1
|
Bouchareb E, Dallel S, De Haze A, Damon-Soubeyrand C, Renaud Y, Baabdaty E, Vialat M, Fabre J, Pouchin P, De Joussineau C, Degoul F, Sanmukh S, Gendronneau J, Sanchez P, Gonthier-Gueret C, Trousson A, Morel L, Lobaccaro JM, Kocer A, Baron S. Liver X Receptors Enhance Epithelial to Mesenchymal Transition in Metastatic Prostate Cancer Cells. Cancers (Basel) 2024; 16:2776. [PMID: 39199549 PMCID: PMC11353074 DOI: 10.3390/cancers16162776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in men. Metastasis is the leading cause of death in prostate cancer patients. One of the crucial processes involved in metastatic spread is the "epithelial-mesenchymal transition" (EMT), which allows cells to acquire the ability to invade distant organs. Liver X Receptors (LXRs) are nuclear receptors that have been demonstrated to regulate EMT in various cancers, including hepatic cancer. Our study reveals that the LXR pathway can control pro-invasive cell capacities through EMT in prostate cancer, employing ex vivo and in vivo approaches. We characterized the EMT status of the commonly used LNCaP, DU145, and PC3 prostate cancer cell lines through molecular and immunohistochemistry experiments. The impact of LXR activation on EMT function was also assessed by analyzing the migration and invasion of these cell lines in the absence or presence of an LXR agonist. Using in vivo experiments involving NSG-immunodeficient mice xenografted with PC3-GFP cells, we were able to study metastatic spread and the effect of LXRs on this process. LXR activation led to an increase in the accumulation of Vimentin and Amphiregulin in PC3. Furthermore, the migration of PC3 cells significantly increased in the presence of the LXR agonist, correlating with an upregulation of EMT. Interestingly, LXR activation significantly increased metastatic spread in an NSG mouse model. Overall, this work identifies a promoting effect of LXRs on EMT in the PC3 model of advanced prostate cancer.
Collapse
Affiliation(s)
- Erwan Bouchareb
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Sarah Dallel
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
- Service d’Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, 63003 Clermont-Ferrand, France
| | - Angélique De Haze
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Christelle Damon-Soubeyrand
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Yoan Renaud
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Elissa Baabdaty
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Marine Vialat
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Julien Fabre
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Pierre Pouchin
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Cyrille De Joussineau
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Françoise Degoul
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Swapnil Sanmukh
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Juliette Gendronneau
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Phelipe Sanchez
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Céline Gonthier-Gueret
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Amalia Trousson
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Laurent Morel
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Jean Marc Lobaccaro
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Ayhan Kocer
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Silvère Baron
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| |
Collapse
|
2
|
Vialat M, Baabdaty E, Trousson A, Kocer A, Lobaccaro JMA, Baron S, Morel L, de Joussineau C. Cholesterol Dietary Intake and Tumor Cell Homeostasis Drive Early Epithelial Tumorigenesis: A Potential Modelization of Early Prostate Tumorigenesis. Cancers (Basel) 2024; 16:2153. [PMID: 38893271 PMCID: PMC11172085 DOI: 10.3390/cancers16112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Epidemiological studies point to cholesterol as a possible key factor for both prostate cancer incidence and progression. It could represent a targetable metabolite as the most aggressive tumors also appear to be sensitive to therapies designed to decrease hypercholesterolemia, such as statins. However, it remains unknown whether and how cholesterol, through its dietary uptake and its metabolism, could be important for early tumorigenesis. Oncogene clonal induction in the Drosophila melanogaster accessory gland allows us to reproduce tumorigenesis from initiation to early progression, where tumor cells undergo basal extrusion to form extra-epithelial tumors. Here we show that these tumors accumulate lipids, and especially esterified cholesterol, as in human late carcinogenesis. Interestingly, a high-cholesterol diet has a limited effect on accessory gland tumorigenesis. On the contrary, cell-specific downregulation of cholesterol uptake, intracellular transport, or metabolic response impairs the formation of such tumors. Furthermore, in this context, a high-cholesterol diet suppresses this impairment. Interestingly, expression data from primary prostate cancer tissues indicate an early signature of redirection from cholesterol de novo synthesis to uptake. Taken together, these results reveal that during early tumorigenesis, tumor cells strongly increase their uptake and use of dietary cholesterol to specifically promote the step of basal extrusion. Hence, these results suggest the mechanism by which a reduction in dietary cholesterol could lower the risk and slow down the progression of prostate cancer.
Collapse
Affiliation(s)
- Marine Vialat
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Elissa Baabdaty
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Amalia Trousson
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Ayhan Kocer
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Silvère Baron
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Laurent Morel
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Cyrille de Joussineau
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Islam MR, Islam F, Nafady MH, Akter M, Mitra S, Das R, Urmee H, Shohag S, Akter A, Chidambaram K, Alhumaydhi FA, Emran TB, Cavalu S. Natural Small Molecules in Breast Cancer Treatment: Understandings from a Therapeutic Viewpoint. Molecules 2022; 27:2165. [PMID: 35408561 PMCID: PMC9000328 DOI: 10.3390/molecules27072165] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BrCa) is the most common malignancy in women and the second most significant cause of death from cancer. BrCa is one of the most challenging malignancies to treat, and it accounts for a large percentage of cancer-related deaths. The number of cases requiring more effective BrCa therapy has increased dramatically. Scientists are looking for more productive agents, such as organic combinations, for BrCa prevention and treatment because most chemotherapeutic agents are linked to cancer metastasis, the resistance of the drugs, and side effects. Natural compounds produced by living organisms promote apoptosis and inhibit metastasis, slowing the spread of cancer. As a result, these compounds may delay the spread of BrCa, enhancing survival rates and reducing the number of deaths caused by BrCa. Several natural compounds inhibit BrCa production while lowering cancer cell proliferation and triggering cell death. Natural compounds, in addition to therapeutic approaches, are efficient and potential agents for treating BrCa. This review highlights the natural compounds demonstrated in various studies to have anticancer properties in BrCa cells. Future research into biological anti-BrCa agents may pave the way for a new era in BrCa treatment, with natural anti-BrCa drugs playing a key role in improving BrCa patient survival rates.
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt;
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (R.D.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (R.D.)
| | - Humaira Urmee
- Department of Pharmaceutical Science, North South University, Dhaka 1229, Bangladesh;
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
4
|
Thorne JL, Cioccoloni G. Nuclear Receptors and Lipid Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:83-105. [DOI: 10.1007/978-3-031-11836-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Bousset L, Septier A, Bunay J, Voisin A, Guiton R, Damon-Soubeyrant C, Renaud Y, De Haze A, Sapin V, Fogli A, Rambur A, De Joussineau C, Kocer A, Trousson A, Henry-Berger J, Höring M, Liebisch G, Matysik S, Lobaccaro JMA, Morel L, Baron S. Absence of nuclear receptors LXRs impairs immune response to androgen deprivation and leads to prostate neoplasia. PLoS Biol 2020; 18:e3000948. [PMID: 33284790 PMCID: PMC7752095 DOI: 10.1371/journal.pbio.3000948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/21/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammation is now a well-known precursor for cancer development. Infectious prostatitis are the most common causes of prostate inflammation, but emerging evidence points the role of metabolic disorders as a potential source of cancer-related inflammation. Although the widely used treatment for prostate cancer based on androgen deprivation therapy (ADT) effectively decreases tumor size, it also causes profound alterations in immune tumor microenvironment within the prostate. Here, we demonstrate that prostates of a mouse model invalidated for nuclear receptors liver X receptors (LXRs), crucial lipid metabolism and inflammation integrators, respond in an unexpected way to androgen deprivation. Indeed, we observed profound alterations in immune cells composition, which was associated with chronic inflammation of the prostate. This was explained by the recruitment of phagocytosis-deficient macrophages leading to aberrant hyporesponse to castration. This phenotypic alteration was sufficient to allow prostatic neoplasia. Altogether, these data suggest that ADT and inflammation resulting from metabolic alterations interact to promote aberrant proliferation of epithelial prostate cells and development of neoplasia. This raises the question of the benefit of ADT for patients with metabolic disorders.
