1
|
Salam F, Vasanthi K, Krishna VS, Lekshmi M, Kumar S, Nayak BB. Isolation and Virulence Gene Profiling of Arcobacter spp. from Seafood and Its Environment. Curr Microbiol 2025; 82:254. [PMID: 40253654 DOI: 10.1007/s00284-025-04220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Arcobacter spp. are emerging microaerophilic human pathogens associated with food-borne outbreaks worldwide. The present study reports the incidence and virulence gene characterization of Arcobacter spp. from seafood. Using the selective isolation method, a total of 112 arcobacters were isolated from 43 samples out of the 123 samples screened, comprising 71 finfish, 29 crustaceans, 13 molluscan and 10 water samples. The overall incidence of Arcobacter spp. was 34.96%, with highest in water (50%), followed by mollusca (46.15%), finfish (33.8%), and cephalopods (27.59%). The isolates were confirmed by polymerase chain reaction using Arcobacter genus and species-specific primers. Among 112 Arcobacter isolates, 62 were identified as A. butzleri, 17 as A. skirrowii, 14 as A. cryaerophilus and 19 as other arcobacters. Selected isolates (n = 52) comprising 19 A. butzleri, 17 A. skirrowii, and 14 A. cryaerophilus were screened for the presence of seven putative virulence genes, among which, ciaB was predominantly present in 94% of the isolates, whereas hecB was found absent in all test isolates. More than one virulence gene was present in 94% of the isolates screened. These findings suggest the pathogenic potential of seafood isolates of arcobacters, which further necessitates the need for detailed investigations on their molecular virulence mechanisms.
Collapse
Affiliation(s)
- Fathima Salam
- Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 61, India
| | - Kalli Vasanthi
- Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 61, India
| | - Veeranki Sai Krishna
- Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 61, India
| | - Manjusha Lekshmi
- Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 61, India
| | - Sanath Kumar
- Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 61, India
| | - Binaya Bhusan Nayak
- Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 61, India.
| |
Collapse
|
2
|
Hofmeisterová L, Bajer T, Walczak M, Šilha D. Chemical Composition and Antibacterial Effect of Clove and Thyme Essential Oils on Growth Inhibition and Biofilm Formation of Arcobacter spp. and Other Bacteria. Antibiotics (Basel) 2024; 13:1232. [PMID: 39766622 PMCID: PMC11672449 DOI: 10.3390/antibiotics13121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: In recent years, significant resistance of microorganisms to antibiotics has been observed. A biofilm is a structure that significantly aids the survival of the microbial population and also significantly affects its resistance. Methods: Thyme and clove essential oils (EOs) were subjected to chemical analysis using gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with a flame ionization detector (GC-FID). Furthermore, the antimicrobial effect of these EOs was tested in both the liquid and vapor phases using the volatilization method. The effect of the EOs on growth parameters was monitored using an RTS-8 bioreactor. However, the effect of the EOs on the biofilm formation of commonly occurring bacteria with pathogenic potential was also monitored, but for less described and yet clinically important strains of Arcobacter spp. Results: In total, 37 and 28 compounds were identified in the thyme and clove EO samples, respectively. The most common were terpenes and also derivatives of phenolic substances. Both EOs exhibited antimicrobial activity in the liquid and/or vapor phase against at least some strains. The determined antimicrobial activity of thyme and clove oil was in the range of 32-1024 µg/mL in the liquid phase and 512-1024 µg/mL in the vapor phase, respectively. The results of the antimicrobial effect are also supported by similar conclusions from monitoring growth curves using the RTS bioreactor. The effect of EOs on biofilm formation differed between strains. Biofilm formation of Pseudomonas aeruginosa was completely suppressed in an environment with a thyme EO concentration of 1024 µg/mL. On the other hand, increased biofilm formation was found, e.g., in an environment of low concentration (1-32 µg/mL). Conclusions: The potential of using natural matrices as antimicrobials or preservatives is evident. The effect of these EOs on biofilm formation, especially Arcobacter strains, is described for the first time.
Collapse
Affiliation(s)
- Leona Hofmeisterová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| | - Tomáš Bajer
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| | - Maciej Walczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - David Šilha
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| |
Collapse
|
3
|
Cheung HLS, Simister RL, Not C, Crowe SA. Microbial community respiration kinetics and their dynamics in coastal seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176119. [PMID: 39307367 DOI: 10.1016/j.scitotenv.2024.176119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024]
Abstract
Oxygen (O2) concentrations in coastal seawater have been declining for decades and models predict continued deoxygenation into the future. As O2 declines, metabolic energy use is progressively channelled from higher trophic levels into microbial community respiration, which in turn influences coastal ecology and biogeochemistry. Despite its critical role in deoxygenation and ecosystem functioning, the kinetics of microbial respiration at low O2 concentrations in coastal seawater remain uncertain and are mostly modeled based on parameters derived from laboratory cultures and a limited number of environmental observations. To explore microbial responses to declining O2, we measured respiration kinetics in coastal microbial communities in Hong Kong over the course of an entire year. We found the mean maximum respiration rate (Vmax) ranged between 560 ± 280 and 5930 ± 800 nmol O2 L-1 h-1, with apparent half-saturation constants (Km) for O2 uptake of between 50 ± 40 and 310 ± 260 nmol O2 L-1. These kinetic parameters vary seasonally in association with shifts in microbial community composition that were linked to nutrient availability, temperature, and biological productivity. In general, coastal communities in Hong Kong exhibited low affinities for O2, yet communities in the dry season had higher affinities, which may play a key role in shaping the relationship between community size, biomass, and O2 consumption rates through respiration. Overall, parameters derived from these experiments can be employed in models to predict the expansion of deoxygenated waters and associated effects on coastal ecology and biogeochemistry.
Collapse
Affiliation(s)
- Henry L S Cheung
- Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region; The Swire Institute of Marine Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region
| | - Rachel L Simister
- Departments of Microbiology and Immunology, and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T19 1Z3, Canada
| | - Christelle Not
- Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region; The Swire Institute of Marine Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region
| | - Sean A Crowe
- Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region; The Swire Institute of Marine Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region; Departments of Microbiology and Immunology, and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T19 1Z3, Canada.
| |
Collapse
|
4
|
Niyayesh H, Rahimi E, Shakerian A, Khamesipour F. Arcobacter species isolated from human stool samples, animal products, ready-to-eat salad mixes, and ambient water: prevalence, antimicrobial susceptibility, and virulence gene profiles. BMC Infect Dis 2024; 24:1368. [PMID: 39614142 DOI: 10.1186/s12879-024-10256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
INTRODUCTION Arcobacter species are emerging foodborne pathogens increasingly associated with human illness worldwide. They are commonly found in the gastrointestinal tracts of animals and are frequently isolated from various food sources, including raw meat, poultry, and seafood. The aim of this study is to investigate the antimicrobial resistance patterns of Arcobacter spp. isolated from human stool samples, animal products, ready-to-eat salad mixes, and ambient water, assess the presence of resistance genes, and explore their potential implications for public health. METHODS In this study, a total of 683 samples were collected from the Shahrekord area over a 12-month period. Samples were obtained from human stool, chicken meat, raw cow milk, RTE salad mixes, and environmental water sources. Two different methods were used to detect Arcobacter, depending on the sample type: bacteriological isolation and identification, and molecular identification. After identification, antimicrobial susceptibility testing was conducted. Polymerase chain reaction (PCR) was used to identify ten putative Arcobacter virulence and resistance genes. FINDINGS The results revealed that Arcobacter spp. were present in 26.06% (178 out of 683) of the tested samples, with varying isolation rates across different sample types. A. butzleri being the most commonly isolated species across all sample types, while A. cryaerophilus was restricted to RTE salads, surface waters, and chicken meat. Notably, A. skirrowii was only isolated from chicken meat and environmental water. The differences of Arcobacter spp. in prevalence between the sample types were statistically significant (p < 0.05), and no significant seasonal variation was found across the sampling periods (p > 0.05). PCR analysis for ten putative virulence genes indicated that the cadF gene was present in all Arcobacter isolates. Similarly, 83.33% of the tested strains harbored the ciaB gene, while other genes were less frequently detected. Regarding resistance genes, tet(O) (7.69%) was the most identified gene, followed by blaOXA-61 (4.37%). CONCLUSION In conclusion, this study highlights the alarming prevalence of antimicrobial resistance in Arcobacter spp. Monitoring Arcobacter spp. resistance can be achieved through surveillance, risk assessments, antibiotic stewardship in agriculture, public education, research collaborations, rapid diagnostics, and harmonized policies, all aimed at reducing contamination and safeguarding public health effectively.
Collapse
Affiliation(s)
- Hossein Niyayesh
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ebrahim Rahimi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Amir Shakerian
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Faham Khamesipour
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
5
|
Noszka M, Strzałka A, Muraszko J, Hofreuter D, Abele M, Ludwig C, Stingl K, Zawilak-Pawlik A. CemR atypical response regulator impacts energy conversion in Campylobacteria. mSystems 2024; 9:e0078424. [PMID: 38980050 PMCID: PMC11334517 DOI: 10.1128/msystems.00784-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Campylobacter jejuni and Arcobacter butzleri are microaerobic food-borne human gastrointestinal pathogens that mainly cause diarrheal disease. These related species of the Campylobacteria class face variable atmospheric environments during infection and transmission, ranging from nearly anaerobic to aerobic conditions. Consequently, their lifestyles require that both pathogens need to adjust their metabolism and respiration to the changing oxygen concentrations of the colonization sites. Our transcriptomic and proteomic studies revealed that C. jejuni and A. butzleri, lacking a Campylobacteria-specific regulatory protein, C. jejuni Cj1608, or a homolog, A. butzleri Abu0127, are unable to reprogram tricarboxylic acid cycle or respiration pathways, respectively, to produce ATP efficiently and, in consequence, adjust growth to changing oxygen supply. We propose that these Campylobacteria energy and metabolism regulators (CemRs) are long-sought transcription factors controlling the metabolic shift related to oxygen availability, essential for these bacteria's survival and adaptation to the niches they inhabit. Besides their significant universal role in Campylobacteria, CemRs, as pleiotropic regulators, control the transcription of many genes, often specific to the species, under microaerophilic conditions and in response to oxidative stress. IMPORTANCE C. jejuni and A. butzleri are closely related pathogens that infect the human gastrointestinal tract. In order to infect humans successfully, they need to change their metabolism as nutrient and respiratory conditions change. A regulator called CemR has been identified, which helps them adapt their metabolism to changing conditions, particularly oxygen availability in the gastrointestinal tract so that they can produce enough energy for survival and spread. Without CemR, these bacteria, as well as a related species, Helicobacter pylori, produce less energy, grow more slowly, or, in the case of C. jejuni, do not grow at all. Furthermore, CemR is a global regulator that controls the synthesis of many genes in each species, potentially allowing them to adapt to their ecological niches as well as establish infection. Therefore, the identification of CemR opens new possibilities for studying the pathogenicity of C. jejuni and A. butzleri.
Collapse
Affiliation(s)
- Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Agnieszka Strzałka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jakub Muraszko
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Dirk Hofreuter
- Department of Biological Safety, Unit of Product Hygiene and Disinfection Strategies, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Miriam Abele
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
6
|
Price CTD, Hanford HE, Al-Quadan T, Santic M, Shin CJ, Da'as MSJ, Abu Kwaik Y. Amoebae as training grounds for microbial pathogens. mBio 2024; 15:e0082724. [PMID: 38975782 PMCID: PMC11323580 DOI: 10.1128/mbio.00827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | | | - Cheon J. Shin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Manal S. J. Da'as
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Disli HB, Hizlisoy H, Gungor C, Barel M, Dishan A, Gundog DA, Al S, Onmaz NE, Yildirim Y, Gonulalan Z. Investigation and characterization of Aliarcobacter spp. isolated from cattle slaughterhouse in Türkiye. Int Microbiol 2024; 27:1321-1332. [PMID: 38206523 DOI: 10.1007/s10123-023-00478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/31/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Aliarcobacter spp. have been isolated from numerous food products at retail and from animal carcasses and feces at slaughter. The objectives of this study were as follows: (i) to isolate Aliarcobacter species from different slaughterhouses' samples and (ii) to detect genetic diversity, antibiotic resistance, biofilm ability, and putative virulence gene profiles of the isolates. A molecular investigation of antibiotic resistance and virulence factors was also conducted using polymerase chain reaction (PCR). Among 150 samples, a total of 22 (14.6%) Aliarcobacter spp. isolates were obtained, with varying levels of antibiotic resistance observed. The genes tetO, tetW, and gyrA were detected in 0%, 31.8%, and 27.2% of the isolates, respectively. All isolates were resistant to ampicillin, rifampin, and erythromycin, while tetracycline was found to be the most effective antibiotic, with 81.8% of the isolates showing susceptibility to it. All isolates (100%) harbored more than one of the nine putative virulence genes tested, with 18.1% of isolates carrying more than three. Regarding biofilm formation, 7 (31.8%) and 4 (18.1%) isolates were found to form strong and moderate biofilms, respectively, while one (4.5%) isolate was classified as a weak biofilm producer. ERIC-PCR band patterns suggested that the isolated Aliarcobacter spp. from slaughterhouses had different sources of contamination. These findings highlight the potential risk posed by pathogenic and multidrug-resistant Aliarcobacter spp. in food and the need for control measures throughout the food chain to prevent the spread of these strains. The results indicate that foods of animal origin and cattle slaughterhouses are significant sources of antimicrobial resistant Aliarcobacter.
