1
|
Yu Z, Shi J, Zhang J, Wu Y, Shen R, Fei J. Comparative study on the expression characteristics of transgenes inserted into the Gt(ROSA)26Sor and H11 loci in mice. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1687-1698. [PMID: 38752269 PMCID: PMC11693873 DOI: 10.3724/abbs.2024081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/22/2024] [Indexed: 01/06/2025] Open
Abstract
The Gt(ROSA)26Sor ( ROSA26) and H11 loci are commonly used as safe harbors for the construction of targeted transgenic mice. However, it remains unclear whether these two loci have distinct effects on transgene expression. In this study, we insert three differently colored fluorescent protein expression cassettes (EGFP, tdTomato and mTagBFP2) driven by the CAG promoter into the ROSA26 and H11 loci. We generate five single-transgenic mouse models and a triple-transgenic mouse model expressing three distinct fluorescent proteins simultaneously. Our results reveal that the efficiency of transgene expression is greater at the ROSA26 locus with a reverse orientation relative to the transcription of the ROSA26 gene. In most tissues examined, the efficiency of transgene expression at the ROSA26 locus exceeds that at the H11 locus. Moreover, the expression profiles of identical transgenes display discrepancies across various tissues, and notably, substantial heterogeneity in transgene expression is discernible within cells of the same tissue. Our findings offer a valuable reference for the selection of safe harbors and strategies for the construction of transgenic mouse models.
Collapse
Affiliation(s)
- Zhilan Yu
- School of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Jiahao Shi
- School of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Jingyu Zhang
- School of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Youbing Wu
- Shanghai Engineering Research Center for Model
OrganismsSMOCShanghai201203China
| | - Ruling Shen
- Shanghai Laboratory Animal Research CenterShanghai201203China
| | - Jian Fei
- School of Life Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Engineering Research Center for Model
OrganismsSMOCShanghai201203China
| |
Collapse
|
2
|
Zhao L, Fang S, Ma Y, Ren J, Hao L, Wang L, Yang J, Lu X, Yang L, Wang G. Targeted genome engineering based on CRISPR/Cas9 system to enhance FVIII expression in vitro. Gene 2024; 896:148038. [PMID: 38036077 DOI: 10.1016/j.gene.2023.148038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Hemophilia A is caused by a deficiency of coagulation factor VIII in the body due to a defect in the F8 gene. The emergence of CRISPR/Cas9 gene editing technology will make it possible to alter the expression of the F8 gene in hemophiliacs, while achieving a potential cure for the disease. METHODS Initially, we identified high-activity variants of FVIII and constructed donor plasmids using enzymatic digestion and ligation techniques. Subsequently, the donor plasmids were co-transfected with sgRNA-Cas9 protein into mouse Neuro-2a cells, followed by flow cytometry-based cell sorting and puromycin selection. Finally, BDD-hF8 targeted to knock-in the mROSA26 genomic locus was identified and validated for FVIII expression. RESULTS We identified the p18T-BDD-F8-V3 variant with high FVIII activity and detected the strongest pX458-mROSA26-int1-sgRNA1 targeted cleavage ability and no cleavage events were found at potential off-target sites. Targeted knock-in of BDD-hF8 cDNA at the mROSA26 locus was achieved based on both HDR/NHEJ gene repair approaches, and high level and stable FVIII expression was obtained, successfully realizing gene editing in vitro. CONCLUSIONS Knock-in of exogenous genes based on the CRISPR/Cas9 system targeting genomic loci is promising for the research and treatment of a variety of single-gene diseases.
Collapse
Affiliation(s)
- Lidong Zhao
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China; Department of Hematology, Linfen Central Hospital, Linfen, Shanxi, China
| | - Shuai Fang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China; The Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, Shanxi, China
| | - Yanchun Ma
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Ren
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lixia Hao
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Wang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia Yang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomei Lu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Linhua Yang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Gang Wang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
Knowles C, Petrie L, Warren C, Lillico SG, Carlisle A, Whitelaw CBA, Kolb AF. Site specific insertion of a transgene into the murine α-casein (CSN1S1) gene results in the predictable expression of a recombinant protein in milk. Biotechnol J 2024; 19:e2300287. [PMID: 38047759 DOI: 10.1002/biot.202300287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Gene loci of highly expressed genes provide ideal sites for transgene expression. Casein genes are highly expressed in mammals leading to the synthesis of substantial amounts of casein proteins in milk. The α-casein (CSN1S1) gene has assessed as a site of transgene expression in transgenic mice and a mammary gland cell line. A transgene encoding an antibody light chain gene (A1L) was inserted into the α-casein gene using sequential homologous and site-specific recombination. Expression of the inserted transgene is directed by the α-casein promoter, is responsive to lactogenic hormone activation, leads to the synthesis of a chimeric α-casein/A1L transgene mRNA, and secretion of the recombinant A1L protein into milk. Transgene expression is highly consistent in all transgenic lines, but lower than that of the α-casein gene (4%). Recombinant A1L protein accounted for 0.5% and 1.6% of total milk protein in heterozygous and homozygous transgenic mice, respectively. The absence of the α-casein protein in homozygous A1L transgenic mice leads to a reduction of total milk protein and delayed growth of the pups nursed by these mice. Overall, the data demonstrate that the insertion of a transgene into a highly expressed endogenous gene is insufficient to guarantee its abundant expression.
Collapse
Affiliation(s)
- Christopher Knowles
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Linda Petrie
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Claire Warren
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Ailsa Carlisle
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Andreas F Kolb
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
4
|
Chung T, Merrill JR, Lyons SK. CRISPR/Cas for PET Reporter Gene Engineering. Methods Mol Biol 2024; 2729:285-301. [PMID: 38006503 DOI: 10.1007/978-1-0716-3499-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The relatively recent discovery of CRISPR/Cas has led to a revolution in our ability to efficiently manipulate the genome of eukaryotic cells. We describe here a protocol that employs CRISPR technology to precisely knock-in a PET imaging reporter transgene into a specific genetic locus of interest. Resulting transcription of the targeted reporter will more accurately mimic physiologic expression of the endogenous allele than conventional approaches, and so this method has the potential to become an efficient way to generate a new generation of "gold-standard" reporter transgenes. We break down the protocol into three experimental stages: how to identify the genomic location that the reporter transgene will be inserted, how to practically insert the reporter transgene into the genome, and how to screen resultant clones for the correct targeted event.
Collapse
Affiliation(s)
- Taemoon Chung
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Scott K Lyons
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
5
|
Dehdilani N, Goshayeshi L, Yousefi Taemeh S, Bahrami AR, Rival Gervier S, Pain B, Dehghani H. Integrating Omics and CRISPR Technology for Identification and Verification of Genomic Safe Harbor Loci in the Chicken Genome. Biol Proced Online 2023; 25:18. [PMID: 37355580 DOI: 10.1186/s12575-023-00210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND One of the most prominent questions in the field of transgenesis is 'Where in the genome to integrate a transgene?'. Escape from epigenetic silencing and promoter shutdown of the transgene needs reliable genomic safe harbor (GSH) loci. Advances in genome engineering technologies combined with multi-omics bioinformatics data have enabled rational evaluation of GSH loci in the host genome. Currently, no validated GSH loci have been evaluated in the chicken genome. RESULTS Here, we analyzed and experimentally examined two GSH loci in the genome of chicken cells. To this end, putative GSH loci including chicken HIPP-like (cHIPP; between DRG1 and EIF4ENIF1 genes) and chicken ROSA-like (cROSA; upstream of the THUMPD3 gene) were predicted using multi-omics bioinformatics data. Then, the durable expression of the transgene was validated by experimental characterization of continuously-cultured isogenous cell clones harboring DsRed2-ΔCMV-EGFP cassette in the predicted loci. The weakened form of the CMV promoter (ΔCMV) allowed the precise evaluation of GSH loci in a locus-dependent manner compared to the full-length CMV promoter. CONCLUSIONS cHIPP and cROSA loci introduced in this study can be reliably exploited for consistent bio-manufacturing of recombinant proteins in the genetically-engineered chickens. Also, results showed that the genomic context dictates the expression of transgene controlled by ΔCMV in GSH loci.
Collapse
Affiliation(s)
- Nima Dehdilani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Lena Goshayeshi
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Yousefi Taemeh
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sylvie Rival Gervier
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Bertrand Pain
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
6
|
Efficient targeted transgenesis of large donor DNA into multiple mouse genetic backgrounds using bacteriophage Bxb1 integrase. Sci Rep 2022; 12:5424. [PMID: 35361849 PMCID: PMC8971409 DOI: 10.1038/s41598-022-09445-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
The development of mouse models of human disease and synthetic biology research by targeted transgenesis of large DNA constructs represent a significant genetic engineering hurdle. We developed an efficient, precise, single-copy integration of large transgenes directly into zygotes using multiple mouse genetic backgrounds. We used in vivo Bxb1 mediated recombinase-mediated cassette exchange (RMCE) with a transgene “landing pad” composed of dual heterologous Bxb1 attachment (att) sites in cis, within the Gt(ROSA)26Sor safe harbor locus. RMCE of donor was achieved by microinjection of vector DNA carrying cognate attachment sites flanking the donor transgene with Bxb1-integrase mRNA. This approach achieves perfect vector-free integration of donor constructs at efficiencies > 40% with up to ~ 43 kb transgenes. Coupled with a nanopore-based Cas9-targeted sequencing (nCATS), complete verification of precise insertion sequence was achieved. As a proof-of-concept we describe the development of C57BL/6J and NSG Krt18-ACE2 models for SARS-CoV2 research with verified heterozygous N1 animals within ~ 4 months. Additionally, we created a series of mice with diverse backgrounds carrying a single att site including FVB/NJ, PWK/PhJ, NOD/ShiLtJ, CAST/EiJ and DBA/2J allowing for rapid transgene insertion. Combined, this system enables predictable, rapid development with simplified characterization of precisely targeted transgenic animals across multiple genetic backgrounds.
