membrane”. GO analysis also identified new genes (e.g., Casz1, Rasgrp1) recently linked to lens biology/pathology. Together, these analyses define a new Tdrd7-downstream miRNA-mRNA network, in turn, uncovering several new mRNA targets and their associated pathways relevant to lens biology and offering molecular insights into the pathology of congenital cataract.
Collapse
Affiliation(s)
- Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Salma Al Saai
- Department of Biological Sciences, University of Delaware, Newark, DE, United States.,Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, United States
| | - Sanjaya K Shrestha
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Carrie E Barnum
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Shinichiro Chuma
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, United States.,Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, United States
| |
Collapse
|
33
|
Yu S, Wang G, Liao J, Tang M, Chen J. Identifying and profiling the microRNAs associated with skin colour in the Muchuan black-bone chicken. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1760151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shigang Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - Gang Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - Juan Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - Mei Tang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - Jia Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| |
Collapse
|
34
|
Jimenez I, Prado Y, Marchant F, Otero C, Eltit F, Cabello-Verrugio C, Cerda O, Simon F. TRPM Channels in Human Diseases. Cells 2020; 9:E2604. [PMID: 33291725 PMCID: PMC7761947 DOI: 10.3390/cells9122604] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential melastatin (TRPM) subfamily belongs to the TRP cation channels family. Since the first cloning of TRPM1 in 1989, tremendous progress has been made in identifying novel members of the TRPM subfamily and their functions. The TRPM subfamily is composed of eight members consisting of four six-transmembrane domain subunits, resulting in homomeric or heteromeric channels. From a structural point of view, based on the homology sequence of the coiled-coil in the C-terminus, the eight TRPM members are clustered into four groups: TRPM1/M3, M2/M8, M4/M5 and M6/M7. TRPM subfamily members have been involved in several physiological functions. However, they are also linked to diverse pathophysiological human processes. Alterations in the expression and function of TRPM subfamily ion channels might generate several human diseases including cardiovascular and neurodegenerative alterations, organ dysfunction, cancer and many other channelopathies. These effects position them as remarkable putative targets for novel diagnostic strategies, drug design and therapeutic approaches. Here, we review the current knowledge about the main characteristics of all members of the TRPM family, focusing on their actions in human diseases.
Collapse
Affiliation(s)
- Ivanka Jimenez
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Yolanda Prado
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Felipe Marchant
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Carolina Otero
- Faculty of Medicine, School of Chemistry and Pharmacy, Universidad Andrés Bello, Santiago 8370186, Chile;
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, BC V6Z 1Y6, Canada;
- Department of Urological Sciences, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Claudio Cabello-Verrugio
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 7560484, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Felipe Simon
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| |
Collapse
|
35
|
Moazzeni H, Khani M, Elahi E. Insights into the regulatory molecules involved in glaucoma pathogenesis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:782-827. [PMID: 32935930 DOI: 10.1002/ajmg.c.31833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Glaucoma is an important cause of irreversible blindness, characterized by optic nerve anomalies. Increased intraocular pressure (IOP) and aging are major risk factors. Retinal ganglion cells and trabecular meshwork cells are certainly involved in the etiology of glaucoma. Glaucoma is usually a complex disease, and various genes and functions may contribute to its etiology. Among these may be genes that encode regulatory molecules. In this review, regulatory molecules including 18 transcription factors (TFs), 195 microRNAs (miRNAs), 106 long noncoding RNAs (lncRNAs), and two circular RNAs (circRNAs) that are reasonable candidates for having roles in glaucoma pathogenesis are described. The targets of the regulators are reported. Glaucoma-related features including apoptosis, stress responses, immune functions, ECM properties, IOP, and eye development are affected by the targeted genes. The targeted genes that are frequently targeted by multiple regulators most often affect apoptosis and the related features of cell death and cell survival. BCL2, CDKN1A, and TP53 are among the frequent targets of three types of glaucoma-relevant regulators, TFs, miRNAs, and lncRNAs. TP53 was itself identified as a glaucoma-relevant TF. Several of the glaucoma-relevant TFs are themselves among frequent targets of regulatory molecules, which is consistent with existence of a complex network involved in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
36
|
