1
|
Thorhölludottir DAV, Hsu SK, Barghi N, Mallard F, Nolte V, Schlötterer C. Reduced Parallel Gene Expression Evolution With Increasing Genetic Divergence-A Hallmark of Polygenic Adaptation. Mol Ecol 2025:e17803. [PMID: 40377062 DOI: 10.1111/mec.17803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/13/2025] [Accepted: 05/08/2025] [Indexed: 05/18/2025]
Abstract
Parallel evolution, the repeated evolution of similar traits in independent lineages, is a topic of considerable interest in evolutionary biology. Although previous studies have focused on the parallelism of phenotypic traits and their underlying genetic basis, the extent of parallelism at the level of gene expression across different levels of genetic divergence is not yet fully understood. This study investigates the evolution of gene expression in replicate Drosophila populations exposed to the same novel environment at three divergence levels: within a population, between populations and between species. We show that adaptive gene expression changes are more heterogeneous with increasing genetic divergence between the compared groups. This finding suggests that the adaptive architecture-comprising factors such as allele frequencies and the effect size of contributing loci-becomes more distinct with increasing divergence. As a result, this leads to a reduction in parallel gene expression evolution. This result implies that redundancy is a crucial factor in both genetic selection responses and gene expression evolution. Hence, our findings are consistent with the omnigenic model, which posits that selection acts on higher-order phenotypes. This work contributes to our understanding of phenotypic evolution and the complex interplay between genomic and molecular responses.
Collapse
Affiliation(s)
- Dangy A V Thorhölludottir
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Sheng-Kai Hsu
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Neda Barghi
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - François Mallard
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | |
Collapse
|
2
|
Durkin SM, Nachman MW. Intraspecific gene regulation in cis- and trans. Evolution 2025; 79:499-509. [PMID: 39866040 PMCID: PMC11965609 DOI: 10.1093/evolut/qpaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 01/28/2025]
Abstract
Changes in gene expression underlie much of evolution and occur via either cis-acting mutations, which lie near the affected gene and act in a context-specific manner, or trans-acting mutations, which may be far from the affected gene and act through diffusible molecules such as transcription factors. A commonly held view is that most expression variation within species is controlled in trans- while expression differences between species are largely controlled in cis-. Here, we summarize recent intraspecific gene regulation studies and find, contrary to this widely held view, that many studies in diverse taxa have revealed a large role for cis-acting mutations underlying expression variation within species. A review of the existing literature also shows that preparations using whole organisms rather than individual tissues may be biased toward identifying trans-regulation. Moreover, we note several examples of predominantly cis-acting regulation in recently diverged populations adapted to different environments. We highlight the challenges of drawing general conclusions from comparisons among studies that use different methodologies and we offer suggestions for studies that will address outstanding questions concerning the evolution of gene regulation.
Collapse
Affiliation(s)
- Sylvia M Durkin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
3
|
Soto J, Pinilla F, Olguín P, Castañeda LE. Genetic Architecture of the Thermal Tolerance Landscape in Drosophila melanogaster. Mol Ecol 2025; 34:e17697. [PMID: 40035350 DOI: 10.1111/mec.17697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
Increased environmental temperatures associated with global warming strongly impact natural populations of ectothermic species. Therefore, it is crucial to understand the genetic basis and evolutionary potential of heat tolerance. However, heat tolerance and its genetic components depend on the methodology, making it difficult to predict the adaptive responses to global warming. Here, we measured the knockdown time for 100 lines from the Drosophila Genetic Reference Panel (DGRP) at four different static temperatures, and we estimated their thermal-death-time (TDT) curves, which incorporate the magnitude and the time of exposure to thermal stress, to determine the genetic basis of the thermal tolerance landscape. Through quantitative genetic analyses, the knockdown time showed a significant heritability at different temperatures and that its genetic correlations decreased as temperatures differences increased. Significant genotype-by-sex and genotype-by-environment interactions were noted for heat tolerance. We also discovered genetic variability for the two parameters of TDT: CTmax and thermal sensitivity. Taking advantage of the DGRP, we performed a GWAS and identified multiple variants associated with the TDT parameters, which mapped to genes related to signalling and developmental functions. We performed functional validations for some candidate genes using RNAi, which revealed that genes such as mam, KNCQ, or robo3 affect the knockdown time at a specific temperature but are not associated with the TDT parameters. In conlusion, the thermal tolerance landscape display genetic variation and plastic responses, which may facilitate the adaptation of Drosophila populations to a changing world.
Collapse
Affiliation(s)
- Juan Soto
- Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Francisco Pinilla
- Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Patricio Olguín
- Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis E Castañeda
- Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Research Ring in Pest Insects and Climate Change (PIC2), Santiago, Chile
| |
Collapse
|
4
|
deMayo JA, Ragland GJ. (Limited) Predictability of thermal adaptation in invertebrates. J Exp Biol 2025; 228:JEB249450. [PMID: 40052398 DOI: 10.1242/jeb.249450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Evolutionary genomic approaches provide powerful tools to understand variation in and evolution of physiological processes. Untargeted genomic or transcriptomic screens can identify functionally annotated candidate genes linked to specific physiological processes, in turn suggesting evolutionary roles for these processes. Such studies often aim to inform modeling of the potential of natural populations to adapt to climate change, but these models are most accurate when evolutionary responses are repeatable, and thus predictable. Here, we synthesize the evolutionary genetic and comparative transcriptomic literature on terrestrial and marine invertebrates to assess whether evolutionary responses to temperature are repeatable within populations, across populations and across species. There is compelling evidence for repeatability, sometimes even across species. However, responses to laboratory selection and geographic variation across thermal gradients appear to be highly idiosyncratic. We also survey whether genetic/transcriptomic studies repeatedly identify candidate genes in three functional groups previously associated with the response to thermal stress: heat shock protein (Hsp) genes, proteolysis genes and immunity genes. Multiple studies across terrestrial and marine species identify candidates included in these gene sets. Yet, each of the gene sets are identified in only a minority of studies. Together, these patterns suggest that there is limited predictability of evolutionary responses to natural selection, including across studies within species. We discuss specific patterns for the candidate gene sets, implications for predictive modeling, and other potential applications of evolutionary genetics in elucidating physiology and gene function. Finally, we discuss limitations of inferences from available evolutionary genetic studies and directions for future research.
Collapse
Affiliation(s)
- James A deMayo
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St, Denver, CO 80204, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St, Denver, CO 80204, USA
| |
Collapse
|
5
|
Haueisen J, Möller M, Seybold H, Small C, Wilkens M, Jahneke L, Parchinger L, Thynne E, Stukenbrock EH. Comparative Analyses of Compatible and Incompatible Host-Pathogen Interactions Provide Insight into Divergent Host Specialization of Closely Related Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:235-251. [PMID: 39999443 DOI: 10.1094/mpmi-10-24-0133-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Host-pathogen co-evolutionary dynamics drive constant changes in plant pathogens to thrive in their plant host. Factors that determine host specificity are diverse and range from molecular and morphological strategies to metabolic and reproductive adaptations. We applied an experimental approach and conducted comparative microscopy, transcriptome analyses, and functional analyses of selected pathogen traits to identify determinants of host specificity in an important wheat pathogen. We included three closely related fungal pathogens, Zymoseptoria tritici, Z. pseudotritici, and Z. ardabiliae, that establish compatible and incompatible interactions with wheat. Although infections of the incompatible species induce plant defenses during invasion of stomatal openings, we found a conserved early-infection program among the three species whereby only 9.2% of the 8,885 orthologous genes are significantly differentially expressed during initial infection. The genes upregulated in Z. tritici likely reflect specialization to wheat, whereas upregulated genes in the incompatible interaction may reflect processes to counteract cellular stress associated with plant defenses. We selected nine candidate genes encoding putative effectors and host-specificity determinants in Z. tritici and deleted these to study their functional relevance. Despite the particular expression patterns of the nine genes, only two mutants were impaired in virulence. We further expressed the Z. tritici proteins in Nicotiana benthamiana to investigate protein function and assess cell death reaction. Hereby, we identify three effectors with cell-death-inducing properties. From the functional analyses, we conclude that the successful infection of Z. tritici in wheat relies on an extensive redundancy of virulence determinants. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Janine Haueisen
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Christian-Albrechts University Kiel, 24118 Kiel, Germany
| | - Mareike Möller
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Christian-Albrechts University Kiel, 24118 Kiel, Germany
| | - Heike Seybold
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Christian-Albrechts University Kiel, 24118 Kiel, Germany
| | - Corinn Small
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Christian-Albrechts University Kiel, 24118 Kiel, Germany
| | - Mira Wilkens
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Christian-Albrechts University Kiel, 24118 Kiel, Germany
| | - Lovis Jahneke
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Christian-Albrechts University Kiel, 24118 Kiel, Germany
| | - Leonhard Parchinger
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Christian-Albrechts University Kiel, 24118 Kiel, Germany
- Laboratory of Plant Pathology, Wageningen University, Wageningen, The Netherlands
| | - Elisha Thynne
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Christian-Albrechts University Kiel, 24118 Kiel, Germany
| | - Eva H Stukenbrock
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Christian-Albrechts University Kiel, 24118 Kiel, Germany
| |
Collapse
|
6
|
Titus‐McQuillan JE, Turner BA, Rogers RL. Sex-Specific Ultraviolet Radiation Tolerance Across Drosophila. Ecol Evol 2025; 15:e70985. [PMID: 40008054 PMCID: PMC11855014 DOI: 10.1002/ece3.70985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/24/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
The genetic basis of phenotypic differences between species is a longstanding question in evolutionary biology. How new genes form and selection acts to produce differences across species are fundamental to understanding how species evolve. Adaptation and genetic innovation arise in the genome from a variety of sources. Functional genomics requires both genetic discoveries and empirical testing to observe adaptation between lineages. We explore two species of Drosophila from the island of São Tomé and mainland Africa, D. santomea and D. yakuba. These two species have varying distributions based on elevation on São Tomé, with populations of D. yakuba also inhabiting mainland Africa. Genomic/genetic evidence shows genes between species may have a role in adaptation to higher UV tolerance. We conducted empirical UV assays between D. santomea and both D. yakuba populations. Flies were shocked by UVB radiation for 30 min on a transilluminator apparatus. Custom 5-wall acrylic enclosures were constructed for viewing and containment of flies. Island groups show significant differences between fall-time under UV stress and recovery time post-UV stress test between populations and by sex. This study shows evidence that mainland flies are less resistant to UV radiation than their island counterparts. Differential expression analysis also shows potential for new mutations and local adaptation for DNA repair of D. santomea. Understanding the mechanisms and processes that promote adaptation and testing traits within the context of the genome is crucially important to understand evolutionary machinery.