Collapse
Affiliation(s)
- Huseyin Burak Disli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| | - Harun Hizlisoy
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Candan Gungor
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Mukaddes Barel
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Adalet Dishan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Dursun Alp Gundog
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Serhat Al
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Nurhan Ertas Onmaz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Yeliz Yildirim
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Zafer Gonulalan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
8
|
Baztarrika I, Wösten MMSM, Alonso R, Martínez-Ballesteros I, Martinez-Malaxetxebarria I. Genes involved in the adhesion and invasion of Arcobacter butzleri. Microb Pathog 2024; 193:106752. [PMID: 38880315 DOI: 10.1016/j.micpath.2024.106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Arcobacter butzleri is a foodborne pathogen that mainly causes enteritis in humans, but the number of cases of bacteraemia has increased in recent years. However, there is still limited knowledge on the pathogenic mechanisms of this bacterium. To investigate how A. butzleri causes disease, single knockout mutants were constructed in the cadF, ABU_RS00335, ciaB, and flaAB genes, which might be involved in adhesion and invasion properties. These mutants and the isogenic wild-type (WT) were then tested for their ability to adhere and invade human Caco-2 and HT29-MTX cells. The adhesion and invasion of A. butzleri RM4018 strain was also visualized by a Leica CTR 6500 confocal microscope. The adhesion and invasion abilities of mutants lacking the invasion antigen CiaB or a functional flagellum were lower than those of the WTs. However, the extent of the decrease varied depending on the strain and/or cell line. Mutants lacking the fibronectin (FN)-binding protein CadF consistently exhibited reduced abilities, while the inactivation of the other studied FN-binding protein, ABU_RS00335, led to a reduction in only one of the two strains tested. Therefore, the ciaB and flaAB genes appear to be important for A. butzleri adhesion and invasion properties, while cadF appears to be indispensable.
Collapse
Affiliation(s)
- Itsaso Baztarrika
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Álava, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Álava, Spain
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, the Netherlands
| | - Rodrigo Alonso
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Álava, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Álava, Spain
| | - Ilargi Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Álava, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Álava, Spain
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Álava, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Álava, Spain.
| |
Collapse
|
9
|
Reisoglu Ş, Cati C, Yurtsever M, Aydin S. Evaluation of prokaryotic and eukaryotic microbial communities on microplastic-associated biofilms in marine and freshwater environments. Eng Life Sci 2024; 24:2300249. [PMID: 38845816 PMCID: PMC11151075 DOI: 10.1002/elsc.202300249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024] Open
Abstract
Microplastics (MPs) are major concern due to their potential harm to ecosystems and most research has focused on their presence and fate, with limited attention to their biodegradation in aquatic ecosystems. Nevertheless, MPs act as hotspots for the colonization by a diverse range of microorganisms that can adhere to plastic surfaces, resulting in the subsequent formation of biofilms-a potential threat especially in terms of pathogenicity. This study employed 16S rRNA and 18S rRNA sequencing metagenomic analyses to investigate microbial communities within biofilms on plastic materials exposed to long-term marine and freshwater environments. Three Arcobacter species (Arcobacter nitrofigilis, Arcobacter acticola, and Arcobacter suis) emerged as dominant species in M_MP sample, while Flavobacterium tructae was the predominant species within the F_MP sample. The 18S rRNA sequencing revealed the presence of the fungal phylum Ascomycota and the microalgal species Pseudocharaciopsis ovalis in F_MP. Although, the primary species detected on M_MP and F_MP samples include bacteria previously implicated as pathogen, the predominant species identified in this study were unconnected to MP-associated biofilms or MP degradation. Their presence constitutes a novel discovery, opening promising avenues for the exploration of their potential involvement in the biodegradation of MPs within aquatic environments.
Collapse
Affiliation(s)
- Şuheda Reisoglu
- Division of BiotechnologyBiology DepartmentFaculty of ScienceIstanbul UniversityVeznecilerIstanbulTurkey
| | - Ceren Cati
- Division of BiotechnologyBiology DepartmentFaculty of ScienceIstanbul UniversityVeznecilerIstanbulTurkey
| | - Meral Yurtsever
- Department of Environmental EngineeringEngineering FacultySakarya UniversitySakaryaTurkey
| | - Sevcan Aydin
- Division of BiotechnologyBiology DepartmentFaculty of ScienceIstanbul UniversityVeznecilerIstanbulTurkey
| |
Collapse
|
10
|
Khan IUH, Chen W, Cloutier M, Lapen DR, Craiovan E, Wilkes G. Pathogenicity assessment of Arcobacter butzleri isolated from Canadian agricultural surface water. BMC Microbiol 2024; 24:17. [PMID: 38191309 PMCID: PMC10773081 DOI: 10.1186/s12866-023-03119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/09/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Water is considered a source for the transmission of Arcobacter species to both humans and animals. This study was conducted to assess the prevalence, distribution, and pathogenicity of A. butzleri strains, which can potentially pose health risks to humans and animals. Cultures were isolated from surface waters of a mixed-use but predominately agricultural watershed in eastern Ontario, Canada. The detection of antimicrobial resistance (AMR) and virulence-associated genes (VAGs), as well as enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) assays were performed on 913 A. butzleri strains isolated from 11 agricultural sampling sites. RESULTS All strains were resistant to one or more antimicrobial agents, with a high rate of resistance to clindamycin (99%) and chloramphenicol (77%), followed by azithromycin (48%) and nalidixic acid (49%). However, isolates showed a significantly (p < 0.05) high rate of susceptibility to tetracycline (1%), gentamycin (2%), ciprofloxacin (4%), and erythromycin (5%). Of the eight VAGs tested, ciaB, mviN, tlyA, and pldA were detected at high frequency (> 85%) compared to irgA (25%), hecB (19%), hecA (15%), and cj1349 (12%) genes. Co-occurrence analysis showed A. butzleri strains resistant to clindamycin, chloramphenicol, nalidixic acid, and azithromycin were positive for ciaB, tlyA, mviN and pldA VAGs. ERIC-PCR fingerprint analysis revealed high genetic similarity among strains isolated from three sites, and the genotypes were significantly associated with AMR and VAGs results, which highlight their potential environmental ubiquity and potential as pathogenic. CONCLUSIONS The study results show that agricultural activities likely contribute to the contamination of A. butzleri in surface water. The findings underscore the importance of farm management practices in controlling the potential spread of A. butzleri and its associated health risks to humans and animals through contaminated water.
Collapse
Affiliation(s)
- Izhar U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| | - Wen Chen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Michel Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - David R Lapen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Emilia Craiovan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Graham Wilkes
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
- Natural Resources Canada, Ottawa, ON, Canada
| |
Collapse
|
11
|
Pourabbasgholi Z, Kaboosi H, Ghane M, Khoshbakht R, Ghiamirad M. The evaluation of antibiotic resistance genes of Arcobacter butzleri isolated from animal products, and chicken slaughterhouse sewage in Mazandaran province, Northern Iran. IRANIAN JOURNAL OF VETERINARY RESEARCH 2024; 25:216-223. [PMID: 39925833 PMCID: PMC11801319 DOI: 10.22099/ijvr.2024.48879.7150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Background Arcobacter butzleri, the most common genus of the Campylobacter family, is considered an emerging zoonotic pathogen. Aims This study aimed to evaluate A. butzleri from diverse sources, in order to determine the antibiotic resistance pattern of isolates and the frequency of some genes responsible for their antibiotic resistance. Methods In this study, 425 samples were collected from different sources (chicken slaughterhouse sewage, poultry meat, beef, sheep meat, dairy products) during different seasons of 2020-2021. Suspicious colonies were confirmed using biochemical tests. Furthermore, the polymerase chain reaction technique was used to confirm the phenotypic results using the 16S rRNA gene. The antibiotic resistance pattern of the isolates to 16 antibiotics were determined using the disk diffusion method. Also, the minimum inhibitory concentration (MIC) of their growth was detected using the tube dilution method in the presence of tetracycline, erythromycin, and gentamicin. Results A total of 53 isolates of A. butzleri (12.5%) were isolated from (chicken slaughterhouse sewage=36, poultry meat=8, beef=4, sheep meat=5), which contain all three antibiotic resistance genes of abu_0814 (90.57%), OXA_464 (100%), and gyrA (83.02%). The findings of the present investigation showed the presence of A. butzleri in different sources and the high prevalence of antimicrobial resistance in the isolates. Nineteen isolates (36%) have extensive drug resistance and 34 isolates (64%) showed multi-drug resistance to the used antibiotics. Conclusion The elevated level of antibiotic resistance observed in A. butzleri isolates originating from various samples suggests a significant use of antibiotics and a prevalent environmental contamination.
Collapse
Affiliation(s)
- Z. Pourabbasgholi
- Ph.D. Student in Microbiology, Department of Microbiology, Faculty of Basic Sciences, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - H. Kaboosi
- Department of Microbiology, Faculty of Basic Sciences, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - M. Ghane
- Department of Microbiology, Faculty of Basic Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - R. Khoshbakht
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - M. Ghiamirad
- Department of Microbiology, Faculty of Basic Sciences, Ahar Branch, Islamic Azad University, Ahar, Iran
| |
Collapse
|
12
|
Baztarrika I, Salazar-Sánchez A, Hernaez Crespo S, López Mirones JI, Canut A, Alonso R, Martínez-Ballesteros I, Martinez-Malaxetxebarria I. Virulence genotype and phenotype of two clinical isolates of Arcobacter butzleri obtained from patients with different pathologies. Arch Microbiol 2023; 205:369. [PMID: 37923944 PMCID: PMC10624747 DOI: 10.1007/s00203-023-03709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023]
Abstract
The surge in human arcobacteriosis has increased interest in determining the mechanisms involved in the pathogenesis of Arcobacter butzleri. Here, genomic analyses and in vitro Caco-2 infection, motility, urease and antimicrobial susceptibility testing (AST) assays were used to characterise the virulence and antimicrobial resistance (AMR) determinants of strains HC-1, isolated from a patient with travellers' diarrhoea, and HC-2, isolated from another with pruritus. AMR determinants conferring resistance to tetracycline (tetO, present in both genomes) and to ampicillin and amoxicillin-clavulanic acid (bla3, present in HC-2) were identified. The same determinants associated with flagellum, chemotaxis, adhesion and invasion were detected in both, but HC-1 lacked eight flagellar genes. The urease cluster was only present in HC-1. Motility and urease tests confirmed the genetic differences between strains, but no genetic marker related to the inability of HC-2 to adhere and invade was identified. This inability could be conditioning the patient's pathology.
Collapse
Affiliation(s)
- Itsaso Baztarrika
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-d Gasteiz, Spain
| | - Adrián Salazar-Sánchez
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-d Gasteiz, Spain
| | - Silvia Hernaez Crespo
- Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - José Israel López Mirones
- Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Andrés Canut
- Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Rodrigo Alonso
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-d Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Ilargi Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-d Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-d Gasteiz, Spain.
- Bioaraba, Microbiology, Infectious Diseases, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
13
|
Yang KB, Cameranesi M, Gowder M, Martinez C, Shamovsky Y, Epshtein V, Hao Z, Nguyen T, Nirenstein E, Shamovsky I, Rasouly A, Nudler E. High-resolution landscape of an antibiotic binding site. Nature 2023; 622:180-187. [PMID: 37648864 PMCID: PMC10550828 DOI: 10.1038/s41586-023-06495-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Antibiotic binding sites are located in important domains of essential enzymes and have been extensively studied in the context of resistance mutations; however, their study is limited by positive selection. Using multiplex genome engineering1 to overcome this constraint, we generate and characterize a collection of 760 single-residue mutants encompassing the entire rifampicin binding site of Escherichia coli RNA polymerase (RNAP). By genetically mapping drug-enzyme interactions, we identify an alpha helix where mutations considerably enhance or disrupt rifampicin binding. We find mutations in this region that prolong antibiotic binding, converting rifampicin from a bacteriostatic to bactericidal drug by inducing lethal DNA breaks. The latter are replication dependent, indicating that rifampicin kills by causing detrimental transcription-replication conflicts at promoters. We also identify additional binding site mutations that greatly increase the speed of RNAP.Fast RNAP depletes the cell of nucleotides, alters cell sensitivity to different antibiotics and provides a cold growth advantage. Finally, by mapping natural rpoB sequence diversity, we discover that functional rifampicin binding site mutations that alter RNAP properties or confer drug resistance occur frequently in nature.