Collapse
Affiliation(s)
- Laura Bousset
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Amandine Septier
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Julio Bunay
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Allison Voisin
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
| | - Rachel Guiton
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
| | | | - Yoan Renaud
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
| | - Angélique De Haze
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
| | - Vincent Sapin
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
| | - Anne Fogli
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
| | - Amandine Rambur
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Cyrille De Joussineau
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Ayhan Kocer
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Joëlle Henry-Berger
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Jean-Marc A. Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Laurent Morel
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| |
Collapse
|
6
|
Revilla G, Cedó L, Tondo M, Moral A, Pérez JI, Corcoy R, Lerma E, Fuste V, Reddy ST, Blanco-Vaca F, Mato E, Escolà-Gil JC. LDL, HDL and endocrine-related cancer: From pathogenic mechanisms to therapies. Semin Cancer Biol 2020; 73:134-157. [PMID: 33249202 DOI: 10.1016/j.semcancer.2020.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/19/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol is essential for a variety of functions in endocrine-related cells, including hormone and steroid production. We have reviewed the progress to date in research on the role of the main cholesterol-containing lipoproteins; low-density lipoprotein (LDL) and high-density lipoprotein (HDL), and their impact on intracellular cholesterol homeostasis and carcinogenic pathways in endocrine-related cancers. Neither LDL-cholesterol (LDL-C) nor HDL-cholesterol (HDL-C) was consistently associated with endocrine-related cancer risk. However, preclinical studies showed that LDL receptor plays a critical role in endocrine-related tumor cells, mainly by enhancing circulating LDL-C uptake and modulating tumorigenic signaling pathways. Although scavenger receptor type BI-mediated uptake of HDL could enhance cell proliferation in breast, prostate, and ovarian cancer, these effects may be counteracted by the antioxidant and anti-inflammatory properties of HDL. Moreover, 27-hydroxycholesterol a metabolite of cholesterol promotes tumorigenic processes in breast and epithelial thyroid cancer. Furthermore, statins have been reported to reduce the incidence of breast, prostate, pancreatic, and ovarian cancer in large clinical trials, in part because of their ability to lower cholesterol synthesis. Overall, cholesterol homeostasis deregulation in endocrine-related cancers offers new therapeutic opportunities, but more mechanistic studies are needed to translate the preclinical findings into clinical therapies.
Collapse
Affiliation(s)
- Giovanna Revilla
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, C/ Antoni M. Claret 167, 08025 Barcelona, Spain
| | - Lídia Cedó
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Mireia Tondo
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Antonio Moral
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, C/ Antoni M. Claret 167, 08025 Barcelona, Spain
| | - José Ignacio Pérez
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Rosa Corcoy
- Departament de Medicina, Universitat Autònoma de Barcelona, C/ Antoni M. Claret 167, 08025 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Enrique Lerma
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Department of Anatomic Pathology, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Victoria Fuste
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Department of Anatomic Pathology, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Srivinasa T Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Francisco Blanco-Vaca
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain.
| | - Eugènia Mato
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain.
| |
Collapse
|
7
|
Yang B, Zhang B, Cao Z, Xu X, Huo Z, Zhang P, Xiang S, Zhao Z, Lv C, Meng M, Zhang G, Dong L, Shi S, Yang L, Zhou Q. The lipogenic LXR-SREBF1 signaling pathway controls cancer cell DNA repair and apoptosis and is a vulnerable point of malignant tumors for cancer therapy. Cell Death Differ 2020; 27:2433-2450. [PMID: 32144382 PMCID: PMC7370224 DOI: 10.1038/s41418-020-0514-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/13/2023] Open
Abstract
Cancer cells are defective in DNA repair, so they experience increased DNA strand breaks, genome instability, gene mutagenesis, and tumorigenicity; however, multiple classic DNA repair genes and pathways are strongly activated in malignant tumor cells to compensate for the DNA repair deficiency and gain an apoptosis resistance. The mechanisms underlying this phenomenon in cancer are unclear. We speculate that a key DNA repair gene or signaling pathway in cancer has not yet been recognized. Here, we show that the lipogenic liver X receptor (LXR)-sterol response element binding factor-1 (SREBF1) axis controls the transcription of a key DNA repair gene polynucleotide kinase/phosphatase (PNKP), thereby governing cancer cell DNA repair and apoptosis. Notably, the PNKP levels were significantly reduced in 95% of human pancreatic cancer (PC) patients, particularly deep reduction for sixfold in all of the advanced-stage PC cases. PNKP is also deficient in three other types of cancer that we examined. In addition, the expression of LXRs and SREBF1 was significantly reduced in the tumor tissues from human PC patients compared with the adjacent normal tissues. The newly identified LXR-SREBF1-PNKP signaling pathway is deficient in PC, and the defect in the pathway contributes to the DNA repair deficiency in the cancer. Strikingly, further diminution of the vulnerable LXR-SREBF1-PNKP signaling pathway using a small molecule triptonide, a new LXR antagonist identified in this investigation, at a concentration of 8 nM robustly activated tumor-suppressor p53 and readily elevated cancer cell DNA strand breaks over an apoptotic threshold, and selectively induced PC cell apoptosis, resulting in almost complete elimination of tumors in xenograft mice without obvious complications. Our findings provide new insight into DNA repair and apoptosis in cancer, and offer a new platform for developing novel anticancer therapeutics.
Collapse
Affiliation(s)
- Bo Yang
- Department of General Surgery, The Third Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- The First People's Hospital of Changzhou, Changzhou, 213003, P. R. China
| | - Bin Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, China
| | - Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Xingdong Xu
- Department of General Surgery, The People's Hospital of China, Three Gorges University, Yichang, 443000, P. R. China
- The First People's Hospital of Yichang, Yichang, 443000, P. R. China
| | - Zihe Huo
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Pan Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shufen Xiang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chunping Lv
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Gaochuan Zhang
- Department of Bioinformatics, College of Basic Medical Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang Dong
- Department of Pathology, College of Basic Medical Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shucheng Shi
- Department of General Surgery, The Third Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- The First People's Hospital of Changzhou, Changzhou, 213003, P. R. China
| | - Lan Yang
- Department of General Surgery, The Third Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- The First People's Hospital of Changzhou, Changzhou, 213003, P. R. China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
8
|
Dambal S, Alfaqih M, Sanders S, Maravilla E, Ramirez-Torres A, Galvan GC, Reis-Sobreiro M, Rotinen M, Driver LM, Behrove MS, Talisman TJ, Yoon J, You S, Turkson J, Chi JT, Freeman MR, Macias E, Freedland SJ. 27-Hydroxycholesterol Impairs Plasma Membrane Lipid Raft Signaling as Evidenced by Inhibition of IL6-JAK-STAT3 Signaling in Prostate Cancer Cells. Mol Cancer Res 2020; 18:671-684. [PMID: 32019810 DOI: 10.1158/1541-7786.mcr-19-0974] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/04/2020] [Accepted: 01/29/2020] [Indexed: 01/04/2023]
Abstract
We recently reported that restoring the CYP27A1-27hydroxycholesterol axis had antitumor properties. Thus, we sought to determine the mechanism by which 27HC exerts its anti-prostate cancer effects. As cholesterol is a major component of membrane microdomains known as lipid rafts, which localize receptors and facilitate cellular signaling, we hypothesized 27HC would impair lipid rafts, using the IL6-JAK-STAT3 axis as a model given its prominent role in prostate cancer. As revealed by single molecule imaging of DU145 prostate cancer cells, 27HC treatment significantly reduced detected cholesterol density on the plasma membranes. Further, 27HC treatment of constitutively active STAT3 DU145 prostate cancer cells reduced STAT3 activation and slowed tumor growth in vitro and in vivo. 27HC also blocked IL6-mediated STAT3 phosphorylation in nonconstitutively active STAT3 cells. Mechanistically, 27HC reduced STAT3 homodimerization, nuclear translocation, and decreased STAT3 DNA occupancy at target gene promoters. Combined treatment with 27HC and STAT3 targeting molecules had additive and synergistic effects on proliferation and migration, respectively. Hallmark IL6-JAK-STAT gene signatures positively correlated with CYP27A1 gene expression in a large set of human metastatic castrate-resistant prostate cancers and in an aggressive prostate cancer subtype. This suggests STAT3 activation may be a resistance mechanism for aggressive prostate cancers that retain CYP27A1 expression. In summary, our study establishes a key mechanism by which 27HC inhibits prostate cancer by disrupting lipid rafts and blocking STAT3 activation. IMPLICATIONS: Collectively, these data show that modulation of intracellular cholesterol by 27HC can inhibit IL6-JAK-STAT signaling and may synergize with STAT3-targeted compounds.