Collapse
Affiliation(s)
| | - Brandon A. Turner
- Department of Bioinformatics and GenomicsUniversity of North CarolinaCharlotteNorth CarolinaUSA
| | - Rebekah L. Rogers
- Department of Bioinformatics and GenomicsUniversity of North CarolinaCharlotteNorth CarolinaUSA
| |
Collapse
|
7
|
Thron C, Jafari F. Correcting scale distortion in RNA sequencing data. BMC Bioinformatics 2025; 26:32. [PMID: 39875825 PMCID: PMC11776150 DOI: 10.1186/s12859-025-06041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
RNA sequencing (RNA-seq) is the conventional genome-scale approach used to capture the expression levels of all detectable genes in a biological sample. This is now regularly used for population-based studies designed to identify genetic determinants of various diseases. Naturally, the accuracy of these tests should be verified and improved if possible. In this study, we aimed to detect and correct for expression level-dependent errors which are not corrected by conventional normalization techniques. We examined several RNA-seq datasets from the Cancer Genome Atlas (TCGA), Stand Up 2 Cancer (SU2C), and GTEx databases with various types of preprocessing. By applying local averaging, we found expression-level dependent biases that differ from sample to sample in all datasets studied. Using simulations, we show that these biases corrupt gene-gene correlation estimations and t tests between subpopulations. To mitigate these biases, we introduce two different nonlinear transforms based on statistical considerations that correct these observed biases. We demonstrate that these transforms effectively remove the observed per-sample biases, reduce sample-to-sample variance, and improve the characteristics of gene-gene correlation distributions. Using a novel simulation methodology that creates controlled differences between subpopulations, we show that these transforms reduce variability and increase sensitivity of two population tests. The improvements in sensitivity and specificity were of the order of 3-5% in most instances after the data was corrected for bias. Altogether, these results improve our capacity to understand gene-gene relationships, and may lead to novel ways to utilize the information derived from clinical tests.
Collapse
Affiliation(s)
- Christopher Thron
- Department of Science and Mathematics, Texas A &M University-Central Texas, Killeen, TX, 76549, USA.
| | - Farhad Jafari
- Department of Radiology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Zakerzade R, Chang CH, Chatla K, Krishnapura A, Appiah SP, Zhang J, Unckless RL, Blumenstiel JP, Bachtrog D, Wei KHC. Diversification and recurrent adaptation of the synaptonemal complex in Drosophila. PLoS Genet 2025; 21:e1011549. [PMID: 39804957 PMCID: PMC11761671 DOI: 10.1371/journal.pgen.1011549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/24/2025] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover. This is puzzlingly exemplified by the SC of Drosophila, where the central elements and transverse filaments display no identifiable homologs outside of the genus. Here, we exhaustively examine the evolutionary history of the SC in Drosophila taking a comparative phylogenomic approach with high species density to circumvent obscured homology due to rapid sequence evolution. Contrasting starkly against other genes involved in meiotic chromosome pairing, SC genes show significantly elevated rates of coding evolution due to a combination of relaxed constraint and recurrent, widespread positive selection. In particular, the central element cona and transverse filament c(3)G have diversified through tandem and retro-duplications, repeatedly generating paralogs with novel germline activity. In a striking case of molecular convergence, c(3)G paralogs that independently arose in distant lineages evolved under positive selection to have convergent truncations to the protein termini and elevated testes expression. Surprisingly, the expression of SC genes in the germline is prone to change suggesting recurrent regulatory evolution which, in many species, resulted in high testes expression even though Drosophila males are achiasmic. Overall, our study recapitulates the poor conservation of SC components, and further uncovers that the lack of conservation extends to other modalities including copy number, genomic locale, and germline regulation. Considering the elevated testes expression in many Drosophila species and the common ancestor, we suggest that the activity of SC genes in the male germline, while still poorly understood, may be a prime target of constant evolutionary pressures driving repeated adaptations and innovations.
Collapse
Affiliation(s)
- Rana Zakerzade
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver British Columbia, Canada
| | - Ching-Ho Chang
- Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, United States of America
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ananya Krishnapura
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Samuel P. Appiah
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Jacki Zhang
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Kevin H-C. Wei
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver British Columbia, Canada
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
9
|
Jiang S, Zhang C, Pan X, Storey KB, Zhang W. Distinct metabolic responses to thermal stress between invasive freshwater turtle Trachemys scripta elegans and native freshwater turtles in China. Integr Zool 2024; 19:1057-1075. [PMID: 38169086 DOI: 10.1111/1749-4877.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Different responses or tolerance to thermal stress between invasive and native species can affect the outcome of interactions between climate change and biological invasion. However, knowledge about the physiological mechanisms that modulate the interspecific differences in thermal tolerance is limited. The present study analyzes the metabolic responses to thermal stress by the globally invasive turtle, Trachemys scripta elegans, as compared with two co-occurring native turtle species in China, Pelodiscus sinensis and Mauremys reevesii. Changes in metabolite contents and the expression or enzyme activities of genes involved in energy sensing, glucose metabolism, lipid metabolism, and tricarboxylic acid (TCA) cycle after exposure to gradient temperatures were assessed in turtle juveniles. Invasive and native turtles showed distinct metabolic responses to thermal stress. T. scripta elegans showed greater transcriptional regulation of energy sensors than the native turtles. Enhanced anaerobic metabolism was needed by all three species under extreme heat conditions, but phosphoenolpyruvate carboxykinase and lactate dehydrogenase in the invader showed stronger upregulation or stable responses than the native species, which showed inhibition by high temperatures. These contrasts were pronounced in the muscles of the three species. Regulation of lipid metabolism was observed in both T. scripta elegans and P. sinensis but not in M. reevesii under thermal stress. Thermal stress did not inhibit the TCA cycle in turtles. Different metabolic responses to thermal stress may contribute to interspecific differences in thermal tolerance. Overall, our study further suggested the potential role of physiological differences in mediating interactions between climate change and biological invasion.
Collapse
Affiliation(s)
- Shufen Jiang
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Changyi Zhang
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xiao Pan
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Wenyi Zhang
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
10
|
Thayer RC, Polston ES, Xu J, Begun DJ. Regional specialization, polyploidy, and seminal fluid transcripts in the Drosophila female reproductive tract. Proc Natl Acad Sci U S A 2024; 121:e2409850121. [PMID: 39453739 PMCID: PMC11536144 DOI: 10.1073/pnas.2409850121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024] Open
Abstract
Sexual reproduction requires the choreographed interaction of female cells and molecules with sperm and seminal fluid. In internally fertilizing animals, these interactions are managed by specialized tissues within the female reproductive tract (FRT), such as a uterus, glands, and sperm storage organs. However, female somatic reproductive tissues remain understudied, hindering insight into the molecular interactions that support fertility. Here, we report the identification, molecular characterization, and analysis of cell types throughout the somatic FRT in the premier Drosophila melanogaster model system. We find that the uterine epithelia is composed of 11 distinct cell types with well-delineated spatial domains, likely corresponding to functionally specialized surfaces that interact with gametes and reproductive fluids. Polyploidy is pervasive: More than half of lower reproductive tract cells are ≥4C. While seminal fluid proteins (SFPs) are typically thought of as male products that are transferred to females, we find that specialized cell types in the sperm storage organs heavily invest in expressing SFP genes. Rates of amino acid divergence between closely related species indicate heterogeneous evolutionary processes acting on male-limited versus female-expressed seminal fluid genes. Together, our results emphasize that more than 40% of annotated seminal fluid genes are better described as shared components of reproductive transcriptomes, which may function cooperatively to support spermatozoa. More broadly, our work provides the molecular foundation for improved technologies to catalyze the functional characterization of the FRT.
Collapse
Affiliation(s)
- Rachel C. Thayer
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | | | - Jixiang Xu
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - David J. Begun
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
11
|
Wos G, Palomar G, Marszałek M, Sniegula S. Comparative Transcriptomic Reveals Greater Similarities in Response to Temperature Than to Invasive Alien Predator in the Damselfly Ischnura elegans Across Different Geographic Scales. Evol Appl 2024; 17:e70002. [PMID: 39247089 PMCID: PMC11377989 DOI: 10.1111/eva.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
The impact of global changes on populations may not be necessarily uniform across a species' range. Here, we aim at comparing the phenotypic and transcriptomic response to warming and an invasive predator cue in populations across different geographic scales in the damselfly Ischnura elegans. We collected adult females in two ponds in southern Poland (central latitude) and two ponds in southern Sweden (high latitude). We raised their larvae in growth chambers and exposed them to combination of temperature and a predator cue released by the crayfish Orconectes limosus. When larvae reached the prefinal larval stage, they were phenotyped for traits related to growth and size and collected for a gene expression analysis. High-latitude populations exhibited greater phenotypic and transcriptomic variation than central-latitude populations. Across latitudes and ponds, temperature generally increased growth rate and the predator cue decreased mass, but the effects of temperature were also pond-specific. Comparison of the transcriptomic profiles revealed a greater overlap in the response to temperature across latitudes and ponds, especially for pathway-related oxidative stress and sugar and lipid metabolism. The transcriptomic response to a predator cue and to the interaction temperature × predator cue was more pond-specific and overlapped only for few genes and pathways related to cuticle, development and signal transduction. We demonstrated that central- and high-latitude populations may partially respond through similar mechanisms to warming and, to a lower extent to a predator cue and to the interaction temperature × predator cue. For the predator cue and the interaction, the large fraction of ponds-specific genes suggests local adaptation. We show that high-latitude populations were generally more plastic at the phenotypic and transcriptomic level and may be more capable to cope with environmental changes than their central-latitude counterparts.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| | - Gemma Palomar
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences Complutense University of Madrid Madrid Spain
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| |
Collapse
|
12
|
Aagaard A, Bechsgaard J, Sørensen JG, Sandfeld T, Settepani V, Bird TL, Lund MB, Malmos KG, Falck-Rasmussen K, Darolti I, Nielsen KL, Johannsen M, Vosegaard T, Tregenza T, Verhoeven KJF, Mank JE, Schramm A, Bilde T. Molecular Mechanisms of Temperature Tolerance Plasticity in an Arthropod. Genome Biol Evol 2024; 16:evae165. [PMID: 39058286 PMCID: PMC11979766 DOI: 10.1093/gbe/evae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
How species thrive in a wide range of environments is a major focus of evolutionary biology. For many species, limited genetic diversity or gene flow among habitats means that phenotypic plasticity must play an important role in their capacity to tolerate environmental heterogeneity and to colonize new habitats. However, we have a limited understanding of the molecular components that govern plasticity in ecologically relevant phenotypes. We examined this hypothesis in a spider species (Stegodyphus dumicola) with extremely low species-wide genetic diversity that nevertheless occupies a broad range of thermal environments. We determined phenotypic responses to temperature stress in individuals from four climatic zones using common garden acclimation experiments to disentangle phenotypic plasticity from genetic adaptations. Simultaneously, we created data sets on multiple molecular modalities: the genome, the transcriptome, the methylome, the metabolome, and the bacterial microbiome to determine associations with phenotypic responses. Analyses of phenotypic and molecular associations reveal that acclimation responses in the transcriptome and metabolome correlate with patterns of phenotypic plasticity in temperature tolerance. Surprisingly, genes whose expression seemed to be involved in plasticity in temperature tolerance were generally highly methylated contradicting the idea that DNA methylation stabilizes gene expression. This suggests that the function of DNA methylation in invertebrates varies not only among species but also among genes. The bacterial microbiome was stable across the acclimation period; combined with our previous demonstrations that the microbiome is temporally stable in wild populations, this is convincing evidence that the microbiome does not facilitate plasticity in temperature tolerance. Our results suggest that population-specific variation in temperature tolerance among acclimation temperatures appears to result from the evolution of plasticity in mainly gene expression.
