1
|
Jongkees MJ, Bogers S, de Vries RD, GeurtsvanKessel CH, Miranda Afonso P, Hensley KS, Rijnders BJA, Brinkman K, Rokx C, Roukens AHE. Longitudinal assessment of COVID-19 vaccine immunogenicity in people with HIV stratified by CD4+ T-cell count in the Netherlands: A two-year follow-up study. PLoS One 2025; 20:e0323792. [PMID: 40388467 PMCID: PMC12087993 DOI: 10.1371/journal.pone.0323792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/14/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Although guidelines for COVID-19 additional vaccination strategies generally prioritise people with advanced HIV infection, recommendations vary globally, with some countries recommending an annual vaccination for all people with HIV (PWH), while others restrict this to PWH with a CD4+ T-cell count < 200 cells per µL. METHODS We conducted a prospective cohort study in 448 adult PWH. The primary outcome was the SARS-CoV-2 spike (S1)-specific IgG antibody level at 1, 6, 12, 18, and 24 months after completing a primary COVID-19 vaccination series (two doses of BNT162b2, mRNA-1273, or ChAdOx1-S, or one dose of Ad26.COV2.S). We compared the antibody kinetics over two years between PWH with a baseline CD4+ T-cell count < 200 cells per µL (n = 16) vs. ≥ 200 cells per µL (n = 432) with a mixed-effects model. Secondary outcomes included variables associated with the kinetics of S1-specific antibody levels and the incidence of breakthrough infections. RESULTS The median most recent CD4+ T-cell count prior to primary vaccination was 140 (IQR 80-165) in the < 200 cells per µL group, and 688 (IQR 520-899) in the ≥ 200 cells per µL group at the time of primary vaccination. S1-specific antibodies were lower in PWH with a CD4+ T-cell count < 200 vs. ≥ 200 cells per µL during the two-year follow-up, with predicted S1-specific antibody levels of 514 (95% CI 456-578) vs. 2758 (95% CI 1488-5110) BAU per mL at 12 months (p < 0.001) and 839 (95% CI 732-959) vs. 3505 (95% CI 1712-7175) BAU per mL at 24 months (p < 0.001). The overall incidence of SARS-CoV-2 infections was 55% and comparable between groups. A CD4+ T-cell count < 200 cells per µL, higher age, and a vector-based primary vaccination series were negatively associated with S1-specific antibody levels over time. CONCLUSION Long-term humoral responses were lower in PWH with a CD4+ T-cell count < 200 cells per µL compared to those with a CD4+ T-cell count ≥ 200 cells per µL. National COVID-19 vaccine guidelines recommending booster vaccines for all PWH, should therefore specifically emphasise the need for booster vaccines in those with a CD4+ T-cell count < 200 cells per µL. Trial registration: The trial was registered on the International Clinical Trials Platform (registration number: EUCTR2021-001054-57-N).
Collapse
Affiliation(s)
- Marlou J. Jongkees
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Pedro Miranda Afonso
- Department of Biostatistics, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Kathryn S. Hensley
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Bart J. A. Rijnders
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Kees Brinkman
- Department of Internal Medicine and Infectious Diseases, OLVG Hospital, Amsterdam, The Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Anna H. E. Roukens
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
2
|
Chittrakarn S, Siripaitoon P, Chusri S, Kanchanasuwan S, Charoenmak B, Hortiwakul T, Kantikit P, Kositpantawong N. Comparative immunogenicity and neutralizing antibody responses post heterologous vaccination with CoronaVac (Sinovac) and Vaxzevria (AstraZeneca) in HIV-infected patients with varying CD4+ T lymphocyte counts. Hum Vaccin Immunother 2024; 20:2309734. [PMID: 38297904 PMCID: PMC10841008 DOI: 10.1080/21645515.2024.2309734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
The immune response to heterologous coronavirus disease (COVID-19) vaccination in people living with HIV (PLWH) is still unclear. Herein, our prospective cohort study aimed to compare the immune response of heterologous vaccination with CoronaVac (Sinovac) and Vaxzevria (AstraZeneca) between PLWH having CD4 counts ≤ 200 cells/µL (low CD4+) and > 200 cells/µL (high CD4+). Anti-receptor-binding domain (RBD) immunoglobulin G (IgG) levels and the percentage inhibition of neutralizing antibodies (nAbs) were analyzed at 2 and 12 weeks after immunization. Participants in the low and high CD4+ groups had mean CD4+ counts of 139 and 575 cell/µL, respectively. Two and 12 weeks after immunization, in the low CD4 group, the median anti-RBD-IgG levels were 159 IU/mL and 143 IU/mL, respectively, whereas the nAb level was 71% and decreased to 47.2%, respectively. Contrarily, the median anti-RBD-IgG levels in the high CD4+ group were 273 IU/mL and 294 IU/mL, respectively, whereas the nAb levels were 89.3% and relatively stable at 81.6%. However, although immune responses between the two study groups were not significantly different, a decline in nAb levels was observed at 12 weeks in the low CD4+ group. Therefore, a COVID-19 booster vaccine dose is suggested for immunoprotection.
Collapse
Affiliation(s)
- Sorawit Chittrakarn
- Division of Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pisud Siripaitoon
- Division of Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sarunyou Chusri
- Division of Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Siripen Kanchanasuwan
- Division of Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Boonsri Charoenmak
- Division of Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thanaporn Hortiwakul
- Division of Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Phaiwon Kantikit
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Narongdet Kositpantawong
- Division of Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
3
|
Jongkees MJ, Tan NH, Geers D, de Vries RD, GeurtsvanKessel CH, Hensley KS, Sablerolles RS, Bogers S, Gommers L, Blakaj B, Miranda Afonso P, Hansen BE, Rijnders BJ, Brinkman K, van der Kuy PHM, Roukens AH, Rokx C. Immunogenicity of a bivalent BA.1 COVID-19 booster vaccine in people with HIV in the Netherlands. AIDS 2024; 38:1355-1365. [PMID: 38788210 PMCID: PMC11216395 DOI: 10.1097/qad.0000000000003933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE We evaluated the immunogenicity of a bivalent BA.1 COVID-19 booster vaccine in people with HIV (PWH). DESIGN Prospective observational cohort study. METHODS PWH aged ≥45 years received Wuhan-BA.1 mRNA-1273.214 and those <45 years Wuhan-BA.1 BNT162b2. Participants were propensity score-matched 1 : 2 to people without HIV (non-PWH) by age, primary vaccine platform (mRNA-based or vector-based), number of prior COVID-19 boosters and SARS-CoV-2 infections, and spike (S1)-specific antibodies on the day of booster administration. The primary endpoint was the geometric mean ratio (GMR) of ancestral S1-specific antibodies from day 0 to 28 in PWH compared to non-PWH. Secondary endpoints included humoral responses, T-cell responses and cytokine responses up to 180 days post-vaccination. RESULTS Forty PWH received mRNA-1273.214 ( N = 35) or BNT162b2 ( N = 5) following mRNA-based ( N = 29) or vector-based ( N = 11) primary vaccination. PWH were predominantly male (87% vs. 26% of non-PWH) and median 57 years [interquartile range (IQR) 53-59]. Their median CD4 + T-cell count was 775 (IQR 511-965) and the plasma HIV-RNA load was <50 copies/ml in 39/40. The GMR of S1-specific antibodies by 28 days post-vaccination was comparable between PWH [4.48, 95% confidence interval (CI) 3.24-6.19] and non-PWH (4.07, 95% CI 3.42-4.83). S1-specific antibody responses were comparable between PWH and non-PWH up to 180 days, and T-cell responses up to 90 days post-vaccination. Interferon-γ, interleukin (IL)-2, and IL-4 cytokine concentrations increased 28 days post-vaccination in PWH. CONCLUSION A bivalent BA.1 booster vaccine was immunogenic in well treated PWH, eliciting comparable humoral responses to non-PWH. However, T-cell responses waned faster after 90 days in PWH compared to non-PWH.
