1
|
Gubler DJ, Hanley KA, Monath TP, Morens DM, Nogueira ML, Vasilakis N, Weaver SC. Yellow Jack: a modern threat to Asia-Pacific countries? NPJ VIRUSES 2025; 3:34. [PMID: 40295840 PMCID: PMC12022128 DOI: 10.1038/s44298-024-00079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/04/2024] [Indexed: 04/30/2025]
Abstract
In 1923, H.R. Carter published a seminal treatise on the possibility of yellow fever virus spreading to the Asia Pacific region, where large numbers of susceptible people were at risk of infection. This paper marks the 100th anniversary of that publication, and posits that, despite many public health advances, global trends increase the likelihood of yellow fever virus geographic spread. Potential reasons for the failure of the virus to spread are discussed.
Collapse
Affiliation(s)
- Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | | | | | - Mauricio Lacerda Nogueira
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
| | - Scott C Weaver
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
Gutkes J, Krabbe NP, Ausderau K, Mohr EL. Macaque Models of Prenatal and Postnatal Zika Virus Exposure and Developmental Outcomes. J Pediatric Infect Dis Soc 2025; 14:piaf024. [PMID: 40059782 DOI: 10.1093/jpids/piaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/05/2025] [Indexed: 04/26/2025]
Abstract
Prenatal and postnatal Zika virus (ZIKV) exposure can result in a constellation of developmental deficits in human infants that present during early childhood. Translational rhesus macaque models have been developed to interrogate these deficits. Here, we summarize and interpret the developmental findings from rhesus macaque studies of prenatal or postnatal ZIKV exposure. We looked for potential biomarkers that could be used to identify infants at risk for developmental deficits. Visual orientation and motor deficits were the most common developmental deficits across the studies. We identified a potential association between prolonged maternal RNAemia and worse infant developmental outcomes in prenatal exposure studies. Therefore, longitudinal screening of maternal blood for ZIKV RNA may help identify human infants at risk for visual orientation and motor deficits in early childhood; however, the diversity of research protocols across the groups made it challenging to make definitive associations.
Collapse
Affiliation(s)
- Jake Gutkes
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Nicholas P Krabbe
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Karla Ausderau
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Emma L Mohr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Gardinali NR, Marchevsky RS, Vieira YC, Pelajo-Machado M, Kugelmeier T, Melgaço JG, Castro MP, de Oliveira JM, Pinto MA. Congenital Zika virus infection in laboratory animals: a comparative review highlights translational studies on the maternal-foetal interface. Mem Inst Oswaldo Cruz 2025; 120:e240125. [PMID: 40052994 PMCID: PMC11884655 DOI: 10.1590/0074-02760240125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/23/2024] [Indexed: 03/10/2025] Open
Abstract
The 2015-16 Zika virus (ZIKV) epidemic has posed unprecedented concern for maternal-infant health, mainly due to the substantial risk of microcephaly and other neurological birth abnormalities associated with congenital ZIKV syndrome (CZS). As licenced vaccines and effective antivirals are still unavailable, attention has been focused on post-delivery in vitro or translational in vivo studies to understand the impact of maternal ZIKV infection on placentation and neurodevelopmental consequences for the foetus. Here, we review clinical and translational studies highlighting ZIKV-induced maternal-foetal interface dysfunction, adding to our previous observations of experimental ZIKV vertical transmission to pregnant rhesus monkeys and newly published post-epidemic findings about the theme. This comparative review focuses on the mechanisms by which the virus has a cytopathic effect on trophoblasts and macrophages during placentation in humans, nonhuman primates, and rodent transgenic models, crosses the placental barrier, replicates, and establishes a persistent uteroplacental infection. When considering the mechanism of ZIKV-induced birth defects in humans and other susceptible hosts, it becomes apparent how the various stages of the ZIKV cycle in the host (both the parent and offspring) unfold. This understanding presents specific opportunities for pharmacological intervention and the development of preventative vaccines.
Collapse
Affiliation(s)
- Noemi Rovaris Gardinali
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Desenvolvimento Tecnológico em Virologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Laboratório de Tecnologia Virológica, Rio de Janeiro, RJ, Brasil
| | - Renato Sergio Marchevsky
- Fundação Oswaldo Cruz-Fiocruz, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Departamento de Experimentos Pré-Clínicos, Laboratório de Ensaios Pré-Clínicos, Rio de Janeiro, RJ, Brasil
| | - Yara Cavalcante Vieira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Desenvolvimento Tecnológico em Virologia, Rio de Janeiro, RJ, Brasil
- The Pennsylvania State University, Department of Food Science, University Park, PA, USA
| | - Marcelo Pelajo-Machado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Medicina Experimental e Saúde, Rio de Janeiro, RJ, Brasil
| | - Tatiana Kugelmeier
- Fundação Oswaldo Cruz-Fiocruz, Instituto de Ciência e Tecnologia em Biomodelos, Rio de Janeiro, RJ, Brasil
| | - Juliana Gil Melgaço
- Fundação Oswaldo Cruz-Fiocruz, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Departamento de Experimentos Pré-Clínicos, Laboratório de Tecnologia Imunológica, Rio de Janeiro, RJ, Brasil
| | | | - Jaqueline Mendes de Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Desenvolvimento Tecnológico em Virologia, Rio de Janeiro, RJ, Brasil
| | - Marcelo Alves Pinto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Desenvolvimento Tecnológico em Virologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
4
|
Li A, Coffey LL, Mohr EL, Raper J, Chahroudi A, Ausderau KK, Aliota MT, Friedrich TC, Mitzey AM, Koenig MR, Golos TG, Jaeger HK, Roberts VHJ, Lo JO, Smith JL, Hirsch AJ, Streblow DN, Newman CM, O'Connor DH, Lackritz EM, Van Rompay KKA, Adams Waldorf KM. Role of non-human primate models in accelerating research and developing countermeasures against Zika virus infection. THE LANCET. MICROBE 2025:101030. [PMID: 40024258 DOI: 10.1016/j.lanmic.2024.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/19/2024] [Accepted: 10/21/2024] [Indexed: 03/04/2025]
Abstract
Zika virus, a mosquito-transmitted orthoflavivirus, has become a pathogen of global health concern ever since the virus caused an epidemic in Brazil in 2015 associated with approximately 700 000 laboratory-confirmed cases of congenital microcephaly. The subsequent spread of the epidemic in 2016 resulted in a wide spectrum of congenital neurological, ophthalmological, and developmental abnormalities across the Americas, Africa, and Asia. In this context, non-human primate models have become essential tools for Zika virus research to understand the pathogenesis of congenital brain injury and perinatal complications and for developing and testing medical countermeasures such as vaccines, diagnostics, and therapeutics. Fetal brain injury has been observed across various non-human primate species and is influenced by factors such as the Zika virus strain, gestational age at inoculation, and inoculation dose and route. Miscarriages are also seen as common outcomes of first trimester Zika virus infections. This Series paper reviews the diverse non-human primate models currently used for Zika virus research to mitigate the public health effects of future Zika virus epidemics.