Collapse
Affiliation(s)
- Anne Aagaard
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Bechsgaard
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Givskov Sørensen
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tobias Sandfeld
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Virginia Settepani
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tharina L Bird
- General Entomology, DITSONG: National Museum of Natural History, Pretoria, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Arachnology and Myriapodology, National Museum of Namibia, Windhoek, Namibia
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Kirsten Gade Malmos
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Kasper Falck-Rasmussen
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| | - Thomas Vosegaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Tom Tregenza
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| | - Koen J F Verhoeven
- Terrestrial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| |
Collapse
|
13
|
Santos MA, Carromeu-Santos A, Quina AS, Antunes MA, Kristensen TN, Santos M, Matos M, Fragata I, Simões P. Experimental Evolution in a Warming World: The Omics Era. Mol Biol Evol 2024; 41:msae148. [PMID: 39034684 PMCID: PMC11331425 DOI: 10.1093/molbev/msae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
A comprehensive understanding of the genetic mechanisms that shape species responses to thermal variation is essential for more accurate predictions of the impacts of climate change on biodiversity. Experimental evolution with high-throughput resequencing approaches (evolve and resequence) is a highly effective tool that has been increasingly employed to elucidate the genetic basis of adaptation. The number of thermal evolve and resequence studies is rising, yet there is a dearth of efforts to integrate this new wealth of knowledge. Here, we review this literature showing how these studies have contributed to increase our understanding on the genetic basis of thermal adaptation. We identify two major trends: highly polygenic basis of thermal adaptation and general lack of consistency in candidate targets of selection between studies. These findings indicate that the adaptive responses to specific environments are rather independent. A review of the literature reveals several gaps in the existing research. Firstly, there is a paucity of studies done with organisms of diverse taxa. Secondly, there is a need to apply more dynamic and ecologically relevant thermal environments. Thirdly, there is a lack of studies that integrate genomic changes with changes in life history and behavioral traits. Addressing these issues would allow a more in-depth understanding of the relationship between genotype and phenotype. We highlight key methodological aspects that can address some of the limitations and omissions identified. These include the need for greater standardization of methodologies and the utilization of new technologies focusing on the integration of genomic and phenotypic variation in the context of thermal adaptation.
Collapse
Affiliation(s)
- Marta A Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Marta A Antunes
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | - Mauro Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autonòma de Barcelona, Bellaterra, Spain
| | - Margarida Matos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fragata
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
14
|
Mikucki EE, O’Leary TS, Lockwood BL. Heat tolerance, oxidative stress response tuning and robust gene activation in early-stage Drosophila melanogaster embryos. Proc Biol Sci 2024; 291:20240973. [PMID: 39163981 PMCID: PMC11335408 DOI: 10.1098/rspb.2024.0973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
In organisms with complex life cycles, life stages that are most susceptible to environmental stress may determine species persistence in the face of climate change. Early embryos of Drosophila melanogaster are particularly sensitive to acute heat stress, yet tropical embryos have higher heat tolerance than temperate embryos, suggesting adaptive variation in embryonic heat tolerance. We compared transcriptomic responses to heat stress among tropical and temperate embryos to elucidate the gene regulatory basis of divergence in embryonic heat tolerance. The transcriptomes of tropical and temperate embryos differed in both constitutive and heat-stress-induced responses of the expression of relatively few genes, including genes involved in oxidative stress. Most of the transcriptomic response to heat stress was shared among all embryos. Embryos shifted the expression of thousands of genes, including increases in the expression of heat shock genes, suggesting robust zygotic gene activation and demonstrating that, contrary to previous reports, early embryos are not transcriptionally silent. The involvement of oxidative stress genes corroborates recent reports on the critical role of redox homeostasis in coordinating developmental transitions. By characterizing adaptive variation in the transcriptomic basis of embryonic heat tolerance, this study is a novel contribution to the literature on developmental physiology and developmental genetics.
Collapse
Affiliation(s)
- Emily E. Mikucki
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | | |
Collapse
|
15
|
Gamboa M, Gotoh Y, Doloiras-Laraño A, Watanabe K. Response of wild aquatic insect communities to thermal variation through comparative landscape transcriptomics. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22137. [PMID: 39137227 DOI: 10.1002/arch.22137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Fluctuations in temperature are recognized as a potent driver of selection pressure, fostering genomic variations that are crucial for the adaptation and survival of organisms under selection. Notably, water temperature is a pivotal factor influencing aquatic organism persistence. By comprehending how aquatic organisms respond to shifts in water temperature, we can understand their potential physiological adaptations to environmental change in one or multiple species. This, in turn, contributes to the formulation of biologically relevant guidelines for the landscape scale transcriptome profile of organisms in lotic systems. Here, we investigated the distinct responses of seven stream stonefly species, collected from four geographical regions across Japan, to variations in temperature, including atmospheric and water temperatures. We achieved this by assessing the differences in gene expression through RNA-sequencing within individual species and exploring the patterns of community-genes among different species. We identified 735 genes that exhibited differential expressions across the temperature gradient. Remarkably, the community displayed expression levels differences of respiration and metabolic genes. Additionally, the diversity in molecular functions appeared to be linked to spatial variation, with water temperature differences potentially contributing to the overall functional diversity of genes. We found 22 community-genes with consistent expression patterns among species in response to water temperature variations. These genes related to respiration, metabolism and development exhibited a clear gradient providing robust evidence of divergent adaptive responses to water temperature. Our findings underscore the differential adaptation of stonefly species to local environmental conditions, suggesting that shared responses in gene expression may occur across multiple species under similar environmental conditions. This study emphasizes the significance of considering various species when assessing the impacts of environmental changes on aquatic insect communities and understanding potential mechanisms to cope with such changes.
Collapse
Affiliation(s)
- Maribet Gamboa
- Department of Ecology, Faculty of Science, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Yusuke Gotoh
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
| | | | - Kozo Watanabe
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
- Ehime University, Center Marine Environmental Studies (CMES), Matsuyama, Japan
| |
Collapse
|
16
|
Chang YW, Yan YQ, Hu J, Du YZ. Characterization of genes encoding heat shock proteins reveals a differential response to temperature in two geographic populations of Liriomyza trifolii (Diptera: Agromyzidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101156. [PMID: 37976966 DOI: 10.1016/j.cbd.2023.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Liriomyza trifolii is a significant, invasive pest that damages horticultural crops and vegetables. The distribution of L. trifolii is influenced by temperature, and prior research has demonstrated that variations in thermal adaptability differ among geographic populations of the insect. Heat shock proteins (Hsps) are involved in adaptation to temperatures; however, the underlying molecular mechanism for thermal adaption in different L. trifolii populations remains unclear. This study examines the temperature adaptability of two L. trifolii populations from Hainan (HN) and Jiangsu (JS) provinces. The results indicate that the HN population has a higher survival rate and a higher critical thermal maximum (CTmax) than the JS population under high temperature stress. Transcriptome data at 42 °C revealed that the JS population has more differentially expressed genes (DEGs) than the HN population, while the HN population has more upregulated DEGs. The two populations were similar in functional annotation of DEGs, and a large number of Hsps were upregulated. However, the HN population had larger numbers and higher expression levels of Hsps during heat stress as compared to the JS population. Additionally, the expression patterns of differentially expressed Hsps varied between the HN and JS populations in response to different elevated temperatures. Notably, the transcription levels of Hsp70s were higher in the HN population as compared to the JS population, while the expression level of genes encoding small heat shock proteins was higher in the JS population. These findings have significant scientific value in understanding the underlying mechanism of temperature adaption in L. trifolii and provide a fresh perspective on the distribution of this invasive pest.
Collapse
Affiliation(s)
- Ya-Wen Chang
- School of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Qing Yan
- School of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Jie Hu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Yu-Zhou Du
- School of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
17
|
Kapun M, Mitchell ED, Kawecki TJ, Schmidt P, Flatt T. An Ancestral Balanced Inversion Polymorphism Confers Global Adaptation. Mol Biol Evol 2023; 40:msad118. [PMID: 37220650 PMCID: PMC10234209 DOI: 10.1093/molbev/msad118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Since the pioneering work of Dobzhansky in the 1930s and 1940s, many chromosomal inversions have been identified, but how they contribute to adaptation remains poorly understood. In Drosophila melanogaster, the widespread inversion polymorphism In(3R)Payne underpins latitudinal clines in fitness traits on multiple continents. Here, we use single-individual whole-genome sequencing, transcriptomics, and published sequencing data to study the population genomics of this inversion on four continents: in its ancestral African range and in derived populations in Europe, North America, and Australia. Our results confirm that this inversion originated in sub-Saharan Africa and subsequently became cosmopolitan; we observe marked monophyletic divergence of inverted and noninverted karyotypes, with some substructure among inverted chromosomes between continents. Despite divergent evolution of this inversion since its out-of-Africa migration, derived non-African populations exhibit similar patterns of long-range linkage disequilibrium between the inversion breakpoints and major peaks of divergence in its center, consistent with balancing selection and suggesting that the inversion harbors alleles that are maintained by selection on several continents. Using RNA-sequencing, we identify overlap between inversion-linked single-nucleotide polymorphisms and loci that are differentially expressed between inverted and noninverted chromosomes. Expression levels are higher for inverted chromosomes at low temperature, suggesting loss of buffering or compensatory plasticity and consistent with higher inversion frequency in warm climates. Our results suggest that this ancestrally tropical balanced polymorphism spread around the world and became latitudinally assorted along similar but independent climatic gradients, always being frequent in subtropical/tropical areas but rare or absent in temperate climates.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Zentrale Forschungslaboratorien, Vienna, Austria
| | - Esra Durmaz Mitchell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
18
|
Cridland JM, Contino CE, Begun DJ. Selection and geography shape male reproductive tract transcriptomes in Drosophila melanogaster. Genetics 2023; 224:iyad034. [PMID: 36869688 PMCID: PMC10474930 DOI: 10.1093/genetics/iyad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Transcriptome analysis of several animal clades suggests that male reproductive tract gene expression evolves quickly. However, the factors influencing the abundance and distribution of within-species variation, the ultimate source of interspecific divergence, are poorly known. Drosophila melanogaster, an ancestrally African species that has recently spread throughout the world and colonized the Americas in the last roughly 100 years, exhibits phenotypic and genetic latitudinal clines on multiple continents, consistent with a role for spatially varying selection in shaping its biology. Nevertheless, geographic expression variation in the Americas is poorly described, as is its relationship to African expression variation. Here, we investigate these issues through the analysis of two male reproductive tissue transcriptomes [testis and accessory gland (AG)] in samples from Maine (USA), Panama, and Zambia. We find dramatic differences between these tissues in differential expression between Maine and Panama, with the accessory glands exhibiting abundant expression differentiation and the testis exhibiting very little. Latitudinal expression differentiation appears to be influenced by the selection of Panama expression phenotypes. While the testis shows little latitudinal expression differentiation, it exhibits much greater differentiation than the accessory gland in Zambia vs American population comparisons. Expression differentiation for both tissues is non-randomly distributed across the genome on a chromosome arm scale. Interspecific expression divergence between D. melanogaster and D. simulans is discordant with rates of differentiation between D. melanogaster populations. Strongly heterogeneous expression differentiation across tissues and timescales suggests a complex evolutionary process involving major temporal changes in the way selection influences expression evolution in these organs.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - Colin E Contino
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
19
|
Ahrens CW, Watson‐Lazowski A, Huang G, Tissue DT, Rymer PD. The roles of divergent and parallel molecular evolution contributing to thermal adaptive strategies in trees. PLANT, CELL & ENVIRONMENT 2022; 45:3476-3491. [PMID: 36151708 PMCID: PMC9828096 DOI: 10.1111/pce.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Local adaptation is a driver of biological diversity, and species may develop analogous (parallel evolution) or alternative (divergent evolution) solutions to similar ecological challenges. We expect these adaptive solutions would culminate in both phenotypic and genotypic signals. Using two Eucalyptus species (Eucalyptus grandis and Eucalyptus tereticornis) with overlapping distributions grown under contrasting 'local' temperature conditions to investigate the independent contribution of adaptation and plasticity at molecular, physiological and morphological levels. The link between gene expression and traits markedly differed between species. Divergent evolution was the dominant pattern driving adaptation (91% of all significant genes); but overlapping gene (homologous) responses were dependent on the determining factor (plastic, adaptive or genotype by environment interaction). Ninety-eight percent of the plastic homologs were similarly regulated, while 50% of the adaptive homologs and 100% of the interaction homologs were antagonistical. Parallel evolution for the adaptive effect in homologous genes was greater than expected but not in favour of divergent evolution. Heat shock proteins for E. grandis were almost entirely driven by adaptation, and plasticity in E. tereticornis. These results suggest divergent molecular evolutionary solutions dominated the adaptive mechanisms among species, even in similar ecological circumstances. Suggesting that tree species with overlapping distributions are unlikely to equally persist in the future.