Collapse
Affiliation(s)
- Marlou J. Jongkees
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases
| | | | | | | | | | - Kathryn S. Hensley
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases
| | | | | | | | | | - Pedro Miranda Afonso
- Department of Biostatistics and Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Bettina E. Hansen
- Department of Biostatistics and Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Institute of Health Policy, Management and Evaluation, University of Toronto
- Toronto Centre for Liver Disease, Toronto General Hospital University Health Network, Toronto, Canada
| | - Bart J.A. Rijnders
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases
| | - Kees Brinkman
- Department of Internal Medicine and Infectious Diseases, OLVG Hospital, Amsterdam
| | | | - Anna H.E. Roukens
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases
| |
Collapse
|
4
|
Jalloh MF, Tinuga F, Dahoma M, Rwebembera A, Kapologwe NA, Magesa D, Mukurasi K, Rwabiyago OE, Kazitanga J, Miller A, Sando D, Maruyama H, Mbatia R, Temu F, Matiko E, Kazaura K, Njau P, Imaa J, Pinto T, Nur SA, Schaad N, Malero A, Damian D, Grund J, Mgomella GS, Johnson A, Cole G, Mmari E, Gatei W, Swaminathan M. Accelerating COVID-19 Vaccination Among People Living With HIV and Health Care Workers in Tanzania: A Case Study. GLOBAL HEALTH, SCIENCE AND PRACTICE 2024; 12:e2300281. [PMID: 38806223 PMCID: PMC11216698 DOI: 10.9745/ghsp-d-23-00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND There is limited evidence on COVID-19 vaccination uptake among people living with HIV (PLHIV) and health care workers (HCWs), with the current evidence concentrated in high-income countries. There is also limited documentation in the published literature regarding the feasibility and lessons from implementing targeted vaccination strategies to reach PLHIV and HCWs in low- and middle-income countries. PROGRAM DEVELOPMENT, PILOTING, AND IMPLEMENTATION We designed and implemented multifaceted strategies to scale up targeted COVID-19 vaccination among PLHIV and HCWs in 11 administrative regions on the mainland of Tanzania plus Zanzibar. An initial 6-week intensification strategy was implemented using a diverse partnership model comprising key stakeholders at the national- and subnational levels. A layered package of strategies included expanding the number of certified vaccinators, creating vaccination points within HIV clinics, engaging HCWs to address their concerns, and building the capacity of HCWs as "champions" to promote and facilitate vaccination. We then closely monitored COVID-19 vaccination uptake in 562 high-volume HIV clinics. Between September 2021 and September 2022, the proportion of fully vaccinated adult PLHIV increased from <1% to 97% and fully vaccinated HCWs increased from 23% to 80%. LESSONS AND IMPLICATIONS Our intra-action review highlighted the importance of leveraging a strong foundation of existing partnerships and platforms, integrating COVID-19 vaccination points within HIV clinics, and refining strategies to increase vaccination demand while ensuring continuity of vaccine supply to meet the increased demand. Lessons from Tanzania can inform targeted vaccination of vulnerable groups in future health emergencies.
Collapse
Affiliation(s)
- Mohamed F Jalloh
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania.
| | - Florian Tinuga
- Immunization and Vaccine Development, Tanzania Ministry of Health, Dar es Salaam, Tanzania
| | - Mohamed Dahoma
- Zanzibar Integrated HIV, Hepatitis, TB and Leprosy Program, Zanzibar, Tanzania
| | - Anath Rwebembera
- National AIDS Control Programme, Tanzania Ministry of Health, Dodoma, Tanzania
| | - Ntuli A Kapologwe
- President's Office - Regional Administration and Local Government, Dodoma, Tanzania
| | - Daniel Magesa
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Kokuhabwa Mukurasi
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Oscar Ernest Rwabiyago
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Jaiving Kazitanga
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Angela Miller
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - David Sando
- Management and Development for Health, Dar es Salaam, Tanzania
| | - Haruka Maruyama
- Tanzania Country Office, ICAP at Columbia University, Dar es Salaam, Tanzania
| | | | - Florence Temu
- Tanzania Country Office, Amref Health Africa, Dar es Salaam, Tanzania
| | - Eva Matiko
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Kokuhumbya Kazaura
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Prosper Njau
- National AIDS Control Programme, Tanzania Ministry of Health, Dodoma, Tanzania
| | - Jennifer Imaa
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Tara Pinto
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Sophia A Nur
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Nicolas Schaad
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Augustine Malero
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Damian Damian
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Jonathan Grund
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - George S Mgomella
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Alison Johnson
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Gbolahan Cole
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Eunice Mmari
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Wangeci Gatei
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Mahesh Swaminathan
- Tanzania Country Office, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| |
Collapse
|
5
|
Ruta S, Popescu CP, Matei L, Grancea C, Paun AM, Oprea C, Sultana C. SARS-CoV-2 Humoral and Cellular Immune Responses in People Living with HIV. Vaccines (Basel) 2024; 12:663. [PMID: 38932392 PMCID: PMC11209143 DOI: 10.3390/vaccines12060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Immunosuppressed individuals, such as people living with HIV (PLWH), remain vulnerable to severe COVID-19. We analyzed the persistence of specific SARS-CoV-2 humoral and cellular immune responses in a retrospective, cross-sectional study in PLWH on antiretroviral therapy. Among 104 participants, 70.2% had anti-S IgG antibodies, and 55.8% had significant neutralizing activity against the Omicron variant in a surrogate virus neutralization test. Only 38.5% were vaccinated (8.76 ± 4.1 months prior), all displaying anti-S IgG, 75% with neutralizing antibodies and anti-S IgA. Overall, 29.8% of PLWH had no SARS-CoV-2 serologic markers; they displayed significantly lower CD4 counts and higher HIV viral load. Severe immunosuppression (present in 12.5% of participants) was linked to lower levels of detectable anti-S IgG (p = 0.0003), anti-S IgA (p < 0.0001) and lack of neutralizing activity against the Omicron variant (p < 0.0001). T-cell responses were present in 86.7% of tested participants, even in those lacking serological markers. In PLWH without severe immunosuppression, neutralizing antibodies and T-cell responses persisted for up to 9 months post-infection or vaccination. Advanced immunosuppression led to diminished humoral immune responses but retained specific cellular immunity.
Collapse
Affiliation(s)
- Simona Ruta
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Corneliu Petru Popescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Camelia Grancea
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Adrian Marius Paun
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Cristiana Oprea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Camelia Sultana
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| |
Collapse
|
6
|
Skrzat-Klapaczyńska A, Kowalska J, Fijołek F, Paciorek M, Bieńkowski C, Krogulec D, Horban A. Vaccination against COVID-19 among healthcare workers as a cocoon strategy for people living with HIV. J Virus Erad 2024; 10:100377. [PMID: 38983868 PMCID: PMC11228949 DOI: 10.1016/j.jve.2024.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Healthcare professionals working in infectious disease units are often engaged in the care of patients with HIV infection. A cocoon vaccination strategy may protect those who are immunocompromised from a severe course of COVID-19. Methods The research was conducted between January 2021 and June 2022. The study participants were 450 healthcare workers (HCWs) from the Hospital for Infectious Diseases in Warsaw who were vaccinated against COVID-19 with the BNT162b2 mRNA vaccine (Pfizer-BioNTech) -, thefirst available type of vaccine in Poland. Sera were collected according to the schedule of the study. Statistical analyses were performed with non-parametric tests: Wilcoxon's test was used to compare dependent numerical variables, and Fisher's exact test and the Chi-squared test to compare categorical variables. A p value of <0.05 was considered statistically significant. Results Among the 450 HCWs working in the Hospital for Infectious Diseases in Warsaw 412 (91,5 %) were vaccinated against COVID-19. In total 170 (41,3 %) vaccinated HCWs were included in the final analysis. Their median age was 51 years [interquartile range (IQR): 41-60 years] and median body mass index (BMI) was 25.10 [IQR: 22.68-29.03]. Most of the cohort consisted of women (n = 137, 80.59 %), with the majority working directly with patients (n = 137, 73.21 %). It was found that as early as 14 days after the second dose of the vaccine, 100 % of the study participants achieved a positive result for SARS CoV-2 S-RBD antibodies. There were 168 subjects who had had a COVID-19 diagnosis before entering study and after vaccination 65 HCWs was diagnosed with COVID-19. Conclusions Due to the fact that people living with HIV with severe immunodeficiency may have an incomplete immune response to COVID vaccination and be at risk of a severe course of the disease, the cocoon strategy of vaccinating medical personnel may be beneficial for these patients.
