1
|
Dixon MH, Nellore D, Zaacks SC, Barak JD. Time of arrival during plant disease progression and humidity additively influence Salmonella enterica colonization of lettuce. Appl Environ Microbiol 2024; 90:e0131124. [PMID: 39207142 PMCID: PMC11409676 DOI: 10.1128/aem.01311-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The interplay between plant hosts, phytopathogenic bacteria, and enteric human pathogens in the phyllosphere has consequences for human health. Salmonella enterica has been known to take advantage of phytobacterial infection to increase its success on plants, but there is little knowledge of additional factors that may influence the relationship between enteric pathogens and plant disease. In this study, we investigated the role of humidity and the extent of plant disease progression on S. enterica colonization of plants. We found that high humidity was necessary for the replication of S. enterica on diseased lettuce, but not required for S. enterica ingress into the UV-protected apoplast. Additionally, the Xanthomonas hortorum pv. vitians (hereafter, X. vitians)-infected lettuce host was found to be a relatively hostile environment for S. enterica when it arrived prior to the development of watersoaking or following necrosis onset, supporting the existence of an ideal window during X. vitians infection progress that maximizes S. enterica survival. In vitro growth studies in sucrose media suggest that X. vitians may allow S. enterica to benefit from cross-feeding during plant infection. Overall, this study emphasizes the role of phytobacterial disease as a driver of S. enterica success in the phyllosphere, demonstrates how the time of arrival during disease progress can influence S. enterica's fate in the apoplast, and highlights the potential for humidity to transform an infected apoplast into a growth-promoting environment for bacterial colonizers. IMPORTANCE Bacterial leaf spot of lettuce caused by Xanthomonas hortorum pv. vitians is a common threat to leafy green production. The global impact caused by phytopathogens, including X. vitians, is likely to increase with climate change. We found that even under a scenario where increased humidity did not enhance plant disease, high humidity had a substantial effect on facilitating Salmonella enterica growth on Xanthomonas-infected plants. High humidity climates may directly contribute to the survival of human enteric pathogens in crop fields or indirectly affect bacterial survival via changes to the phyllosphere brought on by phytopathogen disease.
Collapse
Affiliation(s)
- Megan H. Dixon
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Dharshita Nellore
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Sonia C. Zaacks
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeri D. Barak
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Han M, Schierstaedt J, Duan Y, Nietschke M, Jechalke S, Wolf J, Hensel M, Neumann-Schaal M, Schikora A. Salmonella enterica relies on carbon metabolism to adapt to agricultural environments. Front Microbiol 2023; 14:1213016. [PMID: 37744895 PMCID: PMC10513388 DOI: 10.3389/fmicb.2023.1213016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023] Open
Abstract
Salmonella enterica, a foodborne and human pathogen, is a constant threat to human health. Agricultural environments, for example, soil and plants, can be ecological niches and vectors for Salmonella transmission. Salmonella persistence in such environments increases the risk for consumers. Therefore, it is necessary to investigate the mechanisms used by Salmonella to adapt to agricultural environments. We assessed the adaptation strategy of S. enterica serovar Typhimurium strain 14028s to agricultural-relevant situations by analyzing the abundance of intermediates in glycolysis and the tricarboxylic acid pathway in tested environments (diluvial sand soil suspension and leaf-based media from tomato and lettuce), as well as in bacterial cells grown in such conditions. By reanalyzing the transcriptome data of Salmonella grown in those environments and using an independent RT-qPCR approach for verification, several genes were identified as important for persistence in root or leaf tissues, including the pyruvate dehydrogenase subunit E1 encoding gene aceE. In vivo persistence assay in tomato leaves confirmed the crucial role of aceE. A mutant in another tomato leaf persistence-related gene, aceB, encoding malate synthase A, displayed opposite persistence features. By comparing the metabolites and gene expression of the wild-type strain and its aceB mutant, fumarate accumulation was discovered as a potential way to replenish the effects of the aceB mutation. Our research interprets the mechanism of S. enterica adaptation to agriculture by adapting its carbon metabolism to the carbon sources available in the environment. These insights may assist in the development of strategies aimed at diminishing Salmonella persistence in food production systems.
Collapse
Affiliation(s)
- Min Han
- Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Jasper Schierstaedt
- Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- Department Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Yongming Duan
- Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Monika Nietschke
- Division of Microbiology, Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Sven Jechalke
- Institute of Phytopathology, Research Centre for Biosystems, Land Use and Nutrition (IFZ), Justus-Liebig-University Gießen, Gießen, Germany
| | - Jacqueline Wolf
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Michael Hensel
- Division of Microbiology, Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Adam Schikora
- Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
3
|
Gu G, Murphy CM, Hamilton AM, Zheng J, Nou X, Rideout SL, Strawn LK. Effect of pesticide application on
Salmonella
survival on inoculated tomato leaves. J Food Saf 2023. [DOI: 10.1111/jfs.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ganyu Gu
- School of Plant and Environmental Sciences Virginia Tech Blacksburg Virginia USA
- Environmental Microbial and Food Safety Laboratory United States Department of Agriculture‐Agricultural Research Service Beltsville Maryland USA
| | - Claire M. Murphy
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia USA
| | - Alexis M. Hamilton
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia USA
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition US Food and Drug Administration College Park Maryland USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory United States Department of Agriculture‐Agricultural Research Service Beltsville Maryland USA
| | - Steven L. Rideout
- School of Plant and Environmental Sciences Virginia Tech Blacksburg Virginia USA
| | - Laura K. Strawn
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia USA
| |
Collapse
|
4
|
Xie X, Chen L, Shi Y, Chai A, Fan T, Li L, Li B. The calcium cyanamide and polyethylene blocks the secondary transmission and infection of vegetable leaf diseases. FRONTIERS IN PLANT SCIENCE 2022; 13:1027584. [PMID: 36605967 PMCID: PMC9807914 DOI: 10.3389/fpls.2022.1027584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Continuous cropping obstacles, especially soil-borne diseases can cause serious harm to agricultural production and limit the sustainable development of modern agriculture. However, Corynespora blight is an important air-borne disease on cucumber leaves caused by Corynespora cassiicola. The pathogen also could survive in air-dried soil or plant residue for at least one month. However, it is not clear whether soil Corynespora blight residues can infect plants. We detected the dynamic change of C. cassiicola content in soil and air after returning the diseased and residual straw to the field in real time by PMA-qPCR detection method. In this study, we reveal for the first time a new mode of transmission in which leaf blade disease residues in soil can spread again into the air and infect plants. In polyethylene (PE) treatment, cucumber plants grew healthily without disease. However, the content of C. cassiicola in the soil still existed in the PE treatment at 103 spore·g-1. The disease index (DI) of cucumber was less than 3 in calcium cyanamide (CaCN2). After fumigation and film removal and the whole growth period was controlled at a safe level. In addition, the PMA-qPCR detection method of Corynespora blight of cucumber was established for the first time in this study. In summary, CaCN2 and PE treatments are effective ways to block the infection of cucumber leaves by Corynespora blight residues in soil. These treatments are considered to comprise a feasible and sustainable technique for vegetable leaf residues in greenhouses.
Collapse
Affiliation(s)
- Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lida Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tengfei Fan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Cowles KN, Block AK, Barak JD. Xanthomonas hortorum pv. gardneri TAL effector AvrHah1 is necessary and sufficient for increased persistence of Salmonella enterica on tomato leaves. Sci Rep 2022; 12:7313. [PMID: 35508535 PMCID: PMC9068798 DOI: 10.1038/s41598-022-11456-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 01/16/2023] Open
Abstract
Salmonella enterica is ubiquitous in the plant environment, persisting in the face of UV stress, plant defense responses, desiccation, and nutrient limitation. These fluctuating conditions of the leaf surface result in S. enterica population decline. Biomultipliers, such as the phytopathogenic bacterium Xanthomonas hortorum pv. gardneri (Xhg), alter the phyllosphere to the benefit of S. enterica. Specific Xhg-dependent changes to this niche that promote S. enterica persistence remain unclear, and this work focuses on identifying factors that lead to increased S. enterica survival on leaves. Here, we show that the Xhg transcription activator-like effector AvrHah1 is both necessary and sufficient for increased survival of S. enterica on tomato leaves. An Xhg avrHah1 mutant fails to influence S. enterica survival while addition of avrHah1 to X. vesicatoria provides a gain of function. Our results indicate that although Xhg stimulates a robust immune response from the plant, AvrHah1 is not required for these effects. In addition, we demonstrate that cellular leakage that occurs during disease is independent of AvrHah1. Investigation of the interaction between S. enterica, Xhg, and the plant host provides information regarding how an inhospitable environment changes during infection and can be transformed into a habitable niche.