Collapse
Affiliation(s)
- Collin W. Ahrens
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Research Centre for Ecosystem ResilienceRoyal Botanic Gardens and Domain TrustSydneyNew South WalesAustralia
| | - Alexander Watson‐Lazowski
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
- John Innes CentreNorwich Research ParkNorwichUK
| | - Guomin Huang
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - David T. Tissue
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
- Global Centre for Land‐Based Innovation, Hawkesbury CampusWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Paul D. Rymer
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| |
Collapse
|
20
|
Carruthers M, Edgley DE, Saxon AD, Gabagambi NP, Shechonge A, Miska EA, Durbin R, Bridle JR, Turner GF, Genner MJ. Ecological Speciation Promoted by Divergent Regulation of Functional Genes Within African Cichlid Fishes. Mol Biol Evol 2022; 39:msac251. [PMID: 36376993 PMCID: PMC10101686 DOI: 10.1093/molbev/msac251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rapid ecological speciation along depth gradients has taken place repeatedly in freshwater fishes, yet molecular mechanisms facilitating such diversification are typically unclear. In Lake Masoko, an African crater lake, the cichlid Astatotilapia calliptera has diverged into shallow-littoral and deep-benthic ecomorphs with strikingly different jaw structures within the last 1,000 years. Using genome-wide transcriptome data, we explore two major regulatory transcriptional mechanisms, expression and splicing-QTL variants, and examine their contributions to differential gene expression underpinning functional phenotypes. We identified 7,550 genes with significant differential expression between ecomorphs, of which 5.4% were regulated by cis-regulatory expression QTLs, and 9.2% were regulated by cis-regulatory splicing QTLs. We also found strong signals of divergent selection on differentially expressed genes associated with craniofacial development. These results suggest that large-scale transcriptome modification plays an important role during early-stage speciation. We conclude that regulatory variants are important targets of selection driving ecologically relevant divergence in gene expression during adaptive diversification.
Collapse
Affiliation(s)
- Madeleine Carruthers
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Duncan E Edgley
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Andrew D Saxon
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Nestory P Gabagambi
- Tanzanian Fisheries Research Institute, Kyela Research
Centre, P.O. Box 98, Kyela, Mbeya, Tanzania
| | - Asilatu Shechonge
- Tanzanian Fisheries Research Institute, Dar es Salaam Research
Centre, P.O. Box 9750, Dar es Salaam, Tanzania
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge,
Cambridge CB2 1QN, United
Kingdom
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, United
Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus,
Cambridge CB10 1SA, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, United
Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus,
Cambridge CB10 1SA, United Kingdom
| | - Jon R Bridle
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - George F Turner
- School of Natural Sciences, Bangor University,
Bangor, Wales LL57 2UW, United
Kingdom
| | - Martin J Genner
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| |
Collapse
|
21
|
Zhu X, Zhang B, Gao F, Huang F, Zhang H, Huang J. A soybean non-coding RNA mining and co-expression resource based on 1,596 RNA-seq and small RNA-seq libraries. PLANT PHYSIOLOGY 2022; 189:1911-1915. [PMID: 35552462 PMCID: PMC9342965 DOI: 10.1093/plphys/kiac222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/21/2022] [Indexed: 05/15/2023]
Abstract
The SoyNcRNAExp soybean non-coding RNA expression/co-expression resource can be used for ncRNA expression, mining, and co-expression analysis.
Collapse
Affiliation(s)
- Xueai Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Baoyi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanqi Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Yang G, Chen BX, Chen T, Chen JH, Lin XY, Yue XL, An LZ, Zhang H. BYPASS1-LIKE regulates lateral root initiation via exocytic vesicular trafficking-mediated PIN recycling in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:965-978. [PMID: 35249253 DOI: 10.1111/jipb.13243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Auxin and auxin-mediated signaling pathways are known to regulate lateral root development. Although exocytic vesicle trafficking plays an important role in recycling the PIN-FORMED (PIN) auxin efflux carriers and in polar auxin transport during lateral root formation, the mechanistic details of these processes are not well understood. Here, we demonstrate that BYPASS1-LIKE (B1L) regulates lateral root initiation via exocytic vesicular trafficking-mediated PIN recycling in Arabidopsis thaliana. b1l mutants contained significantly more lateral roots than the wild type, primarily due to increased lateral root primordium initiation. Furthermore, the auxin signal was stronger in stage I lateral root primordia of b1l than in those of the wild type. Treatment with exogenous auxin and an auxin transport inhibitor indicated that the lateral root phenotype of b1l could be attributed to higher auxin levels and that B1L regulates auxin efflux. Indeed, compared to the wild type, C-terminally green fluorescent protein-tagged PIN1 and PIN3 accumulated at higher levels in b1l lateral root primordia. B1L interacted with the exocyst, and b1l showed defective PIN exocytosis. These observations indicate that B1L interacts with the exocyst to regulate PIN-mediated polar auxin transport and lateral root initiation in Arabidopsis.
Collapse
Affiliation(s)
- Gang Yang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bi-Xia Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jia-Hui Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiang-Yu Lin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiu-Le Yue
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li-Zhe An
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- School of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Hua Zhang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
23
|
Lirakis M, Nolte V, Schlötterer C. Pool-GWAS on reproductive dormancy in Drosophila simulans suggests a polygenic architecture. G3 GENES|GENOMES|GENETICS 2022; 12:6523974. [PMID: 35137042 PMCID: PMC8895979 DOI: 10.1093/g3journal/jkac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
The genetic basis of adaptation to different environments has been of long-standing interest to evolutionary biologists. Dormancy is a well-studied adaptation to facilitate overwintering. In Drosophila melanogaster, a moderate number of genes with large effects have been described, which suggests a simple genetic basis of dormancy. On the other hand, genome-wide scans for dormancy suggest a polygenic architecture in insects. In D. melanogaster, the analysis of the genetic architecture of dormancy is complicated by the presence of cosmopolitan inversions. Here, we performed a genome-wide scan to characterize the genetic basis of this ecologically extremely important trait in the sibling species of D. melanogaster, D. simulans that lacks cosmopolitan inversions. We performed Pool-GWAS in a South African D. simulans population for dormancy incidence at 2 temperature regimes (10 and 12°C, LD 10:14). We identified several genes with SNPs that showed a significant association with dormancy (P-value < 1e-13), but the overall modest response suggests that dormancy is a polygenic trait with many loci of small effect. Our results shed light on controversies on reproductive dormancy in Drosophila and have important implications for the characterization of the genetic basis of this trait.
Collapse
Affiliation(s)
- Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Wien, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | | |
Collapse
|
24
|
Peng J, Svetec N, Zhao L. Intermolecular interactions drive protein adaptive and co-adaptive evolution at both species and population levels. Mol Biol Evol 2021; 39:6456312. [PMID: 34878126 PMCID: PMC8789070 DOI: 10.1093/molbev/msab350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteins are the building blocks for almost all the functions in cells. Understanding the molecular evolution of proteins and the forces that shape protein evolution is essential in understanding the basis of function and evolution. Previous studies have shown that adaptation frequently occurs at the protein surface, such as in genes involved in host–pathogen interactions. However, it remains unclear whether adaptive sites are distributed randomly or at regions associated with particular structural or functional characteristics across the genome, since many proteins lack structural or functional annotations. Here, we seek to tackle this question by combining large-scale bioinformatic prediction, structural analysis, phylogenetic inference, and population genomic analysis of Drosophila protein-coding genes. We found that protein sequence adaptation is more relevant to function-related rather than structure-related properties. Interestingly, intermolecular interactions contribute significantly to protein adaptation. We further showed that intermolecular interactions, such as physical interactions, may play a role in the coadaptation of fast-adaptive proteins. We found that strongly differentiated amino acids across geographic regions in protein-coding genes are mostly adaptive, which may contribute to the long-term adaptive evolution. This strongly indicates that a number of adaptive sites tend to be repeatedly mutated and selected throughout evolution in the past, present, and maybe future. Our results highlight the important roles of intermolecular interactions and coadaptation in the adaptive evolution of proteins both at the species and population levels.
Collapse
Affiliation(s)
- Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
25
|
Voigt S, Kost L. Differences in temperature-sensitive expression of PcG-regulated genes among natural populations of Drosophila melanogaster. G3 (BETHESDA, MD.) 2021; 11:jkab237. [PMID: 34544136 PMCID: PMC8496320 DOI: 10.1093/g3journal/jkab237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Environmental temperature can affect chromatin-based gene regulation, in particular in ectotherms such as insects. Genes regulated by the Polycomb group (PcG) vary in their transcriptional output in response to changes in temperature. Expression of PcG-regulated genes typically increases with decreasing temperatures. Here, we examined variations in temperature-sensitive expression of PcG target genes in natural populations from different climates of Drosophila melanogaster, and differences thereof across different fly stages and tissues. Temperature-induced expression plasticity was found to be stage- and sex-specific with differences in the specificity between the examined PcG target genes. Some tissues and stages, however, showed a higher number of PcG target genes with temperature-sensitive expression than others. Overall, we found higher levels of temperature-induced expression plasticity in African tropical flies from the ancestral species range than in flies from temperate Europe. We also observed differences between temperate flies, however, with more reduction of expression plasticity in warm-temperate than in cold-temperate populations. Although in general, temperature-sensitive expression appeared to be detrimental in temperate climates, there were also cases in which plasticity was increased in temperate flies, as well as no changes in expression plasticity between flies from different climates.