Barnum CE, Al Saai S, Patel SD, Cheng C, Anand D, Xu X, Dash S, Siddam AD, Glazewski L, Paglione E, Polson SW, Chuma S, Mason RW, Wei S, Batish M, Fowler VM, Lachke SA. The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology. Hum Mol Genet 2020; 29:2076-2097. [PMID: 32420594 PMCID: PMC7390939 DOI: 10.1093/hmg/ddaa096] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/10/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations of the RNA granule component TDRD7 (OMIM: 611258) cause pediatric cataract. We applied an integrated approach to uncover the molecular pathology of cataract in Tdrd7-/- mice. Early postnatal Tdrd7-/- animals precipitously develop cataract suggesting a global-level breakdown/misregulation of key cellular processes. High-throughput RNA sequencing integrated with iSyTE-bioinformatics analysis identified the molecular chaperone and cytoskeletal modulator, HSPB1, among high-priority downregulated candidates in Tdrd7-/- lens. A protein fluorescence two-dimensional difference in-gel electrophoresis (2D-DIGE)-coupled mass spectrometry screen also identified HSPB1 downregulation, offering independent support for its importance to Tdrd7-/- cataractogenesis. Lens fiber cells normally undergo nuclear degradation for transparency, posing a challenge: how is their cell morphology, also critical for transparency, controlled post-nuclear degradation? HSPB1 functions in cytoskeletal maintenance, and its reduction in Tdrd7-/- lens precedes cataract, suggesting cytoskeletal defects may contribute to Tdrd7-/- cataract. In agreement, scanning electron microscopy (SEM) revealed abnormal fiber cell morphology in Tdrd7-/- lenses. Further, abnormal phalloidin and wheat germ agglutinin (WGA) staining of Tdrd7-/- fiber cells, particularly those exhibiting nuclear degradation, reveals distinct regulatory mechanisms control F-actin cytoskeletal and/or membrane maintenance in post-organelle degradation maturation stage fiber cells. Indeed, RNA immunoprecipitation identified Hspb1 mRNA in wild-type lens lysate TDRD7-pulldowns, and single-molecule RNA imaging showed co-localization of TDRD7 protein with cytoplasmic Hspb1 mRNA in differentiating fiber cells, suggesting that TDRD7-ribonucleoprotein complexes may be involved in optimal buildup of key factors. Finally, Hspb1 knockdown in Xenopus causes eye/lens defects. Together, these data uncover TDRD7's novel upstream role in elevation of stress-responsive chaperones for cytoskeletal maintenance in post-nuclear degradation lens fiber cells, perturbation of which causes early-onset cataracts.
Collapse
Affiliation(s)
- Carrie E Barnum
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Salma Al Saai
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shaili D Patel
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Catherine Cheng
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Xiaolu Xu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Soma Dash
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lisa Glazewski
- Nemours Biomedical Research Department, Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Emily Paglione
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shawn W Polson
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Shinichiro Chuma
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Robert W Mason
- Nemours Biomedical Research Department, Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Velia M Fowler
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
37
|
Aryal S, Viet J, Weatherbee BAT, Siddam AD, Hernandez FG, Gautier-Courteille C, Paillard L, Lachke SA. The cataract-linked RNA-binding protein Celf1 post-transcriptionally controls the spatiotemporal expression of the key homeodomain transcription factors Pax6 and Prox1 in lens development. Hum Genet 2020; 139:1541-1554. [PMID: 32594240 DOI: 10.1007/s00439-020-02195-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
Abstract
The homeodomain transcription factors (TFs) Pax6 (OMIM: 607108) and Prox1 (OMIM: 601546) critically regulate gene expression in lens development. While PAX6 mutations in humans can cause cataract, aniridia, microphthalmia, and anophthalmia, among other defects, Prox1 deletion in mice causes severe lens abnormalities, in addition to other organ defects. Furthermore, the optimal dosage/spatiotemporal expression of these key TFs is essential for development. In lens development, Pax6 expression is elevated in cells of the anterior epithelium compared to fiber cells, while Prox1 exhibits the opposite pattern. Whether post-transcriptional regulatory mechanisms control these precise TF expression patterns is unknown. Here, we report the unprecedented finding that the cataract-linked RNA-binding protein (RBP), Celf1 (OMIM: 601074), post-transcriptionally regulates Pax6 and Prox1 protein expression in lens development. Immunostaining shows that Celf1 lens-specific conditional knockout (Celf1cKO) mice exhibit abnormal elevation of Pax6 protein in fiber cells and abnormal Prox1 protein levels in epithelial cells-directly opposite to their normal expression patterns in development. Furthermore, RT-qPCR shows no change in Pax6 and Prox1 transcript levels in Celf1cKO lenses, suggesting that Celf1 regulates these TFs on the translational level. Indeed, RNA-immunoprecipitation assays using Celf1 antibody indicate that Celf1 protein binds to Pax6 and Prox1 transcripts. Furthermore, reporter assays in Celf1 knockdown and Celf1-overexpression cells demonstrate that Celf1 negatively controls Pax6 and Prox1 translation via their 3' UTRs. These data define a new mechanism of RBP-based post-transcriptional regulation that enables precise control over spatiotemporal expression of Pax6 and Prox1 in lens development, thereby uncovering a new etiological mechanism for Celf1 deficiency-based cataract.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Justine Viet
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France
| | | | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | | | - Carole Gautier-Courteille
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France
| | - Luc Paillard
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France.