Collapse
Affiliation(s)
- Kevin B Yang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Maria Cameranesi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Manjunath Gowder
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Criseyda Martinez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yosef Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Vitaliy Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Zhitai Hao
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Thao Nguyen
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eric Nirenstein
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Aviram Rasouly
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Buzzanca D, Kerkhof PJ, Alessandria V, Rantsiou K, Houf K. Arcobacteraceae comparative genome analysis demonstrates genome heterogeneity and reduction in species isolated from animals and associated with human illness. Heliyon 2023; 9:e17652. [PMID: 37449094 PMCID: PMC10336517 DOI: 10.1016/j.heliyon.2023.e17652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
The Arcobacteraceae family groups Gram-negative bacterial species previously included in the family Campylobacteraceae. These species of which some are considered foodborne pathogens, have been isolated from different environmental niches and hosts. They have been isolated from various types of foods, though predominantly from food of animal origin, as well as from stool of humans with enteritis. Their different abilities to survive in different hosts and environments suggest an evolutionary pressure with consequent variation in their genome content. Moreover, their different physiological and genomic characteristics led to the recent proposal to create new genera within this family, which is however criticized due to the lack of discriminatory features and biological and clinical relevance. Aims of the present study were to assess the Arcobacteraceae pangenome, and to characterize existing similarities and differences in 20 validly described species. For this, analysis has been conducted on the genomes of the corresponding type strains obtained by Illumina sequencing, applying several bioinformatic tools. Results of the present study do not support the proposed division into different genera and revealed the presence of pangenome partitions with numbers comparable to other Gram-negative bacteria genera, such as Campylobacter. Different gene class compositions in animal and human-associated species are present, including a higher percentage of virulence-related gene classes such as cell motility genes. The adaptation to environmental and/or host conditions of some species was identified by the presence of specific genes. Furthermore, a division into pathogenic and non-pathogenic species is suggested, which can support future research on food safety and public health.
Collapse
Affiliation(s)
- Davide Buzzanca
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Pieter-Jan Kerkhof
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
15
|
Uljanovas D, Gölz G, Fleischmann S, Kudirkiene E, Kasetiene N, Grineviciene A, Tamuleviciene E, Aksomaitiene J, Alter T, Malakauskas M. Genomic Characterization of Arcobacter butzleri Strains Isolated from Various Sources in Lithuania. Microorganisms 2023; 11:1425. [PMID: 37374927 DOI: 10.3390/microorganisms11061425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Arcobacter (A.) butzleri, the most widespread species within the genus Arcobacter, is considered as an emerging pathogen causing gastroenteritis in humans. Here, we performed a comparative genome-wide analysis of 40 A. butzleri strains from Lithuania to determine the genetic relationship, pangenome structure, putative virulence, and potential antimicrobial- and heavy-metal-resistance genes. Core genome single nucleotide polymorphism (cgSNP) analysis revealed low within-group variability (≤4 SNPs) between three milk strains (RCM42, RCM65, RCM80) and one human strain (H19). Regardless of the type of input (i.e., cgSNPs, accessory genome, virulome, resistome), these strains showed a recurrent phylogenetic and hierarchical grouping pattern. A. butzleri demonstrated a relatively large and highly variable accessory genome (comprising of 6284 genes with around 50% of them identified as singletons) that only partially correlated to the isolation source. Downstream analysis of the genomes resulted in the detection of 115 putative antimicrobial- and heavy-metal-resistance genes and 136 potential virulence factors that are associated with the induction of infection in host (e.g., cadF, degP, iamA), survival and environmental adaptation (e.g., flagellar genes, CheA-CheY chemotaxis system, urease cluster). This study provides additional knowledge for a better A. butzleri-related risk assessment and highlights the need for further genomic epidemiology studies in Lithuania and other countries.
Collapse
Affiliation(s)
- Dainius Uljanovas
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Susanne Fleischmann
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Egle Kudirkiene
- Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Neringa Kasetiene
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Audrone Grineviciene
- Kaunas Clinical Hospital Microbiology Laboratory, Medical Academy, Lithuanian University of Health Sciences, Josvainiu St. 2, LT-47144 Kaunas, Lithuania
| | - Egle Tamuleviciene
- Department of Pediatrics, Medical Academy, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50161 Kaunas, Lithuania
| | - Jurgita Aksomaitiene
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Mindaugas Malakauskas
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
16
|
Buzzanca D, Alessandria V, Botta C, Seif Zadeh N, Ferrocino I, Houf K, Cocolin L, Rantsiou K. Transcriptome Analysis of Arcobacter butzleri Infection in a Mucus-Producing Human Intestinal In Vitro Model. Microbiol Spectr 2023; 11:e0207122. [PMID: 36622176 PMCID: PMC9927503 DOI: 10.1128/spectrum.02071-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Arcobacter butzleri is a foodborne pathogen belonging to the Arcobacteraceae family. This Gram-negative bacterium is found in water, food, and various organisms, including farm animals, clams, and fish. Moreover, A. butzleri has been isolated from human stool samples, where it was associated with gastrointestinal symptoms such as diarrhea. The present study focused on the transcriptome analysis of three A. butzleri strains isolated from human stools and displaying variable virulence potential in vitro. We used a mucus-producing human intestinal in vitro model (Caco-2/HT29-MTX-E12) to study the colonization and invasion abilities of the three A. butzleri strains. The ability of all three A. butzleri strains to colonize our in vitro model system was subsequently confirmed. Moreover, transcriptomics showed the upregulation of putative virulence genes. Among these genes, tonB, exbB, and exbD, which belong to the same operon, were upregulated in strain LMG 11119, which also had the greatest colonization ability. Moreover, genes not currently considered A. butzleri virulence genes were differentially expressed during cell model colonization. The main functions of these genes were linked to organic acid metabolism and iron transport and particularly to the function of the TonB complex. IMPORTANCE Recent advancements in the genomic characterization of A. butzleri revealed putative virulence genes and highlighted the possible pathogenic mechanisms used by this foodborne pathogen. It is therefore possible to study the transcriptomes of these bacteria to explore possible virulence mechanisms under conditions that mimic the infection process. The transcriptome and colonization/invasion analyses that we performed in this study enabled the evaluation of A. butzleri-mediated infection of the mucus-producing human intestinal in vitro model. We confirmed the upregulation of previously proposed virulence genes in the A. butzleri strains. In addition, we identified the differential expression of a number of other genes, which are not currently thought to be associated with virulence, in three A. butzleri strains during infection of mucus-producing human epithelial cells. Changes in the concentration of acetic acid and the upregulation of genes associated with organic acid metabolism during host-pathogen contact were also observed. These findings highlight the importance of previously unreported genes in the virulence mechanisms of A. butzleri.
Collapse
Affiliation(s)
- Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Cristian Botta
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Negin Seif Zadeh
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Zautner AE, Riedel T, Bunk B, Spröer C, Boahen KG, Akenten CW, Dreyer A, Färber J, Kaasch AJ, Overmann J, May J, Dekker D. Molecular characterization of Arcobacter butzleri isolates from poultry in rural Ghana. Front Cell Infect Microbiol 2023; 13:1094067. [PMID: 36761899 PMCID: PMC9905251 DOI: 10.3389/fcimb.2023.1094067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
In recent years, Arcobacter butzleri has gained clinical significance as an emerging diarrheagenic pathogen associated with poultry and water reservoirs. The full clinical significance of Arcobacter remains rather speculative due to variable virulence and antibiotic susceptibility of individual strains. The aims of the present study were (i) to identify antibiotic resistance genes (ARGs) in the genome sequences of two multidrug-resistant A. butzleri isolates, (ii) to use multilocus-sequence typing (MLST) to generate a guiding phylogeny of A. butzleri isolates collected in Kumasi, Ghana, (iii) to examine the distribution of ARGs in the test cohort, and (iv) to assess the strain's virulence and possible antibiotic treatment options for arcobacteriosis based on the genome sequences and the ARG distribution. A total of 48 A. butzleri isolates obtained from poultry were included in the analysis. These isolates were genotyped by MLST and the antibiotic susceptibilities of isolates to ampicillin, ciprofloxacin, tetracycline, gentamicin, and erythromycin were tested by disk diffusion. Whole genome sequence data of two multidrug-resistant (MDR) A. butzleri isolates were obtained by a combination of single-molecule real-time (SMRT) and Illumina sequencing technology. A total of 14 ARGs were identified in the two generated genome sequences. For all 48 isolates, the frequency of these 14 ARGs was investigated by PCR or amplicon sequencing. With 44 different sequence types found among 48 isolates, strains were phylogenetically heterogeneous. Four of 48 isolates showed an ARG constellation indicating a multidrug-resistant phenotype. The virulence genes in the two A. butzleri genomes showed that the species might be characterized by a somewhat lower virulence as Campylobacter species. The phenotypic susceptibility data combined with the distribution of the particular ARGs especially oxa-464 and the T81I point mutation of the quinolone resistance determining region (QRDR) in a significant percentage of isolates indicated that macrolides and tetracycline can be recommended for calculated antibiotic treatment of arcobacteriosis in Ghana, but not ampicillin and quinolones.
Collapse
Affiliation(s)
- Andreas E. Zautner
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Universitätsklinikum Magdeburg, Magdeburg, Germany,*Correspondence: Andreas E. Zautner,
| | - Thomas Riedel
- Abteilung Mikrobielle Ökologie und Diversitätsforschung, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany,Deutsches Zentrum für Infektionsforschung (DZIF), Hannover–Braunschweig, Germany
| | - Boyke Bunk
- Abteilung Bioinformatik und Datenbanken, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | - Cathrin Spröer
- Abteilung Bioinformatik und Datenbanken, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | - Kennedy G. Boahen
- One Health Bacteriology Group, Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Charity Wiafe Akenten
- One Health Bacteriology Group, Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Annika Dreyer
- Institut für Medizinische Mikrobiologie und Virology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Jacqueline Färber
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Achim J. Kaasch
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Jörg Overmann
- Abteilung Mikrobielle Ökologie und Diversitätsforschung, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany,Deutsches Zentrum für Infektionsforschung (DZIF), Hannover–Braunschweig, Germany
| | - Jürgen May
- Abteilung für Infektionsepidemiologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany,Deutsches Zentrum für Infektionsforschung (DZIF), Hamburg-Borstel-Lübeck, Germany
| | - Denise Dekker
- Abteilung für Infektionsepidemiologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany,Deutsches Zentrum für Infektionsforschung (DZIF), Hamburg-Borstel-Lübeck, Germany
| |
Collapse
|
18
|
Krishnaswamy VG, Mani K, Senthil Kumar P, Rangasamy G, Sridharan R, Rethnaraj C, Amirtha Ganesh SS, Kalidas S, Palanisamy V, Chellama NJ, Chowdula S, Parthasarathy V, Rajendran S. Prevalence of differential microbiome in healthy, diseased and nipped colonies of corals, Porites lutea in the Gulf of Kachchh, north-west coast of India. ENVIRONMENTAL RESEARCH 2023; 216:114622. [PMID: 36279912 DOI: 10.1016/j.envres.2022.114622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Coral reefs are constantly subjected to multiple stresses like diseases and fish predation, which can profoundly influence the coral microbiome. This study investigated the differences in bacterial community structure of healthy, white syndrome affected and blenny nipped coral colonies of Porites lutea, collected from the coral reefs of Gulf of Kachchh, north-west coast of India. Present study observed that the stressed coral colonies harbored more OTUs and contained higher diversity values compared to healthy corals colonies. Similarly, beta diversity analysis indicated the dissimilarities among the three coral samples analyzed. Though the taxonomy analysis indicated bacterial phyla like Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria among the entire coral samples studied, there was a variation in their relative abundances. Huge variations were observed in the relative dominance at the bacterial genera level. About 13phyla and 11 genera was identified in healthy coral. The PBN sample was found to contain Proteobacteria, Cyanobacteria, Verrucomicrobia, and Lentisphaerae as dominant phyla and Endozoicomonas, Dyella, Woeseia, and Winogradskyella as dominant genera. The PWS sample contained Proteobacteria, Lentisphaerae, Spirochaetes, and Tenericutes as dominant phyla and Endozoicomonas, Arcobacter, Sunxiuqinia, and Carboxylicivirgia as dominant genera. Among the healthy samples, sequences belonging to Uncultured Rhodospirillaceae were dominant, while Woeseia and sequences belonging to Uncultured Rhodovibrionaceae were dominant among the blenny nipped white syndrome infected corals. Although any previously established pathogen was not identified, present study revealed the presence of a potentially pathogenic bacterium, Arcobacter, among the diseased corals. It also demonstrated a dynamic microbiome among the Porites lutea colonies on subjecting to various stresses.