Collapse
Affiliation(s)
- Susanne Voigt
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01217, Germany
| | - Luise Kost
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01217, Germany
| |
Collapse
|
26
|
Adhikari K, Son JH, Rensink AH, Jaweria J, Bopp D, Beukeboom LW, Meisel RP. Temperature-dependent effects of house fly proto-Y chromosomes on gene expression could be responsible for fitness differences that maintain polygenic sex determination. Mol Ecol 2021; 30:5704-5720. [PMID: 34449942 DOI: 10.1111/mec.16148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/20/2021] [Indexed: 12/21/2022]
Abstract
Sex determination, the developmental process by which sexually dimorphic phenotypes are established, evolves fast. Evolutionary turnover in a sex determination pathway may occur via selection on alleles that are genetically linked to a new master sex determining locus on a newly formed proto-sex chromosome. Species with polygenic sex determination, in which master regulatory genes are found on multiple different proto-sex chromosomes, are informative models to study the evolution of sex determination and sex chromosomes. House flies are such a model system, with male determining loci possible on all six chromosomes and a female-determiner on one of the chromosomes as well. The two most common male-determining proto-Y chromosomes form latitudinal clines on multiple continents, suggesting that temperature variation is an important selection pressure responsible for maintaining polygenic sex determination in this species. Temperature-dependent fitness effects could be manifested through temperature-dependent gene expression differences across proto-Y chromosome genotypes. These gene expression differences may be the result of cis regulatory variants that affect the expression of genes on the proto-sex chromosomes, or trans effects of the proto-Y chromosomes on genes elswhere in the genome. We used RNA-seq to identify genes whose expression depends on proto-Y chromosome genotype and temperature in adult male house flies. We found no evidence for ecologically meaningful temperature-dependent expression differences of sex determining genes between male genotypes, but we were probably not sampling an appropriate developmental time-point to identify such effects. In contrast, we identified many other genes whose expression depends on the interaction between proto-Y chromosome genotype and temperature, including genes that encode proteins involved in reproduction, metabolism, lifespan, stress response, and immunity. Notably, genes with genotype-by-temperature interactions on expression were not enriched on the proto-sex chromosomes. Moreover, there was no evidence that temperature-dependent expression is driven by chromosome-wide cis-regulatory divergence between the proto-Y and proto-X alleles. Therefore, if temperature-dependent gene expression is responsible for differences in phenotypes and fitness of proto-Y genotypes across house fly populations, these effects are driven by a small number of temperature-dependent alleles on the proto-Y chromosomes that may have trans effects on the expression of genes on other chromosomes.
Collapse
Affiliation(s)
- Kiran Adhikari
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Jae Hak Son
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Anna H Rensink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jaweria Jaweria
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Daniel Bopp
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
27
|
Huang Y, Lack JB, Hoppel GT, Pool JE. Parallel and Population-specific Gene Regulatory Evolution in Cold-Adapted Fly Populations. Genetics 2021; 218:6275754. [PMID: 33989401 PMCID: PMC8864734 DOI: 10.1093/genetics/iyab077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/10/2021] [Indexed: 11/15/2022] Open
Abstract
Changes in gene regulation at multiple levels may comprise an important share of the molecular changes underlying adaptive evolution in nature. However, few studies have assayed within- and between-population variation in gene regulatory traits at a transcriptomic scale, and therefore inferences about the characteristics of adaptive regulatory changes have been elusive. Here, we assess quantitative trait differentiation in gene expression levels and alternative splicing (intron usage) between three closely related pairs of natural populations of Drosophila melanogaster from contrasting thermal environments that reflect three separate instances of cold tolerance evolution. The cold-adapted populations were known to show population genetic evidence for parallel evolution at the SNP level, and here we find evidence for parallel expression evolution between them, with stronger parallelism at larval and adult stages than for pupae. We also implement a flexible method to estimate cis- vs trans-encoded contributions to expression or splicing differences at the adult stage. The apparent contributions of cis- vs trans-regulation to adaptive evolution vary substantially among population pairs. While two of three population pairs show a greater enrichment of cis-regulatory differences among adaptation candidates, trans-regulatory differences are more likely to be implicated in parallel expression changes between population pairs. Genes with significant cis-effects are enriched for signals of elevated genetic differentiation between cold- and warm-adapted populations, suggesting that they are potential targets of local adaptation. These findings expand our knowledge of adaptive gene regulatory evolution and our ability to make inferences about this important and widespread process.
Collapse
Affiliation(s)
- Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Grant T Hoppel
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
28
|
Kolora SRR, Gysi DM, Schaffer S, Grimm-Seyfarth A, Szabolcs M, Faria R, Henle K, Stadler PF, Schlegel M, Nowick K. Accelerated Evolution of Tissue-Specific Genes Mediates Divergence Amidst Gene Flow in European Green Lizards. Genome Biol Evol 2021; 13:6275683. [PMID: 33988711 PMCID: PMC8382678 DOI: 10.1093/gbe/evab109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 11/12/2022] Open
Abstract
The European green lizards of the Lacerta viridis complex consist of two closely related species, L. viridis and Lacerta bilineata that split less than 7 million years ago in the presence of gene flow. Recently, a third lineage, referred to as the “Adriatic” was described within the L. viridis complex distributed from Slovenia to Greece. However, whether gene flow between the Adriatic lineage and L. viridis or L. bilineata has occurred and the evolutionary processes involved in their diversification are currently unknown. We hypothesized that divergence occurred in the presence of gene flow between multiple lineages and involved tissue-specific gene evolution. In this study, we sequenced the whole genome of an individual of the Adriatic lineage and tested for the presence of gene flow amongst L. viridis, L. bilineata, and Adriatic. Additionally, we sequenced transcriptomes from multiple tissues to understand tissue-specific effects. The species tree supports that the Adriatic lineage is a sister taxon to L. bilineata. We detected gene flow between the Adriatic lineage and L. viridis suggesting that the evolutionary history of the L. viridis complex is likely shaped by gene flow. Interestingly, we observed topological differences between the autosomal and Z-chromosome phylogenies with a few fast evolving genes on the Z-chromosome. Genes highly expressed in the ovaries and strongly co-expressed in the brain experienced accelerated evolution presumably contributing to establishing reproductive isolation in the L. viridis complex.
Collapse
Affiliation(s)
- Sree Rohit Raj Kolora
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Leipzig, Germany.,Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Leipzig, Germany.,Molecular Evolution & Animal Systematics, University of Leipzig, Leipzig, Germany.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Deisy Morselli Gysi
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Leipzig, Germany.,Swarm Intelligence and Complex Systems Group, Faculty of Mathematics and Computer Science, University of Leipzig, Leipzig, Germany.,Center for Complex Networks Research, Northeastern University, Boston, MA, USA
| | - Stefan Schaffer
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Leipzig, Germany.,Molecular Evolution & Animal Systematics, University of Leipzig, Leipzig, Germany
| | - Annegret Grimm-Seyfarth
- Department of Conservation Biology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Márton Szabolcs
- Department of Tisza River Research, Danube Research Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Klaus Henle
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Leipzig, Germany.,Department of Conservation Biology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Peter F Stadler
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Leipzig, Germany.,Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Leipzig, Germany.,Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Universität Leipzig, Leipzig, Germany.,Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany.,Department of Theoretical Chemistry, University of Vienna, Wien, Austria.,Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia.,Santa Fe Institute, New Mexico, USA
| | - Martin Schlegel
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Leipzig, Germany.,Molecular Evolution & Animal Systematics, University of Leipzig, Leipzig, Germany
| | - Katja Nowick
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
29
|
False and true positives in arthropod thermal adaptation candidate gene lists. Genetica 2021; 149:143-153. [PMID: 33963492 DOI: 10.1007/s10709-021-00122-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Genome-wide studies are prone to false positives due to inherently low priors and statistical power. One approach to ameliorate this problem is to seek validation of reported candidate genes across independent studies: genes with repeatedly discovered effects are less likely to be false positives. Inversely, genes reported only as many times as expected by chance alone, while possibly representing novel discoveries, are also more likely to be false positives. We show that, across over 30 genome-wide studies that reported Drosophila and Daphnia genes with possible roles in thermal adaptation, the combined lists of candidate genes and orthologous groups are rapidly approaching the total number of genes and orthologous groups in the respective genomes. This is consistent with the expectation of high frequency of false positives. The majority of these spurious candidates have been identified by one or a few studies, as expected by chance alone. In contrast, a noticeable minority of genes have been identified by numerous studies with the probabilities of such discoveries occurring by chance alone being exceedingly small. For this subset of genes, different studies are in agreement with each other despite differences in the ecological settings, genomic tools and methodology, and reporting thresholds. We provide a reference set of presumed true positives among Drosophila candidate genes and orthologous groups involved in response to changes in temperature, suitable for cross-validation purposes. Despite this approach being prone to false negatives, this list of presumed true positives includes several hundred genes, consistent with the "omnigenic" concept of genetic architecture of complex traits.
Collapse
|
30
|
Wos G, Bohutínská M, Nosková J, Mandáková T, Kolář F. Parallelism in gene expression between foothill and alpine ecotypes in Arabidopsis arenosa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1211-1224. [PMID: 33258160 DOI: 10.1111/tpj.15105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Parallel adaptation results from the independent evolution of similar traits between closely related lineages and allows us to test to what extent evolution is repeatable. Similar gene expression changes are often detected but the identity of genes shaped by parallel selection and the causes of expression parallelism remain largely unknown. By comparing genomes and transcriptomes of four distinct foothill-alpine population pairs across four treatments, we addressed the genetic underpinnings, plasticity and functional consequences of gene expression parallelism in alpine adaptation. Seeds of eight populations of Arabidopsis arenosa were raised under four treatments that differed in temperature and irradiance, factors varying strongly with elevation. Parallelism in differential gene expression between the foothill and alpine ecotypes was quantified by RNA-seq in leaves of young plants. By manipulating temperature and irradiance, we also tested for parallelism in plasticity (i.e., gene-environment interaction, GEI). In spite of global non-parallel patterns transcriptome wide, we found significant parallelism in gene expression at the level of individual loci with an over-representation of genes involved in biotic stress response. In addition, we demonstrated significant parallelism in GEI, indicating a shared differential response of the originally foothill versus alpine populations to environmental variation across mountain regions. A fraction of genes showing expression parallelism also encompassed parallel outliers for genomic differentiation, with greater enrichment of such variants in cis-regulatory elements in some mountain regions. In summary, our results suggest frequent evolutionary repeatability in gene expression changes associated with the colonization of a challenging environment that combines constitutive expression differences and plastic interaction with the surrounding environment.