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA. .,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
38
|
Developmental change in the gene expression of transient receptor potential melastatin channel 3 (TRPM3) in murine lacrimal gland. Ann Anat 2020; 231:151551. [PMID: 32512204 DOI: 10.1016/j.aanat.2020.151551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 11/20/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels with ubiquitous expression. Various TRP channels are functionally active at the ocular surface and are involved in tear secretion and multiple inflammatory processes. So far, the impact of TRP channels regarding the development of the lacrimal gland (LG) is unclear. While investigating TRP channels in the LG, the TRPM3 channel presented itself as a promising candidate to play a role in the development and functioning of the LG. Therefore, Trpm3 expression was analyzed in different embryonic and postembryonic LGs. Thus, gene expression of TRPM channels including Trpm2, Trpm3, Trpm4 and Trpm6 was analyzed by quantitative RT-PCR in murine LGs at different developmental stages. Localization of TRPM3 in LGs was examined by immunohistochemistry. Primary LG epithelial cells (LGEC) and mesenchymal cells (MC) from newborn mice were cultured (either separately or collectively) for three days, and Trpm3 expression was analyzed in LGEC and MC. As a result, gene expression of Trpm2, Trpm4 and Trpm6 showed no significant difference in LGs in the different stages of development. However, Trpm3 gene expression was significantly higher in the embryonic stage than in the postnatal stage with the peak at E18. Postnatal, Trpm3 expression significantly decreased up to 28-fold until two years of age. Immunohistochemistry for TRPM3 revealed apical membranous expression in the excretory ducts, as well as in the acini of up to P7 old mice. Trpm3 expression in LGEC were significantly higher than that of MC. Our results indicate that Trpm3 expression in murine LG is age-dependent and peaks at age E18. Its expression is localized in the apical membrane of the glandular epithelium. However, its functional role still requires additional study in the LG.
Collapse
|
39
|
Takamiya M, Stegmaier J, Kobitski AY, Schott B, Weger BD, Margariti D, Cereceda Delgado AR, Gourain V, Scherr T, Yang L, Sorge S, Otte JC, Hartmann V, van Wezel J, Stotzka R, Reinhard T, Schlunck G, Dickmeis T, Rastegar S, Mikut R, Nienhaus GU, Strähle U. Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. PLoS Genet 2020; 16:e1008774. [PMID: 32555736 PMCID: PMC7323998 DOI: 10.1371/journal.pgen.1008774] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/29/2020] [Accepted: 04/09/2020] [Indexed: 01/11/2023] Open
Abstract
Cranial neural crest (NC) contributes to the developing vertebrate eye. By multidimensional, quantitative imaging, we traced the origin of the ocular NC cells to two distinct NC populations that differ in the maintenance of sox10 expression, Wnt signalling, origin, route, mode and destination of migration. The first NC population migrates to the proximal and the second NC cell group populates the distal (anterior) part of the eye. By analysing zebrafish pax6a/b compound mutants presenting anterior segment dysgenesis, we demonstrate that Pax6a/b guide the two NC populations to distinct proximodistal locations. We further provide evidence that the lens whose formation is pax6a/b-dependent and lens-derived TGFβ signals contribute to the building of the anterior segment. Taken together, our results reveal multiple roles of Pax6a/b in the control of NC cells during development of the anterior segment.