Collapse
Affiliation(s)
- Shweta Dambal
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | | | - Sergio Sanders
- Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Erick Maravilla
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Adela Ramirez-Torres
- Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Gloria C Galvan
- Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mariana Reis-Sobreiro
- Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mirja Rotinen
- Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lucy M Driver
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Matthew S Behrove
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, California
| | - Tijana Jovanovic Talisman
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, California
| | - Junhee Yoon
- Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Sungyong You
- Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - James Turkson
- Department of Biomedical Science, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Michael R Freeman
- Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Biomedical Science, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Everardo Macias
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina.
| | - Stephen J Freedland
- Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California. .,Section of Urology, Durham VA Medical Center, Durham, North Carolina
| |
Collapse
|
9
|
Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim Biophys Acta Rev Cancer 2020; 1873:188351. [PMID: 32007596 DOI: 10.1016/j.bbcan.2020.188351] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer is a multifaceted global disease. Transformation of a normal to a malignant cell takes several steps, including somatic mutations, epigenetic alterations, metabolic reprogramming and loss of cell growth control. Recently, the mevalonate pathway has emerged as a crucial regulator of tumor biology and a potential therapeutic target. This pathway controls cholesterol production and posttranslational modifications of Rho-GTPases, both of which are linked to several key steps of tumor progression. Inhibitors of the mevalonate pathway induce pleiotropic antitumor-effects in several human malignancies, identifying the pathway as an attractive candidate for novel therapies. In this review, we will provide an overview about the role and regulation of the mevalonate pathway in certain aspects of cancer initiation and progression and its potential for therapeutic intervention in oncology.
Collapse
|
10
|
Shiota M, Fujimoto N, Kashiwagi E, Eto M. The Role of Nuclear Receptors in Prostate Cancer. Cells 2019; 8:cells8060602. [PMID: 31212954 PMCID: PMC6627805 DOI: 10.3390/cells8060602] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) superfamily consists of 48 members that are divided into seven subfamilies. NRs are transcription factors that play an important role in a number of biological processes. The NR superfamily includes androgen receptor, which is a key player in prostate cancer pathogenesis, suggesting the functional roles of other NRs in prostate cancer. The findings on the roles of NRs in prostate cancer thus far have shown that several NRs such as vitamin D receptor, estrogen receptor β, and mineralocorticoid receptor play antioncogenic roles, while other NRs such as peroxisome proliferator-activated receptor γ and estrogen receptor α as well as androgen receptor play oncogenic roles. However, the roles of other NRs in prostate cancer remain controversial or uninvestigated. Further research on the role of NRs in prostate cancer is required and may lead to the development of novel preventions and therapeutics for prostate cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
11
|
Fouache A, Zabaiou N, De Joussineau C, Morel L, Silvente-Poirot S, Namsi A, Lizard G, Poirot M, Makishima M, Baron S, Lobaccaro JMA, Trousson A. Flavonoids differentially modulate liver X receptors activity-Structure-function relationship analysis. J Steroid Biochem Mol Biol 2019; 190:173-182. [PMID: 30959154 DOI: 10.1016/j.jsbmb.2019.03.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/27/2019] [Accepted: 03/31/2019] [Indexed: 12/30/2022]
Abstract
Liver X receptors (LXRs) α (NR1H3) and β (NR1H2) are nuclear receptors that have been involved in the regulation of many physiological processes, principally in the control of cholesterol homeostasis, as well as in the control of the cell death and proliferation balance. These receptors are thus promising therapeutic targets in various pathologies such as dyslipidemia, atherosclerosis, diabetes and/or cancers. These receptors are known to be activated by specific oxysterol compounds. The screening for LXR-specific ligands is a challenging process: indeed, these molecules should present a specificity towards each LXR-isoform. Because some natural products have significant effects in the regulation of the LXR-regulated homeostasis and are enriched in flavonoids, we have decided to test in cell culture the effects of 4 selected flavonoids (galangin, quercetin, apigenin and naringenin) on the modulation of LXR activity using double-hybrid experiments. In silico, molecular docking suggests specific binding pattern between agonistic and antagonistic molecules. Altogether, these results allow a better understanding of the ligand binding pocket of LXRα/β. They also improve our knowledge about flavonoid mechanism of action, allowing the selection and development of better LXR selective ligands.
Collapse
Affiliation(s)
- Allan Fouache
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| | - Nada Zabaiou
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Laboratory of Molecular Toxicology, Department of Molecular and Cellular Biology, Faculty of Science, Université Mohamed Seddik Ben Yahia, 18000, Jijel, Algeria.
| | - Cyrille De Joussineau
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| | - Laurent Morel
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| | | | - Amira Namsi
- University Tunis El Manar, Faculty of Sciences of Tunis, UR/11ES09, Lab. 'Functional Neurophysiology and Pathology', 2092, Tunis, Tunisia.
| | - Gérard Lizard
- Team Bio-peroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270)/University Bourgogne Franche-Comté/Inserm, 21000, Dijon, France.
| | - Marc Poirot
- Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France.
| | - Makoto Makishima
- Nihon University School of Medicine, Division of Biochemistry, Department of Biomedical Sciences, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| |
Collapse
|
12
|
Narita S, Nara T, Sato H, Koizumi A, Huang M, Inoue T, Habuchi T. Research Evidence on High-Fat Diet-Induced Prostate Cancer Development and Progression. J Clin Med 2019; 8:jcm8050597. [PMID: 31052319 PMCID: PMC6572108 DOI: 10.3390/jcm8050597] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Although recent evidence has suggested that a high-fat diet (HFD) plays an important role in prostate carcinogenesis, the underlying mechanisms have largely remained unknown. This review thus summarizes previous preclinical studies that have used prostate cancer cells and animal models to assess the impact of dietary fat on prostate cancer development and progression. Large variations in the previous studies were found during the selection of preclinical models and types of dietary intervention. Subcutaneous human prostate cancer cell xenografts, such as LNCaP, LAPC-4, and PC-3 and genetic engineered mouse models, such as TRAMP and Pten knockout, were frequently used. The dietary interventions had not been standardized, and distinct variations in the phenotype were observed in different studies using distinct HFD components. The use of different dietary components in the research models is reported to influence the effect of diet-induced metabolic disorders. The proposed underlying mechanisms for HFD-induced prostate cancer were divided into (1) growth factor signaling, (2) lipid metabolism, (3) inflammation, (4) hormonal modulation, and others. A number of preclinical studies proposed that dietary fat and/or obesity enhanced prostate cancer development and progression. However, the relationship still remains controversial, and care should be taken when interpreting the results in a human context. Future studies using more sophisticated preclinical models are imperative in order to explore deeper understanding regarding the impact of dietary fat on the development and progression of prostate cancer.