Collapse
Affiliation(s)
- Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA, USA
| | - Emma L Mohr
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica Raper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Emory National Primate Research Center, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Emory National Primate Research Center, Atlanta, GA, USA
| | - Karla K Ausderau
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew T Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota Twin Cities, St Paul, MN, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ann M Mitzey
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle R Koenig
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Hannah K Jaeger
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jamie O Lo
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA; Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jessica L Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Alec J Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Christina M Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin National Primate Research Center, Madison, WI, USA
| | - Eve M Lackritz
- Center for Infectious Disease Research and Policy (CIDRAP), University of Minnesota, Minneapolis, MN, USA
| | - Koen K A Van Rompay
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA, USA; California National Primate Research Center, Davis, CA, USA
| | - Kristina M Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, Seattle, WA, USA.
| |
Collapse
|
5
|
Vijayan K. K. V, De Paris K. Nonhuman primate models of pediatric viral diseases. Front Cell Infect Microbiol 2024; 14:1493885. [PMID: 39691699 PMCID: PMC11649651 DOI: 10.3389/fcimb.2024.1493885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Infectious diseases are the leading cause of death in infants and children under 5 years of age. In utero exposure to viruses can lead to spontaneous abortion, preterm birth, congenital abnormalities or other developmental defects, often resulting in lifelong health sequalae. The underlying biological mechanisms are difficult to study in humans due to ethical concerns and limited sample access. Nonhuman primates (NHP) are closely related to humans, and pregnancy and immune ontogeny in infants are very similar to humans. Therefore, NHP are a highly relevant model for understanding fetal and postnatal virus-host interactions and to define immune mechanisms associated with increased morbidity and mortality in infants. We will discuss NHP models of viruses causing congenital infections, respiratory diseases in early life, and HIV. Cytomegalovirus (CMV) remains the most common cause of congenital defects worldwide. Measles is a vaccine-preventable disease, yet measles cases are resurging. Zika is an example of an emerging arbovirus with devastating consequences for the developing fetus and the surviving infant. Among the respiratory viruses, we will discuss influenza and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We will finish with HIV as an example of a lifelong infection without a cure or vaccine. The review will highlight (i) the impact of viral infections on fetal and infant immune development, (ii) how differences in infant and adult immune responses to infection alter disease outcome, and emphasize the invaluable contribution of pediatric NHP infection models to the design of effective treatment and prevention strategies, including vaccines, for human infants.
Collapse
Affiliation(s)
- Vidya Vijayan K. K.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina, Chapel Hill, NC, United States
- Children’s Research Institute, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Martinot AJ, Cox F, Abbink P, Hecht JL, Bronson R, Borducchi EN, Rinaldi WJ, Ferguson MJ, De La Barrera RA, Zahn R, van der Fits L, Barouch DH. Ad26.M.Env ZIKV vaccine protects pregnant rhesus macaques and fetuses against Zika virus infection. NPJ Vaccines 2024; 9:157. [PMID: 39198466 PMCID: PMC11358461 DOI: 10.1038/s41541-024-00927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
At the start of the Zika virus (ZIKV) epidemic in 2015, ZIKV spread across South and Central America, and reached parts of the southern United States placing pregnant women at risk for fetal microcephaly, fetal loss, and other adverse pregnancy outcomes associated with congenital ZIKA syndrome (CZS). For this reason, testing of a safe and efficacious ZIKV vaccine remains a global health priority. Here we report that a single immunization with Ad26.M.Env ZIKV vaccine, when administered prior to conception, fully protects pregnant rhesus macaques from ZIKV viral RNA in blood and tissues with no adverse effects in dams and fetuses. Furthermore, vaccination prevents ZIKV distribution to fetal tissues including the brain. ZIKV associated neuropathology was absent in offspring of Ad26.M.Env vaccinated dams, although pathology was limited in fetuses from non-immunized, challenged dams. Vaccine efficacy is associated with induction of ZIKV neutralizing antibodies in pregnant rhesus macaques. These data suggest the feasibility of vaccine prevention of CZS in humans.
Collapse
Affiliation(s)
- Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Departments of Infectious Disease and Global Health and Comparative Pathobiology, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| | - Freek Cox
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan L Hecht
- Division of Anatomic Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Roland Zahn
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Gonçalves SMC, Galdino LV, Lima MC, da Silva Moura JA, Viana DCF, da Rosa MM, Ferreira LFGR, Hernandes MZ, Pereira MC, de Melo Rêgo MJB, da Rocha Pitta I, de Oliveira França R, da Rocha Pitta MG, da Rocha Pitta MG. Evaluation of Thiazolidine Derivatives with Potential Anti-ZIKV Activity. Curr Top Med Chem 2024; 24:2224-2237. [PMID: 39136505 DOI: 10.2174/0115680266315388240801053401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE In this study, we have synthesized 19 Thiazolidine (TZD) derivatives to investigate their potential anti-ZIKV effects. METHODS Nineteen thiazolidine derivatives were synthesized and evaluated for their cytotoxicity and antiviral activity against the ZIKA virus. RESULTS Among them, six demonstrated remarkable selectivity against the ZIKV virus, exhibiting IC50 values of <5μM, and the other compounds did not demonstrate selectivity for the virus. Interestingly, several derivatives effectively suppressed the replication of ZIKV RNA copies, with derivatives significantly reducing ZIKV mRNA levels at 24 hours post-infection (hpi). Notably, two derivatives (ZKC-4 and -9) stood out by demonstrating a protective effect against ZIKV cell entry. Informed by computational analysis of binding affinity and intermolecular interactions within the NS5 domain's N-7 and O'2 positions, ZKC-4 and FT-39 displayed the highest predicted affinities. Intriguingly, ZKC-4 and ZKC-9 derivatives exhibited the most favorable predicted binding affinities for the ZIKV-E binding site. CONCLUSION The significance of TZDs as potent antiviral agents is underscored by these findings, suggesting that exploring TZD derivatives holds promise for advancing antiviral therapeutic strategies.