Collapse
|
7
|
Vav1 Promotes B-Cell Lymphoma Development. Cells 2022; 11:cells11060949. [PMID: 35326399 PMCID: PMC8946024 DOI: 10.3390/cells11060949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Vav1 is normally and exclusively expressed in the hematopoietic system where it functions as a specific GDP/GTP nucleotide exchange factor (GEF), firmly regulated by tyrosine phosphorylation. Mutations and overexpression of Vav1 in hematopoietic malignancies, and in human cancers of various histologic origins, are well documented. To reveal whether overexpression of Vav1 in different tissues suffices for promoting the development of malignant lesions, we expressed Vav1 in transgenic mice by using the ubiquitous ROSA26 promoter (Rosa Vav1). We detected Vav1 expression in epithelial tissues of various organs including pancreas, liver, and lung. While carcinomas did not develop in these organs, surprisingly, we noticed the development of B-cell lymphomas. Rac1-GTP levels did not change in tissues from Rosa Vav1 mice expressing the transgenic Vav1, while ERK phosphorylation increased in the lymphomas, suggesting that signaling pathways are evoked. One of the growth factors analyzed by us as a suspect candidate to mediate paracrine stimulation in the lymphocytes was CSF-1, which was highly expressed in the epithelial compartment of Rosa Vav1 mice. The expression of its specific receptor, CSF-1R, was found to be highly expressed in the B-cell lymphomas. Taken together, our results suggest a potential cross-talk between epithelial cells expressing Vav1, that secrete CSF-1, and the lymphocytes that express CSF-1R, thus leading to the generation of B-cell lymphomas. Our findings provide a novel mechanism by which Vav1 contributes to tumor propagation.
Collapse
|
8
|
Zhang Y, Dai J, Yang Y, Guo J, Cao L, Ye M. Lateral Flow Strip Assay for Detection of Mycoplasma hyorhinis Based on a Pair of Sandwich-Type Aptamers. J Biomed Nanotechnol 2022; 18:166-174. [PMID: 35180909 DOI: 10.1166/jbn.2022.3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mycoplasma hyorhinis is a normal flora in swine respiratory tract and also often found in multiple human tumor tissues, which is considered to be highly correlated with human tumors. Due to the detection of Mycoplasma hyorhinis mainly relies on PCR-based assay at present, thus it is critical for developing a novel assay for rapid detection and providing support diagnosis evidence. In our work, we screened and characterized a high affinity aptamer zyb1 that can recognize Mycoplasma hyorhinis based on infectious cell-SELEX. On this basis, we developed a lateral flow strip assay by using zyb1 and another aptamer AP15-1 to form a sandwich-type aptasensor. Using this new lateral flow strip assay biosensor, Mycoplasma hyorhinis could be detected within the detectable limit as low as 1 × 10³ CCU/mL. Therefore, our study successfully developed a convenient and effective lateral flow strip for Mycoplasma hyorhinis detection and demonstrated the potential of utilizing aptamer for the development of point-of-care testing products for mycoplasma detection.
Collapse
Affiliation(s)
- Yibin Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jing Dai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuan Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Junxiao Guo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lanqin Cao
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
9
|
Fan J, Li Q, Chen L, Du J, Xue W, Yu S, Su X, Yang Y. Research Progress in the Synthesis of Targeting Organelle Carbon Dots and Their Applications in Cancer Diagnosis and Treatment. J Biomed Nanotechnol 2021; 17:1891-1916. [PMID: 34706792 DOI: 10.1166/jbn.2021.3167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With increasing knowledge about diseases at the histological, cytological to sub-organelle level, targeting organelle therapy has gradually been envisioned as an approach to overcome the shortcomings of poor specificity and multiple toxic side effects on tissues and cell-level treatments using the currently available therapy. Organelle carbon dots (CDs) are a class of functionalized CDs that can target organelles. CDs can be prepared by a "synchronous in situ synthesis method" and "asynchronous modification method." The superior optical properties and good biocompatibility of CDs can be preserved, and they can be used as targeting particles to carry drugs into cells while reducing leakage during transport. Given the excellent organelle fluorescence imaging properties, targeting organelle CDs can be used to monitor the physiological metabolism of organelles and progression of human diseases, which will provide advanced understanding and accurate diagnosis and targeted treatment of cancers. This study reviews the methods used for preparation of targeting organelle CDs, mechanisms of accurate diagnosis and targeted treatment of cancer, as well as their application in the area of cancer diagnosis and treatment research. Finally, the current difficulties and prospects for targeting organelle CDs are prospected.
Collapse
Affiliation(s)
- Jiangbo Fan
- Shanxi Medical University, Taiyuan 030001, China
| | - Qiang Li
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinglei Du
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Wenqiang Xue
- Shanxi Medical University, Taiyuan 030001, China
| | - Shiping Yu
- Shanxi Medical University, Taiyuan 030001, China
| | - Xiuqin Su
- Shanxi Medical University, Taiyuan 030001, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
10
|
Redolfi N, Greotti E, Zanetti G, Hochepied T, Fasolato C, Pendin D, Pozzan T. A New Transgenic Mouse Line for Imaging Mitochondrial Calcium Signals. FUNCTION 2021; 2:zqab012. [PMID: 35330679 PMCID: PMC8788866 DOI: 10.1093/function/zqab012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/06/2023] Open
Abstract
Mitochondria play a key role in cellular calcium (Ca2+) homeostasis. Dysfunction in the organelle Ca2+ handling appears to be involved in several pathological conditions, ranging from neurodegenerative diseases, cardiac failure and malignant transformation. In the past years, several targeted green fluorescent protein (GFP)-based genetically encoded Ca2+ indicators (GECIs) have been developed to study Ca2+ dynamics inside mitochondria of living cells. Surprisingly, while there is a number of transgenic mice expressing different types of cytosolic GECIs, few examples are available expressing mitochondria-localized GECIs, and none of them exhibits adequate spatial resolution. Here we report the generation and characterization of a transgenic mouse line (hereafter called mt-Cam) for the controlled expression of a mitochondria-targeted, Förster resonance energy transfer (FRET)-based Cameleon, 4mtD3cpv. To achieve this goal, we engineered the mouse ROSA26 genomic locus by inserting the optimized sequence of 4mtD3cpv, preceded by a loxP-STOP-loxP sequence. The probe can be readily expressed in a tissue-specific manner upon Cre recombinase-mediated excision, obtainable with a single cross. Upon ubiquitous Cre expression, the Cameleon is specifically localized in the mitochondrial matrix of cells in all the organs and tissues analyzed, from embryos to aged animals. Ca2+ imaging experiments performed in vitro and ex vivo in brain slices confirmed the functionality of the probe in isolated cells and live tissues. This new transgenic mouse line allows the study of mitochondrial Ca2+ dynamics in different tissues with no invasive intervention (such as viral infection or electroporation), potentially allowing simple calibration of the fluorescent signals in terms of mitochondrial Ca2+ concentration ([Ca2+]).
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Giulia Zanetti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| | - Tino Hochepied
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), Via G. Orus 2, 35129 Padua, Italy
| |
Collapse
|
11
|
Anzai T, Hara H, Chanthra N, Sadahiro T, Ieda M, Hanazono Y, Uosaki H. Generation of Efficient Knock-in Mouse and Human Pluripotent Stem Cells Using CRISPR-Cas9. Methods Mol Biol 2021; 2320:247-259. [PMID: 34302663 DOI: 10.1007/978-1-0716-1484-6_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A knock-in can generate fluorescent or Cre-reporter under the control of an endogenous promoter. It also generates knock-out or tagged-protein with fluorescent protein and short tags for tracking and purification. Recent advances in genome editing with clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9) significantly increased the efficiencies of making knock-in cells. Here we describe the detailed protocols of generating knock-in mouse and human pluripotent stem cells (PSCs) by electroporation and lipofection, respectively.
Collapse
Affiliation(s)
- Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Hiromasa Hara
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
- Animal Resource Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Taketaro Sadahiro
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yutaka Hanazono
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
- Translational Research Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.
- Translational Research Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
12
|
Dhiman H, Campbell M, Melcher M, Smith KD, Borth N. Predicting favorable landing pads for targeted integrations in Chinese hamster ovary cell lines by learning stability characteristics from random transgene integrations. Comput Struct Biotechnol J 2020; 18:3632-3648. [PMID: 33304461 PMCID: PMC7710658 DOI: 10.1016/j.csbj.2020.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/06/2023] Open
Abstract
Chinese Hamster Ovary (CHO) cell lines are considered to be the preferred platform for the production of biotherapeutics, but issues related to expression instability remain unresolved. In this study, we investigated potential causes for an unstable phenotype by comparing cell lines that express stably to such that undergo loss in titer across 10 passages. Factors related to transgene integrity and copy number as well as the genomic profile around the integration sites were analyzed. Horizon Discovery CHO-K1 (HD-BIOP3) derived production cell lines selected for phenotypes with low, medium or high copy number, each with stable and unstable transgene expression, were sequenced to capture changes at genomic and transcriptomic levels. The exact sites of the random integration events in each cell line were also identified, followed by profiling of the genomic, transcriptomic and epigenetic patterns around them. Based on the information deduced from these random integration events, genomic loci that potentially favor reliable and stable transgene expression were reported for use as targeted transgene integration sites. By comparing stable vs unstable phenotypes across these parameters, we could establish that expression stability may be controlled at three levels: 1) Good choice of integration site, 2) Ensuring integrity of transgene and observing concatemerization pattern after integration, and 3) Checking for potential stress related cellular processes. Genome wide favorable and unfavorable genomic loci for targeted transgene integration can be browsed at https://www.borthlabchoresources.boku.ac.at/
Collapse
Affiliation(s)
- Heena Dhiman
- University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | | | - Michael Melcher
- University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
13
|
Pryzhkova MV, Xu MJ, Jordan PW. Adaptation of the AID system for stem cell and transgenic mouse research. Stem Cell Res 2020; 49:102078. [PMID: 33202307 PMCID: PMC7784532 DOI: 10.1016/j.scr.2020.102078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
The auxin-inducible degron (AID) system is becoming a widely used method for rapid and reversible degradation of target proteins. This system has been successfully used to study gene and protein functions in eukaryotic cells and common model organisms, such as nematode and fruit fly. To date, applications of the AID system in mammalian stem cell research are limited. Furthermore, standard mouse models harboring the AID system have not been established. Here we have explored the utility of the H11 safe-harbor locus for integration of the TIR1 transgene, an essential component of auxin-based protein degradation system. We have shown that the H11 locus can support constitutive and conditional TIR1 expression in mouse and human embryonic stem cells, as well as in mice. We demonstrate that the AID system can be successfully employed for rapid degradation of stable proteins in embryonic stem cells, which is crucial for investigation of protein functions in quickly changing environments, such as stem cell proliferation and differentiation. As embryonic stem cells possess unlimited proliferative capacity, differentiation potential, and can mimic organ development, we believe that these research tools will be an applicable resource to a broad scientific audience.