Collapse
Affiliation(s)
- Agata Skrzat-Klapaczyńska
- Department of Adults' Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Poland
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| | - Justyna Kowalska
- Department of Adults' Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Poland
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| | - Filip Fijołek
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| | - Marcin Paciorek
- Department of Adults' Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Poland
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| | - Carlo Bieńkowski
- Department of Adults' Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Poland
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| | - Dominika Krogulec
- Department of Adults' Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Poland
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| | - Andrzej Horban
- Department of Adults' Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Poland
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| |
Collapse
|
7
|
Vos WAJW, Navas A, Meeder EMG, Blaauw MJT, Groenendijk AL, van Eekeren LE, Otten T, Vadaq N, Matzaraki V, van Cranenbroek B, Brinkman K, van Lunzen J, Joosten LAB, Netea MG, Blok WL, van der Ven AJAM, Koenen HJPM, Stalenhoef JE. HIV immunological non-responders are characterized by extensive immunosenescence and impaired lymphocyte cytokine production capacity. Front Immunol 2024; 15:1350065. [PMID: 38779686 PMCID: PMC11109418 DOI: 10.3389/fimmu.2024.1350065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Immunological non-responders (INR) are people living with HIV (PLHIV) who fail to fully restore CD4+ T-cell counts despite complete viral suppression with antiretroviral therapy (ART). INR are at higher risk for non-HIV related morbidity and mortality. Previous research suggest persistent qualitative defects. Methods The 2000HIV study (clinical trials NTC03994835) enrolled 1895 PLHIV, divided in a discovery and validation cohort. PLHIV with CD4 T-cell count <350 cells/mm3 after ≥2 years of suppressive ART were defined as INR and were compared to immunological responders (IR) with CD4 T-cell count >500 cells/mm3. Logistic and rank based regression were used to analyze clinical data, extensive innate and adaptive immunophenotyping, and ex vivo monocyte and lymphocyte cytokine production after stimulation with various stimuli. Results The discovery cohort consisted of 62 INR and 1224 IR, the validation cohort of 26 INR and 243 IR. INR were older, had more advanced HIV disease before starting ART and had more frequently a history of non-AIDS related malignancy. INR had lower absolute CD4+ T-cell numbers in all subsets. Activated (HLA-DR+, CD38+) and exhausted (PD1+) subpopulations were proportionally increased in CD4 T-cells. Monocyte and granulocyte immunophenotypes were comparable. INR lymphocytes produced less IL-22, IFN-γ, IL-10 and IL-17 to stimuli. In contrast, monocyte cytokine production did not differ. The proportions of CD4+CD38+HLA-DR+ and CD4+PD1+ subpopulations showed an inversed correlation to lymphocyte cytokine production. Conclusions INR compared to IR have hyperactivated and exhausted CD4+ T-cells in combination with lymphocyte functional impairment, while innate immune responses were comparable. Our data provide a rationale to consider the use of anti-PD1 therapy in INR.
Collapse
Affiliation(s)
- Wilhelm A. J. W. Vos
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Adriana Navas
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elise M. G. Meeder
- Department of Psychiatry, Radboudumc, Radboud University, Nijmegen, Netherlands
- Cognition and Behavior, Donders Institute for Brain, Radboud University, Nijmegen, Netherlands
| | - Marc J. T. Blaauw
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Albert L. Groenendijk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, ErasmusMC, Erasmus University, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious diseases, ErasmusMC, Erasmus University, Rotterdam, Netherlands
| | - Louise E. van Eekeren
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Twan Otten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bram van Cranenbroek
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kees Brinkman
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Jan van Lunzen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Willem L. Blok
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | | | - Hans J. P. M. Koenen
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Janneke E. Stalenhoef
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| |
Collapse
|
8
|
Datwani S, Kalikawe R, Waterworth R, Mwimanzi FM, Liang R, Sang Y, Lapointe HR, Cheung PK, Omondi FH, Duncan MC, Barad E, Speckmaier S, Moran-Garcia N, DeMarco ML, Hedgcock M, Costiniuk CT, Hull M, Harris M, Romney MG, Montaner JSG, Brumme ZL, Brockman MA. T-Cell Responses to COVID-19 Vaccines and Breakthrough Infection in People Living with HIV Receiving Antiretroviral Therapy. Viruses 2024; 16:661. [PMID: 38793543 PMCID: PMC11125792 DOI: 10.3390/v16050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
People living with HIV (PLWH) can exhibit impaired immune responses to vaccines. Accumulating evidence indicates that PLWH, particularly those receiving antiretroviral therapy, mount strong antibody responses to COVID-19 vaccines, but fewer studies have examined cellular immune responses to the vaccinations. Here, we used an activation-induced marker (AIM) assay to quantify SARS-CoV-2 spike-specific CD4+ and CD8+ T cells generated by two and three doses of COVID-19 vaccines in 50 PLWH receiving antiretroviral therapy, compared to 87 control participants without HIV. In a subset of PLWH, T-cell responses were also assessed after post-vaccine breakthrough infections and/or receipt of a fourth vaccine dose. All participants remained SARS-CoV-2 infection-naive until at least one month after their third vaccine dose. SARS-CoV-2 infection was determined by seroconversion to a Nucleocapsid (N) antigen, which occurred in 21 PLWH and 38 control participants after the third vaccine dose. Multivariable regression analyses were used to investigate the relationships between sociodemographic, health- and vaccine-related variables, vaccine-induced T-cell responses, and breakthrough infection risk. We observed that a third vaccine dose boosted spike-specific CD4+ and CD8+ T-cell frequencies significantly above those measured after the second dose (all p < 0.0001). Median T-cell frequencies did not differ between PLWH and controls after the second dose (p > 0.1), but CD8+ T-cell responses were modestly lower in PLWH after the third dose (p = 0.02), an observation that remained significant after adjusting for sociodemographic, health- and vaccine-related variables (p = 0.045). In PLWH who experienced a breakthrough infection, median T-cell frequencies increased even higher than those observed after three vaccine doses (p < 0.03), and CD8+ T-cell responses in this group remained higher even after a fourth vaccine dose (p = 0.03). In multivariable analyses, the only factor associated with an increased breakthrough infection risk was younger age, which is consistent with the rapid increase in SARS-CoV-2 seropositivity that was seen among younger adults in Canada after the initial appearance of the Omicron variant. These results indicate that PLWH receiving antiretroviral therapy mount strong T-cell responses to COVID-19 vaccines that can be enhanced by booster doses or breakthrough infection.
Collapse
Affiliation(s)
- Sneha Datwani
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
| | - Rebecca Kalikawe
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
| | - Rachel Waterworth
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
| | - Francis M. Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
| | - Richard Liang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Yurou Sang
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
| | - Hope R. Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Peter K. Cheung
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Fredrick Harrison Omondi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Maggie C. Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Evan Barad
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Sarah Speckmaier
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Nadia Moran-Garcia
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC V6Z 1Y6, Canada (M.G.R.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Cecilia T. Costiniuk
- Division of Infectious Diseases Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Mark Hull
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marc G. Romney
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC V6Z 1Y6, Canada (M.G.R.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julio S. G. Montaner
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V6A 1S6, Canada
| |
Collapse
|
9
|
Bieńkowski C, Żak Z, Fijołek F, Cholewik M, Stępień M, Skrzat-Klapaczyńska A, Kowalska JD. Immunological and Clinical Responses to Vaccinations among Adults Living with HIV. Life (Basel) 2024; 14:540. [PMID: 38792562 PMCID: PMC11122059 DOI: 10.3390/life14050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
People living with human immunodeficiency virus (HIV) are at higher risk of morbidity and mortality due to vaccine-preventable diseases. At the same time, they are less likely to respond to vaccinations, and might have a higher rate of vaccine adverse event and faster waning of protective effect. International and national guidelines emphasize the importance of vaccinating people living with HIV against respiratory system disease pathogens including seasonal influenza, Streptococcus pneumoniae, and COVID-19, as well as against sexually transmitted infections, i.e., Hepatitis A and B (HAV, HBV) and human papillomavirus (HPV). This narrative review aims to provide a comprehensive examination of the current knowledge regarding the immune and clinical responses elicited by vaccinations in the older adult population living with HIV.
Collapse
Affiliation(s)
- Carlo Bieńkowski
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (F.F.); (A.S.-K.); (J.D.K.)
- Department of Adults’ Infectious Diseases, Medical University of Warsaw, 01-201 Warsaw, Poland
| | - Zuzanna Żak
- Department of Internal Medicine, Endocrinology, and Diabetes, Medical University of Warsaw, 01-201 Warsaw, Poland;
| | - Filip Fijołek
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (F.F.); (A.S.-K.); (J.D.K.)
- Department of Adults’ Infectious Diseases, Medical University of Warsaw, 01-201 Warsaw, Poland
| | - Martyna Cholewik
- Student’s Scientific Group at the Department of Adults’ Infectious Diseases, Medical University of Warsaw, 01-201 Warsaw, Poland; (M.C.); (M.S.)
| | - Maciej Stępień
- Student’s Scientific Group at the Department of Adults’ Infectious Diseases, Medical University of Warsaw, 01-201 Warsaw, Poland; (M.C.); (M.S.)
| | - Agata Skrzat-Klapaczyńska
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (F.F.); (A.S.-K.); (J.D.K.)
- Department of Adults’ Infectious Diseases, Medical University of Warsaw, 01-201 Warsaw, Poland
| | - Justyna D. Kowalska
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (F.F.); (A.S.-K.); (J.D.K.)