Collapse
Affiliation(s)
| | - Lília Vieira Galdino
- Therapeutic Innovation Research Center, Federal University of Pernambuco, Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Morganna Costa Lima
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation / FIOCRUZ, Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - José Arion da Silva Moura
- Pharmaceutical Planning and Synthesis Laboratory, Federal University of Pernambuco Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Douglas Carvalho Francisco Viana
- Pharmaceutical Planning and Synthesis Laboratory, Federal University of Pernambuco Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Michelle Melgarejo da Rosa
- Therapeutic Innovation Research Center, Federal University of Pernambuco, Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | | | - Marcelo Zaldini Hernandes
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Artur de Sá, Recife-PE, 50740-521, Brazil
| | - Michelly Cristiny Pereira
- Therapeutic Innovation Research Center, Federal University of Pernambuco, Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | | | - Ivan da Rocha Pitta
- Pharmaceutical Planning and Synthesis Laboratory, Federal University of Pernambuco Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Rafael de Oliveira França
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation / FIOCRUZ, Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Marina Galdino da Rocha Pitta
- Pharmaceutical Planning and Synthesis Laboratory, Federal University of Pernambuco Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Maira Galdino da Rocha Pitta
- Therapeutic Innovation Research Center, Federal University of Pernambuco, Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| |
Collapse
|
8
|
Saron WAA, Shanmugam K, Tung CC, Patmanathan RK, Rathore APS, Anderson DE, St John AL. Exacerbated Zika virus-induced neuropathology and microcephaly in fetuses of dengue-immune nonhuman primates. Sci Transl Med 2023; 15:eadd2420. [PMID: 37878671 DOI: 10.1126/scitranslmed.add2420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that can vertically transmit from mother to fetus, potentially causing congenital defects, including microcephaly. It is not fully understood why some fetuses experience severe complications after in utero exposure to ZIKV, whereas others do not. Given the antigenic similarity between ZIKV and the closely related virus dengue (DENV) and the potential of DENV-specific antibodies to enhance ZIKV disease severity in mice, we questioned whether maternal DENV immunity could influence fetal outcomes in a nonhuman primate model of ZIKV vertical transmission. We found significantly increased severity of congenital Zika syndrome (CZS) in fetuses of DENV-immune cynomolgus macaques infected with ZIKV in early pregnancy compared with naïve controls, which occurred despite no effect on maternal ZIKV infection or antibody responses. Ultrasound measurements of head circumference and biparietal diameter measurements taken sequentially throughout pregnancy demonstrated CZS in fetuses of DENV-immune pregnant macaques. Furthermore, severe CZS enhanced by DENV immunity was typified by reduced cortical thickness and increased frequency of neuronal death, hemorrhaging, cellular infiltrations, calcifications, and lissencephaly in fetal brains. This study shows that maternal immunity to DENV can worsen ZIKV neurological outcomes in fetal primates, and it provides an animal model of vertical transmission closely approximating human developmental timelines that could be used to investigate severe ZIKV disease outcomes and interventions in fetuses.
Collapse
Affiliation(s)
- Wilfried A A Saron
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Keerthana Shanmugam
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | | | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Danielle E Anderson
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria 3000, Australia
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| |
Collapse
|
9
|
Krabbe NP, Razo E, Abraham HJ, Spanton RV, Shi Y, Bhattacharya S, Bohm EK, Pritchard JC, Weiler AM, Mitzey AM, Eickhoff JC, Sullivan E, Tan JC, Aliota MT, Friedrich TC, O’Connor DH, Golos TG, Mohr EL. Control of maternal Zika virus infection during pregnancy is associated with lower antibody titers in a macaque model. Front Immunol 2023; 14:1267638. [PMID: 37809089 PMCID: PMC10556460 DOI: 10.3389/fimmu.2023.1267638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Zika virus (ZIKV) infection during pregnancy results in a spectrum of birth defects and neurodevelopmental deficits in prenatally exposed infants, with no clear understanding of why some pregnancies are more severely affected. Differential control of maternal ZIKV infection may explain the spectrum of adverse outcomes. Methods Here, we investigated whether the magnitude and breadth of the maternal ZIKV-specific antibody response is associated with better virologic control using a rhesus macaque model of prenatal ZIKV infection. We inoculated 18 dams with an Asian-lineage ZIKV isolate (PRVABC59) at 30-45 gestational days. Plasma vRNA and infectious virus kinetics were determined over the course of pregnancy, as well as vRNA burden in the maternal-fetal interface (MFI) at delivery. Binding and neutralizing antibody assays were performed to determine the magnitude of the ZIKV-specific IgM and IgG antibody responses throughout pregnancy, along with peptide microarray assays to define the breadth of linear ZIKV epitopes recognized. Results Dams with better virologic control (n= 9) cleared detectable infectious virus and vRNA from the plasma by 7 days post-infection (DPI) and had a lower vRNA burden in the MFI at delivery. In comparison, dams with worse virologic control (n= 9) still cleared detectable infectious virus from the plasma by 7 DPI but had vRNA that persisted longer, and had higher vRNA burden in the MFI at delivery. The magnitudes of the ZIKV-specific antibody responses were significantly lower in the dams with better virologic control, suggesting that higher antibody titers are not associated with better control of ZIKV infection. Additionally, the breadth of the ZIKV linear epitopes recognized did not differ between the dams with better and worse control of ZIKV infection. Discussion Thus, the magnitude and breadth of the maternal antibody responses do not seem to impact maternal virologic control. This may be because control of maternal infection is determined in the first 7 DPI, when detectable infectious virus is present and before robust antibody responses are generated. However, the presence of higher ZIKV-specific antibody titers in dams with worse virologic control suggests that these could be used as a biomarker of poor maternal control of infection and should be explored further.