Collapse
Affiliation(s)
- Guillaume Wos
- Department of Botany, Charles University, Prague, 128 01, Czech Republic
| | - Magdalena Bohutínská
- Department of Botany, Charles University, Prague, 128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
| | - Jana Nosková
- Department of Botany, Charles University, Prague, 128 01, Czech Republic
| | - Terezie Mandáková
- Central European Institute of Technology and Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Filip Kolář
- Department of Botany, Charles University, Prague, 128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
| |
Collapse
|
31
|
Hsu S, Belmouaden C, Nolte V, Schlötterer C. Parallel gene expression evolution in natural and laboratory evolved populations. Mol Ecol 2021; 30:884-894. [PMID: 32979867 PMCID: PMC7891358 DOI: 10.1111/mec.15649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/19/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023]
Abstract
Ecological adaptation is frequently inferred by the comparison of natural populations from different environments. Nevertheless, inference of the selective forces suffers the challenge that many environmental factors covary. With well-controlled environmental conditions, experimental evolution provides a powerful approach to complement the analysis of natural populations. On the other hand, it is apparent that laboratory conditions differ in many ways from natural environments, which raises the question as to what extent selection responses in experimental evolution studies can inform us about adaptation processes in the wild. In this study, we compared the expression profiles of replicated Drosophila melanogaster populations which have been exposed to two distinct temperature regimes (18/28 and 10/20°C) in the laboratory for more than 80 generations. Using gene-wise differential expression analysis and co-expression network analysis, we identified 541 genes and three coregulated gene modules that evolved in the same direction in both temperature regimes, and most of these changes probably reflect an adaptation to the space constraint or diurnal temperature fluctuation that is common in both selection regimes. In total, 203 genes and seven modules evolved temperature-specific expression changes. Remarkably, we detected a significant overlap of these temperature-adaptive genes/modules from experimental evolution with temperature-adaptive genes inferred from natural Drosophila populations covering two different temperature clines. We conclude that well-designed experimental evolution studies are a powerful tool to dissect evolutionary responses.
Collapse
Affiliation(s)
- Sheng‐Kai Hsu
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population GeneticsVetmeduni ViennaViennaAustria
| | - Chaimae Belmouaden
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Present address:
Faculty of Fundamental and Applied Sciences of PoitiersFrance
| | - Viola Nolte
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
| | | |
Collapse
|
32
|
Phillips MA, Burke MK. Can laboratory evolution experiments teach us about natural populations? Mol Ecol 2021; 30:877-879. [PMID: 33410164 DOI: 10.1111/mec.15790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023]
Abstract
The ability to predict how natural populations will evolve and adapt to major changes in environmental conditions has long been of interest to evolutionary biologists and ecologists alike. The reality of global climate change has also created a pressing need for advancement in this particular area of research, as species are increasingly faced with rapid shifts in abiotic and biotic conditions. Evolutionary genomics has the potential to be incredibly useful as we move forward in addressing this need and in particular, evolve and resequence (E&R) studies-where researchers combine experimental evolution with whole-genome sequencing-have an important role to play. However, while E&R studies have shown a great deal of promise in tackling fundamental questions regarding the genetics of adaptation (Long et al., 2015; Schlötterer et al., 2014), it is unclear whether results from laboratory experiments can be directly translated to natural populations. In a From the Cover article in this issue of Molecular Ecology, Hsu et al. (Mol Ecol, 29, 2020) explicitly contend with this issue by examining the overlap between genes implicated in thermal adaptation in a Drosophila melanogaster E&R study and genes identified by comparing natural populations from different latitudinal clines. They report significant correlations between the two sets of temperature-adaptive genes and ultimately conclude that E&R studies can indeed generate insights applicable to populations inhabiting complex natural environments. While more work is needed to assess the generality of these conclusions, Hsu and Belmouaden (Mol Ecol, 29, 2020) contribute an important precedent.
Collapse
Affiliation(s)
- Mark A Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Molly K Burke
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
33
|
Mallard F, Nolte V, Schlötterer C. The Evolution of Phenotypic Plasticity in Response to Temperature Stress. Genome Biol Evol 2020; 12:2429-2440. [PMID: 33022043 PMCID: PMC7846148 DOI: 10.1093/gbe/evaa206] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Phenotypic plasticity is the ability of a single genotype to produce different phenotypes in response to environmental variation. The importance of phenotypic plasticity in natural populations and its contribution to phenotypic evolution during rapid environmental change is widely debated. Here, we show that thermal plasticity of gene expression in natural populations is a key component of its adaptation: evolution to novel thermal environments increases ancestral plasticity rather than mean genetic expression. We determined the evolution of plasticity in gene expression by conducting laboratory natural selection on a Drosophila simulans population in hot and cold environments. After more than 60 generations in the hot environment, 325 genes evolved a change in plasticity relative to the natural ancestral population. Plasticity increased in 75% of these genes, which were strongly enriched for several well-defined functional categories (e.g., chitin metabolism, glycolysis, and oxidative phosphorylation). Furthermore, we show that plasticity in gene expression of populations exposed to different temperatures is rather similar across species. We conclude that most of the ancestral plasticity can evolve further in more extreme environments.
Collapse
Affiliation(s)
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria
| | | |
Collapse
|
34
|
Transcriptomic and life history responses of the mayfly Neocloeon triangulifer to chronic diel thermal challenge. Sci Rep 2020; 10:19119. [PMID: 33154410 PMCID: PMC7644658 DOI: 10.1038/s41598-020-75064-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/08/2020] [Indexed: 01/31/2023] Open
Abstract
To better understand the effects of transient thermal stress in an aquatic insect, we first identified static temperatures associated with fitness deficits, and then reared larvae from egg hatch to adulthood under diurnally variable regimens including daily forays into deleterious temperatures. We sampled mature larvae at the coolest and warmest portions of their respective regimens for RNA-seq analysis. Few transcripts (28) were differentially expressed when larvae oscillated between favorable temperatures, while 614 transcripts were differentially expressed when experiencing daily transient thermal stress. Transcripts associated with N-glycan processing were downregulated while those associated with lipid catabolism and chitin turnover were significantly upregulated in heat stressed larvae. An across-regimen comparison of differentially expressed transcripts among organisms sampled at comparable temperatures demonstrated that the effects of daily thermal stress persisted even when larvae were sampled at a more optimal temperature (806 differentially expressed transcripts). The chronically stressed population had reduced expression of transcripts related to ATP synthesis, mitochondrial electron chain functions, gluconeogenesis and glycolytic processes while transcripts associated with cell adhesion, synaptic vesicle transport, regulation of membrane potential and lipid biosynthesis increased. Comparisons of constant vs. variable temperatures revealed that the negative consequences of time spent at stressful temperatures were not offset by more time spent at optimal temperatures.
Collapse
|
35
|
Huang W, Carbone MA, Lyman RF, Anholt RRH, Mackay TFC. Genotype by environment interaction for gene expression in Drosophila melanogaster. Nat Commun 2020; 11:5451. [PMID: 33116142 PMCID: PMC7595129 DOI: 10.1038/s41467-020-19131-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023] Open
Abstract
The genetics of phenotypic responses to changing environments remains elusive. Using whole-genome quantitative gene expression as a model, here we study how the genetic architecture of regulatory variation in gene expression changed in a population of fully sequenced inbred Drosophila melanogaster strains when flies developed in different environments (25 °C and 18 °C). We find a substantial fraction of the transcriptome exhibited genotype by environment interaction, implicating environmentally plastic genetic architecture of gene expression. Genetic variance in expression increases at 18 °C relative to 25 °C for most genes that have a change in genetic variance. Although the majority of expression quantitative trait loci (eQTLs) for the gene expression traits in the two environments are shared and have similar effects, analysis of the environment-specific eQTLs reveals enrichment of binding sites for two transcription factors. Finally, although genotype by environment interaction in gene expression could potentially disrupt genetic networks, the co-expression networks are highly conserved across environments. Genes with higher network connectivity are under stronger stabilizing selection, suggesting that stabilizing selection on expression plays an important role in promoting network robustness.
Collapse
Affiliation(s)
- Wen Huang
- Program in Genetics, Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA.
| | - Mary Anna Carbone
- Program in Genetics, Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Center for Integrated Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7244, USA
| | - Richard F Lyman
- Program in Genetics, Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Clemson Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Robert R H Anholt
- Program in Genetics, Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Clemson Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Trudy F C Mackay
- Program in Genetics, Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- Clemson Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA.
| |
Collapse
|
36
|
Rellstab C, Zoller S, Sailer C, Tedder A, Gugerli F, Shimizu KK, Holderegger R, Widmer A, Fischer MC. Genomic signatures of convergent adaptation to Alpine environments in three Brassicaceae species. Mol Ecol 2020; 29:4350-4365. [PMID: 32969558 PMCID: PMC7756229 DOI: 10.1111/mec.15648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/24/2023]
Abstract
It has long been discussed to what extent related species develop similar genetic mechanisms to adapt to similar environments. Most studies documenting such convergence have either used different lineages within species or surveyed only a limited portion of the genome. Here, we investigated whether similar or different sets of orthologous genes were involved in genetic adaptation of natural populations of three related plant species to similar environmental gradients in the Alps. We used whole-genome pooled population sequencing to study genome-wide SNP variation in 18 natural populations of three Brassicaceae (Arabis alpina, Arabidopsis halleri, and Cardamine resedifolia) from the Swiss Alps. We first de novo assembled draft reference genomes for all three species. We then ran population and landscape genomic analyses with ~3 million SNPs per species to look for shared genomic signatures of selection and adaptation in response to similar environmental gradients acting on these species. Genes with a signature of convergent adaptation were found at significantly higher numbers than expected by chance. The most closely related species pair showed the highest relative over-representation of shared adaptation signatures. Moreover, the identified genes of convergent adaptation were enriched for nonsynonymous mutations, suggesting functional relevance of these genes, even though many of the identified candidate genes have hitherto unknown or poorly described functions based on comparison with Arabidopsis thaliana. We conclude that adaptation to heterogeneous Alpine environments in related species is partly driven by convergent evolution, but that most of the genomic signatures of adaptation remain species-specific.