Collapse
Affiliation(s)
- Marina V Pryzhkova
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Michelle J Xu
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Philip W Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Fitzgerald M, Livingston M, Gibbs C, Deans TL. Rosa26 docking sites for investigating genetic circuit silencing in stem cells. Synth Biol (Oxf) 2020; 5:ysaa014. [PMID: 33195816 PMCID: PMC7644442 DOI: 10.1093/synbio/ysaa014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Approaches in mammalian synthetic biology have transformed how cells can be programmed to have reliable and predictable behavior, however, the majority of mammalian synthetic biology has been accomplished using immortalized cell lines that are easy to grow and easy to transfect. Genetic circuits that integrate into the genome of these immortalized cell lines remain functional for many generations, often for the lifetime of the cells, yet when genetic circuits are integrated into the genome of stem cells gene silencing is observed within a few generations. To investigate the reactivation of silenced genetic circuits in stem cells, the Rosa26 locus of mouse pluripotent stem cells was modified to contain docking sites for site-specific integration of genetic circuits. We show that the silencing of genetic circuits can be reversed with the addition of sodium butyrate, a histone deacetylase inhibitor. These findings demonstrate an approach to reactivate the function of genetic circuits in pluripotent stem cells to ensure robust function over many generations. Altogether, this work introduces an approach to overcome the silencing of genetic circuits in pluripotent stem cells that may enable the use of genetic circuits in pluripotent stem cells for long-term function.
Collapse
Affiliation(s)
- Michael Fitzgerald
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Livingston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Chelsea Gibbs
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Huang J, Wang A, Huang C, Sun Y, Song B, Zhou R, Li L. Generation of Marker-Free pbd-2 Knock-in Pigs Using the CRISPR/Cas9 and Cre/loxP Systems. Genes (Basel) 2020; 11:genes11080951. [PMID: 32824735 PMCID: PMC7465224 DOI: 10.3390/genes11080951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Porcine β-defensin 2 (PBD-2), expressed by different tissues of pigs, is a multifunctional cationic peptide with antimicrobial, immunomodulatory and growth-promoting abilities. As the latest generation of genome-editing tool, CRISPR/Cas9 system makes it possible to enhance the expression of PBD-2 in pigs by site-specific knock-in of pbd-2 gene into the pig genome. In this study, we aimed to generate marker-free pbd-2 knock-in pigs using the CRISPR/Cas9 and Cre/loxP systems. Two copies of pbd-2 gene linked by a T2A sequence were inserted into the porcine Rosa26 locus through CRISPR/Cas9-mediated homology-directed repair. The floxed selectable marker gene neoR, used for G418 screening of positive cell clones, was removed by cell-penetrating Cre recombinase with a recombination efficiency of 48.3%. Cloned piglets were produced via somatic cell nuclear transfer and correct insertion of pbd-2 genes was confirmed by PCR and Southern blot. Immunohistochemistry and immunofluorescence analyses indicated that expression levels of PBD-2 in different tissues of transgenic (TG) piglets were significantly higher than those of their wild-type (WT) littermates. Bactericidal assays demonstrated that there was a significant increase in the antimicrobial properties of the cell culture supernatants of porcine ear fibroblasts from the TG pigs in comparison to those from the WT pigs. Altogether, our study improved the protein expression level of PBD-2 in pigs by site-specific integration of pbd-2 into the pig genome, which not only provided an effective pig model to study the anti-infection mechanisms of PBD-2 but also a promising genetic material for the breeding of disease-resistant pigs.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (C.H.)
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
| | - Antian Wang
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Chao Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (C.H.)
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
| | - Yufan Sun
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Bingxiao Song
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (C.H.)
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (R.Z.); (L.L.)
| | - Lu Li
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
- Correspondence: (R.Z.); (L.L.)
| |
Collapse
|
16
|
Tan L, Hu Y, Li Y, Yang L, Cai X, Liu W, He J, Wu Y, Liu T, Wang N, Yang Y, Adelstein RS, Wang A. Investigation of the molecular biology underlying the pronounced high gene targeting frequency at the Myh9 gene locus in mouse embryonic stem cells. PLoS One 2020; 15:e0230126. [PMID: 32226034 PMCID: PMC7105122 DOI: 10.1371/journal.pone.0230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/23/2020] [Indexed: 11/21/2022] Open
Abstract
The generation of genetically modified mouse models derived from gene targeting (GT) in mouse embryonic stem (ES) cells (mESCs) has greatly advanced both basic and clinical research. Our previous finding that gene targeting at the Myh9 exon2 site in mESCs has a pronounced high homologous recombination (HR) efficiency (>90%) has facilitated the generation of a series of nonmuscle myosin II (NM II) related mouse models. Furthermore, the Myh9 gene locus has been well demonstrated to be a new safe harbor for site-specific insertion of other exogenous genes. In the current study, we intend to investigate the molecular biology underlying for this high HR efficiency from other aspects. Our results confirmed some previously characterized properties and revealed some unreported observations: 1) The comparison and analysis of the targeting events occurring at the Myh9 and several widely used loci for targeting transgenesis, including ColA1, HPRT, ROSA26, and the sequences utilized for generating these targeting constructs, indicated that a total length about 6 kb with approximate 50% GC-content of the 5’ and 3’ homologous arms, may facilitate a better performance in terms of GT efficiency. 2) Despite increasing the length of the homologous arms, shifting the targeting site from the Myh9 exon2, to intron2, or exon3 led to a gradually reduced GT frequency (91.7, 71.8 and 50.0%, respectively). This finding provides the first evidence that the HR frequency may also be associated with the targeting site even in the same locus. Meanwhile, the decreased trend of the GT efficiency at these targeting sites was consistent with the reduced percentage of simple sequence repeat (SSR) and short interspersed nuclear elements (SINEs) in the sequences for generating the targeting constructs, suggesting the potential effects of these DNA elements on GT efficiency; 3) Our series of targeting experiments and analyses with truncated 5’ and 3’ arms at the Myh9 exon2 site demonstrated that GT efficiency positively correlates with the total length of the homologous arms (R = 0.7256, p<0.01), confirmed that a 2:1 ratio of the length, a 50% GC-content and the higher amount of SINEs for the 5’ and 3’ arms may benefit for appreciable GT frequency. Though more investigations are required, the Myh9 gene locus appears to be an ideal location for identifying HR-related cis and trans factors, which in turn provide mechanistic insights and also facilitate the practical application of gene editing.
Collapse
Affiliation(s)
- Lei Tan
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yi Hu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yalan Li
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Lingchen Yang
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wei Liu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Jiayi He
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yingxin Wu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Tanbin Liu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Naidong Wang
- Laboratory of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Yi Yang
- Laboratory of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Robert S. Adelstein
- Laboratory of Molecular Cardiology (LMC), NHLBI/NIH, Bethesda, MD, United States of America
| | - Aibing Wang
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
- Laboratory of Molecular Cardiology (LMC), NHLBI/NIH, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
17
|
Browning J, Rooney M, Hams E, Takahashi S, Mizuno S, Sugiyama F, Fallon PG, Kelly VP. Highly efficient CRISPR-targeting of the murine Hipp11 intergenic region supports inducible human transgene expression. Mol Biol Rep 2019; 47:1491-1498. [PMID: 31811500 DOI: 10.1007/s11033-019-05204-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/21/2019] [Indexed: 01/21/2023]
Abstract
Safe harbor loci allow predicable integration of a transgene into the genome without perturbing endogenous gene activity and for decades have been exploited in the mouse to investigate gene function, generate humanised models and create tissue specific reporter and Cre recombinase expressing lines. Herein, we show that the murine Hipp11 intergenic region can facilitate highly efficient integration of a large transgene-the human CD1A promoter and coding region-by means of CRISPR-Cas9 mediated homology directed repair. The data shows that the single copy human CD1A transgene is faithfully expressed in an inducible manner in homozygous animals in both macrophage and dendritic cells. Our results validate the Hipp11 intergenic region as being a highly amenable target site for functional transgene integration in mouse.
Collapse
Affiliation(s)
- Jill Browning
- School of Biochemistry& Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Michael Rooney
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Satoru Takahashi
- 1-1-1 Tennodai Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiya Mizuno
- 1-1-1 Tennodai Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Fumihiro Sugiyama
- 1-1-1 Tennodai Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Vincent P Kelly
- School of Biochemistry& Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
18
|
Ford MJ, Yeyati PL, Mali GR, Keighren MA, Waddell SH, Mjoseng HK, Douglas AT, Hall EA, Sakaue-Sawano A, Miyawaki A, Meehan RR, Boulter L, Jackson IJ, Mill P, Mort RL. A Cell/Cilia Cycle Biosensor for Single-Cell Kinetics Reveals Persistence of Cilia after G1/S Transition Is a General Property in Cells and Mice. Dev Cell 2019; 47:509-523.e5. [PMID: 30458140 PMCID: PMC6251972 DOI: 10.1016/j.devcel.2018.10.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/04/2018] [Accepted: 10/24/2018] [Indexed: 01/31/2023]
Abstract
The cilia and cell cycles are inextricably linked. Centrioles in the basal body of cilia nucleate the ciliary axoneme and sequester pericentriolar matrix (PCM) at the centrosome to organize the mitotic spindle. Cilia themselves respond to growth signals, prompting cilia resorption and cell cycle re-entry. We describe a fluorescent cilia and cell cycle biosensor allowing live imaging of cell cycle progression and cilia assembly and disassembly kinetics in cells and inducible mice. We define assembly and disassembly in relation to cell cycle stage with single-cell resolution and explore the intercellular heterogeneity in cilia kinetics. In all cells and tissues analyzed, we observed cilia that persist through the G1/S transition and into S/G2/M-phase. We conclude that persistence of cilia after the G1/S transition is a general property. This resource will shed light at an individual cell level on the interplay between the cilia and cell cycles in development, regeneration, and disease. Arl13bCerulean-Fucci2a biosensor labels the cell and cilia cycles Analysis of cells and mice reveals persistence of cilia after the G1/S transition Inducible mouse line allows lineage tracing and ex vivo live imaging Organisms can tolerate artificially lengthened cilia without overt phenotypes.