Collapse
Affiliation(s)
- Shintaro Narita
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Taketoshi Nara
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Hiromi Sato
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Atsushi Koizumi
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Mingguo Huang
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Takamitsu Inoue
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Tomonori Habuchi
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| |
Collapse
|
13
|
Torres-Luquis O, Madden K, N'dri NM, Berg R, Olopade OF, Ngwa W, Abuidris D, Mittal S, Lyn-Cook B, Mohammed SI. LXR/RXR pathway signaling associated with triple-negative breast cancer in African American women. BREAST CANCER-TARGETS AND THERAPY 2018; 11:1-12. [PMID: 30588086 PMCID: PMC6304259 DOI: 10.2147/bctt.s185960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Triple-negative breast cancer (TNBC) is more prevalent in African and African American (AA) women compared to European American (EA) women. African and AA women diagnosed with TNBC experience high frequencies of metastases and less favorable outcomes. Emerging evidence indicates that this disparity may in fact be the result of the uniquely aggressive biology of African and AA disease. Purpose To understand the reasons for TNBC in AA aggressive biology, we designed the present study to examine the proteomic profiles of TNBC and luminal A (LA) breast cancer within and across patients’ racial demographic groups in order to identify proteins or molecular pathways altered in TNBC that offer some explanation for its aggressiveness and potential targets for treatment. Materials and methods Proteomic profiles of TNBC, LA tumors, and their adjacent normal tissues from AA and EA women were obtained using 2-dimensional gel electrophoresis and bioinformatics, and differentially expressed proteins were validated by Western blot and immunohistochemistry. Our data showed that a number of proteins have significantly altered in expression in LA tumors compared to TNBC, both within and across patients’ racial demographic groups. The differentially overexpressed proteins in TNBC (compared to LA) of AA samples were distinct from those in TNBC (compared to LA) of EA women samples. Among the signaling pathways altered in AA TNBC compared to EA TNBC are innate immune signaling, calpain protease, and pyrimidine de novo synthesis pathways. Furthermore, liver LXR/RXR signaling pathway was altered between LA and TNBC in AA women and may be due to the deficiency of the CYP7B1 enzyme responsible for cholesterol degradation. Conclusion These findings suggest that TNBC in AA women enriched in signaling pathways that are different from TNBC in EA women. Our study draws a link between LXR/RXR expression, cholesterol, obesity, and the TNBC in AA women.
Collapse
Affiliation(s)
- Odalys Torres-Luquis
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA, .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA,
| | - Krystal Madden
- Department of Learning Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - N'sanh Mr N'dri
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA,
| | - Richard Berg
- Department of Surgery, Indiana University Health, Lafayette, IN, USA
| | - Olufunmilayo F Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Wilfred Ngwa
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Radiation Oncology, Harvard Medical School, Boston, MA, USA
| | - Dafalla Abuidris
- Department of Oncology, National Cancer Institute, University of Gezira, Gezira, Sudan
| | - Suresh Mittal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA, .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA,
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA, .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA,
| |
Collapse
|
14
|
Cariello M, Ducheix S, Maqdasy S, Baron S, Moschetta A, Lobaccaro JMA. LXRs, SHP, and FXR in Prostate Cancer: Enemies or Ménage à Quatre With AR? NUCLEAR RECEPTOR SIGNALING 2018; 15:1550762918801070. [PMID: 30718981 PMCID: PMC6348739 DOI: 10.1177/1550762918801070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022]
Abstract
Androgens and androgen receptor (AR, NR3C4) clearly play a crucial role in
prostate cancer progression. Besides, the link between metabolic disorders and
the risk of developing a prostate cancer has been emerging these last years.
Interestingly, “lipid” nuclear receptors such as LXRα/NR1H3 and LXRβ/NR1H2 (as
well as FXRα/NR1H4 and SHP/NR0B2) have been described to decrease the lipid
metabolism, while AR increases it. Moreover, these former orphan nuclear
receptors can regulate androgen levels and modulate AR activity. Thus, it is not
surprising to find such receptors involved in the physiology of prostate. This
review is focused on the roles of liver X receptors (LXRs), farnesoid X receptor
(FXR), and small heterodimeric partner (SHP) in prostate physiology and their
capabilities to interfere with the androgen-regulated pathways by modulating the
levels of active androgen within the prostate. By the use of prostate cancer
cell lines, mice deficient for these nuclear receptors and human tissue
libraries, several authors have pointed out the putative possibility to
pharmacologically target these receptors. These data open a new field of
research for the development of new drugs that could overcome the castration
resistance in prostate cancer, a usual phenomenon in patients.
Collapse
Affiliation(s)
| | - Simon Ducheix
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Salwan Maqdasy
- Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France.,CHU Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Antonio Moschetta
- "Aldo Moro" University of Bari, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy.,IRCCS Istituto Oncologico "Giovanni Paolo II," Bari, Italy
| | - Jean-Marc A Lobaccaro
- "Aldo Moro" University of Bari, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy.,Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| |
Collapse
|
15
|
Bousset L, Rambur A, Fouache A, Bunay J, Morel L, Lobaccaro JMA, Baron S, Trousson A, de Joussineau C. New Insights in Prostate Cancer Development and Tumor Therapy: Modulation of Nuclear Receptors and the Specific Role of Liver X Receptors. Int J Mol Sci 2018; 19:E2545. [PMID: 30154328 PMCID: PMC6164771 DOI: 10.3390/ijms19092545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) incidence has been dramatically increasing these last years in westernized countries. Though localized PCa is usually treated by radical prostatectomy, androgen deprivation therapy is preferred in locally advanced disease in combination with chemotherapy. Unfortunately, PCa goes into a castration-resistant state in the vast majority of the cases, leading to questions about the molecular mechanisms involving the steroids and their respective nuclear receptors in this relapse. Interestingly, liver X receptors (LXRα/NR1H3 and LXRβ/NR1H2) have emerged as new actors in prostate physiology, beyond their historical roles of cholesterol sensors. More importantly LXRs have been proposed to be good pharmacological targets in PCa. This rational has been based on numerous experiments performed in PCa cell lines and genetic animal models pointing out that using selective liver X receptor modulators (SLiMs) could actually be a good complementary therapy in patients with a castration resistant PCa. Hence, this review is focused on the interaction among the androgen receptors (AR/NR3C4), estrogen receptors (ERα/NR3A1 and ERβ/NR3A2), and LXRs in prostate homeostasis and their putative pharmacological modulations in parallel to the patients' support.