Collapse
Affiliation(s)
- Nicholas P. Krabbe
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Elaina Razo
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Hunter J. Abraham
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rachel V. Spanton
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Yujia Shi
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Saswati Bhattacharya
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Julia C. Pritchard
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Ann M. Mitzey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jens C. Eickhoff
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Healthy, University of Wisconsin-Madison, Madison, WI, United States
| | - Eric Sullivan
- Nimble Therapeutics, Inc, Madison, WI, United States
| | - John C. Tan
- Nimble Therapeutics, Inc, Madison, WI, United States
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - David H. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Emma L. Mohr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Koenig MR, Mitzey AM, Zeng X, Reyes L, Simmons HA, Morgan TK, Bohm EK, Pritchard JC, Schmidt JA, Ren E, Leyva Jaimes FB, Winston E, Basu P, Weiler AM, Friedrich TC, Aliota MT, Mohr EL, Golos TG. Vertical transmission of African-lineage Zika virus through the fetal membranes in a rhesus macaque (Macaca mulatta) model. PLoS Pathog 2023; 19:e1011274. [PMID: 37549143 PMCID: PMC10434957 DOI: 10.1371/journal.ppat.1011274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/17/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023] Open
Abstract
Zika virus (ZIKV) can be transmitted vertically from mother to fetus during pregnancy, resulting in a range of outcomes including severe birth defects and fetal/infant death. Potential pathways of vertical transmission in utero have been proposed but remain undefined. Identifying the timing and routes of vertical transmission of ZIKV may help us identify when interventions would be most effective. Furthermore, understanding what barriers ZIKV overcomes to effect vertical transmission may help improve models for evaluating infection by other pathogens during pregnancy. To determine the pathways of vertical transmission, we inoculated 12 pregnant rhesus macaques with an African-lineage ZIKV at gestational day 30 (term is 165 days). Eight pregnancies were surgically terminated at either seven or 14 days post-maternal infection. Maternal-fetal interface and fetal tissues and fluids were collected and evaluated for ZIKV using RT-qPCR, in situ hybridization, immunohistochemistry, and plaque assays. Four additional pregnant macaques were inoculated and terminally perfused with 4% paraformaldehyde at three, six, nine, or ten days post-maternal inoculation. For these four cases, the entire fixed pregnant uterus was evaluated with in situ hybridization for ZIKV RNA. We determined that ZIKV can reach the MFI by six days after infection and infect the fetus by ten days. Infection of the chorionic membrane and the extraembryonic coelomic fluid preceded infection of the fetus and the mesenchymal tissue of the placental villi. We did not find evidence to support a transplacental route of ZIKV vertical transmission via infection of syncytiotrophoblasts or villous cytotrophoblasts. The pattern of infection observed in the maternal-fetal interface provides evidence of paraplacental vertical ZIKV transmission through the chorionic membrane, the outer layer of the fetal membranes.
Collapse
Affiliation(s)
- Michelle R. Koenig
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ann M. Mitzey
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Leticia Reyes
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Terry K. Morgan
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, United States of America
| | - Julia C. Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, United States of America
| | - Jenna A. Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emily Ren
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Fernanda B. Leyva Jaimes
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva Winston
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Puja Basu
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
11
|
Kim IJ, Tighe MP, Clark MJ, Gromowski GD, Lanthier PA, Travis KL, Bernacki DT, Cookenham TS, Lanzer KG, Szaba FM, Tamhankar MA, Ross CN, Tardif SD, Layne-Colon D, Dick EJ, Gonzalez O, Giraldo Giraldo MI, Patterson JL, Blackman MA. Impact of prior dengue virus infection on Zika virus infection during pregnancy in marmosets. Sci Transl Med 2023; 15:eabq6517. [PMID: 37285402 DOI: 10.1126/scitranslmed.abq6517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Zika virus (ZIKV) infection during pregnancy causes severe developmental defects in newborns, termed congenital Zika syndrome (CZS). Factors contributing to a surge in ZIKV-associated CZS are poorly understood. One possibility is that ZIKV may exploit the antibody-dependent enhancement of infection mechanism, mediated by cross-reactive antibodies from prior dengue virus (DENV) infection, which may exacerbate ZIKV infection during pregnancy. In this study, we investigated the impact of prior DENV infection or no DENV infection on ZIKV pathogenesis during pregnancy in a total of four female common marmosets with five or six fetuses per group. The results showed that negative-sense viral RNA copies increased in the placental and fetal tissues of DENV-immune dams but not in DENV-naïve dams. In addition, viral proteins were prevalent in endothelial cells, macrophages, and neonatal Fc receptor-expressing cells in the placental trabeculae and in neuronal cells in the brains of fetuses from DENV-immune dams. DENV-immune marmosets maintained high titers of cross-reactive ZIKV-binding antibodies that were poorly neutralizing, raising the possibility that these antibodies might be involved in the exacerbation of ZIKV infection. These findings need to be verified in a larger study, and the mechanism involved in the exacerbation of ZIKV infection in DENV-immune marmosets needs further investigation. However, the results suggest a potential negative impact of preexisting DENV immunity on subsequent ZIKV infection during pregnancy in vivo.
Collapse
Affiliation(s)
- In-Jeong Kim
- Trudeau Institute Inc., Saranac Lake, NY 12983, USA
| | | | | | - Gregory D Gromowski
- Viral Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | - Manasi A Tamhankar
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Corrina N Ross
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Suzette D Tardif
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Donna Layne-Colon
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Edward J Dick
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Olga Gonzalez
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Maria I Giraldo Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jean L Patterson
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | |
Collapse
|
12
|
Yaugel-Novoa M, Noailly B, Jospin F, Berger AE, Waeckel L, Botelho-Nevers E, Longet S, Bourlet T, Paul S. Prior COVID-19 Immunization Does Not Cause IgA- or IgG-Dependent Enhancement of SARS-CoV-2 Infection. Vaccines (Basel) 2023; 11:vaccines11040773. [PMID: 37112685 PMCID: PMC10141984 DOI: 10.3390/vaccines11040773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Antibody-dependent enhancement (ADE) can increase the rates and severity of infection with various viruses, including coronaviruses, such as MERS. Some in vitro studies on COVID-19 have suggested that prior immunization enhances SARS-CoV-2 infection, but preclinical and clinical studies have demonstrated the contrary. We studied a cohort of COVID-19 patients and a cohort of vaccinated individuals with a heterologous (Moderna/Pfizer) or homologous (Pfizer/Pfizer) vaccination scheme. The dependence on IgG or IgA of ADE of infection was evaluated on the serum samples from these subjects (twenty-six vaccinated individuals and twenty-one PCR-positive SARS-CoV-2-infected patients) using an in vitro model with CD16- or CD89-expressing cells and the Delta (B.1.617.2 lineage) and Omicron (B.1.1.529 lineage) variants of SARS-CoV-2. Sera from COVID-19 patients did not show ADE of infection with any of the tested viral variants. Some serum samples from vaccinated individuals displayed a mild IgA-ADE effect with Omicron after the second dose of the vaccine, but this effect was abolished after the completion of the full vaccination scheme. In this study, FcγRIIIa- and FcαRI-dependent ADE of SARS-CoV-2 infection after prior immunization, which might increase the risk of severe disease in a second natural infection, was not observed.