Collapse
Affiliation(s)
- Veena Gayathri Krishnaswamy
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, 600 086, Tamil Nadu, India.
| | - Kabilan Mani
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, 641 004, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Rajalakshmi Sridharan
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, 600 086, Tamil Nadu, India
| | | | - Sai Sruthi Amirtha Ganesh
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, 641 004, India
| | - Suryasri Kalidas
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, 641 004, India
| | - Vignesh Palanisamy
- Department of Biotechnology, PSG College of Technology, Coimbatore, 641 004, India
| | - Nisha Jayasingh Chellama
- Marine Biology Regional Station - Zoological Survey of India, #130 Santhome High Road, Chennai, 600028, India
| | - Satyanarayana Chowdula
- Marine Biology Regional Station - Zoological Survey of India, #130 Santhome High Road, Chennai, 600028, India
| | - V Parthasarathy
- Department of Physics, Hindustan Institute of Technology and Science (Deemed to be University), Padur, 603103, Chennai, India
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapaca, 1775, Arica, Chile
| |
Collapse
|
19
|
Çelik C, Pınar O, Sipahi N. The Prevalence of Aliarcobacter Species in the Fecal Microbiota of Farm Animals and Potential Effective Agents for Their Treatment: A Review of the Past Decade. Microorganisms 2022; 10:microorganisms10122430. [PMID: 36557682 PMCID: PMC9787757 DOI: 10.3390/microorganisms10122430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
There is an endless demand for livestock-originated food, so it is necessary to elucidate the hazard points for livestock breeding. Pathogens are one of the hazard points that threaten the biosecurity of farm-animal breeding and public health. As a potential foodborne pathogen, Aliarcobacter is a member of the intestinal microbiota of farm animals with and without diarrhea. Aliarcobacter spp. are capable of colonizing livestock intestines and are transmitted through the feces. Hence, they endanger slaughterhouses and milk products with fecal contamination. They also have other, rarer, vertical and horizontal transmission routes, including the offspring that abort in farm animals. Gastrointestinal symptoms and abort cases demonstrate potential financial losses to the industry. Viewed from this perspective, the global circulation of farm-animal products is a significant route for zoonotic agents, including Aliarcobacter. In the last decade, worldwide prevalence of Aliarcobacter in fecal samples has ranged from 0.8% in Italy to 100% in Turkey. Furthermore, antibiotic resistance is recognized as a new type of environmental pollutant and has become a hot topic in animal breeding and the food industry. Increasing antibiotic resistance has become a significant problem impacting productivity. The increase in antimicrobial resistance rates in Aliarcobacter is caused by the misuse of antimicrobial drugs in livestock animals, leading to the acquiring of resistance genes from other bacteria, as well as mutations in current resistance genes. The most resistant strains are A. butzleri, A. cryaerophilus, and A. skirrowii. This review analyzes recent findings from the past decade on the prevalence of Aliarcobacter in the intestinal microbiota and the current effective antibiotics against Aliarcobacter. The paper also highlights that A. cryaerophilus and A. skirrowii are found frequently in diarrheal feces, indicating that Aliarcobacter should be studied further in livestock diarrheal diseases. Moreover, Aliarcobacter-infected farm animals can be treated with only a limited number of antibiotics, such as enrofloxacin, doxycycline, oxytetracycline, and gentamicin.
Collapse
Affiliation(s)
- Cansu Çelik
- Food Technology Program, Food Processing Department, Vocational School of Veterinary Medicine, Istanbul University-Cerrahpasa, 34320 Istanbul, Türkiye
- Correspondence:
| | - Orhan Pınar
- Equine and Equine Training Program, Vocational School of Veterinary Medicine, Istanbul University-Cerrahpasa, 34320 Istanbul, Türkiye
| | - Nisa Sipahi
- Traditional and Complementary Medicine Applied and Research Centre, Duzce University, 81620 Duzce, Türkiye
| |
Collapse
|
20
|
Effect of Atmospheric Conditions on Pathogenic Phenotypes of Arcobacter butzleri. Microorganisms 2022; 10:microorganisms10122409. [PMID: 36557662 PMCID: PMC9785646 DOI: 10.3390/microorganisms10122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Arcobacter butzleri is an emergent gram-negative enteropathogenic bacterium widespread in different environments and hosts. During the colonization of the gastrointestinal tract, bacteria face a variety of environmental conditions to successfully establish infection in a new host. One of these challenges is the fluctuation of oxygen concentrations encountered not only throughout the host gastrointestinal tract and defences but also in the food industry. Oxygen fluctuations can lead to modulations in the virulence of the bacterium and possibly increase its pathogenic potential. In this sense, eight human isolates of A. butzleri were studied to evaluate the effects of microaerobic and aerobic atmospheric conditions in stressful host conditions, such as oxidative stress, acid survival, and human serum survival. In addition, the effects on the modulation of virulence traits, such as haemolytic activity, bacterial motility, biofilm formation ability, and adhesion and invasion of the Caco-2 cell line, were also investigated. Overall, aerobic conditions negatively affected the susceptibility to oxygen reactive species and biofilm formation ability but improved the isolates' haemolytic ability and motility while other traits showed an isolate-dependent response. In summary, this work demonstrates for the first time that oxygen levels can modulate the potential pathogenicity of A. butzleri, although the response to stressful conditions was very heterogeneous among different strains.
Collapse
|
21
|
Ma Y, Ju C, Zhou G, Yu M, Chen H, He J, Zhang M, Duan Y. Genetic characteristics, antimicrobial resistance, and prevalence of Arcobacter spp. isolated from various sources in Shenzhen, China. Front Microbiol 2022; 13:1004224. [PMID: 36532418 PMCID: PMC9754635 DOI: 10.3389/fmicb.2022.1004224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/07/2022] [Indexed: 10/27/2023] Open
Abstract
Arcobacter spp. is a globally emerging zoonotic and foodborne pathogen. However, little is known about its prevalence and antimicrobial resistance in China. To investigate the prevalence of Arcobacter spp. isolated from various sources, 396 samples were collected from human feces, chicken cecum, and food specimens including chicken meat, beef, pork, lettuce, and seafood. Arcobacter spp. was isolated by the membrane filtration method. For 92 strains, the agar dilution method and next-generation sequencing were used to investigate their antimicrobial resistance and to obtain whole genome data, respectively. The virulence factor database (VFDB) was queried to identify virulence genes. ResFinder and the Comprehensive Antibiotic Resistance Database (CARD) were used to predict resistance genes. A phylogenetic tree was constructed using the maximum likelihood (ML) method with core single-nucleotide polymorphisms (SNPs). We found that 27.5% of the samples (n = 109) were positive for Arcobacter spp., comprising Arcobacter butzleri (53.0%), Arcobacter cryaerophilus (39.6%), and Arcobacter skirrowii (7.4%). Chicken meat had the highest prevalence (81.2%), followed by seafood (51.9%), pork (43.3%), beef (36.7%), lettuce (35.5%), chicken cecum (8%), and human fecal samples (0%, 0/159). Antimicrobial susceptibility tests revealed that 51 A. butzleri and 40 A. cryaerophilus strains were resistant to streptomycin (98.1, 70%), clindamycin (94.1, 90%), tetracycline (64.7, 52.5%), azithromycin (43.1%, 15%), nalidixic acid (33.4, 35%), and ciprofloxacin (31.3, 35%) but were susceptible to erythromycin, gentamicin, chloramphenicol, telithromycin, and clindamycin (≤10%). A. skirrowii was sensitive to all experimental antibiotics. The virulence factors tlyA, mviN, cj1349, ciaB, and pldA were carried by all Arcobacter spp. strains at 100%, and the following percentages were cadF (95.7%), iroE (23.9%), hecB (2.2%), hecA, and irgA (1.1%). Only one A. butzleri strain (F061-2G) carried a macrolide resistance gene (ereA). One A. butzleri and one A. cryaerophilus harbored resistance island gene clusters, which were isolated from pork and chicken. Phylogenetic tree analysis revealed that A. butzleri, A. cryaerophilus, and A. skirrowii were separated from each other. To our knowledge, this is the first report of the isolation of Arcobacter spp. from vegetables and seafood in China. The resistance island gene cluster found in pork and chicken meat and the presence of virulence factors could be a potential risk to human health.
Collapse
Affiliation(s)
- Yanping Ma
- Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Changyan Ju
- Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Guilan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Muhua Yu
- Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Hui Chen
- Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Jiaoming He
- Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Maojun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongxiang Duan
- Nanshan Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
22
|
Roguet A, Newton RJ, Eren AM, McLellan SL. Guts of the Urban Ecosystem: Microbial Ecology of Sewer Infrastructure. mSystems 2022; 7:e0011822. [PMID: 35762794 PMCID: PMC9426572 DOI: 10.1128/msystems.00118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Microbes have inhabited the oceans and soils for millions of years and are uniquely adapted to their habitat. In contrast, sewer infrastructure in modern cities dates back only ~150 years. Sewer pipes transport human waste and provide a view into public health, but the resident organisms that likely modulate these features are relatively unexplored. Here, we show that the bacterial assemblages sequenced from untreated wastewater in 71 U.S. cities were highly coherent at a fine sequence level, suggesting that urban infrastructure separated by great spatial distances can give rise to strikingly similar communities. Within the overall microbial community structure, temperature had a discernible impact on the distribution patterns of closely related amplicon sequence variants, resulting in warm and cold ecotypes. Two bacterial genera were dominant in most cities regardless of their size or geographic location; on average, Arcobacter accounted for 11% and Acinetobacter 10% of the entire community. Metagenomic analysis of six cities revealed these highly abundant resident organisms carry clinically important antibiotic resistant genes blaCTX-M, blaOXA, and blaTEM. In contrast, human fecal bacteria account for only ~13% of the community; therefore, antibiotic resistance gene inputs from human sources to the sewer system could be comparatively small, which will impact measurement capabilities when monitoring human populations using wastewater. With growing awareness of the metabolic potential of microbes within these vast networks of pipes and the ability to examine the health of human populations, it is timely to increase our understanding of the ecology of these systems. IMPORTANCE Sewer infrastructure is a relatively new habitat comprised of thousands of kilometers of pipes beneath cities. These wastewater conveyance systems contain large reservoirs of microbial biomass with a wide range of metabolic potential and are significant reservoirs of antibiotic resistant organisms; however, we lack an adequate understanding of the ecology or activity of these communities beyond wastewater treatment plants. The striking coherence of the sewer microbiome across the United States demonstrates that the sewer environment is highly selective for a particular microbial community composition. Therefore, results from more in-depth studies or proven engineering controls in one system could be extrapolated more broadly. Understanding the complex ecology of sewer infrastructure is critical for not only improving our ability to treat human waste and increasing the sustainability of our cities but also to create scalable and effective sewage microbial observatories, which are inevitable investments of the future to monitor health in human populations.
Collapse
Affiliation(s)
- Adélaïde Roguet
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - A. Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
23
|
Molecular Cut-off Values for Aliarcobacter butzleri Susceptibility Testing. Microbiol Spectr 2022; 10:e0100322. [PMID: 35862990 PMCID: PMC9430808 DOI: 10.1128/spectrum.01003-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aliarcobacter butzleri is an emerging gastrointestinal pathogen found in many countries worldwide. In France, it has become the third most commonly isolated bacterial species from the stools of patients with intestinal infections. No interpretative criteria for antimicrobial susceptibility testing have been proposed for A. butzleri, and most strains are categorized using the recommendations of the Clinical and Laboratory Standards Institute or the European Committee on Antimicrobial Susceptibility Testing for Campylobacter or Enterobacterales. In the present study, the genomes of 30 resistant A. butzleri isolates were analyzed to propose specific epidemiological cut-off values for ampicillin, ciprofloxacin, erythromycin, and tetracycline. The identification of a β-lactamase and the T85I GyrA mutation associated with ampicillin and ciprofloxacin resistance, respectively, allowed us to adjust the disk diffusion (DD) and MIC cut-off values for these molecules. However, epidemiological cut-off values for erythromycin and tetracycline could not be estimated due to the absence of known resistance mechanisms. The present study paves the way for building a consensus for antimicrobial susceptibility testing for this concerning pathogen. IMPORTANCEAliarcobacter butzleri is an emerging and concerning intestinal pathogen. Very few studies have focused on this particular species, and antimicrobial susceptibility testing (AST) is based on methods that have been mostly developed for Campylobacter spp. In fact, no disk diffusion and E-tests adapted cut-offs for A. butzleri are available which leads to misinterpretations. We have shown here that NGS approach to identify genes and mutations in close relation to phenotypic resistance levels is a robust way to solve that issue and precisely differentiate WT and NWT A. butzleri isolates for frequently used antimicrobials. MIC and DD cut-off values have been significantly adjusted and answer the need for a global consensus regarding AST for A. butzleri.