Collapse
Affiliation(s)
- Kimberly N Cowles
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna K Block
- Center for Medical, Agricultural, and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Jeri D Barak
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Mitchell M, Thornton L, Riley MA. Identifying more targeted antimicrobials active against select bacterial phytopathogens. J Appl Microbiol 2022; 132:4388-4399. [PMID: 35301784 DOI: 10.1111/jam.15531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
AIMS Phytopathogens are a global threat to the world's food supply. Use of broad-spectrum bactericides and antibiotics to limit or eliminate bacterial infections is becoming less effective as levels of resistance increase, while concurrently becoming less desirable from an ecological perspective due to their collateral damage to beneficial members of plant and soil microbiomes. Bacteria produce numerous antimicrobials in addition to antibiotics, such as bacteriocins with their relatively narrow activity spectra, and inhibitory metabolic by-products, such as organic acids. There is interest in developing these naturally occurring antimicrobials for use as alternatives or supplements to antibiotics. METHODS AND RESULTS In this study, we investigate the inhibitory potential of 217 plant associated bacterial isolates from 44 species including plant pathogens, plant growth promoting rhizobacteria, and plant commensals. Over half of the isolates were found to produce antimicrobial substances, of which 68% were active against phytopathogens. Even more intriguing, 98% of phytopathogenic strains were sensitive to the compounds produced specifically by plant growth promoting rhizobacteria. CONCLUSION These data argue that plant-associated bacteria produce a broad range of antimicrobial substances, and that the substances produced preferentially target phytopathogenic bacteria. SIGNIFICANCE AND IMPACT OF STUDY There is a need for novel antimicrobials for use in agriculture. The methods presented here reveal the potential for simple phenotypic screening methods to provide a broad range of potential drug candidates.
Collapse
Affiliation(s)
| | - Logan Thornton
- Department of Biology, University of Massachusetts Amherst
| | | |
Collapse
|
7
|
Genomic epidemiology of Salmonella enterica circulating in surface waters used in agriculture and aquaculture in central Mexico. Appl Environ Microbiol 2022; 88:e0214921. [PMID: 35020454 PMCID: PMC8904062 DOI: 10.1128/aem.02149-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica can survive in surface waters (SuWa), and the role of nonhost environments in its transmission has acquired increasing relevance. In this study, we conducted comparative genomic analyses of 172 S. enterica isolates collected from SuWa across 3 months in six states of central Mexico during 2019. S. enterica transmission dynamics were assessed using 87 experimental and 112 public isolates from Mexico collected during 2002 through 2019. We also studied genetic relatedness between SuWa isolates and human clinical strains collected in North America during 2005 through 2020. Among experimental isolates, we identified 41 S. enterica serovars and 56 multilocus sequence types (STs). Predominant serovars were Senftenberg (n = 13), Meleagridis, Agona, and Newport (n = 12 each), Give (n = 10), Anatum (n = 8), Adelaide (n = 7), and Infantis, Mbandaka, Ohio, and Typhimurium (n = 6 each). We observed a high genetic diversity in the sample under study, as well as clonal dissemination of strains across distant regions. Some of these strains are epidemiologically important (ST14, ST45, ST118, ST132, ST198, and ST213) and were genotypically close to those involved in clinical cases in North America. Transmission network analysis suggests that SuWa are a relevant source of S. enterica (0.7 source/hub ratio) and contribute to its dissemination as isolates from varied sources and clinical cases have SuWa isolates as common ancestors. Overall, the study shows that SuWa act as reservoirs of various S. enterica serovars of public health significance. Further research is needed to better understand the mechanisms involved in SuWa contamination by S. enterica, as well as to develop interventions to contain its dissemination in food production settings. IMPORTANCE Surface waters are heavily used in food production worldwide. Several human pathogens can survive in these waters for long periods and disseminate to food production environments, contaminating our food supply. One of these pathogens is Salmonella enterica, a leading cause of foodborne infections, hospitalizations, and deaths in many countries. This research demonstrates the role of surface waters as a vehicle for the transmission of Salmonella along food production chains. It also shows that some strains circulating in surface waters are very similar to those implicated in human infections and harbor genes that confer resistance to multiple antibiotics, posing a risk to public health. This study contributes to expand our current knowledge on the ecology and epidemiology of Salmonella in surface waters.
Collapse
|
8
|
Shatila F, Uyar E, Yalçın HT. Screening of Biosurfactant Production by Yarrowia lipolytica Strains and Evaluation of Their Antibiofilm and Anti-Adhesive Activities against Salmonella enterica ser. Enteritidis Biofilms. Microbiology (Reading) 2021. [DOI: 10.1134/s002626172201012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Using RNA-Sequencing Data to Examine Tissue-Specific Garlic Microbiomes. Int J Mol Sci 2021; 22:ijms22136791. [PMID: 34202675 PMCID: PMC8268838 DOI: 10.3390/ijms22136791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Garlic (Allium sativum) is a perennial bulbous plant. Due to its clonal propagation, various diseases threaten the yield and quality of garlic. In this study, we conducted in silico analysis to identify microorganisms, bacteria, fungi, and viruses in six different tissues using garlic RNA-sequencing data. The number of identified microbial species was the highest in inflorescences, followed by flowers and bulb cloves. With the Kraken2 tool, 57% of identified microbial reads were assigned to bacteria and 41% were assigned to viruses. Fungi only made up 1% of microbial reads. At the species level, Streptomyces lividans was the most dominant bacteria while Fusarium pseudograminearum was the most abundant fungi. Several allexiviruses were identified. Of them, the most abundant virus was garlic virus C followed by shallot virus X. We obtained a total of 14 viral genome sequences for four allexiviruses. As we expected, the microbial community varied depending on the tissue types, although there was a dominant microorganism in each tissue. In addition, we found that Kraken2 was a very powerful and efficient tool for the bacteria using RNA-sequencing data with some limitations for virome study.
Collapse
|
10
|
Frankliniella occidentalis facilitate Salmonella enterica survival in the phyllosphere. PLoS One 2021; 16:e0247325. [PMID: 33606799 PMCID: PMC7895381 DOI: 10.1371/journal.pone.0247325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
The human enteric bacterial pathogen Salmonella enterica causes approximately 1.35 million cases of food borne illnesses annually in the United States. Of these salmonellosis cases, almost half are derived from the consumption of fresh, raw produce. Although epiphytic S. enterica populations naturally decline in the phyllosphere, a subset of phytophagous insects have recently been identified as biological multipliers, consequently facilitating the growth of bacterial populations. We investigated whether tomato leaves with macroscopic feeding damage, caused by infestation of adult Western flower thrips (Frankliniella occidentalis), support higher S. enterica populations. To explore this hypothesis, we assessed S. enterica populations in response to thrips feeding by varying insect density, plant age, and the gender of the insect. As a reference control, direct leaf damage analogous to thrips feeding was also evaluated using directed, hydraulic pressure. In a supplementary set series of experiments, groups of F. occidentalis infested tomato plants were later inoculated with S. enterica to determine how prior insect infestation might influence bacterial survival and persistence. Following an infestation period, leaves visibly damaged by adult F. occidentalis supported significantly higher S. enterica populations and resulted in greater amounts of electrolyte leakage (measured as electrical conductivity) than leaves lacking visible feeding damage. Plant age did not significantly influence S. enterica populations or estimates of electrolyte leakage, independent of initial infestation. Additionally, the gender of the insect did not uniquely influence S. enterica population dynamics. Finally, applications of aggressive water bombardment resulted in more electrolyte leakage than leaves damaged by F. occidentalis, yet supported comparable S. enterica populations. Together, this study indicates that F. occidentalis feeding is one of the many potential biological mechanisms creating a more habitable environment for S. enterica.