Collapse
Affiliation(s)
- Laura Bousset
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Amandine Rambur
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Allan Fouache
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Julio Bunay
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Laurent Morel
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Cyrille de Joussineau
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| |
Collapse
|
16
|
Silvente-Poirot S, Dalenc F, Poirot M. The Effects of Cholesterol-Derived Oncometabolites on Nuclear Receptor Function in Cancer. Cancer Res 2018; 78:4803-4808. [DOI: 10.1158/0008-5472.can-18-1487] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 11/16/2022]
|
17
|
Alioui A, Dufour J, Leoni V, Loregger A, Moeton M, Iuliano L, Zerbinati C, Septier A, Val P, Fouache A, Russo V, Volle DH, Lobaccaro JMA, Zelcer N, Baron S. Liver X receptors constrain tumor development and metastasis dissemination in PTEN-deficient prostate cancer. Nat Commun 2017; 8:445. [PMID: 28874658 PMCID: PMC5585406 DOI: 10.1038/s41467-017-00508-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/01/2017] [Indexed: 01/19/2023] Open
Abstract
Advanced prostate cancer (PCa) is a clinical challenge as no curative therapeutic is available. In this context, a better understanding of metastasis and resistance mechanisms in PCa is an important issue. As phosphatase and tensin homolog (PTEN) loss is the most common genetic lesion in such cancer, we investigate human data sets for mechanisms that can constrain cancer evolution in this setting. Here we report a liver X receptor (LXR) signature, which tightly correlates with PTEN loss, in PCa. Accordingly, the LXR pathway is deregulated in prostate carcinomas in Pten-null mice. Genetic ablation of LXRs in Pten-null mice, exacerbates PCa invasiveness and metastatic dissemination, which involves mesenchymal transition and accumulation of matrix metalloproteinases. Mechanistically, PTEN deletion governed LXR transcriptional activity through deregulation of cholesterol de novo synthesis, resulting in accumulation of endogenous LXR ligands. Our study therefore reveals a functional circuit linking PTEN and LXR, and highlights LXRs as metabolic gatekeepers that are able to constrain PCa progression. Treatment of prostate cancer, especially in its advanced stage, is still challenging; therefore, strategies to prevent metastatic dissemination are of great interest. Here the authors reveal a crucial role for liver X receptors in suppressing prostate carcinogenesis and metastatic progression in PTEN-null tumors.
Collapse
Affiliation(s)
- Anthony Alioui
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France.,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, F-63001, Clermont-Ferrand, France.,Department of Medical Biochemistry, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Julie Dufour
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France.,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, F-63001, Clermont-Ferrand, France
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, AST_Settelaghi, Varese, Italy
| | - Anke Loregger
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Martina Moeton
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Luigi Iuliano
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Latina, 04100, Italy
| | - Chiara Zerbinati
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Latina, 04100, Italy
| | - Amandine Septier
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France.,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France
| | - Pierre Val
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France.,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France
| | - Allan Fouache
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France.,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, F-63001, Clermont-Ferrand, France
| | - Vincenzo Russo
- Unit of Immuno-Biotherapy of Melanoma and Solid Tumors, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - David H Volle
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France.,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, F-63001, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France. .,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France. .,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France. .,Centre de Recherche en Nutrition Humaine d'Auvergne, F-63001, Clermont-Ferrand, France.
| | - Noam Zelcer
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Silvère Baron
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France. .,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France. .,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France. .,Centre de Recherche en Nutrition Humaine d'Auvergne, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
18
|
Marwarha G, Raza S, Hammer K, Ghribi O. 27-hydroxycholesterol: A novel player in molecular carcinogenesis of breast and prostate cancer. Chem Phys Lipids 2017; 207:108-126. [PMID: 28583434 DOI: 10.1016/j.chemphyslip.2017.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Several studies have suggested an etiological role for hypercholesterolemia in the pathogenesis of breast cancer and prostate cancer (PCa). However, the molecular mechanisms that underlie and mediate the hypercholesterolemia-fostered increased risk for breast cancer and PCa are yet to be determined. The discovery that the most abundant cholesterol oxidized metabolite in the plasma, 27 hydroxycholesterol (27-OHC), is a selective estrogen receptor modulator (SERM) and an agonist of Liver X receptors (LXR) partially fills the void in our understanding and knowledge of the mechanisms that may link hypercholesterolemia to development and progression of breast cancer and PCa. The wide spectrum and repertoire of SERM and LXR-dependent effects of 27-OHC in the context of all facets and aspects of breast cancer and prostate cancer biology are reviewed in this manuscript in a very comprehensive manner. This review highlights recent findings pertaining to the role of 27-OHC in breast cancer and PCa and delineates the signaling mechanisms involved in the governing of different facets of tumor biology, that include tumor cell proliferation, epithelial-mesenchymal transition (EMT), as well as tumor cell invasion, migration, and metastasis. We also discuss the limitations of contemporary studies and lack of our comprehension of the entire gamut of effects exerted by 27-OHC that may be relevant to the pathogenesis of breast cancer and PCa. We unveil and propose potential future directions of research that may further our understanding of the role of 27-OHC in breast cancer and PCa and help design therapeutic interventions against endocrine therapy-resistant breast cancer and PCa.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Shaneabbas Raza
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Kimberly Hammer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA; Department of Veteran Affairs, Fargo VA Health Care System, Fargo, North Dakota 58102, USA
| | - Othman Ghribi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA.
| |
Collapse
|
19
|
Zabaiou N, Fouache A, Trousson A, Baron S, Zellagui A, Lahouel M, Lobaccaro JMA. Biological properties of propolis extracts: Something new from an ancient product. Chem Phys Lipids 2017; 207:214-222. [PMID: 28411017 DOI: 10.1016/j.chemphyslip.2017.04.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022]
Abstract
Natural products are an interesting source of new therapeutics, especially for cancer therapy as 70% of them have botany origin. Propolis, a resinous mixture that honey bees collect and transform from tree buds, sap flows, or other botanical sources, has been used by ethnobotany and traditional practitioners as early in Egypt as 3000 BCE. Enriched in flavonoids, phenol acids and terpene derivatives, propolis has been widely used for its antibacterial, antifungal and anti-inflammatory properties. Even though it is a challenge to standardize propolis composition, chemical analyses have pointed out interesting molecules that also present anti-oxidant and anti-proliferative properties that are of interest in the field of anti-cancer therapy. This review describes the various geographical origins and compositions of propolis, and analyzes how the main compounds of propolis could modulate cell signaling. A focus is made on the putative use of propolis in prostate cancer.
Collapse
Affiliation(s)
- Nada Zabaiou
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne,58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France; Laboratory of Molecular Toxicology, Department of Molecular and Cellular Biology, Faculty of Science, Université Mohamed Seddik Ben Yahia, 18000 Jijel, Algeria
| | - Allan Fouache
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne,58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne,58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne,58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Amar Zellagui
- Laboratory of Biomolecules and Plant Breeding, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria
| | - Mesbah Lahouel
- Laboratory of Molecular Toxicology, Department of Molecular and Cellular Biology, Faculty of Science, Université Mohamed Seddik Ben Yahia, 18000 Jijel, Algeria.
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne,58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| |
Collapse
|
20
|
Xiaoling Y, Li Z, ShuQiang L, Shengchao M, Anning Y, Ning D, Nan L, Yuexia J, Xiaoming Y, Guizhong L, Yideng J. Hyperhomocysteinemia in ApoE-/- Mice Leads to Overexpression of Enhancer of Zeste Homolog 2 via miR-92a Regulation. PLoS One 2016; 11:e0167744. [PMID: 27936205 PMCID: PMC5147974 DOI: 10.1371/journal.pone.0167744] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/19/2016] [Indexed: 12/11/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular diseases, such as atherosclerosis. HHcy promotes atherogenesis by modifying the histone methylation patterns and miRNA regulation. In this study, we investigated the effects of homocysteine (Hcy) on the expression of enhancer of zeste homolog 2 (EZH2), and tested our hypothesis that Hcy-induced atherosclerosis is mediated by increased EZH2 expression, which is regulated by miR-92a. The levels of EZH2 and H3K27me3 were increased in the aorta of ApoE-/- mice fed a high-methionine diet for 16 weeks, whereas miR-92a expression was decreased. Over-expression of EZH2 increased H3K27me3 level and the accumulation of total cholesterol and triglycerides in the foam cells. Furthermore, upregulation of miR-92a reduced EZH2 expression in the foam cells. These data suggested that EZH2 plays a key role in Hcy-mediated lipid metabolism disorders, and that miR-92a may be a novel therapeutic target in Hcy-related atherosclerosis.