Collapse
Affiliation(s)
- Masanari Takamiya
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Johannes Stegmaier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andrei Yu Kobitski
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Benjamin Schott
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Benjamin D. Weger
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dimitra Margariti
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Angel R. Cereceda Delgado
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Victor Gourain
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tim Scherr
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Lixin Yang
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sebastian Sorge
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jens C. Otte
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Volker Hartmann
- Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jos van Wezel
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rainer Stotzka
- Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Thomas Reinhard
- Eye Center, Freiburg University Medical Center, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Freiburg University Medical Center, Freiburg, Germany
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Uwe Strähle
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
40
|
Latta L, Ludwig N, Krammes L, Stachon T, Fries FN, Mukwaya A, Szentmáry N, Seitz B, Wowra B, Kahraman M, Keller A, Meese E, Lagali N, Käsmann-Kellner B. Abnormal neovascular and proliferative conjunctival phenotype in limbal stem cell deficiency is associated with altered microRNA and gene expression modulated by PAX6 mutational status in congenital aniridia. Ocul Surf 2020; 19:115-127. [PMID: 32422284 DOI: 10.1016/j.jtos.2020.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/09/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE To evaluate conjunctival cell microRNA (miRNAs) and mRNA expression in relation to observed phenotype of progressive limbal stem cell deficiency in a cohort of subjects with congenital aniridia with known genetic status. METHODS Using impression cytology, bulbar conjunctival cells were sampled from 20 subjects with congenital aniridia and 20 age and sex-matched healthy control subjects. RNA was extracted and miRNA and mRNA analyses were performed using microarrays. Results were related to severity of keratopathy and genetic cause of aniridia. RESULTS Of 2549 miRNAs, 21 were differentially expressed in aniridia relative to controls (fold change ≤ -1.5 or ≥ +1.5). Among these miR-204-5p, an inhibitor of corneal neovascularization, was downregulated 26.8-fold in severely vascularized corneas. At the mRNA level, 539 transcripts were differentially expressed (fold change ≤ -2 or ≥ +2), among these FOSB and FOS were upregulated 17.5 and 9.7-fold respectively, and JUN by 2.9-fold, all being components of the AP-1 transcription factor complex. Pathway analysis revealed enrichment of PI3K-Akt, MAPK, and Ras signaling pathways in aniridia. For several miRNAs and transcripts regulating retinoic acid metabolism, expression levels correlated with keratopathy severity and genetic status. CONCLUSION Strong dysregulation of key factors at the miRNA and mRNA level suggests that the conjunctiva in aniridia is abnormally maintained in a pro-angiogenic and proliferative state, and these changes are expressed in a PAX6 mutation-dependent manner. Additionally, retinoic acid metabolism is disrupted in severe, but not mild forms of the limbal stem cell deficiency in aniridia.
Collapse
Affiliation(s)
- L Latta
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - N Ludwig
- Department of Human Genetics, Saarland University, Homburg, Saar, Germany; Center for Human and Molecular Biology, Saarland University, Homburg, Saar, Germany
| | - L Krammes
- Department of Human Genetics, Saarland University, Homburg, Saar, Germany
| | - T Stachon
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - F N Fries
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - A Mukwaya
- Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - N Szentmáry
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany; Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - B Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - B Wowra
- Chair and Clinical Department of Ophthalmology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Poland
| | - M Kahraman
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - A Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - E Meese
- Department of Human Genetics, Saarland University, Homburg, Saar, Germany
| | - N Lagali
- Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| | - B Käsmann-Kellner
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| |
Collapse
|
41
|
Shiels A. TRPM3_miR-204: a complex locus for eye development and disease. Hum Genomics 2020; 14:7. [PMID: 32070426 PMCID: PMC7027284 DOI: 10.1186/s40246-020-00258-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
First discovered in a light-sensitive retinal mutant of Drosophila, the transient receptor potential (TRP) superfamily of non-selective cation channels serve as polymodal cellular sensors that participate in diverse physiological processes across the animal kingdom including the perception of light, temperature, pressure, and pain. TRPM3 belongs to the melastatin sub-family of TRP channels and has been shown to function as a spontaneous calcium channel, with permeability to other cations influenced by alternative splicing and/or non-canonical channel activity. Activators of TRPM3 channels include the neurosteroid pregnenolone sulfate, calmodulin, phosphoinositides, and heat, whereas inhibitors include certain drugs, plant-derived metabolites, and G-protein subunits. Activation of TRPM3 channels at the cell membrane elicits a signal transduction cascade of mitogen-activated kinases and stimulus response transcription factors. The mammalian TRPM3 gene hosts a non-coding microRNA gene specifying miR-204 that serves as both a tumor suppressor and a negative regulator of post-transcriptional gene expression during eye development in vertebrates. Ocular co-expression of TRPM3 and miR-204 is upregulated by the paired box 6 transcription factor (PAX6) and mutations in all three corresponding genes underlie inherited forms of eye disease in humans including early-onset cataract, retinal dystrophy, and coloboma. This review outlines the genomic and functional complexity of the TRPM3_miR-204 locus in mammalian eye development and disease.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., Box 8096, St. Louis, MO, 63110, USA.