Collapse
|
11
|
Lenzi A, Marvasi M, Baldi A. Agronomic practices to limit pre- and post-harvest contamination and proliferation of human pathogenic Enterobacteriaceae in vegetable produce. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Clairmont LK, Coristine A, Stevens KJ, Slawson RM. Factors influencing the persistence of enteropathogenic bacteria in wetland habitats and implications for water quality. J Appl Microbiol 2020; 131:513-526. [PMID: 33274572 DOI: 10.1111/jam.14955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 11/28/2022]
Abstract
AIMS To better understand the persistence dynamics of enteropathogenic bacteria in freshwater wetland habitats, we constructed lab-scale mesocosms planted with two different wetland plant species using a subsurface flow wetland design. Mesocosms were treated with either a high-quality or a poor-quality water source to examine the effects of water quality exposure and plant species on Escherichia coli, Salmonella spp. and Enterococcus spp. in the rhizoplane, rhizosphere and water of wetland habitats. METHODS AND RESULTS Quantities of study micro-organisms were detected using real-time PCR in wetland mesocosms. A combination of molecular and culture-based methods was also used to enumerate these organisms from surface water and plant material at high, medium and poor water quality sites in the field. We found that all three enteropathogenic micro-organisms were influenced by microhabitat type and plant species. Organisms differed with respect to their predominant microhabitat and the extent of persistence associated with wetland plant species in the mesocosm study. Of the monitored pathogens, only E. coli was influenced by both water quality treatment and plant species. Salmonella spp. quantities in the rhizoplane consistently increased in all treatments over the course of the mesocosm experiment. CONCLUSIONS Plant species selection appears to be an overlooked aspect of constructed wetland design with respect to the removal of enteropathogenic micro-organisms. Escherichia coli and Enterococcus concentrations in wetland outflow were significantly different between the two plant species tested, with Enterococcus concentrations being significantly higher in mesocosms planted with Phalaris arundinaceae and E. coli concentrations being higher in mesocosms planted with Veronica anagallis-aquatica. Furthermore, there is evidence that the rhizoplane is a significant reservoir for Salmonella spp. within wetland habitats. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first time that Salmonella spp. has been shown to proliferate under natural conditions within the rhizoplane. This will contribute to our understanding of wetland removal mechanisms for enteropathogenic bacteria. This study identifies the rhizoplane as a potentially important reservoir for human pathogenic micro-organisms and warrants additional study to establish whether this finding is applicable in non-wetland habitats.
Collapse
Affiliation(s)
| | - A Coristine
- Wilfrid Laurier University, Waterloo, ON, Canada
| | - K J Stevens
- Wilfrid Laurier University, Waterloo, ON, Canada
| | - R M Slawson
- Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
13
|
Kumar GD, Patel J, Ravishankar S. Contamination of spinach at germination: A route to persistence and environmental reintroduction by Salmonella. Int J Food Microbiol 2020; 326:108646. [PMID: 32413802 DOI: 10.1016/j.ijfoodmicro.2020.108646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/25/2022]
Abstract
The effects of using contaminated seed and water on the persistence and internalization of Salmonella Newport in organic spinach cultivars- Lazio, Space, Emilia and Waitiki were studied. Seeds were contaminated by either immersing in a suspension of Salmonella and then sprouted or were sprouted in Salmonella contaminated water in the dark at 25 °C. After 5 days, germinated sprouts were analyzed for S. Newport population and internalization. Germinated sprouts were potted in soil and grown in a plant incubator for 4 weeks. Leaves, stems and roots were sampled for Salmonella population by plating on CHROMagar™. Plants surface-sterilized with chlorine were analyzed for internalized pathogen. Potting soil and water runoff were sampled for Salmonella after 4 weeks of plant growth. Contaminated seeds and irrigation water had S. Newport populations of 7.64±0.43 log CFU/g and 7.12±0.04 log CFU/ml, respectively. Sprouts germinated using contaminated water or seeds had S. Newport populations of 8.09±0.04 and 8.08±0.03 log CFU/g, respectively and had a Salmonella population that was significantly higher than other spinach tissues (P<0.05). Populations of S. Newport in leaves, stem and roots of spinach plants were as follows: contaminated seed- 2.82±1.69, 1.69±0.86, and 4.41±0.62 log CFU/ml; contaminated water- 3.56±0.90, 3.04±0.31, and 4.03±0.42 log CFU/ml of macerated tissue suspension, respectively. Internalization was observed in plants developing from contaminated seeds and in sprouts germinated using contaminated water. S. Newport populations of 2.82±0.70 log CFU/g and 1.76±0.46 log CFU/ml were recovered from soil and water runoff, respectively. The results indicate that contamination of spinach during germination can result in persistence, internalization and environmental reintroduction of Salmonella.
Collapse
Affiliation(s)
- Govindaraj Dev Kumar
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA 30223, United States of America
| | - Jitendra Patel
- USDA-ARS Environmental Microbial and Food Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, United States of America
| | - Sadhana Ravishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell Street, Tucson, AZ 85721, United States of America.
| |
Collapse
|
14
|
Major N, Schierstaedt J, Jechalke S, Nesme J, Ban SG, Černe M, Sørensen SJ, Ban D, Schikora A. Composted Sewage Sludge Influences the Microbiome and Persistence of Human Pathogens in Soil. Microorganisms 2020; 8:microorganisms8071020. [PMID: 32660164 PMCID: PMC7409118 DOI: 10.3390/microorganisms8071020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/03/2022] Open
Abstract
Composted sewage sludge (CSS) gained attention as a potential fertilizer in agriculture. Application of CSS increases soil microbial activity and microbial biomass, however, it can also lead to increased chemical and microbiological risks. In this study, we performed microcosm experiments to assess how CSS reshapes the microbial community of diluvial sand (DS) soil. Further, we assessed the potential of CSS to increase the persistence of human pathogens in DS soil and the colonization of Chinese cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt). The results revealed that CSS substantially altered the prokaryotic community composition. Moreover, addition of CSS increased the persistence of Salmonella enterica serovar Typhimurium strain 14028s and S.enterica serovar Senftenberg in DS soil. However, the enhanced persistence in soil had no impact on the colonization rate of B.rapa grown on soil inoculated with Salmonella. We detected Salmonella in leaves of 1.9% to 3.6% of plants. Addition of CSS had no impact on the plant colonization rate. The use of sewage sludge composts is an interesting option. However, safety measures should be applied in order to avoid contamination of crop plants by human pathogens.
Collapse
Affiliation(s)
- Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.G.B.); (M.Č.); (D.B.)
- Correspondence: (N.M.); (A.S.)
| | - Jasper Schierstaedt
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany;
| | - Sven Jechalke
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany;
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (J.N.); (S.J.S.)
| | - Smiljana Goreta Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.G.B.); (M.Č.); (D.B.)
| | - Marko Černe
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.G.B.); (M.Č.); (D.B.)
| | - Søren J. Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (J.N.); (S.J.S.)
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.G.B.); (M.Č.); (D.B.)
| | - Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
- Correspondence: (N.M.); (A.S.)
| |
Collapse
|
15
|
Burris KP, Simmons OD, Webb HM, Deese LM, Moore RG, Jaykus LA, Zheng J, Reed E, Ferreira CM, Brown EW, Bell RL. Colonization and Internalization of Salmonella enterica and Its Prevalence in Cucumber Plants. Front Microbiol 2020; 11:1135. [PMID: 32547530 PMCID: PMC7273826 DOI: 10.3389/fmicb.2020.01135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/05/2020] [Indexed: 11/21/2022] Open
Abstract
Consumption of cucumbers (Cucumis sativus var. sativus) has been linked to several foodborne outbreaks involving Salmonella enterica. The purpose of this work was to investigate the efficiency of colonization and internalization of S. enterica into cucumber plants by various routes of contamination. Produce-associated outbreak strains of Salmonella (a cocktail of serovars Javiana, Montevideo, Newport, Poona, and Typhimurium) were introduced to three cultivars of cucumber plants (two slicing cultivars and one pickling) via blossoms (ca. 6.4 log10 CFU/blossom, 4.5 log10 CFU/blossom, or 2.5 log10 CFU/blossom) or soil (ca. 8.3 log10 CFU/root zone) and were analyzed for prevalence of Salmonella contamination (internal and external) and serovar predominance in fruit and stems. Of the total slicing fruit harvested from Salmonella-inoculated blossoms (ca. 6.4, 4.5, or 2.5 log10 CFU/blossom), 83.9% (47/56), 81.4% (48/59) or 71.2% (84/118) were found colonized and 67.9% (38/56), 35.6% (21/59) or 22.0% (26/118) had Salmonella internalized into the fruit, respectively. S. Poona was the most prevalent serovar isolated on or in cucumber fruits at all inoculation levels. When soil was inoculated at 1 day post-transplant (dpt), 8% (10/120) of the plants were shown to translocate Salmonella to the lower stem 7 days post-inoculation (dpi). Results identified blossoms as an important route by which Salmonella internalized at a high percentage into cucumbers, and S. Poona, the same strain isolated from the 2015 outbreak of cucumbers imported from Mexico, was shown to be well-adapted to the blossom niche.