Collapse
Affiliation(s)
- Melyssa Yaugel-Novoa
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
| | - Blandine Noailly
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
| | - Fabienne Jospin
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
| | - Anne-Emmanuelle Berger
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
- Immunology Department, University Hospital of Saint-Etienne, F42055 Saint-Etienne, France
| | - Louis Waeckel
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
- Immunology Department, University Hospital of Saint-Etienne, F42055 Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
- Infectious Diseases Department, University Hospital of Saint-Etienne, F42055 Saint-Etienne, France
| | - Stéphanie Longet
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
| | - Thomas Bourlet
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
- Infectious Agents and Hygiene Department, University Hospital of Saint-Etienne, F42055 Saint-Etienne, France
| | - Stéphane Paul
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
- Immunology Department, University Hospital of Saint-Etienne, F42055 Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, F42055 Saint-Etienne, France
- Correspondence:
| |
Collapse
|
13
|
Cable J, Balachandran S, Daley-Bauer LP, Rustagi A, Antony F, Frere JJ, Strampe J, Kedzierska K, Cannon JL, McGargill MA, Weiskopf D, Mettelman RC, Niessl J, Thomas PG, Briney B, Valkenburg SA, Bloom JD, Bjorkman PJ, Iketani S, Rappazzo CG, Crooks CM, Crofts KF, Pöhlmann S, Krammer F, Sant AJ, Nabel GJ, Schultz-Cherry S. Viral immunity: Basic mechanisms and therapeutic applications-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1521:32-45. [PMID: 36718537 DOI: 10.1111/nyas.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Viruses infect millions of people each year. Both endemic viruses circulating throughout the population as well as novel epidemic and pandemic viruses pose ongoing threats to global public health. Developing more effective tools to address viruses requires not only in-depth knowledge of the virus itself but also of our immune system's response to infection. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Viral Immunity: Basic Mechanisms and Therapeutic Applications." This report presents concise summaries from several of the symposium presenters.
Collapse
Affiliation(s)
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Lisa P Daley-Bauer
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arjun Rustagi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Justin J Frere
- East Harlem Health Outreach Partnership; Department of Medical Education; and Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jamie Strampe
- Bioinformatics Program, Boston University and National Emerging Infectious Diseases Laboratories, Boston, Massachusetts, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Judy L Cannon
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, California, USA
| | - Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Julia Niessl
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Jesse D Bloom
- Basic Sciences Division and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Microbiology and Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | - Chelsea M Crooks
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kali F Crofts
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center and Faculty of Biology and Psychology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea J Sant
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gary J Nabel
- Modex Therapeutics Inc., an OPKO Health Company, Natick, Massachusetts, USA
| | - Stacey Schultz-Cherry
- Department of Laboratory Medicine and Department of Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Rosinski JR, Raasch LE, Barros Tiburcio P, Breitbach ME, Shepherd PM, Yamamoto K, Razo E, Krabbe NP, Bliss MI, Richardson AD, Einwalter MA, Weiler AM, Sneed EL, Fuchs KB, Zeng X, Noguchi KK, Morgan TK, Alberts AJ, Antony KM, Kabakov S, Ausderau KK, Bohm EK, Pritchard JC, Spanton RV, Ver Hoove JN, Kim CBY, Nork TM, Katz AW, Rasmussen CA, Hartman A, Mejia A, Basu P, Simmons HA, Eickhoff JC, Friedrich TC, Aliota MT, Mohr EL, Dudley DM, O’Connor DH, Newman CM. Frequent first-trimester pregnancy loss in rhesus macaques infected with African-lineage Zika virus. PLoS Pathog 2023; 19:e1011282. [PMID: 36976812 PMCID: PMC10081769 DOI: 10.1371/journal.ppat.1011282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/07/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
In the 2016 Zika virus (ZIKV) pandemic, a previously unrecognized risk of birth defects surfaced in babies whose mothers were infected with Asian-lineage ZIKV during pregnancy. Less is known about the impacts of gestational African-lineage ZIKV infections. Given high human immunodeficiency virus (HIV) burdens in regions where African-lineage ZIKV circulates, we evaluated whether pregnant rhesus macaques infected with simian immunodeficiency virus (SIV) have a higher risk of African-lineage ZIKV-associated birth defects. Remarkably, in both SIV+ and SIV- animals, ZIKV infection early in the first trimester caused a high incidence (78%) of spontaneous pregnancy loss within 20 days. These findings suggest a significant risk for early pregnancy loss associated with African-lineage ZIKV infection and provide the first consistent ZIKV-associated phenotype in macaques for testing medical countermeasures.