Collapse
Affiliation(s)
- Yang Xiaoling
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
- Institution of Medical Science of Ningxia, Yinchuan, Ningxia, China
| | - Zhao Li
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li ShuQiang
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ma Shengchao
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yang Anning
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ding Ning
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li Nan
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jia Yuexia
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yang Xiaoming
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li Guizhong
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiang Yideng
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
- * E-mail:
| |
Collapse
|
21
|
Villa GR, Hulce JJ, Zanca C, Bi J, Ikegami S, Cahill GL, Gu Y, Lum KM, Masui K, Yang H, Rong X, Hong C, Turner KM, Liu F, Hon GC, Jenkins D, Martini M, Armando AM, Quehenberger O, Cloughesy TF, Furnari FB, Cavenee WK, Tontonoz P, Gahman TC, Shiau AK, Cravatt BF, Mischel PS. An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers. Cancer Cell 2016; 30:683-693. [PMID: 27746144 PMCID: PMC5479636 DOI: 10.1016/j.ccell.2016.09.008] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/19/2016] [Accepted: 09/17/2016] [Indexed: 12/11/2022]
Abstract
Small-molecule inhibitors targeting growth factor receptors have failed to show efficacy for brain cancers, potentially due to their inability to achieve sufficient drug levels in the CNS. Targeting non-oncogene tumor co-dependencies provides an alternative approach, particularly if drugs with high brain penetration can be identified. Here we demonstrate that the highly lethal brain cancer glioblastoma (GBM) is remarkably dependent on cholesterol for survival, rendering these tumors sensitive to Liver X receptor (LXR) agonist-dependent cell death. We show that LXR-623, a clinically viable, highly brain-penetrant LXRα-partial/LXRβ-full agonist selectively kills GBM cells in an LXRβ- and cholesterol-dependent fashion, causing tumor regression and prolonged survival in mouse models. Thus, a metabolic co-dependency provides a pharmacological means to kill growth factor-activated cancers in the CNS.
Collapse
Affiliation(s)
- Genaro R Villa
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA; Medical Scientist Training Program, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA; Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan J Hulce
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ciro Zanca
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Junfeng Bi
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Shiro Ikegami
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Gabrielle L Cahill
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Yuchao Gu
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA; Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Kenneth M Lum
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Huijun Yang
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Xin Rong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kristen M Turner
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Feng Liu
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Gary C Hon
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - David Jenkins
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Martini
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron M Armando
- Department of Pharmacology, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Oswald Quehenberger
- Department of Pharmacology, UCSD School of Medicine, La Jolla, CA 92093, USA; Department of Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA; Department of Pathology, UCSD School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy C Gahman
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA; Department of Pathology, UCSD School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Drelon C, Berthon A, Mathieu M, Ragazzon B, Kuick R, Tabbal H, Septier A, Rodriguez S, Batisse-Lignier M, Sahut-Barnola I, Dumontet T, Pointud JC, Lefrançois-Martinez AM, Baron S, Giordano TJ, Bertherat J, Martinez A, Val P. EZH2 is overexpressed in adrenocortical carcinoma and is associated with disease progression. Hum Mol Genet 2016; 25:2789-2800. [PMID: 27149985 DOI: 10.1093/hmg/ddw136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 12/29/2022] Open
Abstract
Adrenal Cortex Carcinoma (ACC) is an aggressive tumour with poor prognosis. Common alterations in patients include constitutive WNT/β-catenin signalling and overexpression of the growth factor IGF2. However, the combination of both alterations in transgenic mice is not sufficient to trigger malignant tumour progression, suggesting that other alterations are required to allow development of carcinomas. Here, we have conducted a study of publicly available gene expression data from three cohorts of ACC patients to identify relevant alterations. Our data show that the histone methyltransferase EZH2 is overexpressed in ACC in the three cohorts. This overexpression is the result of deregulated P53/RB/E2F pathway activity and is associated with increased proliferation and poorer prognosis in patients. Inhibition of EZH2 by RNA interference or pharmacological treatment with DZNep inhibits cellular growth, wound healing and clonogenic growth and induces apoptosis of H295R cells in culture. Further growth inhibition is obtained when DZNep is combined with mitotane, the gold-standard treatment for ACC. Altogether, these observations suggest that overexpression of EZH2 is associated with aggressive progression and may constitute an interesting therapeutic target in the context of ACC.
Collapse
Affiliation(s)
- Coralie Drelon
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Annabel Berthon
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France.,Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-1103, USA
| | - Mickael Mathieu
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Bruno Ragazzon
- Inserm U1016, CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Rork Kuick
- Department of Biostatistics, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Houda Tabbal
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Amandine Septier
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Stéphanie Rodriguez
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Marie Batisse-Lignier
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France.,Centre Hospitalier Universitaire, Service d'Endocrinologie, Faculté de Médecine, F- 63000 Clermont-Ferrand, France
| | - Isabelle Sahut-Barnola
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Typhanie Dumontet
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | | | | | - Silvère Baron
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Thomas J Giordano
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Jérôme Bertherat
- Inserm U1016, CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Antoine Martinez
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Pierre Val
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| |
Collapse
|
23
|
Maqdasy S, El Hajjaji FZ, Baptissart M, Viennois E, Oumeddour A, Brugnon F, Trousson A, Tauveron I, Volle D, Lobaccaro JMA, Baron S. Identification of the Functions of Liver X Receptor-β in Sertoli Cells Using a Targeted Expression-Rescue Model. Endocrinology 2015; 156:4545-57. [PMID: 26402841 DOI: 10.1210/en.2015-1382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Liver X receptors (LXRs) are key regulators of lipid homeostasis and are involved in multiple testicular functions. The Lxrα(-/-);Lxrβ(-/-) mice have illuminated the roles of both isoforms in maintenance of the epithelium in the seminiferous tubules, spermatogenesis, and T production. The requirement for LXRβ in Sertoli cells have been emphasized by early abnormal cholesteryl ester accumulation in the Lxrβ(-/-) and Lxrα(-/-);Lxrβ(-/-) mice. Other phenotypes, such as germ cell loss and hypogonadism, occur later in life in the Lxrα(-/-);Lxrβ(-/-) mice. Thus, LXRβ expression in Sertoli cells seems to be essential for normal testicular physiology. To decipher the roles of LXRβ within the Sertoli cells, we generated Lxrα(-/-);Lxrβ(-/-):AMH-Lxrβ transgenic mice, which reexpress Lxrβ in Sertoli cells in the context of Lxrα(-/-);Lxrβ(-/-) mice. In addition to lipid homeostasis, LXRβ is necessary for maintaining the blood-testis barrier and the integrity of the germ cell epithelium. LXRβ is also implicated in the paracrine action of Sertoli cells on Leydig cells to modulate T synthesis. The Lxrα(-/-);Lxrβ(-/-) and Lxrα(-/-);Lxrβ(-/-):AMH-Lxrβ mice exhibit lipid accumulation in germ cells after the Abcg8 down-regulation, suggesting an intricate LXRβ-dependent cooperation between the Sertoli cells and germ cells to ensure spermiogenesis. Further analysis revealed also peritubular smooth muscle defects (abnormal lipid accumulation and disorganized smooth muscle actin) and spermatozoa stagnation in the seminiferous tubules. Together the present work elucidates specific roles of LXRβ in Sertoli cell physiology in vivo beyond lipid homeostasis.