Collapse
Affiliation(s)
- Kellie P. Burris
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Otto D. Simmons
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Hannah M. Webb
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Lauren M. Deese
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Robin Grant Moore
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Elizabeth Reed
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Christina M. Ferreira
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Eric W. Brown
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Rebecca L. Bell
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
16
|
Schierstaedt J, Jechalke S, Nesme J, Neuhaus K, Sørensen SJ, Grosch R, Smalla K, Schikora A. Salmonella
persistence in soil depends on reciprocal interactions with indigenous microorganisms. Environ Microbiol 2020; 22:2639-2652. [DOI: 10.1111/1462-2920.14972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Jasper Schierstaedt
- Plant‐Microbe SystemsLeibniz Institute of Vegetable and Ornamental Crops Großbeeren Germany
| | - Sven Jechalke
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen Giessen Germany
| | - Joseph Nesme
- Section of Microbiology, Department of BiologyUniversity of Copenhagen Copenhagen Denmark
| | - Klaus Neuhaus
- ZIEL ‐ Institute for Food & Health, Core Facility Microbiome/NGS, Technische Universität München Freising Germany
| | - Søren J. Sørensen
- Section of Microbiology, Department of BiologyUniversity of Copenhagen Copenhagen Denmark
| | - Rita Grosch
- Plant‐Microbe SystemsLeibniz Institute of Vegetable and Ornamental Crops Großbeeren Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn‐Institut, Federal Research Centre for Cultivated Plants Braunschweig Germany
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn‐Institut, Federal Research Centre for Cultivated Plants Braunschweig Germany
| |
Collapse
|
17
|
Disayathanoowat T, Li H, Supapimon N, Suwannarach N, Lumyong S, Chantawannakul P, Guo J. Different Dynamics of Bacterial and Fungal Communities in Hive-Stored Bee Bread and Their Possible Roles: A Case Study from Two Commercial Honey Bees in China. Microorganisms 2020; 8:microorganisms8020264. [PMID: 32075309 PMCID: PMC7074699 DOI: 10.3390/microorganisms8020264] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
This study investigated both bacterial and fungal communities in corbicular pollen and hive-stored bee bread of two commercial honey bees, Apis mellifera and Apis cerana, in China. Although both honey bees favor different main floral sources, the dynamics of each microbial community is similar. During pH reduction in hive-stored bee bread, results from conventional culturable methods and next-generation sequencing showed a declining bacterial population but a stable fungal population. Different honey bee species and floral sources might not affect the core microbial community structure but could change the number of bacteria. Corbicular pollen was colonized by the Enterobacteriaceae bacterium (Escherichia-Shiga, Panteoa, Pseudomonas) group; however, the number of bacteria significantly decreased in hive-stored bee bread in less than 72 h. In contrast, Acinetobacter was highly abundant and could utilize protein sources. In terms of the fungal community, the genus Cladosporium remained abundant in both corbicular pollen and hive-stored bee bread. This filamentous fungus might encourage honey bees to reserve pollen by releasing organic acids. Furthermore, several filamentous fungi had the potential to inhibit both commensal/contaminant bacteria and the growth of pathogens. Filamentous fungi, in particular, the genus Cladosporium, could support pollen preservation of both honey bee species.
Collapse
Affiliation(s)
- Terd Disayathanoowat
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (T.D.); (J.G.)
| | - HuanYuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Natapon Supapimon
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Correspondence: (T.D.); (J.G.)
| |
Collapse
|
18
|
Schierstaedt J, Grosch R, Schikora A. Agricultural production systems can serve as reservoir for human pathogens. FEMS Microbiol Lett 2020; 366:5715908. [PMID: 31981360 DOI: 10.1093/femsle/fnaa016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Food-borne diseases are a threat to human health and can cause severe economic losses. Nowadays, in a growing and increasingly interconnected world, food-borne diseases need to be dealt with in a global manner. In order to tackle this issue, it is essential to consider all possible entry routes of human pathogens into the production chain. Besides the post-harvest handling of the fresh produce itself, also the prevention of contamination in livestock and agricultural soils are of particular importance. While the monitoring of human pathogens and intervening measures are relatively easy to apply in livestock and post-harvest, the investigation of the prevention strategies in crop fields is a challenging task. Furthermore, crop fields are interconnected with livestock via fertilizers and feed; therefore, a poor hygiene management can cause cross-contamination. In this review, we highlight the possible contamination of crop plants by bacterial human pathogens via the rhizosphere, their interaction with the plant and possible intervention strategies. Furthermore, we discuss critical issues and questions that are still open.
Collapse
Affiliation(s)
- Jasper Schierstaedt
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Rita Grosch
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| |
Collapse
|
19
|
Lee D, Chang HH, Sarnat SE, Levy K. Precipitation and Salmonellosis Incidence in Georgia, USA: Interactions between Extreme Rainfall Events and Antecedent Rainfall Conditions. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:97005. [PMID: 31536392 PMCID: PMC6792369 DOI: 10.1289/ehp4621] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND The southeastern United States consistently has high salmonellosis incidence, but disease drivers remain unknown. Salmonella is regularly detected in this region's natural environment, leading to numerous exposure opportunities. Rainfall patterns may impact the survival/transport of environmental Salmonella in ways that can affect disease transmission. OBJECTIVES This study investigated associations between short-term precipitation (extreme rainfall events) and longer-term precipitation (rainfall conditions antecedent to these extreme events) on salmonellosis counts in the state of Georgia in the United States. METHODS For the period 1997-2016, negative binomial models estimated associations between weekly county-level extreme rainfall events (≥90th percentile of daily rainfall) and antecedent conditions (8-week precipitation sums, categorized into tertiles) and weekly county-level salmonellosis counts. RESULTS In Georgia's Coastal Plain counties, extreme and antecedent rainfall were associated with significant differences in salmonellosis counts. In these counties, extreme rainfall was associated with a 5% increase in salmonellosis risk (95% CI: 1%, 10%) compared with weeks with no extreme rainfall. Antecedent dry periods were associated with a 9% risk decrease (95% CI: 5%, 12%), whereas wet periods were associated with a 5% increase (95% CI: 1%, 9%), compared with periods of moderate rainfall. In models considering the interaction between extreme and antecedent rainfall conditions, wet periods were associated with a 13% risk increase (95% CI: 6%, 19%), whereas wet periods followed by extreme events were associated with an 11% increase (95% CI: 5%, 18%). Associations were substantially magnified when analyses were restricted to cases attributed to serovars commonly isolated from wildlife/environment (e.g., Javiana). For example, wet periods followed by extreme rainfall were associated with a 34% risk increase (95% CI: 20%, 49%) in environmental serovar infection. CONCLUSIONS Given the associations of short-term extreme rainfall events and longer-term rainfall conditions on salmonellosis incidence, our findings suggest that avoiding contact with environmental reservoirs of Salmonella following heavy rainfall events, especially during the rainy season, may reduce the risk of salmonellosis. https://doi.org/10.1289/EHP4621.
Collapse
Affiliation(s)
- Debbie Lee
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Howard H. Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Stefanie Ebelt Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Karmakar K, Nair AV, Chandrasekharan G, Garai P, Nath U, Nataraj KN, N B P, Chakravortty D. Rhizospheric life of Salmonella requires flagella-driven motility and EPS-mediated attachment to organic matter and enables cross-kingdom invasion. FEMS Microbiol Ecol 2019; 95:fiz107. [PMID: 31271416 DOI: 10.1093/femsec/fiz107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/03/2019] [Indexed: 09/19/2023] Open
Abstract
Salmonella is an established pathogen of the members of the kingdom Animalia. Reports indicate that the association of Salmonella with fresh, edible plant products occurs at the pre-harvest state, i.e. in the field. In this study, we follow the interaction of Salmonella Typhimurium with the model plant Arabidopsis thaliana to understand the process of migration in soil. Plant factors like root exudates serve as chemo-attractants. Our ex situ experiments allowed us to track Salmonella from its free-living state to the endophytic state. We found that genes encoding two-component systems and proteins producing extracellular polymeric substances are essential for Salmonella to adhere to the soil and roots. To understand the trans-kingdom flow of Salmonella, we fed the contaminated plants to mice and observed that it invades and colonizes liver and spleen. To complete the disease cycle, we re-established the infection in plant by mixing the potting mixture with the fecal matter collected from the diseased animals. Our experiments revealed a cross-kingdom invasion by the pathogen via passage through a murine intermediate, a mechanism for its persistence in the soil and invasion in a non-canonical host. These results form a basis to break the life-cycle of Salmonella before it reaches its animal host and thus reduce Salmonella contamination of food products.