Collapse
Affiliation(s)
- Jenna R. Rosinski
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Lauren E. Raasch
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Patrick Barros Tiburcio
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Phoenix M. Shepherd
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Keisuke Yamamoto
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Elaina Razo
- Department of Pediatrics, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Nicholas P. Krabbe
- Department of Pediatrics, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Mason I. Bliss
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Alexander D. Richardson
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Morgan A. Einwalter
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Emily L. Sneed
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Kerri B. Fuchs
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases; Fort Detrick, Maryland, Unites States of America
| | - Kevin K. Noguchi
- Department of Psychiatry, Washington University School of Medicine; St. Louis, Washington, Unites States of America
| | - Terry K. Morgan
- Department of Pathology, Oregon Health and Science University; Portland, Oregon, Unites States of America
- Department of Obstetrics and Gynecology, Oregon Health and Science University; Portland, Oregon, Unites States of America
| | - Alexandra J. Alberts
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Kathleen M. Antony
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Sabrina Kabakov
- Department of Kinesiology, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Karla K. Ausderau
- Department of Kinesiology, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
- Waisman Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Science, University of Minnesota; St. Paul, Minnesota, Unites States of America
| | - Julia C. Pritchard
- Department of Veterinary and Biomedical Science, University of Minnesota; St. Paul, Minnesota, Unites States of America
| | - Rachel V. Spanton
- Department of Kinesiology, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - James N. Ver Hoove
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Charlene B. Y. Kim
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - T. Michael Nork
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Alex W. Katz
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Carol A. Rasmussen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Amy Hartman
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Puja Basu
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Jens C. Eickhoff
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Science, University of Minnesota; St. Paul, Minnesota, Unites States of America
| | - Emma L. Mohr
- Department of Pediatrics, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| |
Collapse
|
15
|
Comparative Analysis of In Vitro Models to Study Antibody-Dependent Enhancement of Zika Virus Infection. Viruses 2022; 14:v14122776. [PMID: 36560779 PMCID: PMC9781448 DOI: 10.3390/v14122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
During the 2015-2016 outbreak of Zika virus (ZIKV) in the Americas, a previously unknown severe complication of ZIKV infection during pregnancy resulting in birth defects was reported. Since the ZIKV outbreak occurred in regions that were highly endemic for the related dengue virus (DENV), it was speculated that antibody-dependent enhancement (ADE) of a ZIKV infection, caused by the presence of cross-reactive DENV antibodies, could contribute to ZIKV disease severity. Emerging evidence indicates that, while in vitro models can show ADE of ZIKV infection, ADE does not seem to contribute to congenital ZIKV disease severity in humans. However, the role of ADE of ZIKV infection during pregnancy and in vertical ZIKV transmission is not well studied. In this study, we hypothesized that pregnancy may affect the ability of myeloid cells to become infected with ZIKV, potentially through ADE. We first systematically assessed which cell lines and primary cells can be used to study ZIKV ADE in vitro, and we compared the difference in outcomes of (ADE) infection experiments between these cells. Subsequently, we tested the hypothesis that pregnancy may affect the ability of myeloid cells to become infected through ADE, by performing ZIKV ADE assays with primary cells isolated from blood of pregnant women from different trimesters and from age-matched non-pregnant women. We found that ADE of ZIKV infection can be induced in myeloid cell lines U937, THP-1, and K562 as well as in monocyte-derived macrophages from healthy donors. There was no difference in permissiveness for ZIKV infection or ADE potential of ZIKV infection in primary cells of pregnant women compared to non-pregnant women. In conclusion, no increased permissiveness for ZIKV infection and ADE of ZIKV infection was found using in vitro models of primary myeloid cells from pregnant women compared to age-matched non-pregnant women.
Collapse
|
16
|
Susceptibility to endemic Aedes-borne viruses among pregnant women in Risaralda, Colombia. Int J Infect Dis 2022; 122:832-840. [PMID: 35817285 DOI: 10.1016/j.ijid.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Aedes-borne viruses (ABV) affect humans on every inhabited continent and frequently cause epidemics. Recent epidemics of chikungunya and Zika viruses highlight that preparedness for future epidemics requires assessment of susceptibility, particularly among high-risk groups. We sought to determine immunity against the three major circulating ABV among pregnant women in an ABV-endemic area of Colombia. METHODS A cross-sectional seroprevalence study was performed, enrolling women presenting to Labor and Delivery. Cord blood and maternal peripheral blood was obtained. IgG seroprevalence to flaviviruses and chikungunya was determined by ELISA. An abbreviated neutralization test was used to estimate the frequency and magnitude of immunity to Zika and four dengue serotypes. Cluster analyses explored epidemiologic factors associated with seroprevalence. RESULTS Most women exhibited high levels of neutralizing antibodies to one or more ABV; however, nearly 20% were seronegative for flaviviruses. Our research took place after the epidemic peak of the ZIKV outbreak in Colombia in 2016, but only 20% of pregnant women had high levels of Zika-neutralizing antibodies consistent with likely protective immunity to ZIKV. CONCLUSIONS Hence, a high proportion pregnant women in Risaralda remain susceptible to one or more ABV including the teratogenic ZIKV, indicating risk for future epidemics in this region.
Collapse
|
17
|
Villalobos-Sánchez E, Burciaga-Flores M, Zapata-Cuellar L, Camacho-Villegas TA, Elizondo-Quiroga DE. Possible Routes for Zika Virus Vertical Transmission in Human Placenta: A Comprehensive Review. Viral Immunol 2022; 35:392-403. [PMID: 35506896 DOI: 10.1089/vim.2021.0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infections have gained notoriety due to congenital abnormalities. Pregnant women have a greater risk of ZIKV infection and consequent transmission to their progeny due to the immunological changes associated with pregnancy. ZIKV has been detected in amniotic fluid, as well as in fetal and neonatal tissues of infected pregnant women. However, the mechanism by which ZIKV reaches the fetus is not well understood. The four dengue virus serotypes have been the most widely used flaviviruses to elucidate the host-cell entry pathways. Nevertheless, it is of increasing interest to understand the specific interaction between ZIKV and the host cell, especially in the gestation period. Herein, the authors describe the mechanisms of prenatal vertical infection of ZIKV based on results from in vitro, in vivo, and ex vivo studies, including murine models and nonhuman primates. It also includes up-to-date knowledge from ex vivo and natural infections in pregnant women explaining the vertical transmission along four tracks: transplacental, paracellular, transcytosis mediated by extracellular vesicles, and paraplacental route and the antibody-dependent enhancement process. A global understanding of the diverse pathways used by ZIKV to cross the placental barrier and access the fetus, along with a better comprehension of the pathogenesis of ZIKV in pregnant females, may constitute a fundamental role in the design of antiviral drugs to reduce congenital disabilities associated with ZIKV.