Collapse
Affiliation(s)
- Salwan Maqdasy
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Fatim-Zohra El Hajjaji
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Marine Baptissart
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Emilie Viennois
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Abdelkader Oumeddour
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Florence Brugnon
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Amalia Trousson
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Igor Tauveron
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - David Volle
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Silvère Baron
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| |
Collapse
|
24
|
Abente EJ, Subramanian M, Ramachandran V, Najafi-Shoushtari SH. MicroRNAs in obesity-associated disorders. Arch Biochem Biophys 2015; 589:108-19. [PMID: 26416722 DOI: 10.1016/j.abb.2015.09.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 02/08/2023]
Abstract
The emergence of a worldwide obesity epidemic has dramatically increased the prevalence of insulin resistance and metabolic syndrome, predisposing individuals to a greater risk for the development of non-alcoholic fatty liver disease, type II diabetes and atherosclerotic cardiovascular diseases. Current available pharmacological interventions combined with diet and exercise-based managements are still poorly effective for weight management, likely in part due to an incomplete understanding of regulatory mechanisms and pathways contributing to the systemic metabolic abnormalities under disturbed energy homeostasis. MicroRNAs, small non-coding RNAs that regulate posttranscriptional gene expression, have been increasingly described to influence shifts in metabolic pathways under various obesity-related disease settings. Here we review recent discoveries of the mechanistic role that microRNAs play in regulating metabolic functions in liver and adipose tissues involved in obesity associated disorders, and briefly discusses the potential candidates that are being pursued as viable therapeutic targets.
Collapse
Affiliation(s)
- Eugenio J Abente
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Murugan Subramanian
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Vimal Ramachandran
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - S Hani Najafi-Shoushtari
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
25
|
Labbé DP, Zadra G, Ebot EM, Mucci LA, Kantoff PW, Loda M, Brown M. Role of diet in prostate cancer: the epigenetic link. Oncogene 2015; 34:4683-91. [PMID: 25531313 PMCID: PMC4476943 DOI: 10.1038/onc.2014.422] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 12/12/2022]
Abstract
Diet is hypothesized to be a critical environmentally related risk factor for prostate cancer (PCa) development, and specific diets and dietary components can also affect PCa progression; however, the mechanisms underlying these associations remain elusive. As for a maturing organism, PCa's epigenome is plastic and evolves from the pre-neoplastic to the metastatic stage. In particular, epigenetic remodeling relies on substrates or cofactors obtained from the diet. Here we review the evidence that bridges dietary modulation to alterations in the prostate epigenome. We propose that such diet-related effects offer a mechanistic link between the impact of different diets and the course of PCa development and progression.
Collapse
Affiliation(s)
- D P Labbé
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - G Zadra
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E M Ebot
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - L A Mucci
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - P W Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
26
|
De Boussac H, Maqdasy S, Trousson A, Zelcer N, Volle DH, Lobaccaro JMA, Baron S. Enolase is regulated by Liver X Receptors. Steroids 2015; 99:266-71. [PMID: 25708389 DOI: 10.1016/j.steroids.2015.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
Abstract
Enolase is a glycolytic enzyme known to inhibit cholesteryl ester hydrolases (CEHs). Cholesteryl ester loading of macrophages, as occurs during atherosclerosis, is accompanied by increased Enolase protein and activity. Here, we describe that J774 macrophages treated with LXR agonists exhibit reduced Enolase transcript and protein abundance. Moreover, we show that this reduction is further potentiated by activation of the LXR/RXR heterodimer with the RXR ligand 9-cis retinoic acid. Enolase levels are also reduced in vivo following activation of LXRs in the intestine, but not in the liver. This effect is lost in Lxrαβ-/- mice. In aggregate, our study identified Enolase as a new target of LXRs in vivo, which may promote cholesterol mobilization for subsequent efflux.
Collapse
Affiliation(s)
- Hugues De Boussac
- Université Clermont Auvergne, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F63000 Clermont-Ferrand, France; CNRS, UMR 6293, GReD, F-63177 Aubiere, France; INSERM, UMR 1103, GReD, F-63177 Aubiere, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Salwan Maqdasy
- Université Clermont Auvergne, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F63000 Clermont-Ferrand, France; CNRS, UMR 6293, GReD, F-63177 Aubiere, France; INSERM, UMR 1103, GReD, F-63177 Aubiere, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France; Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; Service de Médecine Nucléaire, Centre Jean Perrin, 58 rue Montalembert, F-63011 Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F63000 Clermont-Ferrand, France; CNRS, UMR 6293, GReD, F-63177 Aubiere, France; INSERM, UMR 1103, GReD, F-63177 Aubiere, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Noam Zelcer
- Department of Medical Biochemistry Academic, Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - David H Volle
- Université Clermont Auvergne, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F63000 Clermont-Ferrand, France; CNRS, UMR 6293, GReD, F-63177 Aubiere, France; INSERM, UMR 1103, GReD, F-63177 Aubiere, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F63000 Clermont-Ferrand, France; CNRS, UMR 6293, GReD, F-63177 Aubiere, France; INSERM, UMR 1103, GReD, F-63177 Aubiere, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F63000 Clermont-Ferrand, France; CNRS, UMR 6293, GReD, F-63177 Aubiere, France; INSERM, UMR 1103, GReD, F-63177 Aubiere, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
27
|
Nelson ER, Chang CY, McDonnell DP. Cholesterol and breast cancer pathophysiology. Trends Endocrinol Metab 2014; 25:649-55. [PMID: 25458418 PMCID: PMC4268141 DOI: 10.1016/j.tem.2014.10.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 01/05/2023]
Abstract
Cholesterol is a risk factor for breast cancer although the mechanisms by which this occurs are not well understood. One hypothesis is that dyslipidemia results in increased cholesterol content in cell membranes, thus impacting upon membrane fluidity and subsequent signaling. In addition, studies demonstrate that the metabolite, 27-hydroxycholesterol (27HC), can function as an estrogen, increasing the proliferation of estrogen receptor (ER)-positive breast cancer cells. This was unexpected because 27HC and other oxysterols activate the liver X receptors (LXR), resulting in a reduction of intracellular cholesterol. Resolution of this paradox will require dissection of the molecular mechanisms by which ER and LXR converge in breast cancer cells. Regardless, the observation that 27HC influences breast cancer provides a rationale for strategies that target cholesterol metabolism.
Collapse
Affiliation(s)
- Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Ching-yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Alioui A, Celhay O, Baron S, Lobaccaro JMA. Lipids and prostate cancer adenocarcinoma. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Sharma KL, Rai R, Srivastava A, Sharma A, Misra S, Kumar A, Mittal B. A multigenic approach to evaluate genetic variants of PLCE1, LXRs, MMPs, TIMP, and CYP genes in gallbladder cancer predisposition. Tumour Biol 2014; 35:8597-8606. [PMID: 24863943 DOI: 10.1007/s13277-014-2094-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 05/13/2014] [Indexed: 12/29/2022] Open
Abstract
Gallbladder cancer (GBC) is a violent neoplasm associated with late diagnosis, unsatisfactory treatment, and poor prognosis. The disease shows complex interplay between multiple genetic variants. We analyzed 15 polymorphisms in nine genes involved in various pathways to find out combinations of genetic variants contributing to GBC risk. The genes included in the study were matrix metalloproteinases (MMP-2, MMP-7, and MMP-9), tissue inhibitor of metalloproteinases (TIMP-2), cytochrome P450 (CYP)1A1, CYP1B1, phospholipase C epsilon 1 (PLCE1), liver X receptor (LXR)-alpha, and LXR-beta. Genotypes were determined by PCR-RFLP and TaqMan probes. Statistical analysis was done by SPSS version 16. Multilocus analysis was performed by Classification and Regression Tree (CART) analysis and multifactor dimensionality reduction (MDR) to gene-gene interactions in modifying GBC risk. In silico analysis was done using various bioinformatics tools (F-SNP, FAST-SNP). Single locus analysis showed association of MMP-2 (-735 C > T, -1306 C > T), MMP-7 - 181 A > G, MMP-9 (P574R, R668Q), TIMP-2 - 418 G > C, CYP1A1-MspI, CYP1A1-Ile462Val, PLCE1 (rs2274223 A > G, rs7922612 T > C) and LXR-beta T > C (rs3546355 G > A, rs2695121 T > C) polymorphisms with GBC risk (p < 0.05) whereas CYP1B1 and LXR-α variants were not associated with GBC risk. Multidimensional reduction analysis revealed LXR-β (rs3546355 G > A, rs2695121 T > C), MMP-2 (-1306 C > T), MMP-9 (R668Q), and PLCE1 rs2274223 A > G to be key players in GBC causation (p < 0.001, CVC = 7/10). The results were further supported by independent CART analysis (p < 0.001). In silico analysis of associated variants suggested change in splicing or transcriptional regulation. Interactome and STRING analysis showed network of associated genes. The study found PLCE1 and LXR-β network interactions as important contributory factors for genetic predisposition in gallbladder cancer.