Collapse
Affiliation(s)
- Matthew J Ford
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Patricia L Yeyati
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Girish R Mali
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Margaret A Keighren
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Scott H Waddell
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Heidi K Mjoseng
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Adam T Douglas
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Emma A Hall
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Asako Sakaue-Sawano
- Centre of Brain Science, Laboratory for Cell Function and Dynamics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Centre of Brain Science, Laboratory for Cell Function and Dynamics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Richard R Meehan
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Luke Boulter
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Ian J Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; Roslin Institute, University of Edinburgh, Roslin EH25 9RG, UK
| | - Pleasantine Mill
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK.
| | - Richard L Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Furness Building, Lancaster LA1 4YG, UK.
| |
Collapse
|
19
|
Minas TZ, Surdez D, Javaheri T, Tanaka M, Howarth M, Kang HJ, Han J, Han ZY, Sax B, Kream BE, Hong SH, Çelik H, Tirode F, Tuckermann J, Toretsky JA, Kenner L, Kovar H, Lee S, Sweet-Cordero EA, Nakamura T, Moriggl R, Delattre O, Üren A. Combined experience of six independent laboratories attempting to create an Ewing sarcoma mouse model. Oncotarget 2018; 8:34141-34163. [PMID: 27191748 PMCID: PMC5470957 DOI: 10.18632/oncotarget.9388] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/05/2016] [Indexed: 12/17/2022] Open
Abstract
Ewing sarcoma (ES) involves a tumor-specific chromosomal translocation that produces the EWS-FLI1 protein, which is required for the growth of ES cells both in vitro and in vivo. However, an EWS-FLI1-driven transgenic mouse model is not currently available. Here, we present data from six independent laboratories seeking an alternative approach to express EWS-FLI1 in different murine tissues. We used the Runx2, Col1a2.3, Col1a3.6, Prx1, CAG, Nse, NEFL, Dermo1, P0, Sox9 and Osterix promoters to target EWS-FLI1 or Cre expression. Additional approaches included the induction of an endogenous chromosomal translocation, in utero knock-in, and the injection of Cre-expressing adenovirus to induce EWS-FLI1 expression locally in multiple lineages. Most models resulted in embryonic lethality or developmental defects. EWS-FLI1-induced apoptosis, promoter leakiness, the lack of potential cofactors, and the difficulty of expressing EWS-FLI1 in specific sites were considered the primary reasons for the failed attempts to create a transgenic mouse model of ES.
Collapse
Affiliation(s)
- Tsion Zewdu Minas
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Didier Surdez
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France
| | | | - Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Michelle Howarth
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Hong-Jun Kang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Jenny Han
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Zhi-Yan Han
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France
| | - Barbara Sax
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Barbara E Kream
- Department of Medicine, and Genetics and Genome Sciences, University of Connecticut Health Science Center, Farmington, CT, United States of America
| | - Sung-Hyeok Hong
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Haydar Çelik
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Franck Tirode
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Jeffrey A Toretsky
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.,Department of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine, Vienna, Austria
| | - Heinrich Kovar
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria.,Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Sean Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| | - Olivier Delattre
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France.,Unité de génétique somatique, Institut Curie, Île-de-France, Paris, France
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
20
|
Liu T, Hu Y, Guo S, Tan L, Zhan Y, Yang L, Liu W, Wang N, Li Y, Zhang Y, Liu C, Yang Y, Adelstein RS, Wang A. Identification and characterization of MYH9 locus for high efficient gene knock-in and stable expression in mouse embryonic stem cells. PLoS One 2018; 13:e0192641. [PMID: 29438440 PMCID: PMC5811019 DOI: 10.1371/journal.pone.0192641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/26/2018] [Indexed: 01/22/2023] Open
Abstract
Targeted integration of exogenous genes into so-called safe harbors/friend sites, offers the advantages of expressing normal levels of target genes and preventing potentially adverse effects on endogenous genes. However, the ideal genomic loci for this purpose remain limited. Additionally, due to the inherent and unresolved issues with the current genome editing tools, traditional embryonic stem (ES) cell-based targeted transgenesis technology is still preferred in practical applications. Here, we report that a high and repeatable homologous recombination (HR) frequency (>95%) is achieved when an approximate 6kb DNA sequence flanking the MYH9 gene exon 2 site is used to create the homology arms for the knockout/knock-in of diverse nonmuscle myosin II (NM II) isoforms in mouse ES cells. The easily obtained ES clones greatly facilitated the generation of multiple NM II genetic replacement mouse models, as characterized previously. Further investigation demonstrated that though the targeted integration site for exogenous genes is shifted to MYH9 intron 2 (about 500bp downstream exon 2), the high HR efficiency and the endogenous MYH9 gene integrity are not only preserved, but the expected expression of the inserted gene(s) is observed in a pre-designed set of experiments conducted in mouse ES cells. Importantly, we confirmed that the expression and normal function of the endogenous MYH9 gene is not affected by the insertion of the exogenous gene in these cases. Therefore, these findings suggest that like the commonly used ROSA26 site, the MYH9 gene locus may be considered a new safe harbor for high-efficiency targeted transgenesis and for biomedical applications.
Collapse
Affiliation(s)
- Tanbin Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yi Hu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Shiyin Guo
- College of Food Science and Technology, HUNAU, Changsha, Hunan, China
| | - Lei Tan
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yang Zhan
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Lingchen Yang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Wei Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Naidong Wang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Yalan Li
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yingfan Zhang
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Chengyu Liu
- Transgenic Core, NHLBI/ NIH, Bethesda, MD, United States of America
| | - Yi Yang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Robert S. Adelstein
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Aibing Wang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
21
|
Böiers C, Richardson SE, Laycock E, Zriwil A, Turati VA, Brown J, Wray JP, Wang D, James C, Herrero J, Sitnicka E, Karlsson S, Smith AJH, Jacobsen SEW, Enver T. A Human IPS Model Implicates Embryonic B-Myeloid Fate Restriction as Developmental Susceptibility to B Acute Lymphoblastic Leukemia-Associated ETV6-RUNX1. Dev Cell 2017; 44:362-377.e7. [PMID: 29290585 PMCID: PMC5807056 DOI: 10.1016/j.devcel.2017.12.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 08/04/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022]
Abstract
ETV6-RUNX1 is associated with childhood acute B-lymphoblastic leukemia (cALL) functioning as a first-hit mutation that initiates a clinically silent pre-leukemia in utero. Because lineage commitment hierarchies differ between embryo and adult, and the impact of oncogenes is cell-context dependent, we hypothesized that the childhood affiliation of ETV6-RUNX1 cALL reflects its origins in a progenitor unique to embryonic life. We characterize the first emerging B cells in first-trimester human embryos, identifying a developmentally restricted CD19-IL-7R+ progenitor compartment, which transitions from a myeloid to lymphoid program during ontogeny. This developmental series is recapitulated in differentiating human pluripotent stem cells (hPSCs), thereby providing a model for the initiation of cALL. Genome-engineered hPSCs expressing ETV6-RUNX1 from the endogenous ETV6 locus show expansion of the CD19-IL-7R+ compartment, show a partial block in B lineage commitment, and produce proB cells with aberrant myeloid gene expression signatures and potential: features (collectively) consistent with a pre-leukemic state.
Collapse
Affiliation(s)
- Charlotta Böiers
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK; Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Emma Laycock
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Alya Zriwil
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - John Brown
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Jason P Wray
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Dapeng Wang
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Chela James
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Javier Herrero
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Ewa Sitnicka
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Andrew J H Smith
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; MRC Molecular Haematology Unit, University of Oxford, Oxford, UK
| | - Sten Erik W Jacobsen
- MRC Molecular Haematology Unit, University of Oxford, Oxford, UK; Departments of Cell and Molecular Biology and Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Karolinska University Hospital, Stockholm, Sweden
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK; Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
22
|
Gödecke N, Zha L, Spencer S, Behme S, Riemer P, Rehli M, Hauser H, Wirth D. Controlled re-activation of epigenetically silenced Tet promoter-driven transgene expression by targeted demethylation. Nucleic Acids Res 2017; 45:e147. [PMID: 28934472 PMCID: PMC5766184 DOI: 10.1093/nar/gkx601] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
Faithful expression of transgenes in cell cultures and mice is often challenged by locus dependent epigenetic silencing. We investigated silencing of Tet-controlled expression cassettes within the mouse ROSA26 locus. We observed pronounced DNA methylation of the Tet promoter concomitant with loss of expression in mES cells as well as in differentiated cells and transgenic animals. Strikingly, the ROSA26 promoter remains active and methylation free indicating that this silencing mechanism specifically affects the transgene, but does not spread to the host's chromosomal neighborhood. To reactivate Tet cassettes a synthetic fusion protein was constructed and expressed in silenced cells. This protein includes the enzymatic domains of ten eleven translocation methylcytosine dioxygenase 1 (TET-1) as well as the Tet repressor DNA binding domain. Expression of the synthetic fusion protein and Doxycycline treatment allowed targeted demethylation of the Tet promoter in the ROSA26 locus and in another genomic site, rescuing transgene expression in cells and transgenic mice. Thus, inducible, reversible and site-specific epigenetic modulation is a promising strategy for reactivation of silenced transgene expression, independent of the integration site.
Collapse
Affiliation(s)
- Natascha Gödecke
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Lisha Zha
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Shawal Spencer
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Sara Behme
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Pamela Riemer
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Michael Rehli
- University Hospital, Dept. Internal Medicine III, Regensburg, Germany
| | - Hansjörg Hauser
- Helmholtz Centre for Infection Research, Dept. of Scientific Strategy, Braunschweig, Germany
| | - Dagmar Wirth
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany.,Hannover Medical School, Experimental Hematology, Hannover, Germany
| |
Collapse
|
23
|
Conway JRW, Warren SC, Timpson P. Context-dependent intravital imaging of therapeutic response using intramolecular FRET biosensors. Methods 2017; 128:78-94. [PMID: 28435000 DOI: 10.1016/j.ymeth.2017.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022] Open
Abstract
Intravital microscopy represents a more physiologically relevant method for assessing therapeutic response. However, the movement into an in vivo setting brings with it several additional considerations, the primary being the context in which drug activity is assessed. Microenvironmental factors, such as hypoxia, pH, fibrosis, immune infiltration and stromal interactions have all been shown to have pronounced effects on drug activity in a more complex setting, which is often lost in simpler two- or three-dimensional assays. Here we present a practical guide for the application of intravital microscopy, looking at the available fluorescent reporters and their respective expression systems and analysis considerations. Moving in vivo, we also discuss the microscopy set up and methods available for overlaying microenvironmental context to the experimental readouts. This enables a smooth transition into applying higher fidelity intravital imaging to improve the drug discovery process.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Sean C Warren
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia.
| |
Collapse
|
24
|
Takemoto T, Abe T, Kiyonari H, Nakao K, Furuta Y, Suzuki H, Takada S, Fujimori T, Kondoh H. R26-WntVis reporter mice showing graded response to Wnt signal levels. Genes Cells 2016; 21:661-9. [PMID: 27030109 DOI: 10.1111/gtc.12364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
The canonical Wnt signaling pathway plays a major role in the regulation of embryogenesis and organogenesis, where signal strength-dependent cellular responses are of particular importance. To assess Wnt signal levels in individual cells, and to circumvent the integration site-dependent bias shown in previous Wnt reporter lines, we constructed a new Wnt signal reporter mouse line R26-WntVis. Heptameric TCF/LEF1 binding sequences were combined with a viral minimal promoter to confer a graded response to the reporter depending on Wnt signal strengths. The histone H2B-EGFP fusion protein was chosen as the fluorescent reporter to facilitate single-cell resolution analyses. This WntVis reporter gene was then inserted into the ROSA26 locus in an orientation opposite to that of the endogenous gene. The R26-WntVis allele was introduced into Wnt3a(-/-) and Wnt3a(vt/-) mutant mouse embryos and compared with wild-type embryos to assess its performance. The R26-WntVis reporter was activated in known Wnt-dependent tissues and responded in a graded fashion to signal intensity. This analysis also indicated that the major Wnt activity early in embryogenesis switched from Wnt3 to Wnt3a around E7.5. The R26-WntVis mouse line will be widely useful for the study of Wnt signal-dependent processes.