Collapse
|
24
|
Chuan J, Belov A, Cloutier M, Li X, Khan IUH, Chen W. Comparative genomics analysis and virulence-related factors in novel Aliarcobacter faecis and Aliarcobacter lanthieri species identified as potential opportunistic pathogens. BMC Genomics 2022; 23:471. [PMID: 35761183 PMCID: PMC9235176 DOI: 10.1186/s12864-022-08663-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
Emerging pathogenic bacteria are an increasing threat to public health. Two recently described species of the genus Aliarcobacter, A. faecis and A. lanthieri, isolated from human or livestock feces, are closely related to Aliarcobacter zoonotic pathogens (A. cryaerophilus, A. skirrowii, and A. butzleri). In this study, comparative genomics analysis was carried out to examine the virulence-related, including virulence, antibiotic, and toxin (VAT) factors in the reference strains of A. faecis and A. lanthieri that may enable them to become potentially opportunistic zoonotic pathogens.
Results
Our results showed that the genomes of the reference strains of both species have flagella genes (flaA, flaB, flgG, flhA, flhB, fliI, fliP, motA and cheY1) as motility and export apparatus, as well as genes encoding the Twin-arginine translocation (Tat) (tatA, tatB and tatC), type II (pulE and pulF) and III (fliF, fliN and ylqH) secretory pathways, allowing them to secrete proteins into the periplasm and host cells. Invasion and immune evasion genes (ciaB, iamA, mviN, pldA, irgA and fur2) are found in both species, while adherence genes (cadF and cj1349) are only found in A. lanthieri. Acid (clpB), heat (clpA and clpB), osmotic (mviN), and low-iron (irgA and fur2) stress resistance genes were observed in both species, although urease genes were not found in them. In addition, arcB, gyrA and gyrB were found in both species, mutations of which may mediate the resistance to quaternary ammonium compounds (QACs). Furthermore, 11 VAT genes including six virulence (cadF, ciaB, irgA, mviN, pldA, and tlyA), two antibiotic resistance [tet(O) and tet(W)] and three cytolethal distending toxin (cdtA, cdtB, and cdtC) genes were validated with the PCR assays. A. lanthieri tested positive for all 11 VAT genes. By contrast, A. faecis showed positive for ten genes except for cdtB because no PCR assay for this gene was available for this species.
Conclusions
The identification of the virulence, antibiotic-resistance, and toxin genes in the genomes of A. faecis and A. lanthieri reference strains through comparative genomics analysis and PCR assays highlighted the potential zoonotic pathogenicity of these two species. However, it is necessary to extend this study to include more clinical and environmental strains to explore inter-species and strain-level genetic variations in virulence-related genes and assess their potential to be opportunistic pathogens for animals and humans.
Collapse
|
25
|
Martinez-Malaxetxebarria I, Girbau C, Salazar-Sánchez A, Baztarrika I, Martínez-Ballesteros I, Laorden L, Alonso R, Fernández-Astorga A. Genetic characterization and biofilm formation of potentially pathogenic foodborne Arcobacter isolates. Int J Food Microbiol 2022; 373:109712. [DOI: 10.1016/j.ijfoodmicro.2022.109712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
|
26
|
Lameei A, Rahimi E, Shakerian A, Momtaz H. Genotyping, antibiotic resistance and prevalence of Arcobacter species in milk and dairy products. Vet Med Sci 2022; 8:1841-1849. [PMID: 35426255 PMCID: PMC9297788 DOI: 10.1002/vms3.800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arcobacter spp. has been considered an emerging foodborne pathogen and a hazard to human health. The dairy chain has been isolated from different sources; nevertheless, data on Arcobacter occurrence in raw milk and dairy products in Iran are still scant. OBJECTIVE The present study investigates the prevalence, antimicrobial susceptibility and the presence of virulence genes of Arcobacters species isolated from milk and dairy products. METHODS Then, a total of 350 raw milk samples and 400 dairy product samples were collected from dairy supply centers in Isfahan, Iran. Presumptive Arcobacter strains were obtained by enriching samples in Oxoid Arcobacter enrichment broth (AEB) followed by the filtration of enrichment product through 0.45-μm pore size membrane filters laid onto non-selective blood at 30°C under microaerophilic conditions. Molecular identification of Arcobacter cryaerophilus and A. butzleri was performed by Polymerase chain reaction (PCR) amplification of the 16S rRNA gene, followed by sequencing. The disc diffusion method was used to determine the antimicrobial susceptibility of isolates. Targeted resistance and virulence genes were detected using multiplex PCR. RESULTS The results show a low recovery rate of Arcobacter spp. in milk. Arcobacters were found in all types of milk, except raw camel milk, but were absent from all dairy products. Arcobacter butzleri was the predominant species in raw milk. Detection of virulence genes shows that all virulence genes targeted were found among A. butzleri, and six (cadF, cj1349, irgA, mviN, pldA, tlyA) were found among A. cryaerophilus. All A. butzleri strains and some A. cryaerophilus strains isolated from milk were resistant to amoxicillin-clavulanic acid and tetracycline. All A. cryaerophilus isolates from milk were susceptible to gentamycin, streptomycin, erythromycin and ciprofloxacin. The distribution of resistance genes in Arcobacter strains in milk shows that all isolates carried tet(O) and blaOXA-61 genes. CONCLUSIONS In conclusion, the results indicate a low recovery rate of Arcobacter spp. in milk and milk products. However, a significant number of Arcobacter strains with putative virulence genes may be potential pathogens for humans and an overall increase in Arcobacter resistance to first-line antibiotics. These results highlight the need for regular surveillance of Arcobacter strains in milk and milk products in Iran.
Collapse
Affiliation(s)
- Abazar Lameei
- Department of Food Hygiene, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ebrahim Rahimi
- Department of Food Hygiene, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Amir Shakerian
- Department of Food Hygiene, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hassan Momtaz
- Department of Food Hygiene, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
27
|
A Review on the Prevalence of Arcobacter in Aquatic Environments. WATER 2022. [DOI: 10.3390/w14081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Arcobacter is an emerging pathogen that is associated with human and animal diseases. Since its first introduction in 1991, 33 Arcobacter species have been identified. Studies have reported that with the presence of Arcobacter in environmental water bodies, animals, and humans, a possibility of its transmission via water and food makes it a potential waterborne and foodborne pathogen. Therefore, this review article focuses on the general characteristics of Arcobacter, including its pathogenicity, antimicrobial resistance, methods of detection by cultivation and molecular techniques, and its presence in water, fecal samples, and animal products worldwide. These detection methods include conventional culture methods, and rapid and accurate Arcobacter identification at the species level, using quantitative polymerase chain reaction (qPCR) and multiplex PCR. Arcobacter has been identified worldwide from feces of various hosts, such as humans, cattle, pigs, sheep, horses, dogs, poultry, and swine, and also from meat, dairy products, carcasses, buccal cavity, and cloacal swabs. Furthermore, Arcobacter has been detected in groundwater, river water, wastewater (influent and effluent), canals, treated drinking water, spring water, and seawater. Hence, we propose that understanding the prevalence of Arcobacter in environmental water and fecal-source samples and its infection of humans and animals will contribute to a better strategy to control and prevent the survival and growth of the bacteria.
Collapse
|
28
|
Švarcová K, Pejchalová M, Šilha D. The Effect of Antibiotics on Planktonic Cells and Biofilm Formation Ability of Collected Arcobacter-like Strains and Strains Isolated within the Czech Republic. Antibiotics (Basel) 2022; 11:antibiotics11010087. [PMID: 35052964 PMCID: PMC8772874 DOI: 10.3390/antibiotics11010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
The purpose of this study was to test the in vitro effects of ampicillin, ciprofloxacin, clindamycin, erythromycin, gentamicin, and tetracycline on planktonic cells of Arcobacter-like microorganisms and on their biofilm formation ability. The minimum inhibitory concentrations (MICs) were determined by the microdilution method. Further, biofilm formation ability in the presence of various concentrations of antibiotics was evaluated by a modified Christensen method. Most of the 60 strains exhibited high susceptibility to gentamicin (98.3%), ciprofloxacin (95.0%), and erythromycin (100.0%). High level of resistance was observed to clindamycin and tetracycline with MIC50 and MIC90 in range of 4–32 mg/L and 32–128 mg/L, respectively. Combined resistance to both clindamycin and tetracycline was found in 38.3% of tested strains. In general, higher biofilm formation was observed especially at lower concentrations of antibiotics (0.13–2 mg/L). However, a significant decrease in biofilm formation ability of Pseudarcobacter defluvii LMG 25694 was exhibited with ampicillin and clindamycin at concentrations above 32 or 8 mg/L, respectively. Biofilm formation represents a potential danger of infection and also a risk to human health, in particular due to antimicrobial-resistant strains and the ability to form a biofilm structure at a concentration that is approximately the MIC determined for planktonic cells.
Collapse
|
29
|
Prevalence, antimicrobial susceptibility and virulence gene profiles of Arcobacter species isolated from human stool samples, foods of animal origin, ready-to-eat salad mixes and environmental water. Gut Pathog 2021; 13:76. [PMID: 34930425 PMCID: PMC8686351 DOI: 10.1186/s13099-021-00472-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Members of the genus Arcobacter are considered as emerging zoonotic food and waterborne pathogens that cause gastroenteritis and bacteremia in humans. However, the potential risk that Arcobacter species pose to public health remains unassessed in various countries, including Baltic states. Therefore, the aim of this study was to determine the prevalence, antimicrobial susceptibility and presence of putative virulence genes of Arcobacter isolates recovered from humans, food products and environmental water in Lithuania. Results A total of 1862 samples were collected and examined from 2018 to 2020 in the city of Kaunas. Overall, 11.2% (n = 208) of the samples were positive for the presence of Arcobacter spp. The highest prevalence was detected in chicken meat (36%), followed by environmental water (28.1%), raw cow milk (25%), ready-to-eat salad mixes (7.1%) and human stool (1.7%). A. butzleri was the most frequently isolated species (n = 192; 92.3%), followed by A. cryaerophilus (n = 16; 7.7%). Arcobacter spp. antimicrobial susceptibility testing revealed unimodally distributed aggregated minimal inhibitory concentrations (MICs) for gentamicin, tetracycline, ciprofloxacin, ampicillin and erythromycin. However, a bimodal distribution for azithromycin was found with 96.2% of determined MICs above the epidemiological cut-off value (ECOFF) defined for Campylobacter jejuni (0.25 µg/ml). Majority of the Arcobacter isolates (n = 187; 89.9%) showed high susceptibility to ciprofloxacin with MICs below or equal to the ECOFF value of 0.5 µg/ml. The putative virulence genes cadF (100%), ciaB (100%), cj1349 (99%), tlyA (99%), mviN (97.9%) and pldA (95.8%) were the predominant genes detected among A. butzleri isolates. In contrast, the mviN and ciaB genes were present in all, whereas cj1349 (12.5%), tlyA (25%) and hecA (12.5%) were only detected in few A. cryaerophilus isolates. Conclusions Our results demonstrate that food products and environmental water in Lithuania are frequently contaminated with Arcobacter spp. that carry multiple putative virulence genes. Furthermore, A. butzleri were isolated from 1.7% of inpatients. Fluoroquinolones and aminoglycosides were found to be more effective against Arcobacter in comparison to other antimicrobial agents. However, further studies are needed to determine the pathogenic mechanisms and factors that facilitate the spread of Arcobacter infections.
Collapse
|
30
|
Yu Q, Sun W, Gao H. Thiosulfate oxidation in sulfur-reducing Shewanella oneidensis and its unexpected influences on the cytochrome c content. Environ Microbiol 2021; 23:7056-7072. [PMID: 34664382 DOI: 10.1111/1462-2920.15807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/04/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Thiosulfate, an important form of sulfur compounds, can serve as both electron donor and acceptor in various microorganisms. In Shewanella oneidensis, a bacterium renowned for respiratory versatility, thiosulfate reduction has long been recognized but whether it can catalyse thiosulfate oxidation remains elusive. In this study, we discovered that S. oneidensis is capable of thiosulfate oxidation, a process specifically catalysed by two periplasmic cytochrome c (cyt c) proteins, TsdA and TsdB, which act as the catalytic subunit and the electron transfer subunit respectively. In the presence of oxygen, oxidation of thiosulfate has priority over reduction. Intriguingly, thiosulfate oxidation negatively regulates the cyt c content in S. oneidensis cells, largely by reducing intracellular levels of cAMP, which as the cofactor modulates activity of global regulator Crp required for transcription of many cyt c genes. This unexpected finding provides an additional dimension to interplays between the respiration regulator and the respiratory pathways in S. oneidensis. Moreover, the data presented here identified S. oneidensis as the first bacterium known to date owning both functional thiosulfate reductase and dehydrogenase, and importantly, genomics analyses suggested that the number of bacterial species possessing this feature is rather limited.