- Department of Adults’ Infectious Diseases, Medical University of Warsaw, 01-201 Warsaw, Poland
| |
Collapse
|
10
|
Springer DN, Daller S, Knappik M, Prüger K, Hartl S, Breyer-Kohansal R, Puchhammer-Stöckl E, Aberle JH, Weseslindtner L, Breyer MK. A Multivariant Surrogate Virus Neutralization Test Demonstrates Distinct SARS-CoV-2-Specific Antibody Responses in People Living with HIV after a Fourth Monovalent mRNA Vaccination or an Omicron Breakthrough Infection. Diagnostics (Basel) 2024; 14:822. [PMID: 38667468 PMCID: PMC11049121 DOI: 10.3390/diagnostics14080822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
While neutralizing antibodies (nAbs) induced by monovalent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations are primarily directed against the wildtype (WT), subsequent exposure to the Omicron variants may increase the breadth of the antibodies' cross-neutralizing activity. Here, we analyzed the impact of an Omicron breakthrough infection (BTI) or a fourth monovalent mRNA vaccination on nAb profiles in people living with human immunodeficiency virus (PLWH). Using a multivariant surrogate virus neutralization test (sVNT), we quantified nAbs in 36 three-times vaccinated PLWH, of whom 9 acquired a serologically confirmed Omicron BTI, 8 received a fourth vaccine dose, and 19 were neither infected nor additionally vaccinated. While nAbs against WT and Delta increased after the BTI and a fourth vaccination, a significant increase against BA.1, BA.2, and BA.5 was only observed after the BTI. However, there was no significant difference in nAb concentrations between the samples obtained after the BTI and fourth vaccination. In contrast, nAb levels were significantly lower in PLWH, who were neither infected nor additionally vaccinated after three vaccinations. Thus, our study demonstrates the suitability of a multivariant sVNT to assess hybrid humoral immunity after Omicron BTIs in PLWH vaccinated against SARS-CoV-2.
Collapse
Affiliation(s)
- David Niklas Springer
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (D.N.S.); (K.P.); (E.P.-S.); (J.H.A.)
| | - Simon Daller
- Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, 1140 Vienna, Austria; (S.D.); (M.K.); (S.H.); (R.B.-K.); (M.K.B.)
| | - Michael Knappik
- Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, 1140 Vienna, Austria; (S.D.); (M.K.); (S.H.); (R.B.-K.); (M.K.B.)
| | - Katja Prüger
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (D.N.S.); (K.P.); (E.P.-S.); (J.H.A.)
| | - Sylvia Hartl
- Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, 1140 Vienna, Austria; (S.D.); (M.K.); (S.H.); (R.B.-K.); (M.K.B.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, 1020 Vienna, Austria
| | - Robab Breyer-Kohansal
- Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, 1140 Vienna, Austria; (S.D.); (M.K.); (S.H.); (R.B.-K.); (M.K.B.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
| | - Elisabeth Puchhammer-Stöckl
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (D.N.S.); (K.P.); (E.P.-S.); (J.H.A.)
| | - Judith Helene Aberle
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (D.N.S.); (K.P.); (E.P.-S.); (J.H.A.)
| | - Lukas Weseslindtner
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (D.N.S.); (K.P.); (E.P.-S.); (J.H.A.)
| | - Marie Kathrin Breyer
- Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, 1140 Vienna, Austria; (S.D.); (M.K.); (S.H.); (R.B.-K.); (M.K.B.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
| |
Collapse
|
11
|
Knudsen ML, Nielsen SD, Heftdal LD. Immune responses to mRNA-based vaccines given as a third COVID-19 vaccine dose in people living with HIV-a literature review. APMIS 2024; 132:236-244. [PMID: 38275143 DOI: 10.1111/apm.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
People living with HIV (PLWH) were not included in the first efficacy studies of mRNA vaccines against SARS-CoV-2. In this literature review, we investigate evidence of humoral and cellular immunity after a third dose of an mRNA vaccine in PLWH. We performed a literature search in PubMed, Embase, Web of Science and SCOPUS published between 1 January 2020 and 31 December 2022. Selection criteria were studies on immunological responses in PLWH, who were given an mRNA-based vaccine as a third vaccine dose against SARS-CoV-2. Eight articles complied with our selection criteria. All studies found a strong humoral response after the third dose. Five studies investigated cellular immunity and found an increased cellular response after the third vaccine dose in PLWH. No difference in humoral response was observed between PLWH and controls after three doses. However, some of the studies suggested a weaker cellular response among PLWH than in controls, which was associated with lower nadir or current CD4+ T-cell counts. In conclusion, we found evidence of strong humoral immunity in PLWH after receiving an mRNA-based COVID-19 vaccine as a third dose, while the cellular immunity may be impaired compared to controls.
Collapse
Affiliation(s)
- Maria Lodberg Knudsen
- Viro-Immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Line Dam Heftdal
- Viro-Immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Khawcharoenporn T, Hanvivattanakul S. Safety profiles of homologous and heterologous regimens containing three major types of COVID-19 vaccine among people living with HIV. Int J STD AIDS 2024; 35:262-273. [PMID: 38048705 DOI: 10.1177/09564624231220090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
BACKGROUND Existing data on adverse effects (AEs) of homologous and heterologous COVID-19 vaccine regimens among people living with HIV (PLHIV) are limited. METHODS A prospective cohort study was conducted among Thai PLHIV during 2021-2022. Vaccine types and AEs were collected using an online survey. RESULTS Of the 398 vaccinated PLHIV, 92% had CD4 count ≥200 cells/µL and 96% were virologically suppressed at enrolment; 38% received two doses and 62% received three doses of COVID-19 vaccines. Inactivated, viral vector and mRNA were the most common vaccine types received as the first, second, and booster doses, respectively. For the first and second vaccine doses, the most common AEs were fever (15% and 11%) and injection site pain (11% and 11%). The mRNA vaccine significantly caused more overall AEs, injection pain, fatigue, and rashes than the other two types. For a booster dose, viral vector vaccine significantly caused more injection site pain and headache than the other two types. The majority of AEs of the first, second and booster doses spontaneously recovered without treatment. By multivariable analysis, receipt of viral vector or mRNA vaccine and age less than 40 years were independently associated with AEs of the primary series vaccines, while having AEs from the previous dose and female sex were independent factors associated with AEs of a booster vaccine. CONCLUSIONS Our study suggested the safety of homologous and heterologous regimens containing the three types of COVID-19 vaccines among PLHIV and identified those who required close monitoring for vaccine AEs.
Collapse
Affiliation(s)
- Thana Khawcharoenporn
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- HIV/AIDS Care Unit of Thammasat University Hospital, Pathumthani, Thailand
| | | |
Collapse
|
13
|
Søndergaard MH, Thavarajah JJ, Churchill Henson H, Wejse CM. SARS-CoV-2 vaccine immunogenicity for people living with HIV: A systematic review and meta-analysis. HIV Med 2024; 25:16-37. [PMID: 37731375 DOI: 10.1111/hiv.13537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Previous publications on the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in people living with HIV (PLWH) have reported inconsistent results. Additionally, a meta-analysis investigating the immunogenicity in PLWH after the third SARS-CoV-2 vaccine dose is lacking. In this article we aim to provide a systematic review and a meta-analysis studying the immunogenicity of SARS-CoV-2 vaccines in PLWH and to identify potential drivers for antibody response in PLWH. METHODS We used three databases (PubMed, Embase and Web of Science) to conduct our review. Studies with information on numbers of PLWH producing immunoglobulin G (IgG) antibodies or neutralizing antibodies were included. RESULTS The meta-analysis included 59 studies and illustrated a pooled serological response of 87.09% in the 10 343 PLWH after they received a SARS-CoV-2 vaccine. High CD4 T-cell counts and low viral load indicated that the study populations had HIV that was well treated, despite varying in location. The pooled effect increased to 91.62% for 8053 PLWH when excluding studies that used inactivated vaccines (BBIBP-CorV and CoronaVac). For the third vaccine dose, the pooled effect was 92.35% for 1974 PLWH. Additionally, weighted linear regression models demonstrated weak relationships between CD4 T-cell count, percentages of people with undetectable HIV load, and age compared with the percentages of PLWH producing a serological response. However, more research is needed to determine the effect of those factors on SARS-CoV-2 vaccine immunogenicity in PLWH. CONCLUSION SARS-CoV-2 vaccines show a favourable effect on immunogenicity in PLWH. However, the results are not ideal. This meta-analysis suggests that a third SARS-CoV-2 vaccine dose and good HIV treatment procedures are vital to induce a good immunogenicity in PLWH.