Collapse
Affiliation(s)
- Kiran Lata Sharma
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India,
| | | | | | | | | | | | | |
Collapse
|
30
|
Traversari C, Sozzani S, Steffensen KR, Russo V. LXR-dependent and -independent effects of oxysterols on immunity and tumor growth. Eur J Immunol 2014; 44:1896-903. [PMID: 24777958 DOI: 10.1002/eji.201344292] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/04/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022]
Abstract
Oxysterols are involved in maintaining cellular cholesterol levels. Recently, oxysterols have been demonstrated to modulate the function of immune cells and tumor growth. These effects can be dependent on the activation of the oxysterol-binding liver X receptors (LXRs) or, as recently demonstrated for T and B cells, DCs and neutrophils, can be independent of LXR activation. LXR-dependent oxysterol effects can be ascribed to the activation of LXRα, LXRβ or LXRαβ isoforms, which induces transcriptional activation or trans-repression of target genes. The prevalent activation of one isoform seems to be cell-, tissue-, or context-specific, as shown in some pathologic processes, i.e., infectious diseases, atherosclerosis, and autoimmunity. Oxysterol-LXR signaling has recently been shown to inhibit antitumor immune responses, as well as to modulate tumor cell growth. Here, we review the mechanisms that link oxysterols to tumor growth, and discuss possible networks at the basis of LXR-dependent and -independent oxysterol effects on immune cells and tumor development.
Collapse
|
31
|
Karunasinghe N, Bishop K, Murray P, Xu Y, Goudie M, Ng L, Zhu S, Han DY, Ferguson LR, Masters J, Benjamin B, Holmes M. Role of β-microseminoprotein from prostate cancer initiation to recurrence: A mini-review. World J Clin Urol 2014; 3:20-30. [DOI: 10.5410/wjcu.v3.i1.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/19/2013] [Accepted: 02/18/2014] [Indexed: 02/06/2023] Open
Abstract
Medline/Pubmed articles relevant to this topic were considered using the search terms β-microseminoprotein, MSMB, prostate secretory protein of 94 amino acids and PSP94. Full articles were retrieved when the abstract was considered relevant. In addition, other data related to this topic including our own are discussed. Summary of findings-β-microseminoprotein (MSMB) is increasingly being considered as a marker for prostate cancer, as reduced levels have been associated with the disease. Here we review various aspects of this protein including its biological and physiological variants, binding proteins and immune modulation; its importance as a marker for biochemical recurrence of prostate cancer; prostate cancer related splice variants and its therapeutic utility. Two of the most important properties of MSMB are related to anticancer functions and immune modulation. Predominant expression of two (short and full-length) splice variants of MSMB has been observed from normal prostate and several other tissues. In benign prostate hyperplasia the short isoform is dominant, constituting 98% of this isoform, whereas in prostate cancer 96% constitute the full-length isoform. The MSMB promoter single nucleotide polymorphism rs10993994 with the C allele functions as an activated cyclic adenosine monophosphate response element binding protein binding site. This C variant of rs10993994 could be responsible for the production of splice variants under variable conditions. MSMB has binding motifs to a few known proteins including immunoglobulin G and several Cysteine-rich secretory proteins family proteins. MSMB bound to these proteins is considered as immune modulating. Use of MSMB as a urinary marker for detecting aggressive prostate cancers that could resist radiation and surgical treatments, seems possible, but needs further investigation. The ratio of MSMB splice variants could also be a possible approach in understanding prostate cancers, with higher ratios indicating severe disease.
Collapse
|
32
|
Huang C. Natural modulators of liver X receptors. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2014; 12:76-85. [DOI: 10.1016/s2095-4964(14)60013-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Nonalcoholic fatty liver disease: molecular pathways and therapeutic strategies. Lipids Health Dis 2013; 12:171. [PMID: 24209497 PMCID: PMC3827997 DOI: 10.1186/1476-511x-12-171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/07/2013] [Indexed: 02/07/2023] Open
Abstract
Along with rising numbers of patients with metabolic syndrome, the prevalence of nonalcoholic fatty liver disease (NAFLD) has increased in proportion with the obesity epidemic. While there are no established treatments for NAFLD, current research is targeting new molecular mechanisms that underlie NAFLD and associated metabolic disorders. This review discusses some of these emerging molecular mechanisms and their therapeutic implications for the treatment of NAFLD. The basic research that has identified potential molecular targets for pharmacotherapy will be outlined.
Collapse
|
34
|
Long MD, Thorne JL, Russell J, Battaglia S, Singh PK, Sucheston-Campbell LE, Campbell MJ. Cooperative behavior of the nuclear receptor superfamily and its deregulation in prostate cancer. Carcinogenesis 2013; 35:262-71. [PMID: 24104552 DOI: 10.1093/carcin/bgt334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The current study aimed to assess the topology of the nuclear receptor (NR) superfamily in normal prostate epithelial cells and its distortion in prostate cancer. Both in vitro and in silico approaches were utilized to profile NRs expressed in non-malignant RWPE-1 cells, which were subsequently investigated by treating cells with 132 binary NR ligand combinations. Nine significant cooperative interactions emerged including both superadditive [22(R)-hydroxycholesterol and eicosatetraenoic acid] and subadditive [1α,25(OH)2D3 and chenodeoxycholic acid] cellular responses, which could be explained in part by cooperative control of cell-cycle progression and candidate gene expression. In addition, publicly available data were employed to assess NR expression in human prostate tissue. Common and significant loss of NR superfamily expression was established in publicly available data from prostate tumors, in part predicting parallel distortion of targeting microRNA. These findings suggest that the NR superfamily in the prostate cooperatively integrates signals from dietary, hormonal and metabolic cues, and is significantly distorted in prostate cancer.
Collapse
Affiliation(s)
- Mark D Long
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
De Boussac H, Alioui A, Viennois E, Dufour J, Trousson A, Vega A, Guy L, Volle DH, Lobaccaro JMA, Baron S. Oxysterol receptors and their therapeutic applications in cancer conditions. Expert Opin Ther Targets 2013; 17:1029-38. [PMID: 23875732 DOI: 10.1517/14728222.2013.820708] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Oxysterols are implicated in various cellular processes. Among their target proteins, liver X receptors (LXRs) α and β modulate the cell cycle in a large range of cancer cell lines. Besides their role as cholesterol sensors, LXRs are also involved in the proliferation/apoptosis balance regulation in various types of cancers. AREAS COVERED This review covers oxysterols and derivatives of cholesterol as well as synthetic or natural ligands (agonist/antagonist) of LXRs. Most tumor cell lines are sensitive to LXR activation. Indeed various cancers are concerned such as prostate, breast, glioblastoma, colorectal, and ovary tumors, and leukemia. EXPERT OPINION Developing the use of LXR ligands in human health, especially in the field of cancer, represents a novel and promising strategy. Despite a wide spectrum of applications, numerous adverse effects of LXR activation need to be solved before genuine clinical trials in humans. Future directions will be based on the engineering of selective LXRs modulators (SLiMs) as already done for nuclear steroid receptors.
Collapse
Affiliation(s)
- Hugues De Boussac
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|