Collapse
Affiliation(s)
- Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Giridhar Chandrasekharan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Department of Microbiology, St. Joseph's College Autonomous, Bangalore, India
| | - Preeti Garai
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Karaba N Nataraj
- Department of Crop Physiology, University of Agricultural Science, Bangalore, India
| | - Prakash N B
- Department of Soil Science and Agricultural Chemistry, University of Agricultural Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
21
|
Obayomi O, Bernstein N, Edelstein M, Vonshak A, Ghazayarn L, Ben-Hur M, Tebbe CC, Gillor O. Importance of soil texture to the fate of pathogens introduced by irrigation with treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:886-896. [PMID: 30759614 DOI: 10.1016/j.scitotenv.2018.10.378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
World-wide water scarcity is urging the use of treated wastewater (TWW) for irrigation but this practice may have adverse effects on soil and crop contamination due to the introduction of potential microbial pathogens. The objective of this study was to evaluate the potential health risks caused by TWW irrigation of soils differing in their texture, i.e., soil particle fractions including sand, silt and clay. We predicted that the presence of fecal indicator bacteria (FIB) and pathogens would not be linked to TWW irrigation, yet their abundance would be favored by the smallest soil fraction (~2 nm, e.g., clay) as it provides the largest surface area. To test our hypotheses, culture dependent and independent techniques were used to monitor the presence, abundance and source of FIB and microbial pathogens (bacteria and protists) in water (TWW and potable water) and three irrigated soil types (clay, loam and loamy-sand) in a field study spanning two years. The results showed that FIB and pathogens' abundance were significantly different between water types, yet these differences did not carry to the irrigated soils. The abundance and presence of FIB and potential opportunistic or obligate human pathogens did not significantly differ (p > 0.05) between TWW and potable water irrigated soils. Moreover, the source of the FIB and potential pathogens could not be linked to irrigation with TWW. Yet, soil type significantly altered the potential pathogens' diversity (p < 0.05) and abundance (p < 0.05), and differences were affected by clay content, as predicted. The results gave no indication for potential adverse health effects associated with the application of TWW but demonstrated that clay has a particular stabilizing effect on the potential presence of microbial pathogens.
Collapse
Affiliation(s)
- Olabiyi Obayomi
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 84990, Israel
| | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, Bet-Dagan 50-250, Israel
| | - Menahem Edelstein
- Department of Vegetable Crops, Agricultural Research Organization (ARO), Newe Ya'ar Research Center, P. O. Box 1021, Ramat Yishay 30095, Israel
| | - Ahuva Vonshak
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 84990, Israel
| | - Lusine Ghazayarn
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 84990, Israel
| | - Meni Ben-Hur
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, Bet-Dagan 50-250, Israel
| | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Bundesallee 65, 38116 Braunschweig, Germany
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 84990, Israel.
| |
Collapse
|
22
|
Evaluation of the microbial contamination of fresh produces and their cultivation environments from farms in Korea. Food Sci Biotechnol 2019; 28:1265-1274. [PMID: 31275728 DOI: 10.1007/s10068-019-00570-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/12/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022] Open
Abstract
In this study, a total of 195 samples including fresh produce and farming environments was used to perform the microbial risk assessment. Levels of total aerobic bacteria ranged from 2.77 to 5.99, 6.28 to 7.81, and 1.31 to 2.74 log10 CFU/g, whereas levels of coliforms were ≤ 2.48, ≤ 3.35, and ≤ 0.85 log10 CFU/g, levels of Escherichia coli were ≤ 1.04, ≤ 0.12, and ≤ 1.69 log10 CFU/g in fresh produce, soil, and irrigation water, respectively. When the presence of pathogenic bacteria was detected, only Bacillus cereus and Staphylococcus aureus were isolated from 14 (7.2%) and 7 (3.6%) samples out of 195 samples, respectively. From the results, it was difficult to find a strong correlation between microbial contamination of fresh produce and their farming environments. However, continuous monitoring of agricultural products and related environments should be undertaken in order to ensure the microbial safety of fresh produce.
Collapse
|
23
|
Karmakar K, Nath U, Nataraja KN, Chakravortty D. Root mediated uptake of Salmonella is different from phyto-pathogen and associated with the colonization of edible organs. BMC PLANT BIOLOGY 2018; 18:344. [PMID: 30537948 PMCID: PMC6290541 DOI: 10.1186/s12870-018-1578-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pre-harvest contamination of fruits and vegetables by Salmonella in fields is one of the causes of food-borne outbreaks. Natural openings like stomata, hydathodes and fruit cracks are known to serve as entry points. While there are reports indicating that Salmonella colonize and enter root through lateral root emerging area, further investigations regarding how the accessibility of Salmonella to lateral root is different from phyto-pathogenic bacteria, the efficacy of lateral root to facilitate entry have remained unexplored. In this study we attempted to investigate the lateral root mediated entry of Salmonella, and to bridge this gap in knowledge. RESULTS Unlike phytopathogens, Salmonella cannot utilize cellulose as the sole carbon source. This negates the fact of active entry by degrading plant cellulose and pectin. Endophytic Salmonella colonization showed a high correlation with number of lateral roots. When given equal opportunity to colonize the plants with high or low lateral roots, Salmonella internalization was found higher in the plants with more lateral roots. However, the epiphytic colonization in both these plants remained unaltered. To understand the ecological significance, we induced lateral root production by increasing soil salinity which made the plants susceptible to Salmonella invasion and the plants showed higher Salmonella burden in the aerial organs. CONCLUSION Salmonella, being unable to degrade plant cell wall material relies heavily on natural openings. Therefore, its invasion is highly dependent on the number of lateral roots which provides an entry point because of the epidermis remodeling. Thus, when number of lateral root was enhanced by increasing the soil salinity, plants became susceptible to Salmonella invasion in roots and its transmission to aerial organs.
Collapse
Affiliation(s)
- Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 India
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Science, GKVK, Bangalore, 560065 India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
24
|
Tokarskyy O, De J, Fatica MK, Brecht J, Schneider KR. Survival of Escherichia coli O157:H7 and Salmonella on Bruised and Unbruised Tomatoes from Three Ripeness Stages at Two Temperatures. J Food Prot 2018; 81:2028-2033. [PMID: 30481483 DOI: 10.4315/0362-028x.jfp-18-220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tomatoes are one of the major fresh produce commodities consumed in the United States. Harvesting tomato fruit at a later stage of development can enhance consumer acceptance but can also increase damage due to bruising. Bruising can affect the quality of whole tomatoes by causing an unacceptable appearance and accelerating decay. Bruising may also facilitate bacterial attachment to the fruit surface and support growth of pathogens. This study evaluated the survival and/or proliferation of Escherichia coli O157:H7 and Salmonella on the surface of artificially bruised and unbruised tomatoes at three ripeness stages (breaker, pink, and red) and two storage temperatures (10 and 20°C). A total of 1,440 tomatoes, 720 for each organism, were analyzed. Both E. coli O157:H7 and Salmonella counts declined significantly ( P < 0.05) on the bruised and unbruised tomatoes over the 7-day storage period, by approximately 2.5 and 2.0 log, respectively. E. coli O157:H7 was not detected on pink tomatoes on day 7, whereas Salmonella persisted on the tomato surfaces throughout the 7-day study at all ripeness stages. Bruising had no significant effect ( P > 0.05) on the survival of E. coli O157:H7 (CFU per tomato) compared with the unbruised tomatoes, in most cases. Tomatoes from the red ripeness stage showed a significant effect ( P < 0.05) of bruising on Salmonella survival at both 10 and 20°C. Similar to the colony count results, the frequency (presence or absence) of inoculated tomatoes with detectable levels of inoculated bacteria decreased significantly ( P < 0.05) over time. At the lower temperature, E. coli O157:H7 was recovered from significantly higher ( P < 0.05) numbers of breaker and pink tomatoes, whereas there was no effect of temperature on the overall survival of E. coli O157:H7 on red tomatoes. Results from this study are essential for understanding the effects of bruising on produce safety and for producers and packers to develop mitigation strategies to control pathogenic and spoilage organisms.
Collapse
Affiliation(s)
- O Tokarskyy
- 1 Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611, USA
| | - J De
- 1 Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611, USA
| | - M K Fatica
- 1 Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611, USA
| | - J Brecht
- 2 Horticultural Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - K R Schneider
- 1 Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
25
|
Cowles KN, Groves RL, Barak JD. Leafhopper-Induced Activation of the Jasmonic Acid Response Benefits Salmonella enterica in a Flagellum-Dependent Manner. Front Microbiol 2018; 9:1987. [PMID: 30190716 PMCID: PMC6115507 DOI: 10.3389/fmicb.2018.01987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/07/2018] [Indexed: 11/29/2022] Open
Abstract
Enteric human pathogens such as Salmonella enterica are typically studied in the context of their animal hosts, but it has become apparent that these bacteria spend a significant portion of their life cycle on plants. S. enterica survives the numerous stresses common to a plant niche, including defense responses, water and nutrient limitation, and exposure to UV irradiation leading to an increased potential for human disease. In fact, S. enterica is estimated to cause over one million cases of foodborne illness each year in the United States with 20% of those cases resulting from consumption of contaminated produce. Although S. enterica successfully persists in the plant environment, phytobacterial infection by Pectobacterium carotovorum or Xanthomonas spp. increases S. enterica survival and infrequently leads to growth on infected plants. The co-association of phytophagous insects, such as the Aster leafhopper, Macrosteles quadrilineatus, results in S. enterica populations that persist at higher levels for longer periods of time when compared to plants treated with S. enterica alone. We hypothesized that leafhoppers increase S. enterica persistence by altering the plant defense response to the benefit of the bacteria. Leafhopper infestation activated the jasmonic acid (JA) defense response while S. enterica colonization triggered the salicylic acid (SA) response. In tomato plants co-treated with S. enterica and leafhoppers, both JA- and SA-inducible genes were activated, suggesting that the presence of leafhoppers may affect the crosstalk that occurs between the two immune response pathways. To rule out the possibility that leafhoppers provide additional benefits to S. enterica, plants were treated with a chemical JA analog to activate the immune response in the absence of leafhoppers. Although bacterial populations continue to decline over time, analog treatment significantly increased bacterial persistence on the leaf surface. Bacterial mutant analysis determined that the bacterial flagellum, whether functional or not, was required for increased S. enterica survival after analog treatment. By investigating the interaction between this human pathogen, a common phytophagous insect, and their plant host, we hope to elucidate the mechanisms promoting S. enterica survival on plants and provide information to be used in the development of new food safety intervention strategies.