Collapse
Affiliation(s)
| | | | | | - Christian Morberg Wejse
- GloHAU, Center for Global Health, Department of Public Health, Aarhus University, Aarhus C, Region Midtjylland, Denmark
- Department of Infectious Diseases, Clinical Medicine, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
14
|
Alrubayyi A, Touizer E, Hameiri-Bowen D, Charlton B, Gea-Mallorquí E, Hussain N, da Costa KAS, Ford R, Rees-Spear C, Fox TA, Williams I, Waters L, Barber TJ, Burns F, Kinloch S, Morris E, Rowland-Jones S, McCoy LE, Peppa D. Natural killer cell responses during SARS-CoV-2 infection and vaccination in people living with HIV-1. Sci Rep 2023; 13:18994. [PMID: 37923825 PMCID: PMC10624865 DOI: 10.1038/s41598-023-45412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Natural killer (NK) cell subsets with adaptive properties are emerging as regulators of vaccine-induced T and B cell responses and are specialized towards antibody-dependent functions contributing to SARS-CoV-2 control. Although HIV-1 infection is known to affect the NK cell pool, the additional impact of SARS-CoV-2 infection and/or vaccination on NK cell responses in people living with HIV (PLWH) has remained unexplored. Our data show that SARS-CoV-2 infection skews NK cells towards a more differentiated/adaptive CD57+FcεRIγ- phenotype in PLWH. A similar subset was induced following vaccination in SARS-CoV-2 naïve PLWH in addition to a CD56bright population with cytotoxic potential. Antibody-dependent NK cell function showed robust and durable responses to Spike up to 148 days post-infection, with responses enriched in adaptive NK cells. NK cell responses were further boosted by the first vaccine dose in SARS-CoV-2 exposed individuals and peaked after the second dose in SARS-CoV-2 naïve PLWH. The presence of adaptive NK cells associated with the magnitude of cellular and humoral responses. These data suggest that features of adaptive NK cells can be effectively engaged to complement and boost vaccine-induced adaptive immunity in potentially more vulnerable groups such as PLWH.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Emma Touizer
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Bethany Charlton
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Noshin Hussain
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Kelly A S da Costa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Rosemarie Ford
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Thomas A Fox
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Ian Williams
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Laura Waters
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Tristan J Barber
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Fiona Burns
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sabine Kinloch
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Emma Morris
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Laura E McCoy
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK.
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK.
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
15
|
Khan MS, Kim E, Le Hingrat Q, Kleinman A, Ferrari A, Sammartino JC, Percivalle E, Xu C, Huang S, Kenniston TW, Cassaniti I, Baldanti F, Pandrea I, Gambotto A, Apetrei C. Tetravalent SARS-CoV-2 S1 subunit protein vaccination elicits robust humoral and cellular immune responses in SIV-infected rhesus macaque controllers. mBio 2023; 14:e0207023. [PMID: 37830800 PMCID: PMC10653869 DOI: 10.1128/mbio.02070-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE The study provides important insights into the immunogenicity and efficacy of a tetravalent protein subunit vaccine candidate against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The vaccine induced both humoral and cellular immune responses in nonhuman primates with controlled SIVagm infection and was able to generate Omicron variant-specific antibodies without specifically vaccinating with Omicron. These findings suggest that the tetravalent composition of the vaccine candidate could provide broad protection against multiple SARS-CoV-2 variants while minimizing the risk of immune escape and the emergence of new variants. Additionally, the use of rhesus macaques with controlled SIVsab infection may better represent vaccine immunogenicity in humans with chronic viral diseases, highlighting the importance of preclinical animal models in vaccine development. Overall, the study provides valuable information for the development and implementation of coronavirus disease 2019 vaccines, particularly for achieving global vaccine equity and addressing emerging variants.
Collapse
Affiliation(s)
- Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Quentin Le Hingrat
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adam Kleinman
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jose C. Sammartino
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cuiling Xu
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Ivona Pandrea
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Swan CL, Dushimiyimana V, Ndishimye P, Buchanan R, Yourkowski A, Semafara S, Nsanzimana S, Francis ME, Thivierge B, Lew J, Facciuolo A, Gerdts V, Falzarano D, Sjaarda C, Kelvin DJ, Bitunguhari L, Kelvin AA. Third COVID-19 vaccine dose boosts antibody function in Rwandans with high HIV viral load. iScience 2023; 26:107959. [PMID: 37810226 PMCID: PMC10558770 DOI: 10.1016/j.isci.2023.107959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) causing COVID-19 (coronavirus disease 2019) poses a greater health risk to immunocompromized individuals including people living with HIV (PLWH). However, most studies on PLWH have been conducted in higher-income countries. We investigated the post-vaccination antibody responses of PLWH in Rwanda by collecting peripheral blood from participants after receiving a second or third COVID-19 vaccine. Virus-binding antibodies as well as antibody neutralization ability against all major SARS-CoV-2 variants of concern were analyzed. We found that people with high HIV viral loads and two COVID-19 vaccine doses had lower levels of binding antibodies that were less virus neutralizing and less cross-reactive compared to control groups. A third vaccination increased neutralizing antibody titers. Our data suggest that people with high HIV viral loads require a third dose of vaccine to neutralize SARS-CoV-2 virus and new variants as they emerge.
Collapse
Affiliation(s)
- Cynthia L. Swan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | | | - Pacifique Ndishimye
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- African Institute for Mathematical Sciences, Kigali, Rwanda
| | - Rachelle Buchanan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Anthony Yourkowski
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Sage Semafara
- Rwanda Network of the People living with HIV (RRP+), Kigali, Rwanda
| | | | - Magen E. Francis
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Brittany Thivierge
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Antonio Facciuolo
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Calvin Sjaarda
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
- Queen’s Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Centre, Kingston, ON K7M 8A6, Canada
| | - David J. Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
17
|
Brown JA, Hauser A, Abela IA, Pasin C, Epp S, Mohloanyane T, Nsakala BL, Trkola A, Labhardt ND, Kouyos RD, Günthard HF. Seroprofiling of Antibodies Against Endemic Human Coronaviruses and Severe Acute Respiratory Syndrome Coronavirus 2 in a Human Immunodeficiency Virus Cohort in Lesotho: Correlates of Antibody Response and Seropositivity. J Infect Dis 2023; 228:1042-1054. [PMID: 37261930 PMCID: PMC10582919 DOI: 10.1093/infdis/jiad197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Serological data on endemic human coronaviruses (HCoVs) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in southern Africa are scarce. Here, we report on (1) endemic HCoV seasonality, (2) SARS-CoV-2 seroprevalence, and (3) correlates of SARS-CoV-2 seropositivity and strength of SARS-CoV-2 and endemic HCoV serological responses among adults living with human immunodeficiency virus (HIV). METHODS Plasma samples were collected from February 2020 to July 2021 within an HIV cohort in Lesotho. We used the AntiBody CORonavirus Assay (ABCORA) multiplex immunoassay to measure antibody responses to endemic HCoV (OC43, HKU1, NL63, and 229E) and SARS-CoV-2 antigens. RESULTS Results for 3173 samples from 1403 adults were included. Serological responses against endemic HCoVs increased over time and peaked in winter and spring. SARS-CoV-2 seropositivity reached >35% among samples collected in early 2021 and was associated with female sex, obesity, working outside the home, and recent tiredness or fever. Positive correlations were observed between the strength of response to endemic HCoVs and to SARS-CoV-2 and between older age or obesity and the immunoglobulin G response to SARS-CoV-2. CONCLUSIONS These results add to our understanding of the impact of biological, clinical, and social/behavioral factors on serological responses to coronaviruses in southern Africa.