Collapse
Affiliation(s)
- Tatsuya Takemoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan
| | - Hiroshi Kiyonari
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan.,Animal Resource Development Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan
| | - Kazuki Nakao
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan.,Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yasuhide Furuta
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan.,Animal Resource Development Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan
| | - Hitomi Suzuki
- Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Toshihiko Fujimori
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan.,Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, 444-8787, Japan
| | - Hisato Kondoh
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| |
Collapse
|
25
|
Dionne N, Dib S, Finsen B, Denarier E, Kuhlmann T, Drouin R, Kokoeva M, Hudson TJ, Siminovitch K, Friedman HC, Peterson AC. Functional organization of anMbpenhancer exposes striking transcriptional regulatory diversity within myelinating glia. Glia 2015; 64:175-94. [DOI: 10.1002/glia.22923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Nancy Dionne
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| | - Samar Dib
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| | - Bente Finsen
- Department of Neurobiology Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
| | - Eric Denarier
- Institut National De La Santé Et De La Recherche Médicale, U836-GIN iRTSV-GPC; Site Santé La Tronche, BP170 Grenoble Cedex 9 France
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital, Münster; Pottkamp 2 Münster Germany
| | - Régen Drouin
- Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences; Université De Sherbrooke; Sherbrooke Quebec Canada
| | - Maia Kokoeva
- Department of Medicine; McGill University/MUHC Research Institute; Montreal Quebec Canada
| | - Thomas J. Hudson
- Ontario Institute for Cancer Research, MaRS Centre; South Tower Toronto Ontario Canada
| | - Kathy Siminovitch
- Department of Medicine; University of Toronto, Samuel Lunenfeld and Toronto General Research Institutes; Toronto Ontario Canada
- Department of Immunology and Molecular Genetics; University of Toronto; Toronto Ontario Canada
| | - Hana C Friedman
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| | - Alan C. Peterson
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| |
Collapse
|
26
|
Lee H. Genetically engineered mouse models for drug development and preclinical trials. Biomol Ther (Seoul) 2014; 22:267-74. [PMID: 25143803 PMCID: PMC4131519 DOI: 10.4062/biomolther.2014.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022] Open
Abstract
Drug development and preclinical trials are challenging processes and more than 80% to 90% of drug candidates fail to gain approval from the United States Food and Drug Administration. Predictive and efficient tools are required to discover high quality targets and increase the probability of success in the process of new drug development. One such solution to the challenges faced in the development of new drugs and combination therapies is the use of low-cost and experimentally manageable in vivo animal models. Since the 1980's, scientists have been able to genetically modify the mouse genome by removing or replacing a specific gene, which has improved the identification and validation of target genes of interest. Now genetically engineered mouse models (GEMMs) are widely used and have proved to be a powerful tool in drug discovery processes. This review particularly covers recent fascinating technologies for drug discovery and preclinical trials, targeted transgenesis and RNAi mouse, including application and combination of inducible system. Improvements in technologies and the development of new GEMMs are expected to guide future applications of these models to drug discovery and preclinical trials.
Collapse
Affiliation(s)
- Ho Lee
- Division of Convergence Technology, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 410-769, Republic of Korea
| |
Collapse
|
27
|
Mort RL, Ford MJ, Sakaue-Sawano A, Lindstrom NO, Casadio A, Douglas AT, Keighren MA, Hohenstein P, Miyawaki A, Jackson IJ. Fucci2a: a bicistronic cell cycle reporter that allows Cre mediated tissue specific expression in mice. Cell Cycle 2014; 13:2681-96. [PMID: 25486356 PMCID: PMC4613862 DOI: 10.4161/15384101.2015.945381] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/04/2014] [Indexed: 01/01/2023] Open
Abstract
Markers of cell cycle stage allow estimation of cell cycle dynamics in cell culture and during embryonic development. The Fucci system incorporates genetically encoded probes that highlight G1 and S/G2/M phases of the cell cycle allowing live imaging. However the available mouse models that incorporate Fucci are beset by problems with transgene inactivation, varying expression level, lack of conditional potential and/or the need to maintain separate transgenes-there is no transgenic mouse model that solves all these problems. To address these shortfalls we re-engineered the Fucci system to create 2 bicistronic Fucci variants incorporating both probes fused using the Thosea asigna virus 2A (T2A) self cleaving peptide. We characterize these variants in stable 3T3 cell lines. One of the variants (termed Fucci2a) faithfully recapitulated the nuclear localization and cell cycle stage specific florescence of the original Fucci system. We go on to develop a conditional mouse allele (R26Fucci2aR) carefully designed for high, inducible, ubiquitous expression allowing investigation of cell cycle status in single cell lineages within the developing embryo. We demonstrate the utility of R26Fucci2aR for live imaging by using high resolution confocal microscopy of ex vivo lung, kidney and neural crest development. Using our 3T3 system we describe and validate a method to estimate cell cycle times from relatively short time-lapse sequences that we then apply to our neural crest data. The Fucci2a system and the R26Fucci2aR mouse model are compelling new tools for the investigation of cell cycle dynamics in cell culture and during mouse embryonic development.
Collapse
Key Words
- BrdU, 5-bromo-2′-deoxyuridine
- DAPI, 4′, 6-diamidino-2-phenylindole
- DMEM, Dulbeccos modified eagle medium
- ECACC, European Collection of Cell Cultures
- EMMA, European Mouse Mutant Archive
- FACS, Fluorescence-activated cell sorting
- Fucci
- Fucci, Fluorescent Ubiquitination-based Cell Cycle Indicator
- Fucci2
- Fucci2a
- GMEM, Glasgow minimum essential medium
- IRES, Internal ribosomal entry site
- LIF, leukemia inhibitory factor
- RBDB, Riken Bioresource Center DNA Bank
- T2A, Thosea asigna virus 2A peptide
- cell cycle
- hESC, Human embryonic stem cell
- kidney
- lung
- mAG, Monomeric Azami Green
- mESC, Mouse embryonic stem cell
- mKO2, Monomeric Kusabira Orange
- melanoblast
Collapse
Affiliation(s)
- Richard Lester Mort
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
| | - Matthew Jonathan Ford
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function and Dynamics; Advanced Technology Development Group; Brain Science Institute; RIKEN; Wako-city, Saitama, Japan
| | - Nils Olof Lindstrom
- The Roslin Institute; The University of Edinburgh; Easter Bush, Midlothian; Scotland, UK
| | - Angela Casadio
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
| | - Adam Thomas Douglas
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
| | - Margaret Anne Keighren
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
| | - Peter Hohenstein
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
- The Roslin Institute; The University of Edinburgh; Easter Bush, Midlothian; Scotland, UK
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics; Advanced Technology Development Group; Brain Science Institute; RIKEN; Wako-city, Saitama, Japan
| | - Ian James Jackson
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
- The Roslin Institute; The University of Edinburgh; Easter Bush, Midlothian; Scotland, UK
| |
Collapse
|
28
|
Rodríguez-Gallego E, Riera-Borrull M, Hernández-Aguilera A, Mariné-Casadó R, Rull A, Beltrán-Debón R, Luciano-Mateo F, Menendez JA, Vazquez-Martin A, Sirvent JJ, Martín-Paredero V, Corbí AL, Sierra-Filardi E, Aragonès G, García-Heredia A, Camps J, Alonso-Villaverde C, Joven J. Ubiquitous transgenic overexpression of C-C chemokine ligand 2: a model to assess the combined effect of high energy intake and continuous low-grade inflammation. Mediators Inflamm 2013; 2013:953841. [PMID: 24453432 PMCID: PMC3876923 DOI: 10.1155/2013/953841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 12/26/2022] Open
Abstract
Excessive energy management leads to low-grade, chronic inflammation, which is a significant factor predicting noncommunicable diseases. In turn, inflammation, oxidation, and metabolism are associated with the course of these diseases; mitochondrial dysfunction seems to be at the crossroads of mutual relationships. The migration of immune cells during inflammation is governed by the interaction between chemokines and chemokine receptors. Chemokines, especially C-C-chemokine ligand 2 (CCL2), have a variety of additional functions that are involved in the maintenance of normal metabolism. It is our hypothesis that a ubiquitous and continuous secretion of CCL2 may represent an animal model of low-grade chronic inflammation that, in the presence of an energy surplus, could help to ascertain the afore-mentioned relationships and/or to search for specific therapeutic approaches. Here, we present preliminary data on a mouse model created by using targeted gene knock-in technology to integrate an additional copy of the CCl2 gene in the Gt(ROSA)26Sor locus of the mouse genome via homologous recombination in embryonic stem cells. Short-term dietary manipulations were assessed and the findings include metabolic disturbances, premature death, and the manipulation of macrophage plasticity and autophagy. These results raise a number of mechanistic questions for future study.