Collapse
Affiliation(s)
- Erendira Villalobos-Sánchez
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Mirna Burciaga-Flores
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Lorena Zapata-Cuellar
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Tanya A Camacho-Villegas
- CONACYT-Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Darwin E Elizondo-Quiroga
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| |
Collapse
|
18
|
Langerak T, Broekhuizen M, Unger PPA, Tan L, Koopmans M, van Gorp E, Danser AHJ, Rockx B. Transplacental Zika virus transmission in ex vivo perfused human placentas. PLoS Negl Trop Dis 2022; 16:e0010359. [PMID: 35442976 PMCID: PMC9060339 DOI: 10.1371/journal.pntd.0010359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/02/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
A Zika virus (ZIKV) infection during pregnancy can result in severe birth defects such as microcephaly. To date, it is incompletely understood how ZIKV can cross the human placenta. Furthermore, results from studies in pregnant mice and non-human primates are conflicting regarding the role of cross-reactive dengue virus (DENV) antibodies on transplacental ZIKV transmission. Elucidating how ZIKV can cross the placenta and which risk factors contribute to this is important for risk assessment and for potential intervention strategies for transplacental ZIKV transmission. In this study we use an ex vivo human placental perfusion model to study transplacental ZIKV transmission and the effect that cross-reactive DENV antibodies have on this transmission. By using this model, we demonstrate that DENV antibodies significantly increase ZIKV uptake in perfused human placentas and that this increased uptake is neonatal Fc-receptor-dependent. Furthermore, we show that cross-reactive DENV antibodies enhance ZIKV infection in term human placental explants and in primary fetal macrophages but not in primary trophoblasts. Our data supports the hypothesis that presence of cross-reactive DENV antibodies could be an important risk factor for transplacental ZIKV transmission. Furthermore, we demonstrate that the ex vivo placental perfusion model is a relevant and animal friendly model to study transplacental pathogen transmission. Zika virus is a mosquito-transmitted virus that can cause severe birth defects such as microcephaly when the infection occurs during pregnancy. Understanding how Zika virus crosses the placenta during pregnancy is important for future prevention strategies for vertical Zika virus transmission. Despite significant efforts to study this, to date it remains incompletely understood how Zika virus can cross the placenta and which risk factors contribute to this form of transmission. In this study we use an ex vivo placental perfusion model to study transplacental Zika virus transmission. The ex vivo placental perfusion model is a highly physiological and animal friendly model that mimics the in vivo conditions during pregnancy. We found that antibodies against the closely related dengue virus can significantly enhance placental uptake of Zika virus and Zika virus infection of human placental explants and fetal macrophages. These findings indicate that presence of cross-reactive dengue virus antibodies could contribute to transplacental Zika virus transmission.
Collapse
Affiliation(s)
- Thomas Langerak
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Michelle Broekhuizen
- Department of Internal Medicine, Division of Pharmacology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Division of Neonatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Lunbo Tan
- Department of Internal Medicine, Division of Pharmacology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marion Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Eric van Gorp
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - A. H. Jan Danser
- Department of Internal Medicine, Division of Pharmacology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
19
|
Clark NM, Janaka SK, Hartman W, Stramer S, Goodhue E, Weiss J, Evans DT, Connor JP. Anti-SARS-CoV-2 IgG and IgA antibodies in COVID-19 convalescent plasma do not enhance viral infection. PLoS One 2022; 17:e0257930. [PMID: 35259162 PMCID: PMC8903276 DOI: 10.1371/journal.pone.0257930] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
The novel coronavirus, SARS-CoV-2 that causes COVID-19 has resulted in the death of nearly 4 million people within the last 18 months. While preventive vaccination, and monoclonal antibody therapies have been rapidly developed and deployed, early in the pandemic the use of COVID-19 convalescent plasma (CCP) was a common means of passive immunization with a theoretical risk of antibody-dependent enhancement (ADE) of viral infection. Though vaccines elicit a strong and protective immune response and transfusion of CCP with high titers of neutralization activity are correlated with better clinical outcomes, the question of whether antibodies in CCP can enhance infection of SARS-CoV-2 has not been directly addressed. In this study, we analyzed for and observed passive transfer of neutralization activity with CCP transfusion. Furthermore, to specifically understand if antibodies against the spike protein (S) enhance infection, we measured the anti-S IgG, IgA, and IgM responses and adapted retroviral-pseudotypes to measure virus neutralization with target cells expressing the ACE2 virus receptor and the Fc alpha receptor (FcαR) or Fc gamma receptor IIA (FcγRIIA). Whereas neutralizing activity of CCP correlated best with higher titers of anti-S IgG antibodies, the neutralizing titer was not affected when Fc receptors were present on target cells. These observations support the absence of antibody-dependent enhancement of infection (ADE) by IgG and IgA isotypes found in CCP. The results presented, therefore, not only supports the therapeutic use of currently available antibody-based treatment, including the continuation of CCP transfusion strategies, but also the use of various vaccine platforms in a prophylactic approach.
Collapse
Affiliation(s)
- Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - William Hartman
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Susan Stramer
- American Red Cross, Washington, DC, United States of America
| | - Erin Goodhue
- American Red Cross, Washington, DC, United States of America
| | - John Weiss
- American Red Cross, Washington, DC, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Joseph P. Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
20
|
Hu H, Liu R, Li Q, Wang J, Deng Q, Lu Y, Wu Q, Chen Z, Lu J. Development of a neutralizing antibody targeting linear epitope of the envelope protein domain III of ZIKV. Virus Res 2021; 306:198601. [PMID: 34678322 DOI: 10.1016/j.virusres.2021.198601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/01/2022]
Abstract
Zika virus (ZIKV) infection represents an emerging infectious disease that poses an increasing threat to human health, especially after the ZIKV outbreak in Brazil in 2015. Unfortunately, there continues to be a lack of highly effective antiviral drugs or vaccines against ZIKV. In this study, we expressed the ZIKV envelope protein domain III (ZIKV EDIII) in E. coli strain BL21. The purified recombinant protein was used to immunize mice to produce monoclonal antibodies (mAbs). After 6 screening and 5 subcloning cycles, 10 monoclonal cell lines that stably produced antibodies, termed 2F5, 5B8, 6G6, 7E12, 8B6, 17E6, 19E7, 20F4, 26G6, and 37E6, were identified. The mAb 8B6 could neutralize ZIKV and recognize the ZIKV EDIII epitope (GRLITANPVITESTE). Another 9 mAbs did not exhibit neutralizing activity; however, they could specifically recognize the ZIKV EDIII and ZIKV lysate, suggesting their potential use in the diagnosis of ZIKV.