Collapse
Affiliation(s)
- Jennifer A Brown
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Division of Clinical Epidemiology, Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Anthony Hauser
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Irene A Abela
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Niklaus D Labhardt
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Division of Clinical Epidemiology, Department of Clinical Research, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Zhao T, Yang Z, Wu Y, Yang J. Immunogenicity and safety of COVID-19 vaccines among people living with HIV: A systematic review and meta-analysis. Epidemiol Infect 2023; 151:e176. [PMID: 37704371 PMCID: PMC10600909 DOI: 10.1017/s095026882300153x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Available data suggest that the immunogenicity of COVID-19 vaccines might decrease in the immunocompromised population, but data on vaccine immunogenicity and safety among people living with HIV (PLWH) are still lacking. The purpose of this meta-analysis is to compare the immunogenicity and safety of COVID-19 vaccines in PLWH with healthy controls. We comprehensively searched the following databases: PubMed, Cochrane Library, and EMBASE. The risk ratio (RR) of seroconversion after the first and second doses of a COVID-19 vaccine was separately pooled using random-effects meta-analysis. Seroconversion rate was lower among PLWH compared with healthy individuals after the first (RR = 0.77, 95% confident interval (CI) 0.64-0.92) and second doses (RR = 0.97, 95%CI 0.95-0.99). The risk of total adverse reactions among PLWH is similar to the risk in the healthy group, after the first (RR = 0.87, 95%CI 0.70-1.10) and second (RR = 0.83, 95%CI 0.65-1.07) doses. This study demonstrates that the immunogenicity and safety of SARS-CoV-2 vaccine in fully vaccinated HIV-infected patients were generally satisfactory. A second dose was related to seroconversion enhancement. Therefore, we considered that a booster dose may provide better seroprotection for PLWH. On the basis of a conventional two-dose regimen for COVID-19 vaccines, the booster dose is very necessary.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, China
| | - Zongxing Yang
- The Second Department of Infectious Disease, Xixi Hospital of Hangzhou, The Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuxia Wu
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, China
| | - Jin Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, China
- Department of Translational Medicine Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
19
|
Motsoeneng BM, Manamela NP, Kaldine H, Kgagudi P, Hermanus T, Ayres F, Makhado Z, Moyo-Gwete T, van der Mescht MA, Abdullah F, Boswell MT, Ueckermann V, Rossouw TM, Madhi SA, Moore PL, Richardson SI. Despite delayed kinetics, people living with HIV achieve equivalent antibody function after SARS-CoV-2 infection or vaccination. Front Immunol 2023; 14:1231276. [PMID: 37600825 PMCID: PMC10435738 DOI: 10.3389/fimmu.2023.1231276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The kinetics of Fc-mediated functions following SARS-CoV-2 infection or vaccination in people living with HIV (PLWH) are not known. We compared SARS-CoV-2 spike-specific Fc functions, binding, and neutralization in PLWH and people without HIV (PWOH) during acute infection (without prior vaccination) with either the D614G or Beta variants of SARS-CoV-2, or vaccination with ChAdOx1 nCoV-19. Antiretroviral treatment (ART)-naïve PLWH had significantly lower levels of IgG binding, neutralization, and antibody-dependent cellular phagocytosis (ADCP) compared with PLWH on ART. The magnitude of antibody-dependent cellular cytotoxicity (ADCC), complement deposition (ADCD), and cellular trogocytosis (ADCT) was differentially triggered by D614G and Beta. The kinetics of spike IgG-binding antibodies, ADCC, and ADCD were similar, irrespective of the infecting variant between PWOH and PLWH overall. However, compared with PWOH, PLWH infected with D614G had delayed neutralization and ADCP. Furthermore, Beta infection resulted in delayed ADCT, regardless of HIV status. Despite these delays, we observed improved coordination between binding and neutralizing responses and Fc functions in PLWH. In contrast to D614G infection, binding responses in PLWH following ChAdOx-1 nCoV-19 vaccination were delayed, while neutralization and ADCP had similar timing of onset, but lower magnitude, and ADCC was significantly higher than in PWOH. Overall, despite delayed and differential kinetics, PLWH on ART develop comparable responses to PWOH, supporting the prioritization of ART rollout and SARS-CoV-2 vaccination in PLWH.
Collapse
Affiliation(s)
- Boitumelo M. Motsoeneng
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P. Manamela
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Haajira Kaldine
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Prudence Kgagudi
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Tandile Hermanus
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Frances Ayres
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Zanele Makhado
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Mieke A. van der Mescht
- Department of Immunology, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
- South African Medical Research Council Office of AIDS and TB Research, Pretoria, South Africa
| | - Michael T. Boswell
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Simone I. Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
20
|
He X, Lv F, Fox M, Yeo YH, Zou B, Liu J, Zhao Y, Zu J, Li Y, Tang W, Zhang L, Ji F. HIV-related mortality in the United States during the COVID-19 pandemic: A population-based study. J Intern Med 2023; 294:178-190. [PMID: 37095702 DOI: 10.1111/joim.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
BACKGROUND US progress toward ending the HIV epidemic was disrupted during the COVID-19 pandemic. OBJECTIVES To determine the impact of the pandemic on HIV-related mortality and potential disparities. METHODS Using data from the Centers for Disease Control and Prevention and the United States (US) Census Bureau, HIV-related mortality data of decedents aged ≥25 years between 2012 and 2021 were analyzed. Excess HIV-related mortality rates were estimated by determining the difference between observed and projected mortality rates during the pandemic. The trends of mortality were quantified with joinpoint regression analysis. RESULTS Of the 79,725 deaths documented in adults aged 25 years and older between 2012 and 2021, a significant downward trend was noted in HIV-related mortality rates before the pandemic, followed by a surge during the pandemic. The observed mortality rates were 18.8% (95% confidence interval [CI]: 13.1%-25.5%) and 25.4% (95%CI: 19.9%-30.4%) higher than the projected values in 2020 and 2021, respectively. Both of these percentages were higher than that in the general population in 2020 (16.4%, 95%CI: 14.9%-17.9%) and 2021 (19.8%, 95%CI: 18.0%-21.6%), respectively. Increased HIV-related mortality was observed across all age subgroups, but those aged 25-44 years demonstrated the greatest relative increase and the lowest COVID-19-related deaths when compared to middle- and old-aged decedents. Disparities were observed across racial/ethnic subgroups and geographic regions. CONCLUSIONS The pandemic led to a reversal in the attainments made to reduce the prevalence of HIV. Individuals living with HIV were disproportionately affected during the pandemic. Thoughtful policies are needed to address the disparity in excess HIV-related mortality.
Collapse
Affiliation(s)
- Xinyuan He
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Fan Lv
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Marissa Fox
- Division of General Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yee Hui Yeo
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Biyao Zou
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Palo Alto, California, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, California, USA
| | - Jinli Liu
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, P. R. China
| | - Yunyu Zhao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jian Zu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yan Li
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Weiming Tang
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
- University of North Carolina Project-China, Guangzhou, P. R. China
| | - Lei Zhang
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, P. R. China
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
- Central Clinical School, Faculty of Medicine, Monash University, Melbourne, Australia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fanpu Ji
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
- Shaanxi Provincial Clinical Medical Research Center of Infectious Diseases, Xi'an, P. R. China
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, P. R. China
| |
Collapse
|
21
|
Griffin DW, Pai Mangalore R, Hoy JF, McMahon JH. Immunogenicity, effectiveness, and safety of SARS-CoV-2 vaccination in people with HIV. AIDS 2023; 37:1345-1360. [PMID: 37070539 PMCID: PMC10328433 DOI: 10.1097/qad.0000000000003579] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES People with HIV (PWH) experience a greater risk of morbidity and mortality following COVID-19 infection, and poorer immunological responses to several vaccines. We explored existing evidence regarding the immunogenicity, effectiveness, and safety of SARS-CoV-2 vaccines in PWH compared with controls. METHODS We conducted a systematic search of electronic databases from January 2020 until June 2022, in addition to conference databases, to identify studies comparing clinical, immunogenicity, and safety in PWH and controls. We compared results between those with low (<350 cells/μl) and high (>350 cells/μl) CD4 + T-cell counts where possible. We performed a meta-analysis of seroconversion and neutralization responses to calculate a pooled risk ratio as the measure of effect. RESULTS We identified 30 studies, including four reporting clinical effectiveness, 27 immunogenicity, and 12 reporting safety outcomes. PWH were 3% [risk ratio 0.97, 95% confidence interval (95% CI) 0.95-0.99] less likely to seroconvert and 5% less likely to demonstrate neutralization responses (risk ratio 0.95, 95% CI 0.91-0.99) following a primary vaccine schedule. Having a CD4 + T-cell count less than 350 cells/μl (risk ratio 0.91, 95% CI 0.83-0.99) compared with a CD4 + T-cell count more than 350 cells/μl, and receipt of a non-mRNA vaccine in PWH compared with controls (risk ratio 0.86, 95% CI 0.77-0.96) were associated with reduced seroconversion. Two studies reported worse clinical outcomes in PWH. CONCLUSION Although vaccines appear well tolerated in PWH, this group experience poorer immunological responses following vaccination than controls, particularly with non-mRNA vaccines and low CD4 + T-cell counts. PWH should be prioritized for mRNA COVID-19 vaccines, especially PWH with more advanced immunodeficiency.