Collapse
Affiliation(s)
- Kimberly N Cowles
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Russell L Groves
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeri D Barak
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
26
|
Alegbeleye OO, Singleton I, Sant'Ana AS. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol 2018; 73:177-208. [PMID: 29526204 PMCID: PMC7127387 DOI: 10.1016/j.fm.2018.01.003] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022]
Abstract
Foodborne illness resulting from the consumption of contaminated fresh produce is a common phenomenon and has severe effects on human health together with severe economic and social impacts. The implications of foodborne diseases associated with fresh produce have urged research into the numerous ways and mechanisms through which pathogens may gain access to produce, thereby compromising microbiological safety. This review provides a background on the various sources and pathways through which pathogenic bacteria contaminate fresh produce; the survival and proliferation of pathogens on fresh produce while growing and potential methods to reduce microbial contamination before harvest. Some of the established bacterial contamination sources include contaminated manure, irrigation water, soil, livestock/ wildlife, and numerous factors influence the incidence, fate, transport, survival and proliferation of pathogens in the wide variety of sources where they are found. Once pathogenic bacteria have been introduced into the growing environment, they can colonize and persist on fresh produce using a variety of mechanisms. Overall, microbiological hazards are significant; therefore, ways to reduce sources of contamination and a deeper understanding of pathogen survival and growth on fresh produce in the field are required to reduce risk to human health and the associated economic consequences.
Collapse
Affiliation(s)
| | - Ian Singleton
- School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh, UK
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
27
|
Dev Kumar G, Williams RC, Sriranganathan N, Boyer RR, Eifert JD. Survival of Tomato Outbreak Associated Salmonella Serotypes in Soil and Water and the Role of Biofilms in Abiotic Surface Attachment. Foodborne Pathog Dis 2018; 15:548-553. [PMID: 30010397 DOI: 10.1089/fpd.2017.2416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salmonella serotypes linked to tomato-associated outbreaks were evaluated for survival in soil and water over a 40-day period. Salmonella enterica serotypes Anatum, Baildon, Braenderup, Montevideo, Newport, and Javiana were inoculated separately into sterile soil and water, followed by plating onto TSAYE and XLT4 at 10-day intervals. Biofilm production by Salmonella serotypes was measured on both quartz particles (soil surrogate) and glass coverslips, and was evaluated using a crystal violet dye assay. Salmonella populations in soil and water over 40 days indicated no significant differences between Salmonella serotypes tested (p > 0.05). Over a 40-day period, there was a 1.84 ± 0.22 log CFU/g and 1.56 ± 0.54 CFU/mL decrease in populations of Salmonella in soil and water, respectively. Enumeration indicated that Salmonella population fluctuated in water but decreased linearly in soil. All serotypes tested produced the "red dry and rough" morphotype on Congo Red agar. Biofilm produced by all the Salmonella serotypes tested was significantly different on quartz particles than on glass coverslips (p < 0.0001), indicating that material and surface characteristics could affect biofilm development. The ability of Salmonella serotypes to persist in soil or water and attach to abiotic surfaces through biofilm formation affirms that contact surfaces, soil, water, and sediment should be considered as possible sources of cross-contamination in the farm environment.
Collapse
Affiliation(s)
- Govindaraj Dev Kumar
- 1 Department of Food Science and Technology, Virginia Tech , Blacksburg, Virginia
| | - Robert C Williams
- 1 Department of Food Science and Technology, Virginia Tech , Blacksburg, Virginia
| | - Nammalwar Sriranganathan
- 2 Center for Molecular Medicine and Infectious Diseases , Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Renee R Boyer
- 1 Department of Food Science and Technology, Virginia Tech , Blacksburg, Virginia
| | - Joseph D Eifert
- 1 Department of Food Science and Technology, Virginia Tech , Blacksburg, Virginia
| |
Collapse
|
28
|
Gurtler JB, Harlee NA, Smelser AM, Schneider KR. Salmonella enterica Contamination of Market Fresh Tomatoes: A Review. J Food Prot 2018; 81:1193-1213. [PMID: 29965780 DOI: 10.4315/0362-028x.jfp-17-395] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Salmonella contamination associated with market fresh tomatoes has been problematic for the industry and consumers. A number of outbreaks have occurred, and dollar losses for the industry, including indirect collateral impact to agriculturally connected communities, have run into the hundreds of millions of dollars. This review covers these issues and an array of problems and potential solutions surrounding Salmonella contamination in tomatoes. Some other areas discussed include (i) the use of case-control studies and DNA fingerprinting to identify sources of contamination, (ii) the predilection for contamination based on Salmonella serovar and tomato cultivar, (iii) internalization, survival, and growth of Salmonella in or on tomatoes and the tomato plant, in biofilms, and in niches ancillary to tomato production and processing, (iv) the prevalence of Salmonella in tomatoes, especially in endogenous regions, and potential sources of contamination, and (v) effective and experimental means of decontaminating Salmonella from the surface and stem scar regions of the tomato. Future research should be directed in many of the areas discussed in this review, including determining and eliminating sources of contamination and targeting regions of the country where Salmonella is endemic and contamination is most likely to occur. Agriculturalists, horticulturalists, microbiologists, and epidemiologists may make the largest impact by working together to solve other unanswered questions regarding tomatoes and Salmonella contamination.
Collapse
Affiliation(s)
- Joshua B Gurtler
- 1 U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Food Safety and Intervention Technologies Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551 (ORCID: http://orcid.org/0000-0001-5844-7794 [J.B.G.])
| | - Nia A Harlee
- 1 U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Food Safety and Intervention Technologies Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551 (ORCID: http://orcid.org/0000-0001-5844-7794 [J.B.G.]).,2 Department of Culinary Arts and Food Science, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104
| | - Amanda M Smelser
- 3 Graduate School of Arts and Sciences, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, North Carolina 27157; and
| | - Keith R Schneider
- 4 Food Science and Human Nutrition Department, University of Florida, 572 Newell Drive, Building 475, Gainesville, Florida 32611, USA
| |
Collapse
|
29
|
George AS, Cox CE, Desai P, Porwollik S, Chu W, de Moraes MH, McClelland M, Brandl MT, Teplitski M. Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a Tomato Soft Rot. Appl Environ Microbiol 2018; 84:e01913-17. [PMID: 29247060 PMCID: PMC5812938 DOI: 10.1128/aem.01913-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/07/2017] [Indexed: 11/20/2022] Open
Abstract
Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot.IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility are identified as contributors to the persistence of Salmonella spp. in soft rots.
Collapse
Affiliation(s)
- Andrée S George
- Soil and Water Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA
| | - Clayton E Cox
- Soil and Water Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California, USA
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California, USA
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California, USA
| | - Marcos H de Moraes
- Soil and Water Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California, USA
| | - Maria T Brandl
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Max Teplitski
- Soil and Water Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA
| |
Collapse
|
30
|
Zhou B, Luo Y, Bauchan GR, Feng H, Stommel JR. Visualizing pathogen internalization pathways in fresh tomatoes using MicroCT and confocal laser scanning microscopy. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.09.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
|
32
|
Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-66260-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Gekenidis MT, Gossin D, Schmelcher M, Schöner U, Remus-Emsermann MNP, Drissner D. Dynamics of culturable mesophilic bacterial communities of three fresh herbs and their production environment. J Appl Microbiol 2017; 123:916-932. [PMID: 28708321 DOI: 10.1111/jam.13532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/06/2017] [Accepted: 07/06/2017] [Indexed: 01/06/2023]
Abstract
AIM Investigate dynamics of culturable mesophilic bacteria and selected food-contaminating bacteria from three herbs and their production environment. METHODS AND RESULTS Marjoram, basil and thyme were investigated during one growing season by sampling plants, organic fertilizers, soil, irrigation water and marketed products. Mesophilic bacteria and selected food-contaminating bacteria (Escherichia coli, Enterococcus spp., Bacillus cereus group) were cultured and identified by MALDI biotyping. Culturable mesophilic bacteria on marjoram and basil plants decreased over time by two orders of magnitude starting at above 106 colony forming units per gram (CFU per g), while they remained constant on thyme (~104 CFU per g). Compared to the last field sample, mesophilic bacteria were increased on all market-ready products by one order of magnitude. Marjoram and basil were dominated by B. cereus group, Enterobacter spp. and Pseudomonas spp., thyme by Bacillus spp. and Pseudomonas spp. All selected food-contaminating bacteria were detected in soil and reservoir-sourced irrigation water, whereas in municipal water, only B. cereus group and rarely Enterococcus spp. were found. Escherichia coli was detected only on young marjoram and basil plants (5 × 102 and 5 × 101 CFU per g, respectively), whereas Enterococcus spp. and B. cereus group were consistently detected on these two herbs. Thyme plants only contained B. cereus group consistently (above 103 CFU per g). Marketed marjoram and thyme contained Enterococcus spp. (5 × 102 and 104 CFU per g) and B. cereus group (~5 × 102 CFU per g), while no selected food-contaminating bacteria were found on marketed basil. CONCLUSIONS Overall, culturable mesophilic bacteria were dominated by Pseudomonas spp. and Bacillus spp., with increased numbers on market-ready products. Selected food-contaminating bacteria were readily detectable, however, only the B. cereus group was found throughout in all systems. SIGNIFICANCE AND IMPACT OF THE STUDY Insight into composition and development of mesophilic bacterial communities and selected food-contaminating bacteria of fresh herbs contributes to estimating consumer exposure.