| |
Collapse
|
42
|
Lima Cunha D, Arno G, Corton M, Moosajee M. The Spectrum of PAX6 Mutations and Genotype-Phenotype Correlations in the Eye. Genes (Basel) 2019; 10:genes10121050. [PMID: 31861090 PMCID: PMC6947179 DOI: 10.3390/genes10121050] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor PAX6 is essential in ocular development in vertebrates, being considered the master regulator of the eye. During eye development, it is essential for the correct patterning and formation of the multi-layered optic cup and it is involved in the developing lens and corneal epithelium. In adulthood, it is mostly expressed in cornea, iris, and lens. PAX6 is a dosage-sensitive gene and it is highly regulated by several elements located upstream, downstream, and within the gene. There are more than 500 different mutations described to affect PAX6 and its regulatory regions, the majority of which lead to PAX6 haploinsufficiency, causing several ocular and systemic abnormalities. Aniridia is an autosomal dominant disorder that is marked by the complete or partial absence of the iris, foveal hypoplasia, and nystagmus, and is caused by heterozygous PAX6 mutations. Other ocular abnormalities have also been associated with PAX6 changes, and genotype-phenotype correlations are emerging. This review will cover recent advancements in PAX6 regulation, particularly the role of several enhancers that are known to regulate PAX6 during eye development and disease. We will also present an updated overview of the mutation spectrum, where an increasing number of mutations in the non-coding regions have been reported. Novel genotype-phenotype correlations will also be discussed.
Collapse
Affiliation(s)
| | - Gavin Arno
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital—Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mariya Moosajee
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Correspondence:
| |
Collapse
|
43
|
Craenen K, Verslegers M, Craeghs L, Quintens R, Janssen A, Coolkens A, Baatout S, Moons L, Benotmane MA. Abnormal retinal pigment epithelium melanogenesis as a major determinant for radiation-induced congenital eye defects. Reprod Toxicol 2019; 91:59-73. [PMID: 31705956 DOI: 10.1016/j.reprotox.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/30/2019] [Accepted: 10/07/2019] [Indexed: 01/26/2023]
Abstract
Recent studies highlighted a link between ionizing radiation exposure during neurulation and birth defects such as microphthalmos and anophthalmos. Because the mechanisms underlying these defects remain largely unexplored, we irradiated pregnant C57BL/6J mice (1.0 Gy, X-rays) at embryonic day (E)7.5, followed by histological and gene/protein expression analyses at defined days. Irradiation impaired embryonic development at E9 and we observed a delayed pigmentation of the retinal pigment epithelium (RPE) at E11. In addition, a reduced RNA expression and protein abundance of critical eye-development genes (e.g. Pax6 and Lhx2) was observed. Furthermore, a decreased expression of Mitf, Tyr and Tyrp1 supported the radiation-induced perturbation in RPE pigmentation. Finally, via immunostainings for proliferation (Ki67) and mitosis (phosphorylated histone 3), a decreased mitotic index was observed in the E18 retina after exposure at E7.5. Overall, we propose a plausible etiological model for radiation-induced eye-size defects, with RPE melanogenesis as a major determining factor.
Collapse
Affiliation(s)
- Kai Craenen
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium; Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology section, Department of Biology, Faculty of Science, KU Leuven, Naamsestraat 61 bus 2464, Leuven 3000, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium
| | - Livine Craeghs
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium; Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology section, Department of Biology, Faculty of Science, KU Leuven, Naamsestraat 61 bus 2464, Leuven 3000, Belgium
| | - Roel Quintens
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium
| | - Ann Janssen
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium
| | - Amelie Coolkens
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology section, Department of Biology, Faculty of Science, KU Leuven, Naamsestraat 61 bus 2464, Leuven 3000, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium.