Collapse
Affiliation(s)
- David W.J. Griffin
- Department of Infectious Diseases, Alfred Health
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Rekha Pai Mangalore
- Department of Infectious Diseases, Alfred Health
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jennifer F. Hoy
- Department of Infectious Diseases, Alfred Health
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Health
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Heftdal LD, Pérez-Alós L, Hasselbalch RB, Hansen CB, Hamm SR, Møller DL, Pries-Heje M, Fogh K, Gerstoft J, Grønbæk K, Ostrowski SR, Frikke-Schmidt R, Sørensen E, Hilsted L, Bundgaard H, Garred P, Iversen K, Sabin C, Nielsen SD. Humoral and cellular immune responses eleven months after the third dose of BNT162b2 an mRNA-based COVID-19 vaccine in people with HIV - a prospective observational cohort study. EBioMedicine 2023; 93:104661. [PMID: 37331161 PMCID: PMC10272831 DOI: 10.1016/j.ebiom.2023.104661] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND We investigated long-term durability of humoral and cellular immune responses to third dose of BNT162b2 in people with HIV (PWH) and controls. METHODS In 378 PWH with undetectable viral replication and 224 matched controls vaccinated with three doses of BNT162b2, we measured IgG-antibodies against the receptor binding domain of SARS-CoV-2 spike protein three months before third dose of BNT162b2, and four and eleven months after. In 178 PWH and 135 controls, the cellular response was assessed by interferon-γ (IFN-γ) release in whole blood four months after third dose. Differences in antibody or IFN-γ concentrations were assessed by uni- and multivariable linear regressions. FINDINGS Before the third dose the concentration of SARS-CoV-2 antibodies was lower in PWH than in controls (unadjusted geometric mean ratio (GMR): 0.68 (95% CI: 0.54-0.86, p = 0.002). We observed no differences in antibody concentrations between PWH and controls after four (0.90 (95% CI: 0.75-1.09), p = 0.285) or eleven months (0.89 (95% CI: 0.69-1.14), p = 0.346) after the third dose. We found no difference in IFN-γ concentrations four months after the third dose between PWH and controls (1.06 (95% CI: 0.71-1.60), p = 0.767). INTERPRETATION We found no differences in antibody concentrations or cellular response between PWH and controls up to eleven months after third dose of BNT162b2. Our findings indicate that PWH with undetectable viral replication and controls have comparable immune responses to three doses of the BNT162b2 vaccine. FUNDING This work was funded by the Novo Nordisk Foundation (NFF205A0063505, NNF20SA0064201), the Carlsberg Foundation (CF20-476 0045), the Svend Andersen Research Foundation (SARF2021), and Bio- and Genome Bank Denmark.
Collapse
Affiliation(s)
- Line Dam Heftdal
- Viro-Immunology Research Unit, Department of Infectious Diseases, Section 8632, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloeesvej 5, 2200 Copenhagen N, Denmark
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Ole Maaloeesvej 26, 2200 Copenhagen N, Denmark
| | - Rasmus Bo Hasselbalch
- Department of Cardiology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 11, 2730 Herlev, Denmark; Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 11, 2730 Herlev, Denmark
| | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Ole Maaloeesvej 26, 2200 Copenhagen N, Denmark
| | - Sebastian Rask Hamm
- Viro-Immunology Research Unit, Department of Infectious Diseases, Section 8632, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Dina Leth Møller
- Viro-Immunology Research Unit, Department of Infectious Diseases, Section 8632, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Mia Pries-Heje
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Kamille Fogh
- Department of Cardiology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 11, 2730 Herlev, Denmark; Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 11, 2730 Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Jan Gerstoft
- Viro-Immunology Research Unit, Department of Infectious Diseases, Section 8632, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Kirsten Grønbæk
- Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloeesvej 5, 2200 Copenhagen N, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Clinical Immunology, Section 2034, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Section 2034, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Linda Hilsted
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Ole Maaloeesvej 26, 2200 Copenhagen N, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Kasper Iversen
- Department of Cardiology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 11, 2730 Herlev, Denmark; Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 11, 2730 Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Caroline Sabin
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Blood Borne and Sexually Transmitted Infections at UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom; Centre for Clinical Research, Epidemiology, Modelling and Evaluation, Institute for Global Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Susanne Dam Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases, Section 8632, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark.
| |
Collapse
|
23
|
Zhou Q, Zeng F, Meng Y, Liu Y, Liu H, Deng G. Serological response following COVID-19 vaccines in patients living with HIV: a dose-response meta-analysis. Sci Rep 2023; 13:9893. [PMID: 37336939 DOI: 10.1038/s41598-023-37051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023] Open
Abstract
To quantify the pooled rate and risk ratio of seroconversion following the uncomplete, complete, or booster dose of COVID-19 vaccines in patients living with HIV. PubMed, Embase and Cochrane library were searched for eligible studies to perform a systematic review and meta-analysis based on PRIMSA guidelines. The pooled rate and risk ratio of seroconversion were assessed using the Freeman-Tukey double arcsine method and Mantel-Haenszel approach, respectively. Random-effects model was preferentially used as the primary approach to pool results across studies. A total of 50 studies involving 7160 patients living with HIV were analyzed. We demonstrated that only 75.0% (56.4% to 89.9%) patients living with HIV achieved a seroconversion after uncomplete vaccination, which improved to 89.3% (84.2% to 93.5%) after complete vaccination, and 98.4% (94.8% to 100%) after booster vaccination. The seroconversion rates were significantly lower compared to controls at all the stages, while the risk ratios for uncomplete, complete, and booster vaccination were 0.87 (0.77 to 0.99), 0.95 (0.92 to 0.98), and 0.97 (0.94 to 0.99), respectively. We concluded that vaccine doses were associated with consistently improved rates and risk ratios of seroconversion in patients living with HIV, highlighting the significance of booster vaccination for patients living with HIV.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yu Meng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yihuang Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Guangtong Deng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
24
|
|
25
|
Khan MS, Kim E, Hingrat QL, Kleinman A, Ferrari A, Sammartino JC, Percivalle E, Xu C, Huang S, Kenniston TW, Cassaniti I, Baldanti F, Pandrea I, Gambotto A, Apetrei C. Tetravalent SARS-CoV-2 S1 Subunit Protein Vaccination Elicits Robust Humoral and Cellular Immune Responses in SIV-Infected Rhesus Macaque Controllers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532808. [PMID: 36993692 PMCID: PMC10055053 DOI: 10.1101/2023.03.15.532808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The COVID-19 pandemic has highlighted the need for safe and effective vaccines to be rapidly developed and distributed worldwide, especially considering the emergence of new SARS-CoV-2 variants. Protein subunit vaccines have emerged as a promising approach due to their proven safety record and ability to elicit robust immune responses. In this study, we evaluated the immunogenicity and efficacy of an adjuvanted tetravalent S1 subunit protein COVID-19 vaccine candidate composed of the Wuhan, B.1.1.7 variant, B.1.351 variant, and P.1 variant spike proteins in a nonhuman primate model with controlled SIVsab infection. The vaccine candidate induced both humoral and cellular immune responses, with T- and B cell responses mainly peaking post-boost immunization. The vaccine also elicited neutralizing and cross-reactive antibodies, ACE2 blocking antibodies, and T-cell responses, including spike specific CD4+ T cells. Importantly, the vaccine candidate was able to generate Omicron variant spike binding and ACE2 blocking antibodies without specifically vaccinating with Omicron, suggesting potential broad protection against emerging variants. The tetravalent composition of the vaccine candidate has significant implications for COVID-19 vaccine development and implementation, providing broad antibody responses against numerous SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Quentin Le Hingrat
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Adam Kleinman
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
| | - Jose C Sammartino
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
| | - Cuiling Xu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Ivona Pandrea
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Jongkees MJ, Geers D, Hensley KS, Huisman W, GeurtsvanKessel CH, Bogers S, Gommers L, Papageorgiou G, Jochems SP, den Hollander JG, Schippers EF, Ammerlaan HSM, Bierman WFW, van der Valk M, Berrevoets MAH, Soetekouw R, Langebeek N, Bruns AHW, Leyten EMS, Sigaloff KCE, van Vonderen MGA, Delsing CE, Branger J, Katsikis PD, Mueller YM, de Vries RD, Rijnders BJA, Brinkman K, Rokx C, Roukens AHE. Immunogenicity of an Additional mRNA-1273 SARS-CoV-2 Vaccination in People With HIV With Hyporesponse After Primary Vaccination. J Infect Dis 2023; 227:651-662. [PMID: 36402141 PMCID: PMC9978319 DOI: 10.1093/infdis/jiac451] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The COVIH study is a prospective coronavirus disease 2019 (COVID-19) vaccination study in 1154 people with HIV (PWH), of whom 14% showed reduced antibody levels after primary vaccination. We evaluated whether an additional vaccination boosts immune responses in these hyporesponders. METHODS The primary end point was the increase in antibodies 28 days after additional mRNA-1273 vaccination. Secondary end points included neutralizing antibodies, S-specific T-cell and B-cell responses, and reactogenicity. RESULTS Of the 66 participants, 40 previously received 2 doses ChAdOx1-S, 22 received 2 doses BNT162b2, and 4 received a single dose Ad26.COV2.S. The median age was 63 years (interquartile range [IQR], 60-66), 86% were male, and median CD4+ T-cell count was 650/μL (IQR, 423-941). The mean S1-specific antibody level increased from 35 binding antibody units (BAU)/mL (95% confidence interval [CI], 24-46) to 4317 BAU/mL (95% CI, 3275-5360) (P < .0001). Of all participants, 97% showed an adequate response and the 45 antibody-negative participants all seroconverted. A significant increase in the proportion of PWH with ancestral S-specific CD4+ T cells (P = .04) and S-specific B cells (P = .02) was observed. CONCLUSIONS An additional mRNA-1273 vaccination induced a robust serological response in 97% of PWH with a hyporesponse after primary vaccination. Clinical Trials Registration. EUCTR2021-001054-57-N.