Collapse
Affiliation(s)
- M-T Gekenidis
- Microbiology of Plant Foods, Agroscope, Waedenswil, Switzerland.,Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - D Gossin
- Microbiology of Plant Foods, Agroscope, Waedenswil, Switzerland
| | - M Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - U Schöner
- Mäder Kräuter, Boppelsen, Switzerland
| | - M N P Remus-Emsermann
- Microbiology of Plant Foods, Agroscope, Waedenswil, Switzerland.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - D Drissner
- Microbiology of Plant Foods, Agroscope, Waedenswil, Switzerland
| |
Collapse
|
34
|
Amrutha B, Sundar K, Shetty PH. Study on E. coli and Salmonella biofilms from fresh fruits and vegetables. Journal of Food Science and Technology 2017; 54:1091-1097. [PMID: 28416858 DOI: 10.1007/s13197-017-2555-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/08/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
Abstract
Foodborne outbreaks associated with fresh fruits and vegetables are on the rise worldwide. Biofilm formation is one of the important traits of pathogens making them strongly attached to substrates as well as express virulence phenotypes. Present study investigates the biofilm forming ability of E. coli and Salmonella sp. isolated from fresh fruits and vegetables. A total of 53 strains, including 35 E. coli and 18 Salmonella sp. isolated from different fruit and vegetable samples were taken into account for the study. Initial screening for biofilm formation was done using Congo Red agar plate test. Results revealed that 22.8% E. coli and 22.2% Salmonella sp. were potential biofilm formers. However, the MTP (Micro-Titre Plate) assay suggested more isolates of both E. coli and Salmonella sp. were moderate to strong biofilm producers. Agar plate diffusion assay with Agrobacterium tumefaciens NTL-4 showed the production of quorum signaling molecules (AHLs) by three isolates of E. coli and one Salmonella sp. Two E. coli isolates showed a significant amount of EPS production indicating higher biofilm forming potential. The Presence of LUX R homologue gene (sdiA) in two of the Salmonella isolates were confirmed by PCR which demonstrated their potential pathogenicity. Results of the work underline the biofilm forming and potentially virulent capacities of isolates from the surface of fruits and vegetables.
Collapse
Affiliation(s)
- Balagopal Amrutha
- Department of Food Science and Technology, Pondicherry Central University, R V Nagar, Kalapet, Puducherry 605 014 India
| | - Kothandapani Sundar
- Department of Food Science and Technology, Pondicherry Central University, R V Nagar, Kalapet, Puducherry 605 014 India
| | - Prathapkumar Halady Shetty
- Department of Food Science and Technology, Pondicherry Central University, R V Nagar, Kalapet, Puducherry 605 014 India
| |
Collapse
|
35
|
Ximenes E, Hoagland L, Ku S, Li X, Ladisch M. Human pathogens in plant biofilms: Formation, physiology, and detection. Biotechnol Bioeng 2017; 114:1403-1418. [PMID: 28067424 DOI: 10.1002/bit.26247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Eduardo Ximenes
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
- Department of Agricultural and Biological Engineering; Purdue University; West Lafayette Indiana
| | - Lori Hoagland
- Horticulture and Landscape Architecture; Purdue University; West Lafayette Indiana
| | - Seockmo Ku
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
- Department of Agricultural and Biological Engineering; Purdue University; West Lafayette Indiana
| | - Xuan Li
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
| | - Michael Ladisch
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
- Department of Agricultural and Biological Engineering; Purdue University; West Lafayette Indiana
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette Indiana
| |
Collapse
|
36
|
Micallef SA, Callahan MT, Pagadala S. Occurrence and Dispersal of Indicator Bacteria on Cucumbers Grown Horizontally or Vertically on Various Mulch Types. J Food Prot 2016; 79:1663-1672. [PMID: 28221845 DOI: 10.4315/0362-028x.jfp-16-106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
No data exist on the impact of cultivation practices on food safety risks associated with cucumber. Cucumbers are typically grown horizontally over a mulch cover, with fruit touching the ground, but this vining plant grows well in vertical systems. To assess whether production system affects bacterial dispersal onto plants, field trials were conducted over 2 years. Cucumber cultivar 'Marketmore 76' was grown horizontally on plastic, straw, or bare ground or vertically on trellises installed on bare ground in soil previously amended with raw dairy manure. Fruit, flower, leaf, and soil samples were collected to quantify Escherichia coli , thermotolerant coliforms, and enterococci by direct plating. E. coli isolates were characterized by BOX-PCR to evaluate relatedness among strains. Although thermotolerant coliforms and enterococci were significantly less abundant on fruit in year 1 (P < 0.05), this result was not seen in year 2 when more rain was recorded. Instead, fruit from straw-mulched beds had higher levels of enterococci compared with fruit grown on bare ground (P < 0.05). Leaves on bare ground occasionally had more bacteria than did leaves on plastic mulch beds (P < 0.05). Production system did not impact flower-associated bacterial levels. E. coli isolates (n =127) were genotyped, generating 21 distinct fingerprints. Vertical production did not appear to be a barrier for E. coli dispersal to the crop, as suggested by numerous related isolates from soil and flowers on bare ground, straw-mulched, and trellised beds (subcluster B1). None of the isolates from soil and flowers in this subcluster were related to isolates recovered from fruit, showing that flower colonization does not necessarily lead to fruit colonization. One cluster of isolates contained those from flowers and fruits but not soil, indicating a source other than manure-amended soil. Straw may be a source of E. coli ; a number of closely related E. coli isolates were retrieved from soil and fruits from straw-mulched beds. Our approach revealed E. coli dispersal patterns and could be used to assess bacterial transmission in other production systems.
Collapse
Affiliation(s)
- Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| | - Mary Theresa Callahan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| | - Sivaranjani Pagadala
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
37
|
George AS, Salas González I, Lorca GL, Teplitski M. Contribution of the Salmonella enterica KdgR Regulon to Persistence of the Pathogen in Vegetable Soft Rots. Appl Environ Microbiol 2016; 82:1353-1360. [PMID: 26682862 PMCID: PMC4751823 DOI: 10.1128/aem.03355-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/04/2015] [Indexed: 01/13/2023] Open
Abstract
During their colonization of plants, human enteric pathogens, such as Salmonella enterica, are known to benefit from interactions with phytopathogens. At least in part, benefits derived by Salmonella from the association with a soft rot caused by Pectobacterium carotovorum were shown to be dependent on Salmonella KdgR, a regulator of genes involved in the uptake and utilization of carbon sources derived from the degradation of plant polymers. A Salmonella kdgR mutant was more fit in soft rots but not in the lesions caused by Xanthomonas spp. and Pseudomonas spp. Bioinformatic, phenotypic, and gene expression analyses demonstrated that the KdgR regulon included genes involved in uptake and metabolism of molecules resulting from pectin degradation as well as those central to the utilization of a number of other carbon sources. Mutant analyses indicated that the Entner-Doudoroff pathway, in part controlled by KdgR, was critical for the persistence within soft rots and likely was responsible for the kdgR phenotype.