Collapse
Affiliation(s)
- Esther Rodríguez-Gallego
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Marta Riera-Borrull
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Roger Mariné-Casadó
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Anna Rull
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Raúl Beltrán-Debón
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Fedra Luciano-Mateo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Javier A. Menendez
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avda de Francia s/n, 17007 Girona, Spain
| | - Alejandro Vazquez-Martin
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avda de Francia s/n, 17007 Girona, Spain
| | - Juan J. Sirvent
- Department of Pathology, Hospital Universitari Joan XXIII, C/ Dr. Mallafrè Guasch 4, 43005 Tarragona, Spain
| | - Vicente Martín-Paredero
- Department of Vascular Surgery, Hospital Universitari Joan XXIII, C/ Dr. Mallafrè Guasch 4, 43005 Tarragona, Spain
| | - Angel L. Corbí
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elena Sierra-Filardi
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Gerard Aragonès
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Anabel García-Heredia
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Carlos Alonso-Villaverde
- Servei de Medicina Interna, Hospital Sant Pau i Santa Tecla, Rambla Vella 14, 43003 Tarragona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| |
Collapse
|
29
|
Efficient ROSA26-Based Conditional and/or Inducible Transgenesis Using RMCE-Compatible F1 Hybrid Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2013; 9:774-85. [DOI: 10.1007/s12015-013-9458-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Eyquem J, Poirot L, Galetto R, Scharenberg AM, Smith J. Characterization of three loci for homologous gene targeting and transgene expression. Biotechnol Bioeng 2013; 110:2225-35. [DOI: 10.1002/bit.24892] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 12/31/2022]
|
31
|
Somarelli JA, Schaeffer D, Bosma R, Bonano VI, Sohn JW, Kemeny G, Ettyreddy A, Garcia-Blanco MA. Fluorescence-based alternative splicing reporters for the study of epithelial plasticity in vivo. RNA (NEW YORK, N.Y.) 2013; 19:116-127. [PMID: 23185039 PMCID: PMC3527723 DOI: 10.1261/rna.035097.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/22/2012] [Indexed: 05/31/2023]
Abstract
Alternative splicing generates a vast diversity of protein isoforms from a limited number of protein-coding genes, with many of the isoforms possessing unique, and even contrasting, functions. Fluorescence-based splicing reporters have the potential to facilitate studies of alternative splicing at the single-cell level and can provide valuable information on phenotypic transitions in almost real time. Fibroblast growth factor receptor 2 (FGFR2) pre-mRNA is alternatively spliced to form the epithelial-specific and mesenchymal-specific IIIb and IIIc isoforms, respectively, which are useful markers of epithelial-mesenchymal transitions (EMT). We have used our knowledge of FGFR2 splicing regulation to develop a fluorescence-based reporter system to visualize exon IIIc regulation in vitro and in vivo. Here we show the application of this reporter system to the study of EMT in vitro in cell culture and in vivo in transgenic mice harboring these splicing constructs. In explant studies, the reporters revealed that FGFR2 isoform switching is not required for keratinocyte migration during cutaneous wound closure. Our results demonstrate the value of the splicing reporters as tools to study phenotypic transitions and cell fates at single cell resolution. Moreover, our data suggest that keratinocytes migrate efficiently in the absence of a complete EMT.
Collapse
Affiliation(s)
| | - Daneen Schaeffer
- Center for RNA Biology
- Department of Molecular Genetics and Microbiology
| | - Reggie Bosma
- Center for RNA Biology
- Department of Molecular Genetics and Microbiology
| | - Vivian I. Bonano
- Center for RNA Biology
- Department of Molecular Genetics and Microbiology
- University Program in Genetics and Genomics
| | - Jang Wook Sohn
- Center for RNA Biology
- Department of Molecular Genetics and Microbiology
| | - Gabor Kemeny
- Center for RNA Biology
- Department of Molecular Genetics and Microbiology
| | - Abhinav Ettyreddy
- Center for RNA Biology
- Department of Molecular Genetics and Microbiology
| | - Mariano A. Garcia-Blanco
- Center for RNA Biology
- Department of Molecular Genetics and Microbiology
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
32
|
Bire S, Rouleux-Bonnin F. Transgene Site-Specific Integration: Problems and Solutions. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Yin Z, Kong QR, Zhao ZP, Wu ML, Mu YS, Hu K, Liu ZH. Position effect variegation and epigenetic modification of a transgene in a pig model. GENETICS AND MOLECULAR RESEARCH 2012; 11:355-69. [PMID: 22370938 DOI: 10.4238/2012.february.16.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sequences proximal to transgene integration sites are able to regulate transgene expression, resulting in complex position effect variegation. Position effect variegation can cause differences in epigenetic modifications, such as DNA methylation and histone acetylation. However, it is not known which factor, position effect or epigenetic modification, plays a more important role in the regulation of transgene expression. We analyzed transgene expression patterns and epigenetic modifications of transgenic pigs expressing green fluorescent protein, driven by the cytomegalovirus (CMV) promoter. DNA hypermethylation and loss of acetylation of specific histone H3 and H4 lysines, except H4K16 acetylation in the CMV promoter, were consistent with a low level of transgene expression. Moreover, the degree of DNA methylation and histone H3/H4 acetylation in the promoter region depended on the integration site; consequently, position effect variegation caused variations in epigenetic modifications. The transgenic pig fibroblast cell lines were treated with DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine and/or histone deacetylase inhibitor trichostatin A. Transgene expression was promoted by reversing the DNA hypermethylation and histone hypoacetylation status. The differences in DNA methylation and histone acetylation in the CMV promoter region in these cell lines were not significant; however, significant differences in transgene expression were detected, demonstrating that variegation of transgene expression is affected by the integration site. We conclude that in this pig model, position effect variegation affects transgene expression.
Collapse
Affiliation(s)
- Z Yin
- College of Life Science, Northeast Agricultural University of China, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Tchorz JS, Suply T, Ksiazek I, Giachino C, Cloëtta D, Danzer CP, Doll T, Isken A, Lemaistre M, Taylor V, Bettler B, Kinzel B, Mueller M. A modified RMCE-compatible Rosa26 locus for the expression of transgenes from exogenous promoters. PLoS One 2012; 7:e30011. [PMID: 22253858 PMCID: PMC3258265 DOI: 10.1371/journal.pone.0030011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/11/2011] [Indexed: 12/11/2022] Open
Abstract
Generation of gain-of-function transgenic mice by targeting the Rosa26 locus has been established as an alternative to classical transgenic mice produced by pronuclear microinjection. However, targeting transgenes to the endogenous Rosa26 promoter results in moderate ubiquitous expression and is not suitable for high expression levels. Therefore, we now generated a modified Rosa26 (modRosa26) locus that combines efficient targeted transgenesis using recombinase-mediated cassette exchange (RMCE) by Flipase (Flp-RMCE) or Cre recombinase (Cre-RMCE) with transgene expression from exogenous promoters. We silenced the endogenous Rosa26 promoter and characterized several ubiquitous (pCAG, EF1α and CMV) and tissue-specific (VeCad, αSMA) promoters in the modRosa26 locus in vivo. We demonstrate that the ubiquitous pCAG promoter in the modRosa26 locus now offers high transgene expression. While tissue-specific promoters were all active in their cognate tissues they additionally led to rare ectopic expression. To achieve high expression levels in a tissue-specific manner, we therefore combined Flp-RMCE for rapid ES cell targeting, the pCAG promoter for high transgene levels and Cre/LoxP conditional transgene activation using well-characterized Cre lines. Using this approach we generated a Cre/LoxP-inducible reporter mouse line with high EGFP expression levels that enables cell tracing in live cells. A second reporter line expressing luciferase permits efficient monitoring of Cre activity in live animals. Thus, targeting the modRosa26 locus by RMCE minimizes the effort required to target ES cells and generates a tool for the use exogenous promoters in combination with single-copy transgenes for predictable expression in mice.
Collapse
Affiliation(s)
- Jan S. Tchorz
- Novartis Institute for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| | - Thomas Suply
- Novartis Institute for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Iwona Ksiazek
- Novartis Institute for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | | | - Dimitri Cloëtta
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| | - Claus-Peter Danzer
- Novartis Institute for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Thierry Doll
- Novartis Institute for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Andrea Isken
- Novartis Institute for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Marianne Lemaistre
- Novartis Institute for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Verdon Taylor
- Max-Planck Institute for Immunobiology, Freiburg, Germany
- Department of Biomedical Science, Centre for Stem Cell Biology, University of Sheffield, Sheffield, United Kingdom
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| | - Bernd Kinzel
- Novartis Institute for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Matthias Mueller
- Novartis Institute for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
35
|
Botezatu L, Sievers S, Gama-Norton L, Schucht R, Hauser H, Wirth D. Genetic aspects of cell line development from a synthetic biology perspective. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 127:251-284. [PMID: 22068842 DOI: 10.1007/10_2011_117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Animal cells can be regarded as factories for the production of relevant proteins. The advances described in this chapter towards the development of cell lines with higher productivity capacities, certain metabolic and proliferation properties, reduced apoptosis and other features must be regarded in an integrative perspective. The systematic application of systems biology approaches in combination with a synthetic arsenal for targeted modification of endogenous networks are proposed to lead towards the achievement of a predictable and technologically advanced cell system with high biotechnological impact.
Collapse
Affiliation(s)
- L Botezatu
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The human CMV promoter/enhancer is one of the strongest promoters for recombinant protein expression in mammalian cells, making the promoter very popular for production of recombinant antibodies. We used an antibody vector design where the antibody heavy and light chain genes were transcribed from a promoter complex consisting of two promoters arranged divergently with the 5' ends of the promoters in close proximity. However, when two identical CMV promoters constituted this promoter complex, the antibody expression observed was lower than expected based on the strength of the individual promoters. To optimize expression we prepared truncated promoter complexes where only one CMV enhancer controlled the initiation of transcription from two divergent minimal CMV core promoters. Antibody expression from the truncated promoter complexes was analyzed both when transiently transfected and upon stable site-specific integration into a CHO DG44 derived cell line. The data showed that it was possible for one enhancer to drive the expression of two core promoters. However, efficient expression from both divergent core promoters was seen only when the unique region upstream of the CMV enhancer was removed. Notably, a 12-fold increase in expression was found from the best of the truncated promoter complexes after stable site-specific integration when compared to the full-length double CMV promoter complex.
Collapse
|
37
|
Chen CM, Krohn J, Bhattacharya S, Davies B. A comparison of exogenous promoter activity at the ROSA26 locus using a ΦiC31 integrase mediated cassette exchange approach in mouse ES cells. PLoS One 2011; 6:e23376. [PMID: 21853122 PMCID: PMC3154917 DOI: 10.1371/journal.pone.0023376] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/14/2011] [Indexed: 11/18/2022] Open
Abstract
The activities of nine ubiquitous promoters (ROSA26, CAG, CMV, CMVd1, UbC, EF1α, PGK, chicken β-actin and MC1) have been quantified and compared in mouse embryonic stem cells. To avoid the high variation in transgene expression which results from uncontrolled copy number and chromosomal position effects when using random insertion based transgenic approaches, we have adopted a PhiC31 integrase mediated cassette exchange method for the efficient insertion of transgenes at single copy within a defined and well characterized chromosomal position, ROSA26. This has enabled the direct comparison of constructs from within the same genomic context and allows a systematic and quantitative assessment of the strengths of the promoters in comparison with the endogenous ROSA26 promoter. The behavior of these exogenous promoters, when integrated at ROSA26 in both sense and antisense orientations, reveals a large variation in their levels of activity. In addition, a subset of promoters, EF1α, UbC and CAG, show an increased activity in the sense orientation as a consequence of integration. Transient transfection experiments confirmed these observations to reflect integration dependent effects and also revealed significant differences in the behaviour of these promoters when delivered transiently or stably. As well as providing an important reference which will facilitate the choice of an appropriate promoter to achieve the desired level of expression for a specific research question, this study also demonstrates the suitability of the cassette exchange methodology for the robust and reliable expression of multiple variant transgenes in ES cells.