| |
Collapse
|
44
|
Moazzeni H, Mirrahimi M, Moghadam A, Banaei-Esfahani A, Yazdani S, Elahi E. Identification of genes involved in glaucoma pathogenesis using combined network analysis and empirical studies. Hum Mol Genet 2019; 28:3637-3663. [PMID: 31518395 DOI: 10.1093/hmg/ddz222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a leading cause of blindness. We aimed in this study to identify genes that may make subtle and cumulative contributions to glaucoma pathogenesis. To this end, we identified molecular interactions and pathways that include transcription factors (TFs) FOXC1, PITX2, PAX6 and NFKB1 and various microRNAs including miR-204 known to have relevance to trabecular meshwork (TM) functions and/or glaucoma. TM tissue is involved in glaucoma pathogenesis. In-house microarray transcriptome results and data sources were used to identify target genes of the regulatory molecules. Bioinformatics analyses were done to filter TM and glaucoma relevant genes. These were submitted to network-creating softwares to define interactions, pathways and a network that would include the genes. The network was stringently scrutinized and minimized, then expanded by addition of microarray data and data on TF and microRNA-binding sites. Selected features of the network were confirmed by empirical studies such as dual luciferase assays, real-time PCR and western blot experiments and apoptosis assays. MYOC, WDR36, LTPBP2, RHOA, CYP1B1, OPA1, SPARC, MEIS2, PLEKHG5, RGS5, BBS5, ALDH1A1, NOMO2, CXCL6, FMNL2, ADAMTS5, CLOCK and DKK1 were among the genes included in the final network. Pathways identified included those that affect ECM properties, IOP, ciliary body functions, retinal ganglion cell viability, apoptosis, focal adhesion and oxidative stress response. The identification of many genes potentially involved in glaucoma pathology is consistent with its being a complex disease. The inclusion of several known glaucoma-related genes validates the approach used.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehraban Mirrahimi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abolfazl Moghadam
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Banaei-Esfahani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
45
|
Lepko T, Pusch M, Müller T, Schulte D, Ehses J, Kiebler M, Hasler J, Huttner HB, Vandenbroucke RE, Vandendriessche C, Modic M, Martin‐Villalba A, Zhao S, LLorens‐Bobadilla E, Schneider A, Fischer A, Breunig CT, Stricker SH, Götz M, Ninkovic J. Choroid plexus-derived miR-204 regulates the number of quiescent neural stem cells in the adult brain. EMBO J 2019; 38:e100481. [PMID: 31304985 PMCID: PMC6717894 DOI: 10.15252/embj.2018100481] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of adult neural stem cell (NSC) number is critical for lifelong neurogenesis. Here, we identified a post-transcriptional control mechanism, centered around the microRNA 204 (miR-204), to control the maintenance of quiescent (q)NSCs. miR-204 regulates a spectrum of transcripts involved in cell cycle regulation, neuronal migration, and differentiation in qNSCs. Importantly, inhibition of miR-204 function reduced the number of qNSCs in the subependymal zone (SEZ) by inducing pre-mature activation and differentiation of NSCs without changing their neurogenic potential. Strikingly, we identified the choroid plexus of the mouse lateral ventricle as the major source of miR-204 that is released into the cerebrospinal fluid to control number of NSCs within the SEZ. Taken together, our results describe a novel mechanism to maintain adult somatic stem cells by a niche-specific miRNA repressing activation and differentiation of stem cells.