Collapse
Affiliation(s)
- Qingzi Yu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Weining Sun
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| |
Collapse
|
31
|
Mudadu A, Salza S, Melillo R, Mara L, Piras G, Spanu C, Terrosu G, Fadda A, Virgilio S, Tedde T. Prevalence and pathogenic potential of Arcobacter spp. isolated from edible bivalve molluscs in Sardinia. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Tomioka N, Yoochatchaval W, Takemura Y, Matsuura N, Danshita T, Srisang P, Mungjomklang N, Syutsubo K. Detection of potentially pathogenic Arcobacter spp. in Bangkok canals and the Chao Phraya River. JOURNAL OF WATER AND HEALTH 2021; 19:657-670. [PMID: 34371501 DOI: 10.2166/wh.2021.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The management of pathogenic bacteria in waterways is a public health issue. Here, we investigated the concentrations of potentially pathogenic bacteria, Arcobacter spp. and Campylobacter spp., and Escherichia coli, by quantifying species-specific genes in surface water samples from canals and the Chao Phraya River from June 2017 to June 2018 in Bangkok, Thailand. We assessed the relationship between the specific bacterial concentrations, water quality, and seasonal changes. Arcobacter spp. were detected at high density in all samples and showed seasonal fluctuations according to analyses based on 16S rDNA and the invasion gene ciaB. High levels of 16S rDNA and dut gene of E. coli were detected in the polluted drainage canals. A high correlation was observed between E. coli and chemical and biochemical oxygen demand (COD and BOD), suggesting that untreated domestic wastewater was the source of the E. coli. In contrast, Arcobacter spp. were detected with high density even in water samples with relatively low COD, suggesting that Arcobacter spp. are more likely than E. coli to survive in the water environment. The analysis of 16S rDNA and ciaB gene sequence analyses indicated that the Arcobacter spp. isolated from the drainage canals were A. butzleri and A. cryaerophilus.
Collapse
Affiliation(s)
- Noriko Tomioka
- Regional Environment Conservation Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan E-mail:
| | - Wilasinee Yoochatchaval
- Faculty of Engineering, Department of Environmental Engineering, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok 10900, Thailand
| | - Yasuyuki Takemura
- Regional Environment Conservation Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan E-mail:
| | - Norihisa Matsuura
- Faculty of Geoscience and Civil Engineering, Kanazawa University, Ishikawa 920-1192, Japan
| | - Tsuyoshi Danshita
- Department of Civil Engineering and Architecture, National Institute of Technology, Tokuyama College, Gakuendai Shunan, Yamaguchi 745-8585, Japan
| | - Pornpawee Srisang
- Faculty of Engineering, Department of Environmental Engineering, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok 10900, Thailand
| | - Noppamas Mungjomklang
- Faculty of Engineering, Department of Environmental Engineering, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok 10900, Thailand
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan E-mail:
| |
Collapse
|
33
|
Bonifácio M, Mateus C, Alves AR, Maldonado E, Duarte AP, Domingues F, Oleastro M, Ferreira S. Natural Transformation as a Mechanism of Horizontal Gene Transfer in Aliarcobacter butzleri. Pathogens 2021; 10:pathogens10070909. [PMID: 34358059 PMCID: PMC8308473 DOI: 10.3390/pathogens10070909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
Aliarcobacter butzleri is an emergent enteropathogen, showing high genetic diversity, which likely contributes to its adaptive capacity to different environments. Whether natural transformation can be a mechanism that generates genetic diversity in A. butzleri is still unknown. In the present study, we aimed to establish if A. butzleri is naturally competent for transformation and to investigate the factors influencing this process. Two different transformation procedures were tested using exogenous and isogenic DNA containing antibiotic resistance markers, and different external conditions influencing the process were evaluated. The highest number of transformable A. butzleri strains were obtained with the agar transformation method when compared to the biphasic system (65% versus 47%). A. butzleri was able to uptake isogenic chromosomal DNA at different growth phases, and the competence state was maintained from the exponential to the stationary phases. Overall, the optimal conditions for transformation with the biphasic system were the use of 1 μg of isogenic DNA and incubation at 30 °C under a microaerobic atmosphere, resulting in a transformation frequency ~8 × 10−6 transformants/CFU. We also observed that A. butzleri favored the transformation with the genetic material of its own strain/species, with the DNA incorporation process occurring promptly after the addition of genomic material. In addition, we observed that A. butzleri strains could exchange genetic material in co-culture assays. The presence of homologs of well-known genes involved in the competence in the A. butzleri genome corroborates the natural competence of this species. In conclusion, our results show that A. butzleri is a naturally transformable species, suggesting that horizontal gene transfer mediated by natural transformation is one of the processes contributing to its genetic diversity. In addition, natural transformation can be used as a tool for genetic studies of this species.
Collapse
Affiliation(s)
- Marina Bonifácio
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
| | - Cristiana Mateus
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
| | - Ana R. Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
| | - Emanuel Maldonado
- C4-UBI-Cloud Computing Competence Centre, University of Beira Interior, 6200-284 Covilhã, Portugal;
| | - Ana P. Duarte
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
- C4-UBI-Cloud Computing Competence Centre, University of Beira Interior, 6200-284 Covilhã, Portugal;
| | - Fernanda Domingues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal;
| | - Susana Ferreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
- Correspondence:
| |
Collapse
|
34
|
Ohnishi T, Hara-Kudo Y. Presence and quantification of pathogenic Arcobacter and Campylobacter species in retail meats available in Japan. Lett Appl Microbiol 2021; 73:81-87. [PMID: 33797068 DOI: 10.1111/lam.13478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 01/26/2023]
Abstract
We present estimations for the amounts of Arcobacter (A. butzleri, A. cryaerophilus and A. skirrowii) and Campylobacter (C. jejuni, C. coli and C. fetus) species in retail chicken, pork and beef meat using PCR-MPN. Arcobacter butzleri, A. cryaerophilus and C. jejuni were found in 100, 60 and 55% of chicken samples, respectively. No other Arcobacter or Campylobacter species were found in chicken. The MPNs of A. butzleri, A. cryaerophilus and C. jejuni were greater than 103 per 100 g in 50, 0 and 5% of samples, respectively. The MPN of A. butzleri was higher than that of C. jejuni in 95% of samples. In pork, A. butzleri and A. cryaerophilus were detected in 10 and 11 (50 and 55%) of 20 samples, respectively. No other Arcobacter or Campylobacter species were found in pork. Only one pork sample had more than 103 MPN per 100 g of A. cryaerophilus. For beef, only two samples tested positive for A. cryaerophilus, at 4600 and 92 MPN per 100 g. Overall, we found that the presence and MPNs of Arcobacter species are very high in chicken. In contrast, the positive ratios of Arcobacter in pork were high as chicken samples, but MPNs were lower than in chicken.
Collapse
Affiliation(s)
- T Ohnishi
- Division of Microbiology, National Institute of Health Sciences, Kanagawa, Japan
| | - Y Hara-Kudo
- Division of Microbiology, National Institute of Health Sciences, Kanagawa, Japan
| |
Collapse
|
35
|
Hänel I, Müller E, Santamarina BG, Tomaso H, Hotzel H, Busch A. Antimicrobial Susceptibility and Genomic Analysis of Aliarcobacter cibarius and Aliarcobacter thereius, Two Rarely Detected Aliarcobacter Species. Front Cell Infect Microbiol 2021; 11:532989. [PMID: 33816322 PMCID: PMC8010192 DOI: 10.3389/fcimb.2021.532989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/19/2021] [Indexed: 01/06/2023] Open
Abstract
Aliarcobacter cibarius and Aliarcobacter thereius are two rarely detected Aliarcobacter species. In the study, we analyzed the antimicrobial susceptibility and provide detailed insights into the genotype and phylogeny of both species using whole-genome sequencing. Thermophilic Campylobacter species are the most common bacterial foodborne pathogens causing gastroenteritis in humans worldwide. The genus Aliarcobacter is part of the Campylobacteraceae family and includes the species Aliarcobacter butzleri, Aliarcobacter cryaerophilus, Aliarcobacter skirrowii, and the rarely described Aliarcobacter cibarius, Aliarcobacter faecis, Aliarcobacter lanthieri, Aliarcobacter thereius, and Acrobarter trophiarum. Aliarcobacter are emergent enteropathogens and potential zoonotic agents. Here, we generated, analyzed, and characterized whole-genome sequences of Aliarcobacter cibarius and Aliarcobacter thereius. They were isolated from water poultry farms in Germany, cultured and identified by MALDI-TOF MS. With PCR the identity was verified. Antibiotic susceptibility testing was carried out with erythromycin, ciprofloxacin, doxycycline, tetracycline, gentamicin, streptomycin, ampicillin, and cefotaxime using the gradient strip method (E-test). Whole-genome sequences were generated including those of reference strains. Complete genomes for six selected strains are reported. These provide detailed insights into the genotype. With these, we predicted in silico known AMR genes, virulence-associated genes, and plasmid replicons. Phenotypic analysis of resistance showed differences between the presence of resistance genes and the prediction of phenotypic resistance profiles. In Aliarcobacter butzleri, the nucleotide sequence of the gyrA gene (DQ464331) can show a signature mutation resulting in an amino acid change T85>I. Acrobarter cibarius and Acrobarter thereius showed the same gene as assessed by similarity annotation of the mutations 254C>G. Most of the isolates were found to be sensitive to ciprofloxacin. The ciprofloxacin-resistant Aliarcobacter thereius isolate was associated with the amino acid change T85>I. But this was not predicted with antibiotic resistance databases, before. Ultimately, a phylogenetic analysis was done to facilitate in future outbreak analysis.
Collapse
Affiliation(s)
- Ingrid Hänel
- IBIZ, Friedrich-Loeffler-Institut Jena, Jena, Germany
| | - Eva Müller
- IBIZ, Friedrich-Loeffler-Institut Jena, Jena, Germany
| | | | | | - Helmut Hotzel
- IBIZ, Friedrich-Loeffler-Institut Jena, Jena, Germany
| | - Anne Busch
- IBIZ, Friedrich-Loeffler-Institut Jena, Jena, Germany.,Department of Anaesthesiology and Intensive Care Medicine, University Hospital Jena, Jena, Germany
| |
Collapse
|
36
|
Liang Z, Fang W, Luo Y, Lu Q, Juneau P, He Z, Wang S. Mechanistic insights into organic carbon-driven water blackening and odorization of urban rivers. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124663. [PMID: 33278726 DOI: 10.1016/j.jhazmat.2020.124663] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
With rapid global urbanization, massive anthropogenic inputs of organic matter and inorganic nutrients are resulting in severe pollution of urban rivers and consequently altering the structure and function of their aquatic microbial communities. In contrast to nutrient-induced eutrophication of freshwaters, water blackening and odorization of urban rivers, as well as their microbial communities, are poorly understood at a mechanistic level. Here, in a one-year field study on the taxonomic composition, predicted function and spatiotemporal dynamics of water and sediment microbial communities in seven black-odorous urban rivers in a megacity in southern China, combined with laboratory water-sediment column experiments, we pinpointed organic carbon as a key parameter driving the overgrowth of aquatic heterogeneous microorganisms. These microorganisms are major constituents of suspended black flocs that mediate methanogenic digestion of organic carbon and consequent water blackening and odorization. Source tracking analysis revealed a strikingly high contribution of sewage communities to black-odorous water microbial communities, in which emerging pathogens are enriched. Our results provide mechanistic insight into organic carbon-driven water blackening and odorization of urban rivers, which brings up current remediation strategies in questioning and sheds light on the future sustainable management of urban aquatic ecosystems.