Collapse
Affiliation(s)
- Marlou J Jongkees
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Kathryn S Hensley
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Wesley Huisman
- Department of Parasitology, Leiden University Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Susanne Bogers
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Lennert Gommers
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Grigorios Papageorgiou
- Department of Biostatistics, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Simon P Jochems
- Department of Parasitology, Leiden University Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jan G den Hollander
- Department of Internal Medicine, Maasstad Hospital, Rotterdam, the Netherlands
| | - Emile F Schippers
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Internal Medicine, Haga Teaching Hospital, the Hague, the Netherlands
| | - Heidi S M Ammerlaan
- Department of Internal Medicine, Catharina Hospital, Eindhoven, the Netherlands
| | - Wouter F W Bierman
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Groningen, Groningen, the Netherlands
| | - Marc van der Valk
- Department of Internal Medicine and Infectious Diseases, DC Klinieken, Amsterdam, the Netherlands.,Department of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Marvin A H Berrevoets
- Department of Internal Medicine, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Robert Soetekouw
- Department of Internal Medicine and Infectious Diseases, Spaarne Gasthuis, Haarlem, the Netherlands
| | - Nienke Langebeek
- Department of Internal Medicine and Infectious Diseases, Rijnstate Hospital, Arnhem, the Netherlands
| | - Anke H W Bruns
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Eliane M S Leyten
- Department of Internal Medicine and Infectious Diseases, Haaglanden Medical Centre, the Hague, the Netherlands
| | - Kim C E Sigaloff
- Department of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | | | - Corine E Delsing
- Department of Internal Medicine and Infectious Diseases, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Judith Branger
- Department of Internal Medicine, Flevo Hospital, Almere, the Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Kees Brinkman
- Department of Internal Medicine and Infectious Diseases, OLVG Hospital, Amsterdam, the Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Anna H E Roukens
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
27
|
Correction: Immunogenicity and reactogenicity of SARS-CoV-2 vaccines in people living with HIV in the Netherlands: A nationwide prospective cohort study. PLoS Med 2023; 20:e1004159. [PMID: 36608645 PMCID: PMC9822713 DOI: 10.1371/journal.pmed.1004159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pmed.1003979.].
Collapse
|
28
|
Zhan H, Gao H, Liu Y, Zhang X, Li H, Li X, Wang L, Li C, Li B, Wang Y, Dai E, Li Y. Booster shot of inactivated SARS-CoV-2 vaccine induces potent immune responses in people living with HIV. J Med Virol 2023; 95:e28428. [PMID: 36571267 PMCID: PMC9880704 DOI: 10.1002/jmv.28428] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
This study aimed to investigate the immunogenicity to SARS-CoV-2 and evasive subvariants BA.4/5 in people living with HIV (PLWH) following a third booster shot of inactivated SARS-CoV-2 vaccine. We conducted a cross-sectional study in 318 PLWH and 241 healthy controls (HC) using SARS-CoV-2 immunoassays. Vaccine-induced immunological responses were compared before and after the third dose. Serum levels of IgG anti-RBD and inhibition rate of NAb were significantly elevated at the "post-third dose" sampling time compared with the pre-third dose in PLWH, but were relatively decreased in contrast with those of HCs. Induced humoral and cellular responses attenuated over time after triple-dose vaccination. The neutralizing capacity against BA.4/5 was also intensified but remained below the positive inhibition threshold. Seropositivity of SARS-CoV-2-specific antibodies in PLWH was prominently lower than that in HC. We also identified age, CD4 cell counts, time after the last vaccination, and WHO staging type of PLWH as independent factors associated with the seropositivity of antibodies. PLWH receiving booster shot of inactivated vaccines generate higher antibody responses than the second dose, but lower than that in HCs. Decreased anti-BA.4/5 responses than that of WT impede the protective effect of the third dose on Omicron prevalence.
Collapse
Affiliation(s)
- Haoting Zhan
- Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina
| | - Yongmei Liu
- Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Xihong Zhang
- Department of Laboratory Medicine, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina,School of Public HealthNorth China University of Science and TechnologyTangshanChina
| | - Haolong Li
- Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Xiaomeng Li
- Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina,Department of Medical Research Center, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Lijing Wang
- Department of AIDS, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina
| | - Chen Li
- Department of AIDS, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina
| | - Beilei Li
- Department of AIDS, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina
| | - Yuling Wang
- Department of AIDS, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina
| | - Yongzhe Li
- Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
29
|
Touizer E, Alrubbayi A, Ford R, Hussain N, Gerber PP, Shum HL, Rees-Spear C, Muir L, Gea-Mallorquí E, Kopycinski J, Jankovic D, Pinder C, Fox TA, Williams I, Mullender C, Maan I, Waters L, Johnson M, Madge S, Youle M, Barber T, Burns F, Kinloch S, Rowland-Jones S, Gilson R, Matheson NJ, Morris E, Peppa D, McCoy LE. Attenuated humoral responses in HIV infection after SARS-CoV-2 vaccination are linked to global B cell defects and cellular immune profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.11.516111. [PMID: 36380764 PMCID: PMC9665338 DOI: 10.1101/2022.11.11.516111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
People living with HIV (PLWH) on suppressive antiretroviral therapy (ART) can have residual immune dysfunction and often display poorer responses to vaccination. We assessed in a cohort of PLWH (n=110) and HIV negative controls (n=64) the humoral and spike-specific B-cell responses following 1, 2 or 3 SARS-CoV-2 vaccine doses. PLWH had significantly lower neutralizing antibody (nAb) titers than HIV-negative controls at all studied timepoints. Moreover, their neutralization breadth was reduced with fewer individuals developing a neutralizing response against the Omicron variant (BA.1) relative to controls. We also observed a delayed development of neutralization in PLWH that was underpinned by a reduced frequency of spike-specific memory B cells (MBCs) and pronounced B cell dysfunction. Improved neutralization breadth was seen after the third vaccine dose in PLWH but lower nAb responses persisted and were associated with global, but not spike-specific, MBC dysfunction. In contrast to the inferior antibody responses, SARS-CoV-2 vaccination induced robust T cell responses that cross-recognized variants in PLWH. Strikingly, a subset of PLWH with low or absent neutralization had detectable functional T cell responses. These individuals had reduced numbers of circulating T follicular helper cells and an enriched population of CXCR3 + CD127 + CD8 + T cells after two doses of SARS-CoV-2 vaccination, which may compensate for sub-optimal serological responses in the event of infection. Therefore, normalisation of B cell homeostasis could improve serological responses to vaccines in PLWH and evaluating T cell immunity could provide a more comprehensive immune status profile in these individuals and others with B cell imbalances.
Collapse
Affiliation(s)
- Emma Touizer
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Aljawharah Alrubbayi
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
- Nuffield Department of Medicine, University of Oxford, UK
| | - Rosemarie Ford
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Noshin Hussain
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, UK
| | - Hiu-Long Shum
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Chloe Rees-Spear
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Luke Muir
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | | | | | - Dylan Jankovic
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Christopher Pinder
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Thomas A Fox
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Ian Williams
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, UK
| | | | - Irfaan Maan
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, UK
- Institute for Global Health, University College London, UK
| | - Laura Waters
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, UK
| | - Margaret Johnson
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust UK
| | - Sara Madge
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust UK
| | - Michael Youle
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust UK
| | - Tristan Barber
- Institute for Global Health, University College London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust UK
| | - Fiona Burns
- Institute for Global Health, University College London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust UK
| | - Sabine Kinloch
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust UK
| | | | - Richard Gilson
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, UK
- Institute for Global Health, University College London, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Emma Morris
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Dimitra Peppa
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, UK
- Institute for Global Health, University College London, UK
| | - Laura E McCoy
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| |
Collapse
|