Collapse
Affiliation(s)
- Tjasa Lepko
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Physiological GenomicsBiomedical CenterMedical FacultyLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
| | - Melanie Pusch
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
| | - Tamara Müller
- Institute of Neurology (Edinger Institute)University HospitalGoethe University FrankfurtFrankfurtGermany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute)University HospitalGoethe University FrankfurtFrankfurtGermany
| | - Janina Ehses
- Department for Cell Biology and AnatomyBiomedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
| | - Michael Kiebler
- Department for Cell Biology and AnatomyBiomedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
| | - Julia Hasler
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
| | - Hagen B Huttner
- Department of NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
- Ghent Gut Inflammation Group (GGIG)Ghent UniversityGhentBelgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
- Ghent Gut Inflammation Group (GGIG)Ghent UniversityGhentBelgium
| | - Miha Modic
- The Francis Crick InstituteLondonUK
- Department for Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | | | - Sheng Zhao
- Molecular NeurobiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Anja Schneider
- Translational Dementia Research GroupGerman Center for Neurodegenerative Diseases (DZNE) BonnBonnGermany
- Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity Clinic BonnBonnGermany
| | - Andre Fischer
- Department for Epigenetics and Systems MedicineGerman Center for Neurodegenerative Diseases (DZNE) GöttingenGöttingenGermany
| | - Christopher T Breunig
- MCN Junior Research GroupMunich Center for NeurosciencesBioMedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Epigenetic EngineeringHelmholtz Zentrum MünchenNeuherbergGermany
| | - Stefan H Stricker
- MCN Junior Research GroupMunich Center for NeurosciencesBioMedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Epigenetic EngineeringHelmholtz Zentrum MünchenNeuherbergGermany
| | - Magdalena Götz
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
- Physiological GenomicsBiomedical CenterMedical FacultyLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Jovica Ninkovic
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
- Physiological GenomicsBiomedical CenterMedical FacultyLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Department for Cell Biology and AnatomyBiomedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
46
|
Zhao Y, Zheng D, Cvekl A. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways. Epigenetics Chromatin 2019; 12:27. [PMID: 31053165 PMCID: PMC6498704 DOI: 10.1186/s13072-019-0272-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Promoters and enhancers are cis-regulatory DNA sequences that control specificity and quantity of transcription. Both are rich on clusters of cis-acting sites that interact with sequence-specific DNA-binding transcription factors (TFs). At the level of chromatin, these regions display increased nuclease sensitivity, reduced nucleosome density, including nucleosome-free regions, and specific combinations of posttranslational modifications of core histone proteins. Together, "open" and "closed" chromatins represent transcriptionally active and repressed states of individual genes, respectively. Cellular differentiation is marked by changes in local chromatin structure. Lens morphogenesis, regulated by TF Pax6, includes differentiation of epithelial precursor cells into lens fibers in parallel with differentiation of epithelial precursors into the mature lens epithelium. RESULTS Using ATAC-seq, we investigated dynamics of chromatin changes during mouse lens fibers and epithelium differentiation. Tissue-specific features of these processes are demonstrated via comparative studies of embryonic stem cells, forebrain, and liver chromatins. Unbiased analysis reveals cis-regulatory logic of lens differentiation through known (e.g., AP-1, Ets, Hsf4, Maf, and Pax6 sites) and novel (e.g., CTCF, Tead, and NF1) motifs. Twenty-six DNA-binding TFs, recognizing these cis-motifs, are markedly up-regulated in differentiating lens fibers. As specific examples, our ATAC-seq data uncovered both the regulatory regions and TF binding motifs in Foxe3, Prox1, and Mip loci that are consistent with previous, though incomplete, experimental data. A cross-examination of Pax6 binding with ATAC-seq data demonstrated that Pax6 bound to both open (H3K27ac and P300-enriched) and closed chromatin domains in lens and forebrain. CONCLUSIONS Our study has generated the first lens chromatin accessibility maps that support a general model of stage-specific chromatin changes associated with transcriptional activities of batteries of genes required for lens fiber cell formation. Analysis of active (or open) promoters and enhancers reveals important cis-DNA motifs that establish the molecular foundation for temporally and spatially regulated gene expression in lens. Together, our data and models open new avenues for the field to conduct mechanistic studies of transcriptional control regions, reconstruction of gene regulatory networks that govern lens morphogenesis, and identification of cataract-causing mutations in noncoding sequences.