Collapse
Affiliation(s)
| | - Stefan Zoller
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
| | - Christian Sailer
- Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| | - Andrew Tedder
- Department of Evolutionary Biology and Environmental Studies, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,School of Chemistry & Bioscience, University of Bradford, Bradford, UK
| | - Felix Gugerli
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Rolf Holderegger
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.,Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| | - Martin C Fischer
- Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Cridland JM, Majane AC, Sheehy HK, Begun DJ. Polymorphism and Divergence of Novel Gene Expression Patterns in Drosophila melanogaster. Genetics 2020; 216:79-93. [PMID: 32737121 PMCID: PMC7463294 DOI: 10.1534/genetics.120.303515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Transcriptomes may evolve by multiple mechanisms, including the evolution of novel genes, the evolution of transcript abundance, and the evolution of cell, tissue, or organ expression patterns. Here, we focus on the last of these mechanisms in an investigation of tissue and organ shifts in gene expression in Drosophila melanogaster. In contrast to most investigations of expression evolution, we seek to provide a framework for understanding the mechanisms of novel expression patterns on a short population genetic timescale. To do so, we generated population samples of D. melanogaster transcriptomes from five tissues: accessory gland, testis, larval salivary gland, female head, and first-instar larva. We combined these data with comparable data from two outgroups to characterize gains and losses of expression, both polymorphic and fixed, in D. melanogaster We observed a large number of gain- or loss-of-expression phenotypes, most of which were polymorphic within D. melanogaster Several polymorphic, novel expression phenotypes were strongly influenced by segregating cis-acting variants. In support of previous literature on the evolution of novelties functioning in male reproduction, we observed many more novel expression phenotypes in the testis and accessory gland than in other tissues. Additionally, genes showing novel expression phenotypes tend to exhibit greater tissue-specific expression. Finally, in addition to qualitatively novel expression phenotypes, we identified genes exhibiting major quantitative expression divergence in the D. melanogaster lineage.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Alex C Majane
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Hayley K Sheehy
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
38
|
Semmouri I, De Schamphelaere KAC, Van Nieuwerburgh F, Deforce D, Janssen CR, Asselman J. Spatio-temporal patterns in the gene expression of the calanoid copepod Temora longicornis in the Belgian part of the North Sea. MARINE ENVIRONMENTAL RESEARCH 2020; 160:105037. [PMID: 32907738 DOI: 10.1016/j.marenvres.2020.105037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Marine zooplankton are increasingly being affected by recent environmental changes, such as climate change, and respond with profound spatial relocations and shifts in phenology and physiology. In order to predict whether populations are able to persist or adapt to such new conditions, it is essential to understand the molecular basis of such adaptations, which ultimately get translated into these physiological responses. To explore variation in population gene expression across time and space, we investigated transcriptome-level profiles of the calanoid copepod Temora longicornis, that were collected at four different locations in the Belgian Part of the North Sea (BPNS) on three different time points (April, June, October) in 2018. RNA-seq analysis of field collected adults identified large seasonal differences in gene expression, mainly between spring-summer and autumn samples. The largest log-fold changes occurred in a set of genes encoding for ribosomal and myosin (heavy chain) transcripts. Enrichment analysis revealed a strong seasonal pattern in vitellogenin, cuticle and glycolytic gene expression as well. We also found a positive correlation between vitellogenin expression and densities of T. longicornis. No clear spatial variation in expression patterns was found in the BPNS. This study underlines the potential of field gene expression studies for biomonitoring purposes and the significance of considering seasonal variation in future studies.
Collapse
Affiliation(s)
- Ilias Semmouri
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium.
| | - Karel A C De Schamphelaere
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Ghent University, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, 9000, Ghent, Belgium
| | - Dieter Deforce
- Ghent University, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, 9000, Ghent, Belgium
| | - Colin R Janssen
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Jana Asselman
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| |
Collapse
|
39
|
Hitsman HW, Simons AM. Latitudinal variation in norms of reaction of phenology in the greater duckweed Spirodela polyrhiza. J Evol Biol 2020; 33:1405-1416. [PMID: 32656868 DOI: 10.1111/jeb.13678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022]
Abstract
Variable environments may result in the evolution of adaptive phenotypic plasticity when cues reliably indicate an appropriate phenotype-environment match. Although adaptive plasticity is well established for phenological traits expressed across environments, local differentiation in norms of reaction is less well studied. The switch from the production of regular fronds to overwintering 'turions' in the greater duckweed Spirodela polyrhiza is vital to fitness and is expressed as a norm of reaction induced by falling temperatures associated with the onset of winter. However, the optimal norm of reaction to temperature is expected to differ across latitudes. Here, we test the hypothesis that a gradient in the length and predictability of growing seasons across latitudes results in the evolution of reaction norms characterized by earlier turion production at higher latitudes. We test this by collecting S. polyrhiza from replicate populations across seven latitudes from Ontario to Florida and then assessing differentiation in thermal reaction norms of turion production along a common temperature gradient. As predicted, northern populations produce turions at a lower birth order and earlier; a significant latitude-by-temperature interaction suggests that reaction norm differentiation has occurred. Our results provide evidence of differentiation in reaction norms across latitudes in a phenological trait, and we discuss how the adaptive significance of this plasticity might be further tested.
Collapse
Affiliation(s)
- Harry W Hitsman
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Andrew M Simons
- Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
40
|
Zarubin M, Yakhnenko A, Kravchenko E. Transcriptome analysis of Drosophila melanogaster laboratory strains of different geographical origin after long-term laboratory maintenance. Ecol Evol 2020; 10:7082-7093. [PMID: 32760513 PMCID: PMC7391317 DOI: 10.1002/ece3.6410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 01/18/2023] Open
Abstract
Positive selection may be the main factor of the between-population divergence in gene expression. Expression profiles of two Drosophila melanogaster laboratory strains of different geographical origin and long-term laboratory maintenance were analyzed using microchip arrays encompassing probes for 18,500 transcripts. The Russian strain D18 and the North American strain Canton-S were compared. A set of 223 known or putative genes demonstrated significant changes in expression levels between these strains. Differentially expressed genes (DEG) were enriched in response to DDT (p = .0014), proteolysis (p = 2.285E-5), transmembrane transport (p = 1.03E-4), carbohydrate metabolic process (p = .0317), protein homotetramerization (p = .0444), and antibacterial humoral response (p = 425E-4). The expression in subset of genes from different categories was verified by qRT-PCR. Analysis of transcript abundance between Canton-S and D18 strains allowed to select several genes to estimate their participation in latitude adaptation. Expression of selected genes was analyzed in five D. melanogaster lines of different geographic origins by qRT-PCR, and we found two candidate genes that may be associated with latitude adaptation in adult flies-smp-30 and Cda9. Quite possible that several alleles of these genes may be important for insect survival in the environments of global warming. It is interesting that the number of genes involved in local adaptation demonstrates expression level appropriate to their geographical origin even after decades of laboratory maintenance.
Collapse
Affiliation(s)
- Mikhail Zarubin
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
| | - Alena Yakhnenko
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
- Laboratory of Analytical and Bioorganic ChemistryLimnological InstituteSiberian Branch of the Russian Academy of ScienceIrkutskRussia
| | - Elena Kravchenko
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
| |
Collapse
|
41
|
Khodursky S, Svetec N, Durkin SM, Zhao L. The evolution of sex-biased gene expression in the Drosophila brain. Genome Res 2020; 30:874-884. [PMID: 32554780 PMCID: PMC7370887 DOI: 10.1101/gr.259069.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/16/2020] [Indexed: 01/08/2023]
Abstract
Genes with sex-biased expression in Drosophila are thought to underlie sexually dimorphic phenotypes and have been shown to possess unique evolutionary properties. However, the forces and constraints governing the evolution of sex-biased genes in the somatic tissues of Drosophila are largely unknown. By using population-scale RNA sequencing data, we show that sex-biased genes in the Drosophila brain are highly enriched on the X Chromosome and that most are biased in a species-specific manner. We show that X-linked male-biased genes, and to a lesser extent female-biased genes, are enriched for signatures of directional selection at the gene expression level. By examining the evolutionary properties of gene-flanking regions on the X Chromosome, we find evidence that adaptive cis-regulatory changes are more likely to drive the expression evolution of X-linked male-biased genes than other X-linked genes. Finally, we examine whether constraint owing to broad expression across multiple tissues and genetic constraint owing to the largely shared male and female genomes could be responsible for the observed patterns of gene expression evolution. We find that expression breadth does not constrain the directional evolution of gene expression in the brain. Additionally, we find that the shared genome between males and females imposes a substantial constraint on the expression evolution of sex-biased genes. Overall, these results significantly advance our understanding of the patterns and forces shaping the evolution of sexual dimorphism in the Drosophila brain.
Collapse
Affiliation(s)
- Samuel Khodursky
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, New York 10065, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, New York 10065, USA
| | - Sylvia M Durkin
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, New York 10065, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
42
|
Jacobs A, Carruthers M, Yurchenko A, Gordeeva NV, Alekseyev SS, Hooker O, Leong JS, Minkley DR, Rondeau EB, Koop BF, Adams CE, Elmer KR. Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish. PLoS Genet 2020; 16:e1008658. [PMID: 32302300 PMCID: PMC7164584 DOI: 10.1371/journal.pgen.1008658] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/06/2020] [Indexed: 01/05/2023] Open
Abstract
Understanding the extent to which ecological divergence is repeatable is essential for predicting responses of biodiversity to environmental change. Here we test the predictability of evolution, from genotype to phenotype, by studying parallel evolution in a salmonid fish, Arctic charr (Salvelinus alpinus), across eleven replicate sympatric ecotype pairs (benthivorous-planktivorous and planktivorous-piscivorous) and two evolutionary lineages. We found considerable variability in eco-morphological divergence, with several traits related to foraging (eye diameter, pectoral fin length) being highly parallel even across lineages. This suggests repeated and predictable adaptation to environment. Consistent with ancestral genetic variation, hundreds of loci were associated with ecotype divergence within lineages of which eight were shared across lineages. This shared genetic variation was maintained despite variation in evolutionary histories, ranging from postglacial divergence in sympatry (ca. 10-15kya) to pre-glacial divergence (ca. 20-40kya) with postglacial secondary contact. Transcriptome-wide gene expression (44,102 genes) was highly parallel across replicates, involved biological processes characteristic of ecotype morphology and physiology, and revealed parallelism at the level of regulatory networks. This expression divergence was not only plastic but in part genetically controlled by parallel cis-eQTL. Lastly, we found that the magnitude of phenotypic divergence was largely correlated with the genetic differentiation and gene expression divergence. In contrast, the direction of phenotypic change was mostly determined by the interplay of adaptive genetic variation, gene expression, and ecosystem size. Ecosystem size further explained variation in putatively adaptive, ecotype-associated genomic patterns within and across lineages, highlighting the role of environmental variation and stochasticity in parallel evolution. Together, our findings demonstrate the parallel evolution of eco-morphology and gene expression within and across evolutionary lineages, which is controlled by the interplay of environmental stochasticity and evolutionary contingencies, largely overcoming variable evolutionary histories and genomic backgrounds.
Collapse
Affiliation(s)
- Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Madeleine Carruthers
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Andrey Yurchenko
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Natalia V. Gordeeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey S. Alekseyev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Oliver Hooker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, Loch Lomond, Glasgow, United Kingdom
| | - Jong S. Leong
- Biology/Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - David R. Minkley
- Biology/Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Eric B. Rondeau
- Biology/Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Ben F. Koop
- Biology/Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Colin E. Adams
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, Loch Lomond, Glasgow, United Kingdom
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
43
|
Huang Y, Feulner PGD, Eizaguirre C, Lenz TL, Bornberg-Bauer E, Milinski M, Reusch TBH, Chain FJJ. Genome-Wide Genotype-Expression Relationships Reveal Both Copy Number and Single Nucleotide Differentiation Contribute to Differential Gene Expression between Stickleback Ecotypes. Genome Biol Evol 2020; 11:2344-2359. [PMID: 31298693 PMCID: PMC6735750 DOI: 10.1093/gbe/evz148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Repeated and independent emergence of trait divergence that matches habitat differences is a sign of parallel evolution by natural selection. Yet, the molecular underpinnings that are targeted by adaptive evolution often remain elusive. We investigate this question by combining genome-wide analyses of copy number variants (CNVs), single nucleotide polymorphisms (SNPs), and gene expression across four pairs of lake and river populations of the three-spined stickleback (Gasterosteus aculeatus). We tested whether CNVs that span entire genes and SNPs occurring in putative cis-regulatory regions contribute to gene expression differences between sticklebacks from lake and river origins. We found 135 gene CNVs that showed a significant positive association between gene copy number and gene expression, suggesting that CNVs result in dosage effects that can fuel phenotypic variation and serve as substrates for habitat-specific selection. Copy number differentiation between lake and river sticklebacks also contributed to expression differences of two immune-related genes in immune tissues, cathepsin A and GIMAP7. In addition, we identified SNPs in cis-regulatory regions (eSNPs) associated with the expression of 1,865 genes, including one eSNP upstream of a carboxypeptidase gene where both the SNP alleles differentiated and the gene was differentially expressed between lake and river populations. Our study highlights two types of mutations as important sources of genetic variation involved in the evolution of gene expression and in potentially facilitating repeated adaptation to novel environments.