Collapse
Affiliation(s)
- Chiann-mun Chen
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jon Krohn
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Shoumo Bhattacharya
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Benjamin Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Imayoshi I, Sakamoto M, Kageyama R. Genetic methods to identify and manipulate newly born neurons in the adult brain. Front Neurosci 2011; 5:64. [PMID: 21562606 PMCID: PMC3087966 DOI: 10.3389/fnins.2011.00064] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/19/2011] [Indexed: 12/12/2022] Open
Abstract
Although mammalian neurogenesis is mostly completed by the perinatal period, new neurons are continuously generated in the subventricular zone of the lateral ventricle and the subgranular zone of the hippocampal dentate gyrus. Since the discovery of adult neurogenesis, many extensive studies have been performed on various aspects of adult neurogenesis, including proliferation and fate-specification of adult neural stem cells, and the migration, maturation and synaptic integration of newly born neurons. Furthermore, recent research has shed light on the intensive contribution of adult neurogenesis to olfactory-related and hippocampus-mediated brain functions. The field of adult neurogenesis progressed tremendously thanks to technical advances that facilitate the identification and selective manipulation of newly born neurons among billions of pre-existing neurons in the adult central nervous system. In this review, we introduce recent advances in the methodologies for visualizing newly generated neurons and manipulating neurogenesis in the adult brain. Particularly, the application of site-specific recombinases and Tet inducible system in combination with transgenic or gene targeting strategy is discussed in further detail.
Collapse
Affiliation(s)
- Itaru Imayoshi
- Institute for Virus Research, Kyoto University Kyoto, Japan
| | | | | |
Collapse
|
39
|
Hsiao EC, Nguyen TD, Ng JK, Scott MJ, Chang WC, Zahed H, Conklin BR. Constitutive Gs activation using a single-construct tetracycline-inducible expression system in embryonic stem cells and mice. Stem Cell Res Ther 2011; 2:11. [PMID: 21375737 PMCID: PMC3226282 DOI: 10.1186/scrt52] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 03/04/2011] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION The controlled expression of many genes, including G-protein coupled receptors (GPCRs), is important for delineating gene functions in complex model systems. Binary systems for inducible regulation of transgene expression are widely used in mice. One system is the tTA/TRE expression system, composed of a tetracycline-dependent DNA binding factor and a separate tetracycline operon. However, the requirement for two separate transgenes (one for each tTA or TRE component) makes this system less amenable to models requiring directed cell targeting, increases the risk of multiple transgene integration sites, and requires extensive screening for appropriately-functioning clones. METHODS We developed a single, polycistronic tetracycline-inducible expression platform to control the expression of multiple cistrons in mammalian cells. This platform has three basic constructs: regulator, responder, and destination vectors. The modular platform is compatible with both the TetOff (tTA) and TetOn (rtTA) systems. The modular Gateway recombineering-compatible components facilitate rapidly generating vectors to genetically modify mammalian cells. We apply this system to use the elongation factor 1α (EF1α) promoter to drive doxycycline-regulated expression of both the fluorescent marker mCherry and an engineered Gs-coupled GPCR "Rs1" separated by a 2A ribosomal skip site. RESULTS We show that our combined expression construct drives expression of both the mCherry and Rs1 transgenes in a doxycycline-dependent manner. We successfully target the expression construct into the Rosa26 locus of mouse embryonic stem (ES) cells. Rs1 expression in mouse ES cells increases cAMP accumulation via both basal and ligand-induced Gs mechanisms and is associated with increased embryoid body size. Heterozygous mice carrying the Rs1 expression construct showed normal growth and weight, and developed small increases in bone formation that could be observed in the calvaria. CONCLUSIONS Our results demonstrate the feasibility of a single-vector strategy that combines both the tTA and TRE tetracycline-regulated components for use in cells and mouse models. Although the EF1α promoter is useful for driving expression in pluripotent cells, a single copy of the EF1α promoter did not drive high levels of mCherry and Rs1 expression in the differentiated tissues of adult mice. These findings indicate that promoter selection is an important factor when developing transgene expression models.
Collapse
Affiliation(s)
- Edward C Hsiao
- Gladstone Institute of Cardiovascular Disease, 1650 Owens St., San Francisco, CA 94158, USA
- Division of Endocrinology and Metabolism, Department of Medicine, 400 Parnassus Ave., University of California, San Francisco, CA 94143-1222, USA
| | - Trieu D Nguyen
- Gladstone Institute of Cardiovascular Disease, 1650 Owens St., San Francisco, CA 94158, USA
| | - Jennifer K Ng
- Gladstone Institute of Cardiovascular Disease, 1650 Owens St., San Francisco, CA 94158, USA
| | - Mark J Scott
- Gladstone Institute of Cardiovascular Disease, 1650 Owens St., San Francisco, CA 94158, USA
| | - Wei Chun Chang
- Department of Cellular and Molecular Pharmacology, 600 16th Street Rm. S-222, University of California, San Francisco, CA 94158-2140, USA
| | - Hengameh Zahed
- Gladstone Institute of Neurological Disease, 1650 Owens St., San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, 513 Parnassus Ave. Rm. HSE-1285, University of California, San Francisco, CA 94158-0505, USA
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, 1650 Owens St., San Francisco, CA 94158, USA
- Department of Medicine, 505 Parnassus Ave., University of California, San Francisco, CA 94143, USA
| |
Collapse
|
40
|
Wörtge S, Eshkind L, Cabezas-Wallscheid N, Lakaye B, Kim J, Heck R, Abassi Y, Diken M, Sprengel R, Bockamp E. Tetracycline-controlled transgene activation using the ROSA26-iM2-GFP knock-in mouse strain permits GFP monitoring of DOX-regulated transgene-expression. BMC DEVELOPMENTAL BIOLOGY 2010; 10:95. [PMID: 20815887 PMCID: PMC2944160 DOI: 10.1186/1471-213x-10-95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 09/03/2010] [Indexed: 12/21/2022]
Abstract
Background Conditional gene activation is an efficient strategy for studying gene function in genetically modified animals. Among the presently available gene switches, the tetracycline-regulated system has attracted considerable interest because of its unique potential for reversible and adjustable gene regulation. Results To investigate whether the ubiquitously expressed Gt(ROSA)26Sor locus enables uniform DOX-controlled gene expression, we inserted the improved tetracycline-regulated transcription activator iM2 together with an iM2 dependent GFP gene into the Gt(ROSA)26Sor locus, using gene targeting to generate ROSA26-iM2-GFP (R26t1Δ) mice. Despite the presence of ROSA26 promoter driven iM2, R26t1Δ mice showed very sparse DOX-activated expression of different iM2-responsive reporter genes in the brain, mosaic expression in peripheral tissues and more prominent expression in erythroid, myeloid and lymphoid lineages, in hematopoietic stem and progenitor cells and in olfactory neurons. Conclusions The finding that gene regulation by the DOX-activated transcriptional factor iM2 in the Gt(ROSA)26Sor locus has its limitations is of importance for future experimental strategies involving transgene activation from the endogenous ROSA26 promoter. Furthermore, our ROSA26-iM2 knock-in mouse model (R26t1Δ) represents a useful tool for implementing gene function in vivo especially under circumstances requiring the side-by-side comparison of gene manipulated and wild type cells. Since the ROSA26-iM2 mouse allows mosaic gene activation in peripheral tissues and haematopoietic cells, this model will be very useful for uncovering previously unknown or unsuspected phenotypes.
Collapse
Affiliation(s)
- Simone Wörtge
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bailey JM, Creamer BA, Hollingsworth MA. What a fish can learn from a mouse: principles and strategies for modeling human cancer in mice. Zebrafish 2010; 6:329-37. [PMID: 20047466 DOI: 10.1089/zeb.2009.0626] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review highlights the current techniques used to generate transgenic mouse models of cancer, with an emphasis on recent advances in the use of ubiquitous promoters, models that use Cre-loxP and Flip-FRT recombinase technology, inducible systems, RNAi to target genes, and transposon mutagenesis. A concluding section discusses new imaging systems that visualize tumor progression and the microenvironment in vivo. In this review, these techniques and strategies used in mouse models of cancer are highlighted, as they are pertinent and relevant to the development of zebrafish models of cancer.
Collapse
Affiliation(s)
- Jennifer M Bailey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | |
Collapse
|
42
|
Koentgen F, Suess G, Naf D. Engineering the mouse genome to model human disease for drug discovery. Methods Mol Biol 2010; 602:55-77. [PMID: 20012392 DOI: 10.1007/978-1-60761-058-8_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Genetically engineered mice (GEM) have become invaluable tools for human disease modeling and drug development. Completion of the mouse genome sequence in combination with transgenesis and gene targeting in embryonal stem cells have opened up unprecedented opportunities. Advanced technologies for derivation of GEM models will be introduced and discussed.
Collapse
|
43
|
Abstract
In 1991, Soriano and coworkers isolated the ROSA26 locus in a gene-trap mutagenesis screening performed in mouse embryonic stem (ES) cells. The ubiquitous expression of ROSA26 in embryonic and adult tissues, together with the high frequency of gene-targeting events observed at this locus in murine ES cells has led to the establishment in the past 10 years of over 130 knock-in lines expressing successfully from the ROSA26 locus a variety of transgenes including reporters, site-specific recombinases and, recently, noncoding RNAs. Different strategies can be employed to drive transgene expression from the ROSA26 locus. This chapter provides an overview of the current methodologies used to generate ROSA26 knock-in lines and describes different approaches that exploit the ROSA26 gene to control expression of transgenes, including miRNAs, in a temporal, cell-type, and stage-specific fashion.