Collapse
Affiliation(s)
- Huan Hu
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, China.
| | - Rongfei Liu
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, China
| | - Qianlin Li
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, China
| | - Jin Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, China
| | - Qiang Deng
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, China
| | - YuYing Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, China
| | - Qin Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, China
| | - Zeliang Chen
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, China
| |
Collapse
|
21
|
Ausderau K, Kabakov S, Razo E, Mitzey AM, Bach KM, Crooks CM, Dulaney N, Keding L, Salas-Quinchucua C, Medina-Magües LG, Weiler AM, Bliss M, Eickhoff J, Simmons HA, Mejia A, Antony KM, Morgan T, Capuano S, Schneider ML, Aliota MT, Friedrich TC, O’Connor DH, Golos TG, Mohr EL. Neonatal Development in Prenatally Zika Virus-Exposed Infant Macaques with Dengue Immunity. Viruses 2021; 13:1878. [PMID: 34578459 PMCID: PMC8473338 DOI: 10.3390/v13091878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/03/2023] Open
Abstract
Infants exposed to Zika virus (ZIKV) prenatally may develop birth defects, developmental deficits, or remain asymptomatic. It is unclear why some infants are more affected than others, although enhancement of maternal ZIKV infection via immunity to an antigenically similar virus, dengue virus (DENV), may play a role. We hypothesized that DENV immunity may worsen prenatal ZIKV infection and developmental deficits in offspring. We utilized a translational macaque model to examine how maternal DENV immunity influences ZIKV-exposed infant macaque neurodevelopment in the first month of life. We inoculated eight macaques with prior DENV infection with ZIKV, five macaques with ZIKV, and four macaques with saline. DENV/ZIKV-exposed infants had significantly worse visual orientation skills than ZIKV-exposed infants whose mothers were DENV-naive, with no differences in motor, sensory or state control development. ZIKV infection characteristics and pregnancy outcomes did not individually differ between dams with and without DENV immunity, but when multiple factors were combined in a multivariate model, maternal DENV immunity combined with ZIKV infection characteristics and pregnancy parameters predicted select developmental outcomes. We demonstrate that maternal DENV immunity exacerbates visual orientation and tracking deficits in ZIKV-exposed infant macaques, suggesting that human studies should evaluate how maternal DENV immunity impacts long-term neurodevelopment.
Collapse
Affiliation(s)
- Karla Ausderau
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin–Madison, Madison, WI 53706, USA; (K.A.); (S.K.); (K.M.B.); (N.D.); (M.L.S.)
- Waisman Center, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Sabrina Kabakov
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin–Madison, Madison, WI 53706, USA; (K.A.); (S.K.); (K.M.B.); (N.D.); (M.L.S.)
| | - Elaina Razo
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53792, USA;
| | - Ann M. Mitzey
- Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI 53706, USA; (A.M.M.); (L.K.); (T.G.G.)
| | - Kathryn M. Bach
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin–Madison, Madison, WI 53706, USA; (K.A.); (S.K.); (K.M.B.); (N.D.); (M.L.S.)
| | - Chelsea M. Crooks
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA; (C.M.C.); (C.S.-Q.); (L.G.M.-M.); (T.C.F.)
| | - Natalie Dulaney
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin–Madison, Madison, WI 53706, USA; (K.A.); (S.K.); (K.M.B.); (N.D.); (M.L.S.)
| | - Logan Keding
- Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI 53706, USA; (A.M.M.); (L.K.); (T.G.G.)
| | - Cristhian Salas-Quinchucua
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA; (C.M.C.); (C.S.-Q.); (L.G.M.-M.); (T.C.F.)
| | - Lex G. Medina-Magües
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA; (C.M.C.); (C.S.-Q.); (L.G.M.-M.); (T.C.F.)
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA; (A.M.W.); (M.B.); (H.A.S.); (A.M.); (S.C.III); (D.H.O.)
| | - Mason Bliss
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA; (A.M.W.); (M.B.); (H.A.S.); (A.M.); (S.C.III); (D.H.O.)
| | - Jens Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI 53792, USA;
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA; (A.M.W.); (M.B.); (H.A.S.); (A.M.); (S.C.III); (D.H.O.)
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA; (A.M.W.); (M.B.); (H.A.S.); (A.M.); (S.C.III); (D.H.O.)
| | - Kathleen M. Antony
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI 53705, USA;
| | - Terry Morgan
- Center for Developmental Health, Department of Obstetrics and Gynecology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA; (A.M.W.); (M.B.); (H.A.S.); (A.M.); (S.C.III); (D.H.O.)
| | - Mary L. Schneider
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin–Madison, Madison, WI 53706, USA; (K.A.); (S.K.); (K.M.B.); (N.D.); (M.L.S.)
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, MN 55108, USA;
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA; (C.M.C.); (C.S.-Q.); (L.G.M.-M.); (T.C.F.)
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA; (A.M.W.); (M.B.); (H.A.S.); (A.M.); (S.C.III); (D.H.O.)
| | - David H. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA; (A.M.W.); (M.B.); (H.A.S.); (A.M.); (S.C.III); (D.H.O.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI 53706, USA; (A.M.M.); (L.K.); (T.G.G.)
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA; (A.M.W.); (M.B.); (H.A.S.); (A.M.); (S.C.III); (D.H.O.)
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI 53705, USA;
| | - Emma L. Mohr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53792, USA;
| |
Collapse
|
22
|
Clark NM, Janaka SK, Hartman W, Stramer S, Goodhue E, Weiss J, Evans DT, Connor JP. Anti-SARS-CoV-2 IgG and IgA antibodies in COVID-19 convalescent plasma do not facilitate antibody-dependent enhance of viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34545365 PMCID: PMC8452094 DOI: 10.1101/2021.09.14.460394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The novel coronavirus SARS-CoV2, which causes COVID-19, has resulted in the death of nearly 4 million people within the last 18 months. While preventive vaccination and monoclonal antibody therapies have been rapidly developed and deployed, early in the pandemic the use of COVID-19 convalescent plasma (CCP) was a common means of passive immunization, with the theoretical risk of antibody-dependent enhancement (ADE) of viral infection remaining undetermined. Though vaccines elicit a strong and protective immune response, and transfusion of CCP with high titers of neutralization activity are correlated with better clinical outcomes, the question of whether antibodies in CCP can enhance infection of SARS-CoV2 has not been directly addressed. In this study, we analyzed for and observed passive transfer of neutralization activity with CCP transfusion. Furthermore, to specifically understand if antibodies against the spike protein (S) enhance infection, we measured the anti-S IgG, IgA, and IgM responses and adapted retroviral-pseudotypes to measure virus neutralization with target cells expressing the ACE2 virus receptor and the Fc alpha receptor (FcαR) or Fc gamma receptor IIA (FcγRIIA). Whereas neutralizing activity of CCP correlated best with higher titers of anti-S IgG antibodies, the neutralizing titer was not affected when Fc receptors were present on target cells. These observations support the absence of antibody-dependent enhancement of infection (ADE) by IgG and IgA isotypes found in CCP. The results presented, therefore, support the clinical use of currently available antibody-based treatment including the continued study of CCP transfusion strategies.
Collapse
|