Collapse
Affiliation(s)
- Yun Huang
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Switzerland
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Tobias L Lenz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Erich Bornberg-Bauer
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, USA
| |
Collapse
|
44
|
Durmaz E, Rajpurohit S, Betancourt N, Fabian DK, Kapun M, Schmidt P, Flatt T. A clinal polymorphism in the insulin signaling transcription factor foxo contributes to life-history adaptation in Drosophila. Evolution 2019; 73:1774-1792. [PMID: 31111462 PMCID: PMC6771989 DOI: 10.1111/evo.13759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
A fundamental aim of adaptation genomics is to identify polymorphisms that underpin variation in fitness traits. In Drosophila melanogaster, latitudinal life-history clines exist on multiple continents and make an excellent system for dissecting the genetics of adaptation. We have previously identified numerous clinal single-nucleotide polymorphism in insulin/insulin-like growth factor signaling (IIS), a pathway known from mutant studies to affect life history. However, the effects of natural variants in this pathway remain poorly understood. Here we investigate how two clinal alternative alleles at foxo, a transcriptional effector of IIS, affect fitness components (viability, size, starvation resistance, fat content). We assessed this polymorphism from the North American cline by reconstituting outbred populations, fixed for either the low- or high-latitude allele, from inbred DGRP lines. Because diet and temperature modulate IIS, we phenotyped alleles across two temperatures (18°C, 25°C) and two diets differing in sugar source and content. Consistent with clinal expectations, the high-latitude allele conferred larger body size and reduced wing loading. Alleles also differed in starvation resistance and expression of insulin-like receptor, a transcriptional target of FOXO. Allelic reaction norms were mostly parallel, with few GxE interactions. Together, our results suggest that variation in IIS makes a major contribution to clinal life-history adaptation.
Collapse
Affiliation(s)
- Esra Durmaz
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Subhash Rajpurohit
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
- Division of Biological and Life SciencesAhmedabad UniversityAhmedabadIndia
| | - Nicolas Betancourt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Daniel K. Fabian
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome Campus, HinxtonCambridgeUnited Kingdom
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population, GeneticsViennaAustria
| | - Martin Kapun
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Paul Schmidt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Thomas Flatt
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
45
|
Liu A, He F, Zhou J, Zou Y, Su Z, Gu X. Comparative Transcriptome Analyses Reveal the Role of Conserved Function in Electric Organ Convergence Across Electric Fishes. Front Genet 2019; 10:664. [PMID: 31379927 PMCID: PMC6657706 DOI: 10.3389/fgene.2019.00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/25/2019] [Indexed: 11/24/2022] Open
Abstract
The independent origins of multiple electric organs (EOs) of fish are fascinating examples of convergent evolution. However, comparative transcriptomics of different electric fish lineages are scarce. In this study, we found that the gene expression of EOs and skeletal muscles from three lineages (Mormyroidea, Siluriformes, and Gymnotiformes) tended to cluster together based on the species of origin, irrespective of the organ from which they are derived. A pairwise comparison of differentially expressed genes (DEGs) revealed that no less than half of shared DEGs exhibited parallel expression differentiation, indicating conserved directionality of differential expression either in or between lineages, but only a few shared DEGs were identified across all focal species. Nevertheless, the functional enrichment analysis of DEGs indicated that there were more parallel gene expression changes at the level of pathways and biological functions. Therefore, we may conclude that there is no parallel evolution of the entire transcriptomes of EOs among different lineages. Further, our results support the hypothesis that it is not different genes but conserved biological functions that play a crucial role in the convergence of complex phenotypes. This study provides insight into the genetic basis underlying the EO convergent evolution; however, more studies in different cases will be needed to demonstrate whether this pattern can be extended to other cases to derive a general rule for convergent evolution.
Collapse
Affiliation(s)
- Ake Liu
- Faculty of Biology Sciences and Technology, Changzhi University, Changzhi, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Funan He
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jingqi Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangyun Zou
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhixi Su
- School of Life Sciences, Fudan University, Shanghai, China.,Singlera Genomics Inc., Shanghai, China
| | - Xun Gu
- Department of GDC Biology, Iowa State University, Ames, IA, United States.,Fudan Human Phenome Institute, Shanghai, China
| |
Collapse
|
46
|
Voigt S, Erpf AC, Stephan W. Decreased Temperature Sensitivity of Vestigial Gene Expression in Temperate Populations of Drosophila melanogaster. Genes (Basel) 2019; 10:genes10070498. [PMID: 31261809 PMCID: PMC6679080 DOI: 10.3390/genes10070498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/21/2019] [Indexed: 11/24/2022] Open
Abstract
Drosophila melanogaster recently spread from its tropical origin in Africa and became a cosmopolitan species that has adapted to a wide range of different thermal environments, including temperate climates. An important limiting factor of temperate climates has probably been their low and varying temperatures. The transcriptional output of genes can vary across temperatures, which might have been detrimental while settling in temperate environments. The reduction of temperature-sensitive expression of functionally important genes to ensure consistent levels of gene expression might have been relevant while adapting to such environments. In this study, we focus on the gene vestigial (vg) whose product is a key factor in wing development. We provide evidence that temperature-sensitivity of vg has been buffered in populations from temperate climates. We investigated temperature-sensitivity of vg gene expression in six natural populations, including four temperate populations (three from Europe and one from high-altitude Africa), and two tropical populations from the ancestral species range. All temperate populations exhibited a lower degree of temperature-induced expression plasticity than the tropical populations.
Collapse
Affiliation(s)
- Susanne Voigt
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Planegg-Martinsried, Germany.
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, 01217 Dresden, Germany.
| | - Anna Christina Erpf
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Planegg-Martinsried, Germany.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON M5G 1X5, Canada.
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Planegg-Martinsried, Germany.
- Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany.
| |
Collapse
|
47
|
Hsu SK, Jakšić AM, Nolte V, Barghi N, Mallard F, Otte KA, Schlötterer C. A 24 h Age Difference Causes Twice as Much Gene Expression Divergence as 100 Generations of Adaptation to a Novel Environment. Genes (Basel) 2019; 10:E89. [PMID: 30696109 PMCID: PMC6410183 DOI: 10.3390/genes10020089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 02/08/2023] Open
Abstract
Gene expression profiling is one of the most reliable high-throughput phenotyping methods, allowing researchers to quantify the transcript abundance of expressed genes. Because many biotic and abiotic factors influence gene expression, it is recommended to control them as tightly as possible. Here, we show that a 24 h age difference of Drosophilasimulans females that were subjected to RNA sequencing (RNA-Seq) five and six days after eclosure resulted in more than 2000 differentially expressed genes. This is twice the number of genes that changed expression during 100 generations of evolution in a novel hot laboratory environment. Importantly, most of the genes differing in expression due to age introduce false positives or negatives if an adaptive gene expression analysis is not controlled for age. Our results indicate that tightly controlled experimental conditions, including precise developmental staging, are needed for reliable gene expression analyses, in particular in an evolutionary framework.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Neda Barghi
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - François Mallard
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Kathrin A Otte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
| | | |
Collapse
|
48
|
Adrion JR, Begun DJ, Hahn MW. Patterns of transposable element variation and clinality in
Drosophila. Mol Ecol 2019; 28:1523-1536. [DOI: 10.1111/mec.14961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jeffrey R. Adrion
- Department of Biology University of Oregon Eugene Oregon
- Department of Biology Indiana University Bloomington Indiana
| | - David J. Begun
- Department of Evolution and Ecology University of California Davis, Davis California
| | - Matthew W. Hahn
- Department of Biology Indiana University Bloomington Indiana
- Department of Computer Science Indiana University Bloomington Indiana
| |
Collapse
|
49
|
Semmouri I, Asselman J, Van Nieuwerburgh F, Deforce D, Janssen CR, De Schamphelaere KAC. The transcriptome of the marine calanoid copepod Temora longicornis under heat stress and recovery. MARINE ENVIRONMENTAL RESEARCH 2019; 143:10-23. [PMID: 30415781 DOI: 10.1016/j.marenvres.2018.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Understanding the impacts of global change in zooplankton communities is crucial, as alterations in the zooplankton communities can affect entire marine ecosystems. Despite the economic and ecological importance of the calanoid copepod Temora longicornis in the Belgian part of the North Sea, molecular data is still very limited for this species. Using HiSeq Illumina sequencing, we sequenced the whole transcriptome of T. longicornis, after being exposed to realistic temperatures of 14 and 17 °C. After both an acute (1 day) and a more sustained (5 days) thermal exposure to 17 °C, we investigated gene expression differences with animals exposed to 14 °C, which may be critical for the thermal acclimation and resilience of this copepod species. We also studied the possibility of a short term stress recovery of a heat shock. A total of 179,569 transcripts were yielded, of which 44,985 putative ORF transcripts were identified. These transcripts were subsequently annotated into roughly 22,000 genes based on known sequences using Gene Ontology (GO) and KEGG databases. Temora only showed a mild response to both the temperature and the duration of the exposure. We found that the expression of 27 transcripts varied significantly with an increase in temperature of 3 °C, of which eight transcripts were differentially expressed after acute exposure only. Gene set enrichment analysis revealed that, overall, T. longicornis was more impacted by a sustained thermal exposure, rather than an immediate (acute) exposure, with two times as many enriched GO terms in the sustained treatment. We also identified several general stress responses independent of exposure time, such as modified protein synthesis, energy mobilisation, cuticle and chaperone proteins. Finally, we highlighted candidate genes of a possible recovery from heat exposure, identifying similar terms as those enriched in the heat treatments, i.e. related to for example energy metabolism, cuticle genes and extracellular matrix. The data presented in this study provides the first transcriptome available for T. longicornis which can be used for future genomic studies.
Collapse
Affiliation(s)
- Ilias Semmouri
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium.
| | - Jana Asselman
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Ghent University, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, 9000, Ghent, Belgium
| | - Dieter Deforce
- Ghent University, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, 9000, Ghent, Belgium
| | - Colin R Janssen
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium
| | - Karel A C De Schamphelaere
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium
| |
Collapse
|
50
|
Kitano J, Ishikawa A, Kusakabe M. Parallel transcriptome evolution in stream threespine sticklebacks. Dev Growth Differ 2018; 61:104-113. [DOI: 10.1111/dgd.12576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Jun Kitano
- Division of Ecological Genetics; National Institute of Genetics; Mishima, Shizuoka Japan
| | - Asano Ishikawa
- Division of Ecological Genetics; National Institute of Genetics; Mishima, Shizuoka Japan
| | - Makoto Kusakabe
- Department of Biological Science; Faculty of Science; Shizuoka University; Surugaku, Shizuoka Japan
| |
Collapse
|