Collapse
Affiliation(s)
- Stefano Casola
- IFOM, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| |
Collapse
|
44
|
Kong Q, Wu M, Huan Y, Zhang L, Liu H, Bou G, Luo Y, Mu Y, Liu Z. Transgene expression is associated with copy number and cytomegalovirus promoter methylation in transgenic pigs. PLoS One 2009; 4:e6679. [PMID: 19688097 PMCID: PMC2723931 DOI: 10.1371/journal.pone.0006679] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 07/14/2009] [Indexed: 01/24/2023] Open
Abstract
Transgenic animals have been used for years to study gene function, produce important proteins, and generate models for the study of human diseases. However, inheritance and expression instability of the transgene in transgenic animals is a major limitation. Copy number and promoter methylation are known to regulate gene expression, but no report has systematically examined their effect on transgene expression. In the study, we generated two transgenic pigs by somatic cell nuclear transfer (SCNT) that express green fluorescent protein (GFP) driven by cytomegalovirus (CMV). Absolute quantitative real-time PCR and bisulfite sequencing were performed to determine transgene copy number and promoter methylation level. The correlation of transgene expression with copy number and promoter methylation was analyzed in individual development, fibroblast cells, various tissues, and offspring of the transgenic pigs. Our results demonstrate that transgene expression is associated with copy number and CMV promoter methylation in transgenic pigs.
Collapse
Affiliation(s)
- Qingran Kong
- College of life science, Northeast Agricultural University of China, Harbin, People's Republic of China
| | - Meiling Wu
- College of life science, Northeast Agricultural University of China, Harbin, People's Republic of China
| | - Yanjun Huan
- College of life science, Northeast Agricultural University of China, Harbin, People's Republic of China
| | - Li Zhang
- College of life science, Northeast Agricultural University of China, Harbin, People's Republic of China
| | - Haiyan Liu
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, People's Republic of China
| | - Gerelchimeg Bou
- College of life science, Northeast Agricultural University of China, Harbin, People's Republic of China
| | - Yibo Luo
- College of life science, Northeast Agricultural University of China, Harbin, People's Republic of China
| | - Yanshuang Mu
- College of life science, Northeast Agricultural University of China, Harbin, People's Republic of China
| | - Zhonghua Liu
- College of life science, Northeast Agricultural University of China, Harbin, People's Republic of China
| |
Collapse
|
45
|
Palais G, Nguyen Dinh Cat A, Friedman H, Panek-Huet N, Millet A, Tronche F, Gellen B, Mercadier JJ, Peterson A, Jaisser F. Targeted transgenesis at the HPRT locus: an efficient strategy to achieve tightly controlled in vivo conditional expression with the tet system. Physiol Genomics 2009; 37:140-6. [DOI: 10.1152/physiolgenomics.90328.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tet-inducible system has been widely used to achieve conditional gene expression in genetically modified mice. To alleviate the frequent difficulties associated with recovery of relevant transgenic founders, we tested whether a controlled strategy of transgenesis would support reliable cell-specific, doxycycline (Dox)-controlled transgene expression in vivo. Taking advantage of the potent hypoxanthine-aminopterin-thymidine selection strategy and an embryonic stem (ES) cell line supporting efficient germ-line transmission, we used hypoxanthine phosphoribosyltransferase ( HPRT) targeting to insert a single copy tet-inducible construct designed to allow both glucocorticoid receptor (GR) and β-galactosidase (β-Gal) expression. Conditional, Dox-dependent GR and β-Gal expression was evidenced in targeted ES cells. Breeding ES-derived single copy transgenic mice with mice bearing appropriate tet transactivators resulted in β-Gal expression both qualitatively and quantitatively similar to that observed in mice with random integration of the same construct. Interestingly, GR expression in mice was dependent on transgene orientation in the HPRT locus while embryonic stem cell expression was not. Thus, a conditional construct inserted in single copy and in predetermined orientation at the HPRT locus demonstrated a Dox-dependent gene expression phenotype in adult mice suggesting that controlled insertion of tet-inducible constructs at the HPRT locus can provide an efficient alternative strategy to reproducibly generate animal models with tetracycline-induced transgene expression.
Collapse
Affiliation(s)
- G. Palais
- Institut National de la Santé et de la Recherche Médicale (INSERM), U772
- Collège de France
- l'Université Paris Descartes, Paris, France
| | - A. Nguyen Dinh Cat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U772
- Collège de France
- l'Université Paris Descartes, Paris, France
| | - H. Friedman
- Laboratory of Developmental Biology, H-5, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - N. Panek-Huet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U772
- Collège de France
- l'Université Paris Descartes, Paris, France
| | - A. Millet
- Collège de France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7148
| | - F. Tronche
- Collège de France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7148
| | - B. Gellen
- INSERM, U698
- l'Université Paris 7, Paris, France
| | | | - A. Peterson
- Laboratory of Developmental Biology, H-5, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - F. Jaisser
- Institut National de la Santé et de la Recherche Médicale (INSERM), U772
- Collège de France
- l'Université Paris Descartes, Paris, France
| |
Collapse
|
46
|
Nyabi O, Naessens M, Haigh K, Gembarska A, Goossens S, Maetens M, De Clercq S, Drogat B, Haenebalcke L, Bartunkova S, De Vos I, De Craene B, Karimi M, Berx G, Nagy A, Hilson P, Marine JC, Haigh JJ. Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells. Nucleic Acids Res 2009; 37:e55. [PMID: 19279185 PMCID: PMC2673446 DOI: 10.1093/nar/gkp112] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 01/15/2009] [Accepted: 02/10/2009] [Indexed: 11/25/2022] Open
Abstract
The ability to rapidly and efficiently generate reliable Cre/loxP conditional transgenic mice would greatly complement global high-throughput gene targeting initiatives aimed at identifying gene function in the mouse. We report here the generation of Cre/loxP conditional ROSA26-targeted ES cells within 3-4 weeks by using Gateway cloning to build the target vectors. The cDNA of the gene of interest can be expressed either directly by the ROSA26 promoter providing a moderate level of expression or by a CAGG promoter placed in the ROSA26 locus providing higher transgene expression. Utilization of F1 hybrid ES cells with exceptional developmental potential allows the production of germ line transmitting, fully or highly ES cell-derived mice by aggregation of cells with diploid embryos. The presented streamlined procedures accelerate the examination of phenotypical consequences of transgene expression. It also provides a unique tool for comparing the biological activity of polymorphic or splice variants of a gene, or products of different genes functioning in the same or parallel pathways in an overlapping manner.
Collapse
Affiliation(s)
- Omar Nyabi
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael Naessens
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Katharina Haigh
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Agnieszka Gembarska
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Steven Goossens
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Marion Maetens
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Sarah De Clercq
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Benjamin Drogat
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Lieven Haenebalcke
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Sonia Bartunkova
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Ilse De Vos
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Bram De Craene
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Mansour Karimi
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Geert Berx
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Andras Nagy
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Pierre Hilson
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Jean-Christophe Marine
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | - Jody J. Haigh
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Department of Biomedical Molecular Biology, Ghent University, Laboratory for Molecular Cancer Biology, VIB-UGent, Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, Department of Plant Systems Biology, VIB, Department of Molecular Genetics, Ghent University, Gent, Belgium, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Bäckman CM, Zhang Y, Malik N, Shan L, Hoffer BJ, Westphal H, Tomac AC. Generalized tetracycline induced Cre recombinase expression through the ROSA26 locus of recombinant mice. J Neurosci Methods 2009; 176:16-23. [DOI: 10.1016/j.jneumeth.2008.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/14/2008] [Accepted: 08/16/2008] [Indexed: 10/21/2022]
|
48
|
Han Y, Lin YB, An W, Xu J, Yang HC, O'Connell K, Dordai D, Boeke JD, Siliciano JD, Siliciano RF. Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host Microbe 2008; 4:134-46. [PMID: 18692773 PMCID: PMC2604135 DOI: 10.1016/j.chom.2008.06.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/09/2008] [Accepted: 05/23/2008] [Indexed: 12/11/2022]
Abstract
Integrated HIV-1 genomes are found within actively transcribed host genes in latently infected CD4(+) T cells. Readthrough transcription of the host gene might therefore suppress HIV-1 gene expression and promote the latent infection that allows viral persistence in patients on therapy. To address the effect of host gene readthrough, we used homologous recombination to insert HIV-1 genomes in either orientation into an identical position within an intron of an actively transcribed host gene, hypoxanthine-guanine phosphoribosyltransferase (HPRT). Constructs were engineered to permit or block readthrough transcription of HPRT. Readthrough transcription inhibited HIV-1 gene expression for convergently orientated provirus but enhanced HIV-1 gene expression when HIV-1 was in the same orientation as the host gene. Orientation had a >10-fold effect on HIV-1 gene expression. Due to the nature of HIV-1 integration sites in vivo, this orientation-dependent regulation can influence the vast majority of infected cells and adds complexity to the maintenance of latency.
Collapse
Affiliation(s)
- Yefei Han
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205
- Department of Ph.D. Program in Biochemistry, Cell and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Yijie B. Lin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Wenfeng An
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | | | - Hung-Chih Yang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Karen O'Connell
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Dominic Dordai
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Jef D. Boeke
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205
- Howard Hughes Medical Institute, Baltimore MD 21205
| |
Collapse
|
49
|
Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 2007; 15:2027-36. [PMID: 17895862 DOI: 10.1038/sj.mt.6300303] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To realize the full scientific and clinical potential of human embryonic stem cell (hESC)-cardiomyocytes, strategies to overcome the high degree of heterogeneity of differentiated populations are required. Here we demonstrate the utility of two transgenic approaches in enrichment of cardiomyocytes derived from HUES-7 cells: (i) negative selection of proliferating cells with the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system; and (ii) positive selection of cardiomyocytes expressing a bicistronic reporter [green fluorescent protein (GFP)-internal ribosome entry site (IRES)-puromycin-N-acetyltransferase (PAC)] from the human alphamyosin heavy chain promoter. Parental and transgenic HUES-7 cells were similar with regard to morphology, pluripotency marker expression, differentiation, and cardiomyocyte electrophysiology. Whereas immunostaining of dissociated cardiomyocyte preparations expressing HSVtk or PAC contained <7% cardiomyocytes, parallel cultures treated with GCV or puromycin, respectively, contained 33.4 +/- 2.1% or 91.5 +/- 4.3% cardiomyocytes corresponding to an enrichment factor of 6.7- or 14.5-fold. Drug-selected cardiomyocytes responded to chronotropic stimulation and displayed cardiac-specific action potentials, demonstrating that functionality was retained. Both transgenic strategies will be generically applicable and should readily translate to the enrichment of many other differentiated lineages derived from hESCs.
Collapse
Affiliation(s)
- David Anderson
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|