Collapse
Affiliation(s)
- Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Yukui Luo
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Philippe Juneau
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Montréal H3C 3P8, QC, Canada
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China.
| |
Collapse
|
37
|
Jasim SA, Al-Abodi HR, Ali WS. Resistance rate and novel virulence factor determinants of Arcobacter spp., from cattle fresh meat products from Iraq. Microb Pathog 2021; 152:104649. [PMID: 33249163 DOI: 10.1016/j.micpath.2020.104649] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Arcobacter spp colonize in human and animals intestine and cause food-associated infections. Hence, characterization of their virulence potential and health impacts is required. Our subject was isolation and characterization of Arcobacter spp, from meat marketplaces. A total of 1297 fresh raw cattle meat samples were purchased randomly from various marketplaces in Baghdad, Iraq. One-hundred and twenty isolates were identified, including Arcobacter butzleri (A. butzleri n = 100) and Arcobacter cryaerophilus (A. cryaerophilus n = 20). Susceptibility to antimicrobials was examined using Kirby-Bauer disc diffusion method. Molecular investigation of antibiotic resistance and virulence factors was also conducted using polymerase chain reaction (PCR) technique. Most of A. butzleri were resistant to tetracycline (72%), amoxicillin (69%), erythromycin (67%) and cefoxitin (66%), while 33% and 6% of them were resistant to ceftazidime and carbapenems, respectively. All were susceptible to gentamicin, colistin and fosfomycin. Fifty-five and nine isolates of A. butzleri and A. cryaerophilus were respectively multidrug-resistant (MDR). The existence of tetA, tetB, dfrA, sul1, blaCTX-M1 and blaIMP included 61%, 58%, 57%, 34%, 46% and 3%, respectively. The virulence genes cadF, irgA, tylA, cdtC and cdtA genes were detected in all the A. butzleri and A. cryaerophilus isolates. While, ciaB mviN and pldA genes were respectively detected in 91%, 88% and 84% of A. butzleri and 97%, 93% and 87% of A. cryaerophilus isolates. There was a significant relation between MDR and existence of virulence genes. Existence of pathogenic and drug-resistant- Arcobacter spp in raw meat is a threat for human health, necessitating confirmation of quality and safety of meat products.
Collapse
Affiliation(s)
| | | | - Wala'a Shawkat Ali
- Department of B, College of Science, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
38
|
Characterization of Arcobacter spp. Isolated from human diarrheal, non-diarrheal and food samples in Thailand. PLoS One 2021; 16:e0246598. [PMID: 33544770 PMCID: PMC7864401 DOI: 10.1371/journal.pone.0246598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/21/2021] [Indexed: 11/19/2022] Open
Abstract
Arcobacter butzleri is an emerging zoonotic food-borne and water-borne pathogen that can cause diarrhea in humans. The global prevalence of A. butzleri infection is underestimated, and little is known about their phenotypic and genotypic characterization. The aim of this study was to determine antimicrobial susceptibility (AST) profiles, detect related virulence genes, and classify sequence type (ST) of A. butzleri isolates obtained from human stool and food samples. A total of 84 A. butzleri isolates were obtained from human diarrheal (n = 25), non-diarrheal (n = 24) stool, and food (n = 35) samples in Thailand. They were evaluated for phenotypic identification by conventional microbiological procedures and AST by Kirby-Bauer disc diffusion method as well as virulence genes detection. Representative isolates from each origin were selected based on the presence of virulence genes and AST profiles to analyze genetic diversity by multilocus sequence typing (MLST). All isolates showed resistance to nalidixic acid 40.5% (34/84), ciprofloxacin 11.9% (10/84), azithromycin 8.3% (7/84), and erythromycin 3.6% (3/84). Regarding the ten virulence genes detected, cj1349, mviN and pldA had the highest prevalence 100% (84/84), followed by tlyA 98.8% (83/84), cadF 97.6% (82/84), ciaB 71.4% (60/84), hecA and hecB 22.6% (19/84), iroE 15.5% (13/84) and irgA 10.7% (9/84), respectively. Three virulence genes were present among A. butzleri isolates of human diarrheal stool and food samples, with a significant difference observed among isolates; hecB [36% (9/25) and 8.6% (3/35)], hecA [36% (9/25) and 5.7% (2/35)], and irgA [24% (6/25) and 2.9% (1/35)] (p < 0.05), respectively. The hecA and hecB virulence genes functions are related to the mechanism of hemolysis, while irgA supports a bacterial nutritional requirement. MLST analysis of 26 A. butzleri isolates revealed that 16 novel STs exhibited high genetic diversity. The results of this study is useful for understanding potentially pathogenic and antimicrobial-resistant A. butzleri in Thailand. The pathogenic virulence markers hecB, hecA, and irgA have the potential to be developed for rapid diagnostic detection in human diarrheal stool. No significant relationships among STs and sources of origin were observed. Little is known about A. butzleri, the mechanism of action of these virulence genes, is a topic that needs further investigation.
Collapse
|
39
|
Kim Y, Kim LH, Vrouwenvelder JS, Ghaffour N. Effect of organic micropollutants on biofouling in a forward osmosis process integrating seawater desalination and wastewater reclamation. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123386. [PMID: 32653793 DOI: 10.1016/j.jhazmat.2020.123386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
This study systematically investigated the effect of organic micropollutants (OMPs) on biofouling in forward osmosis (FO) integrating wastewater treatment and seawater dilution. Synthetic seawater (0.6 M sodium chloride) was used as a draw solution and synthetic municipal wastewater as a feed solution. To evaluate the impact of OMPs in a replicate parallel study, wastewater was supplemented with a mixture of 7 OMPs (OMPs-feed) and without OMPs (control) during 8 batch filtration cycles with feed and draw solution replacement after each filtration. The FO performance (water flux), development and microbial composition properties of biofilm layers on the wastewater side of the FO membrane were studied. Compared to the control without OMPs, the FO fed with OMPs containing wastewater showed (i) initially the same water flux and flux decline during the first filtration cycle, (ii) with increasing filtration cycle a lower flux decline and (iii) lower concentrations for the total cells, ATP, EPS carbohydrates and proteins in biofilm layers, and (iv) a lower diversity of the biofilm microbial community composition (indicating selective pressure) and (v) increasing rejection of 6 of the 7 OMPs. In essence, biofouling on the FO membrane showed (i) a lower flux decline in the presence of OMPs in the feed water and (ii) a higher OMPs rejection, both illustrating better membrane performance. This study has a significant implication for optimizing osmotic dilution in terms of FO operation and OMPs rejection.
Collapse
Affiliation(s)
- Youngjin Kim
- Department of Environmental Engineering, Sejong Campus, Korea University, 2511, Sejong-ro, Jochiwon-eup, Sejong-si, 30019, Republic of Korea
| | - Lan Hee Kim
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Johannes S Vrouwenvelder
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal 23955-6900, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
40
|
Müller E, Hotzel H, Linde J, Hänel I, Tomaso H. Antimicrobial Resistance and in silico Virulence Profiling of Aliarcobacter butzleri Strains From German Water Poultry. Front Microbiol 2020; 11:617685. [PMID: 33381106 PMCID: PMC7767855 DOI: 10.3389/fmicb.2020.617685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Aliarcobacter butzleri is an emerging foodborne and zoonotic pathogen that is usually transmitted via contaminated food or water. A. butzleri is not only the most prevalent Aliarcobacter species, it is also closely related to thermophilic Campylobacter, which have shown increasing resistance in recent years. Therefore, it is important to assess its resistance and virulence profiles. In this study, 45 Aliarcobacter butzleri strains from water poultry farms in Thuringia, Germany, were subjected to an antimicrobial susceptibility test using the gradient strip diffusion method and whole-genome sequencing. In the phylogenetic analysis, the genomes of the German strains showed high genetic diversity. Thirty-three isolates formed 11 subgroups containing two to six strains. The antimicrobial susceptibility testing showed that 32 strains were resistant to erythromycin, 26 to doxycycline, and 20 to tetracycline, respectively. Only two strains were resistant to ciprofloxacin, while 39 strains were resistant to streptomycin. The in silico prediction of the antimicrobial resistance profiles identified a large repertoire of potential resistance mechanisms. A strong correlation between a gyrA point mutation (Thr-85-Ile) and ciprofloxacin resistance was found in 11 strains. A partial correlation was observed between the presence of the bla3 gene and ampicillin resistance. In silico virulence profiling revealed a broad spectrum of putative virulence factors, including a complete lipid A cluster in all studied genomes.
Collapse
Affiliation(s)
- Eva Müller
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Ingrid Hänel
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| |
Collapse
|
41
|
Kerkhof PJ, Van den Abeele AM, Strubbe B, Vogelaers D, Vandamme P, Houf K. Diagnostic approach for detection and identification of emerging enteric pathogens revisited: the (Ali)arcobacter lanthieri case. New Microbes New Infect 2020; 39:100829. [PMID: 33473321 PMCID: PMC7803648 DOI: 10.1016/j.nmni.2020.100829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
An immunocompetent patient without a history of recent travel or animal exposure developed persistent abdominal bloating and cramps without diarrhoea or fever. Negative additional investigations excluded gastritis, infectious colitis, inflammatory bowel disease and neoplasia, but routine stool culture detected a Campylobacter-like organism. The isolate was obtained with use of a polycarbonate filter technique, emphasizing the importance of culture to support and validate the occurrence of emerging and new bacterial enteric pathogens. The ensuing extensive laboratory examinations proved challenging in identifying this potential pathogen. Phylogenetic marker analysis based on the 16S ribosomal RNA and rpoB gene sequences revealed that the isolate was most closely related to Arcobacter lanthieri and Arcobacter faecis. Subsequent analysis of a draft whole genome sequence assigned the isolate to A. lanthieri. We report the presence of five virulence genes, cadF, ciaB, mviN, hecA and iroE, indicating a possible pathogenic nature of this organism. This case demonstrated the importance of the use of agnostic methods for the detection of emerging pathogens in cases of enteric disease with a wide array of gastrointestinal symptoms.
Collapse
Affiliation(s)
- P.-J. Kerkhof
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Corresponding author: P.-J. Kerkhof, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - A.-M. Van den Abeele
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Laboratory of Microbiology, Saint-Lucas Hospital, Ghent, Belgium
| | - B. Strubbe
- Department of Gastroenterology, Saint-Lucas Hospital, Ghent, Belgium
| | - D. Vogelaers
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - P. Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - K. Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
42
|
Müller E, Abdel-Glil MY, Hotzel H, Hänel I, Tomaso H. Aliarcobacter butzleri from Water Poultry: Insights into Antimicrobial Resistance, Virulence and Heavy Metal Resistance. Genes (Basel) 2020; 11:genes11091104. [PMID: 32967159 PMCID: PMC7564025 DOI: 10.3390/genes11091104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Aliarcobacter butzleri is the most prevalent Aliarcobacter species and has been isolated from a wide variety of sources. This species is an emerging foodborne and zoonotic pathogen because the bacteria can be transmitted by contaminated food or water and can cause acute enteritis in humans. Currently, there is no database to identify antimicrobial/heavy metal resistance and virulence-associated genes specific for A. butzleri. The aim of this study was to investigate the antimicrobial susceptibility and resistance profile of two A. butzleri isolates from Muscovy ducks (Cairina moschata) reared on a water poultry farm in Thuringia, Germany, and to create a database to fill this capability gap. The taxonomic classification revealed that the isolates belong to the Aliarcobacter gen. nov. as A. butzleri comb. nov. The antibiotic susceptibility was determined using the gradient strip method. While one of the isolates was resistant to five antibiotics, the other isolate was resistant to only two antibiotics. The presence of antimicrobial/heavy metal resistance genes and virulence determinants was determined using two custom-made databases. The custom-made databases identified a large repertoire of potential resistance and virulence-associated genes. This study provides the first resistance and virulence determinants database for A. butzleri.
Collapse
|
43
|
Zhang X, Su Y, Alter T, Gölz G. The transcriptional response of Arcobacter butzleri to cold shock. FEBS Open Bio 2020; 10:2089-2096. [PMID: 32810909 PMCID: PMC7530382 DOI: 10.1002/2211-5463.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 11/11/2022] Open
Abstract
Arcobacter (A.) butzleri is an emerging zoonotic pathogen associated with gastrointestinal diseases, such as abdominal cramps and diarrhea, and is widely detected in animals, showing a high prevalence in poultry and seafood. The survival and adaptation of A. butzleri to cold temperatures remains poorly studied, although it might be of interest for food safety considerations. To address this, growth patterns of eight A. butzleri isolates were determined at 8 °C for 28 days. A. butzleri isolates showed strain‐dependent behavior: six isolates were unculturable after day 18, one exhibited declining but detectable cell counts until day 28 and one grew to the stationary phase level. Out of 13 A. butzleri cold shock‐related genes homologous to Escherichia coli, 10 were up‐regulated in response to a temperature downshift to 8 °C, as demonstrated by reverse transcription‐quantitative PCR. Additionally, we compared these data with the cold‐shock response in E. coli. Overall, we provide a deeper insight into the environmental adaptation capacities of A. butzleri, which we find shares similarities with the E. coli cold‐shock response.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Yulan Su
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
44
|
Müller E, Hotzel H, Ahlers C, Hänel I, Tomaso H, Abdel-Glil MY. Genomic Analysis and Antimicrobial Resistance of Aliarcobacter cryaerophilus Strains From German Water Poultry. Front Microbiol 2020; 11:1549. [PMID: 32754133 PMCID: PMC7365950 DOI: 10.3389/fmicb.2020.01549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Aliarcobacter cryaerophilus (formerly Arcobacter cryaerophilus) is a globally emerging foodborne and zoonotic pathogen. However, little is known about the species’ genomic features and diversity, antibiotic resistance and virulence. In this study, 27 A. cryaerophilus strains from water poultry in Thuringia, Germany, were investigated using whole-genome sequencing. Four of these strains were sequenced using long- and short-read sequencing methods to obtain circularized genomes. The German strains belong to the A. cryaerophilus cluster I. Cluster I genomes exhibited a high degree of genetic diversity in which variable sites comprised 9.1% of the core genome. The German strains formed three subgroups that contained 2, 6, and 9 strains, respectively. The genomic analysis of cluster I revealed variable presence of mobile elements and that 65% of the strains lack CRISPR systems. The four circularized genomes carried a ∼2 Mbp chromosome and a single megaplasmid (size 98.1–154.5 Kbp). The chromosome was densely packed with coding sequences (∼92%) and showed inversions and shifts in the gene blocks between different strains. Antimicrobial resistance was assessed using a gradient strip diffusion method and showed that all 27 strains were resistant to cefotaxime and susceptible to erythromycin, gentamicin, and ampicillin. Sixteen strains were also resistant to ciprofloxacin, whereas 23 were resistant to streptomycin. The genetic prediction of antibiotic resistance identified numerous efflux pumps similar to those found in A. butzleri. All strains harbored two beta-lactamase genes which may explain the cefotaxime resistance. A correlation between the gyrA point mutation (Thr-85-Ile) and ciprofloxacin resistance was partially discovered in 15 out of 16 strains. In silico virulence profiling showed a wide range of virulence factors including a full chemotaxis system and most of the flagellar genes. In contrast to A. butzleri, no urease cluster was found. This study provides new insights into the genomic variability of A. cryaerophilus strains of cluster I. The different genetic makeup of these strains may contribute to the virulence of strains and the severity of the infections in humans.