Collapse
Affiliation(s)
- Yilin Zhao
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Deyou Zheng
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Ales Cvekl
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
47
|
Zhao Y, Zheng D, Cvekl A. A comprehensive spatial-temporal transcriptomic analysis of differentiating nascent mouse lens epithelial and fiber cells. Exp Eye Res 2018; 175:56-72. [PMID: 29883638 PMCID: PMC6167154 DOI: 10.1016/j.exer.2018.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 02/07/2023]
Abstract
Elucidation of both the molecular composition and organization of the ocular lens is a prerequisite to understand its development, function, pathology, regenerative capacity, as well as to model lens development and disease using in vitro differentiation of pluripotent stem cells. Lens is comprised of the anterior lens epithelium and posterior lens fibers, which form the bulk of the lens. Lens fibers differentiate from lens epithelial cells through cell cycle exit-coupled differentiation that includes cellular elongation, accumulation of crystallins, cytoskeleton and membrane remodeling, and degradation of organelles within the central region of the lens. Here, we profiled spatiotemporal expression dynamics of both mRNAs and non-coding RNAs from microdissected mouse nascent lens epithelium and lens fibers at four developmental time points (embryonic [E] day 14.5, E16.5, E18.5, and P0.5) by RNA-seq. During this critical time window, multiple complex biosynthetic and catabolic processes generate the molecular and structural foundation for lens transparency. Throughout this developmental window, 3544 and 3518 genes show consistently and significantly greater expression in the nascent lens epithelium and fibers, respectively. Comprehensive data analysis confirmed major roles of FGF-MAPK, Wnt/β-catenin, PI3K/AKT, TGF-β, and BMP signaling pathways and revealed significant novel contributions of mTOR, EIF2, EIF4, and p70S6K signaling in lens formation. Unbiased motif analysis within promoter regions of these genes with consistent expression changes between epithelium and fiber cells revealed an enrichment for both established (e.g. E2Fs, Etv5, Hsf4, c-Maf, MafG, MafK, N-Myc, and Pax6) transcription factors and a number of novel regulators of lens formation, such as Arntl2, Dmrta2, Stat5a, Stat5b, and Tulp3. In conclusion, the present RNA-seq data serves as a comprehensive reference resource for deciphering molecular principles of normal mammalian lens differentiation, mapping a full spectrum of signaling pathways and DNA-binding transcription factors operating in both lens compartments, and predicting novel pathways required to establish lens transparency.
Collapse
Affiliation(s)
- Yilin Zhao
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
48
|
Non-coding RNAs in retinal development and function. Hum Genet 2018; 138:957-971. [DOI: 10.1007/s00439-018-1931-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022]
|
49
|
Cohen-Tayar Y, Cohen H, Mitiagin Y, Abravanel Z, Levy C, Idelson M, Reubinoff B, Itzkovitz S, Raviv S, Kaestner KH, Blinder P, Elkon R, Ashery-Padan R. Pax6 regulation of Sox9 in the mouse retinal pigmented epithelium controls its timely differentiation and choroid vasculature development. Development 2018; 145:dev.163691. [PMID: 29986868 DOI: 10.1242/dev.163691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023]
Abstract
The synchronized differentiation of neuronal and vascular tissues is crucial for normal organ development and function, although there is limited information about the mechanisms regulating the coordinated development of these tissues. The choroid vasculature of the eye serves as the main blood supply to the metabolically active photoreceptors, and develops together with the retinal pigmented epithelium (RPE). Here, we describe a novel regulatory relationship between the RPE transcription factors Pax6 and Sox9 that controls the timing of RPE differentiation and the adjacent choroid maturation. We used a novel machine learning algorithm tool to analyze high resolution imaging of the choroid in Pax6 and Sox9 conditional mutant mice. Additional unbiased transcriptomic analyses in mutant mice and RPE cells generated from human embryonic stem cells, as well as chromatin immunoprecipitation and high-throughput analyses, revealed secreted factors that are regulated by Pax6 and Sox9. These factors might be involved in choroid development and in the pathogenesis of the common blinding disease: age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Yamit Cohen-Tayar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadar Cohen
- Department of Particle Physics, Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, Biochemistry and Biophysics school, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Zohar Abravanel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Masha Idelson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy and The Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, 9112001 Jerusalem, Israel
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy and The Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, 9112001 Jerusalem, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science 76100, Rehovot, Israel
| | - Shaul Raviv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, 12-126 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104-6145, USA
| | - Pablo Blinder
- Department of Neurobiology, Biochemistry and Biophysics school, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.,Sagol School for Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel .,Sagol School for Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel .,Sagol School for Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
50
|
Abstract
The small RNA regulatory molecules called microRNAs (miRNAs) play key roles in the development of most organisms. The expression of many different miRNAs has been described in the developing and mature vertebrate retina. The ability of miRNAs to regulate a diversity of messenger RNA targets allows them to have effects on many different developmental processes, but the functions of only a few miRNAs have been documented to date. Developmental transitions between cell states appear to be particularly sensitive to miRNA loss of function, as evidenced by specific miRNA knockdowns or from global perturbations in miRNA levels (e.g., Dicer deletion). However, we are still in only the very early stages of understanding the range of cellular functions miRNAs control during development.
Collapse
Affiliation(s)
- Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA;
| | - Robert Hindges
- Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom;
| |
Collapse
|