Collapse
Affiliation(s)
- Eva Müller
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Christine Ahlers
- Thuringian Animal Disease Fund, Poultry Health Service, Jena, Germany
| | - Ingrid Hänel
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| |
Collapse
|
45
|
Mensch B, Neulinger SC, Künzel S, Wahl M, Schmitz RA. Warming, but Not Acidification, Restructures Epibacterial Communities of the Baltic Macroalga Fucus vesiculosus With Seasonal Variability. Front Microbiol 2020; 11:1471. [PMID: 32676070 PMCID: PMC7333354 DOI: 10.3389/fmicb.2020.01471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
Due to ocean acidification and global warming, surface seawater of the western Baltic Sea is expected to reach an average of ∼1100 μatm pCO2 and an increase of ∼5°C by the year 2100. In four consecutive experiments (spanning 10-11 weeks each) in all seasons within 1 year, the abiotic factors temperature (+5°C above in situ) and pCO2 (adjusted to ∼1100 μatm) were tested for their single and combined effects on epibacterial communities of the brown macroalga Fucus vesiculosus and on bacteria present in the surrounding seawater. The experiments were set up in three biological replicates using the Kiel Outdoor Benthocosm facility (Kiel, Germany). Phylogenetic analyses of the respective microbiota were performed by bacterial 16S (V1-V2) rDNA Illumina MiSeq amplicon sequencing after 0, 4, 8, and 10/11 weeks per season. The results demonstrate (I) that the bacterial community composition varied in time and (II) that relationships between operational taxonomic units (OTUs) within an OTU association network were mainly governed by the habitat. (III) Neither single pCO2 nor pCO2:Temperature interaction effects were statistically significant. However, significant impact of ocean warming was detected varying among seasons. (IV) An indicator OTU (iOTU) analysis identified several iOTUs that were strongly influenced by temperature in spring, summer, and winter. In the warming treatments of these three seasons, we observed decreasing numbers of bacteria that are commonly associated with a healthy marine microbial community and-particularly during spring and summer-an increase in potentially pathogenic and bacteria related to intensified microfouling. This might lead to severe consequences for the F. vesiculosus holobiont finally affecting the marine ecosystem.
Collapse
Affiliation(s)
- Birte Mensch
- Department of Biology, Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Sven C. Neulinger
- Department of Biology, Institute of General Microbiology, Kiel University, Kiel, Germany
- omics2view.consulting GbR, Kiel, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Martin Wahl
- Marine Ecology Division, Research Unit Experimental Ecology, Benthic Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ruth A. Schmitz
- Department of Biology, Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
46
|
Soelberg KK, Danielsen TKL, Martin-Iguacel R, Justesen US. Arcobacter butzleri is an opportunistic pathogen: recurrent bacteraemia in an immunocompromised patient without diarrhoea. Access Microbiol 2020; 2:acmi000145. [PMID: 32974604 PMCID: PMC7497825 DOI: 10.1099/acmi.0.000145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/25/2020] [Indexed: 01/31/2023] Open
Abstract
Introduction Arcobacter butzleri is attracting increasing interest due to its possible pathogenic properties. Researchers have described cases in which A. butzleri is isolated in stool samples from patients with gastrointestinal symptoms, mostly diarrhoea. The relevance of adding our case to the literature lies in its description of recurrent A. butzleri bacteraemia in a patient without diarrhoea. Case presentation An immunocompromised patient was hospitalized three times within 12 months due to A. butzleri-induced bacteraemia. At no time did the patient experience diarrhoea even though examination of stool samples showed growth of A. butzleri. The isolate was susceptible to gentamicin, colistin and tetracyclines. The patient was successfully treated with doxycycline. Conclusion For the first time in the literature we describe recurrent A. butzleri bacteraemia in a patient without diarrhoea. This case supports the classification of A. butzleri as an opportunistic pathogenic species, which clinical microbiology laboratories should be able to identify.
Collapse
Affiliation(s)
- Kerstin K Soelberg
- Department of Clinical Microbiology, Odense University Hospital, Denmark
| | | | | | - Ulrik S Justesen
- Department of Clinical Microbiology, Odense University Hospital, Denmark
| |
Collapse
|
47
|
Chieffi D, Fanelli F, Fusco V. Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Compr Rev Food Sci Food Saf 2020; 19:2071-2109. [PMID: 33337088 DOI: 10.1111/1541-4337.12577] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022]
Abstract
Arcobacter butzleri, recently emended to the Aliarcobacter butzleri comb. nov., is an emerging pathogen causing enteritis, severe diarrhea, septicaemia, and bacteraemia in humans and enteritis, stillbirth, and abortion in animals. Since its recognition as emerging pathogen on 2002, advancements have been made in elucidating its pathogenicity and epidemiology, also thanks to advent of genomics, which, moreover, contributed in emending its taxonomy. In this review, we provide an overview of the up-to-date taxonomy, ecology, and pathogenicity of this emerging pathogen. Moreover, the implication of A. butzleri in the safety of foods is pinpointed, and culture-dependent and independent detection, identification, and typing methods as well as strategies to control and prevent the survival and growth of this pathogen are provided.
Collapse
Affiliation(s)
- Daniele Chieffi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| |
Collapse
|
48
|
Benoit SL, Maier RJ, Sawers RG, Greening C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol Mol Biol Rev 2020; 84:e00092-19. [PMID: 31996394 PMCID: PMC7167206 DOI: 10.1128/mmbr.00092-19] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
49
|
Nelapati S, Tumati SR, Thirtham MR, Ramani Pushpa RN, Kamisetty AK, Ch BK. Occurrence, virulence gene and antimicrobial susceptibility profiles of Arcobacter sp. isolated from catla (Catla catla) in India. Lett Appl Microbiol 2020; 70:365-371. [PMID: 32012305 DOI: 10.1111/lam.13281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 11/28/2022]
Abstract
In the present study, a total of 100 catla (Catla catla-major South Asian carp, local name botcha) collected from local fish markets and aquaculture ponds were subjected for isolation and characterization of Arcobacter sp. In all, 21 Arcobacter sp. were isolated, of which 18 (85·7%) were Arcobacter butzleri and three (14%) were A. cryoaerophilus as identified by multiplex PCR. All 18 A. butzleri isolates were positive for mviN, ciaB and tlyA virulence genes, three of A. cryoaerophilus isolates carried mviN gene and none of the isolates were positive for cadF, irgA, cj1349, hecA and hecB genes. All isolates (n = 21) were resistant to penicillin (100%). Meanwhile, 71·43, 23·81, 23·81, 14·29 and 9·52% of the isolates showed resistance towards vancomycin, nalidixic acid, erythromycin, cefixime and kanamycin, respectively. Multidrug resistance was observed in 23·81% of the Arcobacter sp. isolates and none of the isolates were positive for any of the extended spectrum beta-lactamases either by phenotypic or by molecular identification genes (blaOXA , blaSHV , blaTEM , blaCTX-M1 , blaCTX-M2 and blaCTX-M9 groups). The results emphasize the need to implement specific control procedures to reduce the use of antibiotics in aquaculture particularly the ones which are very important in human medicine. SIGNIFICANCE AND IMPACT OF THE STUDY: Arcobacter species are emerging food- and water-borne human pathogens. In this study, Arcobacter butzleri was predominant in fish compared to A. cryoaerohilus and A. skirrowii. Higher incidence of arcobacters in fish market samples suggests cross contamination and unhygienic handling of fish in markets. Virulence genes profile and antibiotics resistance of the Arcobacter sp. isolated in current study indicate pathogenic potential of Arcobacter sp. to humans. Occurrence of multidrug-resistant Arcobacter sp. in fish is a major concern in food safety. To our knowledge, this is the first report of Arcobacter sp. from freshwater fish, catla (Catla catla) in India.
Collapse
Affiliation(s)
- S Nelapati
- NTR College of Veterinary Science, Gannavaram, Krishna District, Andhra Pradesh, India
| | - S R Tumati
- NTR College of Veterinary Science, Gannavaram, Krishna District, Andhra Pradesh, India
| | - M R Thirtham
- College of Veterinary Science, Tirupati, Andhra Pradesh, India
| | - R N Ramani Pushpa
- NTR College of Veterinary Science, Gannavaram, Krishna District, Andhra Pradesh, India
| | - A K Kamisetty
- NTR College of Veterinary Science, Gannavaram, Krishna District, Andhra Pradesh, India
| | - B K Ch
- NTR College of Veterinary Science, Gannavaram, Krishna District, Andhra Pradesh, India
| |
Collapse
|
50
|
Isidro J, Ferreira S, Pinto M, Domingues F, Oleastro M, Gomes JP, Borges V. Virulence and antibiotic resistance plasticity of Arcobacter butzleri: Insights on the genomic diversity of an emerging human pathogen. INFECTION GENETICS AND EVOLUTION 2020; 80:104213. [PMID: 32006709 DOI: 10.1016/j.meegid.2020.104213] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Arcobacter butzleri is a foodborne emerging human pathogen, frequently displaying a multidrug resistant character. Still, the lack of comprehensive genome-scale comparative analysis has limited our knowledge on A. butzleri diversification and pathogenicity. Here, we performed a deep genome analysis of A. butzleri focused on decoding its core- and pan-genome diversity and specific genetic traits underlying its pathogenic potential and diverse ecology. A. butzleri (genome size 2.07-2.58 Mbp) revealed a large open pan-genome with 7474 genes (about 50% being singletons) and a small but diverse core-genome with 1165 genes. It presents a plastic virulome (including newly identified determinants), marked by the differential presence of multiple adaptation-related virulence factors, such as the urease cluster ureD(AB)CEFG (phenotypically confirmed), the hypervariable hemagglutinin-encoding hecA, a type I secretion system (T1SS) harboring another agglutinin and a novel VirB/D4 T4SS likely linked to interbacterial competition and cytotoxicity. In addition, A. butzleri harbors a large repertoire of efflux pumps (EPs) and other antibiotic resistant determinants. We unprecedentedly describe a genetic mechanism of A. butzleri macrolides resistance, (inactivation of a TetR repressor likely regulating an EP). Fluoroquinolones resistance correlated with Thr-85-Ile in GyrA and ampicillin resistance was linked to an OXA-15-like β-lactamase. Remarkably, by decoding the polymorphism pattern of the main antigen PorA, we show that A. butzleri is able to exchange porA as a whole and/or hypervariable epitope-encoding regions separately, leading to a multitude of chimeric PorA presentations that can impact pathogen-host interaction during infection. Ultimately, our unprecedented screening of short sequence repeats indicates that phase variation likely modulates A. butzleri key adaptive functions. In summary, this study constitutes a turning point on A. butzleri comparative genomics revealing that this human gastrointestinal pathogen is equipped with vast and diverse virulence and antibiotic resistance arsenals that open a multitude of phenotypic fingerprints for environmental/host adaptation and pathogenicity.
Collapse
Affiliation(s)
- Joana Isidro
- Bioinformatics Unit, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Susana Ferreira
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal.
| | - Miguel Pinto
- Bioinformatics Unit, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Fernanda Domingues
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Vítor Borges
- Bioinformatics Unit, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.
| |
Collapse
|