Collapse
Affiliation(s)
- Andrée S George
- Soil and Water Science Department, University of Florida-IFAS, Gainesville, Florida, USA
| | - Isai Salas González
- Soil and Water Science Department, University of Florida-IFAS, Gainesville, Florida, USA
| | - Graciela L Lorca
- Microbiology and Cell Science Department, University of Florida-IFAS, Gainesville, Florida, USA
| | - Max Teplitski
- Soil and Water Science Department, University of Florida-IFAS, Gainesville, Florida, USA
| |
Collapse
|
38
|
Outbreak ofSalmonellaStrathcona caused by datterino tomatoes, Denmark, 2011. Epidemiol Infect 2016; 144:2802-11. [DOI: 10.1017/s0950268816000121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
SUMMARYIn September 2011, a patient cluster with a rareSalmonellaserotype – Strathcona – was identified in Denmark. An outbreak investigation was initiated to reveal the source in order to stop the outbreak. In addition to hypothesis-generating interviews, comparable analyses of patients’ household shopping receipts were conducted. A matched case-control study with 25 cases and 56 population register controls was conducted to test the findings of the hypothesis-generating investigation. In total, 43 cases ofSalmonellaStrathcona were reported in Denmark. Additionally, 28 cases were reported from Germany, Italy, Austria and Belgium. The results of the investigation in Denmark showed that 8/10 cases had bought datterino tomatoes prior to disease onset. Illness was associated with a specific supermarket chain [matched odds ratio (mOR) 16·9, 95% confidence interval (CI) 2·2–130], and having consumed elongated small tomatoes (OR 28·1, 95% CI 2·6–302). Traceback investigation showed that the tomatoes came from an Italian producer. This outbreak, linked to tomatoes, underpins the growing recognition of the broad source range ofSalmonellaand the ability of fresh produce to cause multi-country outbreaks. It is important to strengthen the international cooperation between public-health and food-safety authorities in the European Union to investigate future multi-country outbreaks in order to prevent illness from ready-to-eat produce.
Collapse
|
39
|
Diguanylate Cyclases AdrA and STM1987 Regulate Salmonella enterica Exopolysaccharide Production during Plant Colonization in an Environment-Dependent Manner. Appl Environ Microbiol 2015; 82:1237-1248. [PMID: 26655751 DOI: 10.1128/aem.03475-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence indicates that despite exposure to harsh environmental stresses, Salmonella enterica successfully persists on plants, utilizing fresh produce as a vector to animal hosts. Among the important S. enterica plant colonization factors are those involved in biofilm formation. S. enterica biofilm formation is controlled by the signaling molecule cyclic di-GMP and represents a sessile lifestyle on surfaces that protects the bacterium from environmental factors. Thus, the transition from a motile, planktonic lifestyle to a sessile lifestyle may represent a vital step in bacterial success. This study examined the mechanisms of S. enterica plant colonization, including the role of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), the enzymes involved in cyclic di-GMP metabolism. We found that two biofilm components, cellulose and curli, are differentially required at distinct stages in root colonization and that the DGC STM1987 regulates cellulose production in this environment independent of AdrA, the DGC that controls the majority of in vitro cellulose production. In addition, we identified a new function for AdrA in the transcriptional regulation of colanic acid and demonstrated that adrA and colanic acid biosynthesis are associated with S. enterica desiccation tolerance on the leaf surface. Finally, two PDEs with known roles in motility, STM1344 and STM1697, had competitive defects in the phyllosphere, suggesting that regulation of motility is crucial for S. enterica survival in this niche. Our results indicate that specific conditions influence the contribution of individual DGCs and PDEs to bacterial success, perhaps reflective of differential responses to environmental stimuli.
Collapse
|
40
|
Potnis N, Colee J, Jones JB, Barak JD. Plant pathogen-induced water-soaking promotes Salmonella enterica growth on tomato leaves. Appl Environ Microbiol 2015; 81:8126-34. [PMID: 26386057 PMCID: PMC4651078 DOI: 10.1128/aem.01926-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022] Open
Abstract
Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants.
Collapse
Affiliation(s)
- Neha Potnis
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - James Colee
- Department of Statistics, University of Florida, Gainesville, Florida, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jeri D Barak
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
41
|
Deering AJ, Jack DR, Pruitt RE, Mauer LJ. Movement of Salmonella serovar Typhimurium and E. coli O157:H7 to Ripe Tomato Fruit Following Various Routes of Contamination. Microorganisms 2015; 3:809-25. [PMID: 27682118 PMCID: PMC5023275 DOI: 10.3390/microorganisms3040809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 11/16/2022] Open
Abstract
Salmonella serovars have been associated with the majority of foodborne illness outbreaks involving tomatoes, and E. coli O157:H7 has caused outbreaks involving other fresh produce. Contamination by both pathogens has been thought to originate from all points of the growing and distribution process. To determine if Salmonella serovar Typhimurium and E. coli O157:H7 could move to the mature tomato fruit of different tomato cultivars following contamination, three different contamination scenarios (seed, leaf, and soil) were examined. Following contamination, each cultivar appeared to respond differently to the presence of the pathogens, with most producing few fruit and having overall poor health. The Micro-Tom cultivar, however, produced relatively more fruit and E. coli O157:H7 was detected in the ripe tomatoes for both the seed- and leaf- contaminated plants, but not following soil contamination. The Roma cultivar produced fewer fruit, but was the only cultivar in which E. coli O157:H7 was detected via all three routes of contamination. Only two of the five cultivars produced tomatoes following seed-, leaf-, and soil- contamination with Salmonella Typhimurium, and no Salmonella was found in any of the tomatoes. Together these results show that different tomato cultivars respond differently to the presence of a human pathogen, and for E. coli O157:H7, in particular, tomato plants that are either contaminated as seeds or have a natural opening or a wound, that allows bacteria to enter the leaves can result in plants that have the potential to produce tomatoes that harbor internalized pathogenic bacteria.
Collapse
Affiliation(s)
- Amanda J Deering
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Dan R Jack
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Robert E Pruitt
- Department of Botany and Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN 47907, USA.
| | - Lisa J Mauer
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
42
|
Esseili MA, Chin A, Saif L, Miller SA, Qu F, Lewis Ivey ML, Wang Q. Postharvest Survival of Porcine Sapovirus, a Human Norovirus Surrogate, on Phytopathogen-Infected Leafy Greens. J Food Prot 2015; 78:1472-80. [PMID: 26219360 DOI: 10.4315/0362-028x.jfp-14-518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Leafy greens are increasingly being recognized as an important vehicle for human noroviruses (HuNoV), which cause recurring gastroenteritis outbreaks. Leafy greens often become infected by phytopathogens in the field, which may cause symptoms on the edible parts. Whether plant pathogen infections enhance the survival of HuNoV on leafy greens is unknown. Lettuce and spinach plants were infected with a bacterium, Xanthomonas campestris pv. vitians strain 701a, and with Cucumber mosaic virus strain Fny, respectively. The survival rate of porcine sapovirus (SaV), a HuNoV surrogate, on infected and noninfected postharvest leaves was then assessed. In addition, acibenzolar-S-methyl, a commercial chemical elicitor of plant systemic defense, was used to assess whether stimulating the plant host defense affects the postharvest survival of SaV. Leaves harvested from control and treated plants were inoculated with SaV and incubated for 7 days at 4°C. The infectivity (tissue culture infectious dose affecting 50% of the culture [TCID50]/ml) and RNA (genomic equivalent/ml) titers of SaV were assayed using immunohistochemistry staining and SaV-specific TaqMan real-time reverse transcription PCR. Our results showed that cucumber mosaic virus Fny induced mild, nonnecrotic symptoms on spinach leaves and had no effect on SaV survival. In contrast, X. campestris pv. vitians 701a induced small localized necrotic lesions and significantly enhanced SaV survival on lettuce leaves. Treatment with acibenzolar-S-methyl was effective in reducing X. campestris pv. vitians 701a-induced lesions on infected lettuce plants but had no direct effect on SaV survival when used on healthy lettuce plants. These findings indicate that phytopathogen-induced necrotic lesions may enhance the postharvest survival of HuNoV on lettuce leaves. Therefore, preventive measures aiming to maintain healthy plants and minimize preharvest biological damage are expected to improve the safety of leafy greens.
Collapse
Affiliation(s)
- Malak A Esseili
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | - Ashlina Chin
- The Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | - Linda Saif
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | - Sally A Miller
- The Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | - Feng Qu
- The Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | - Melanie L Lewis Ivey
- The Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA; The Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, Louisiana 70803, USA.
| | - Qiuhong Wang
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA.
| |
Collapse
|
43
|
Bell RL, Zheng J, Burrows E, Allard S, Wang CY, Keys CE, Melka DC, Strain E, Luo Y, Allard MW, Rideout S, Brown EW. Ecological prevalence, genetic diversity, and epidemiological aspects of Salmonella isolated from tomato agricultural regions of the Virginia Eastern Shore. Front Microbiol 2015; 6:415. [PMID: 25999938 PMCID: PMC4423467 DOI: 10.3389/fmicb.2015.00415] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/20/2015] [Indexed: 11/13/2022] Open
Abstract
Virginia is the third largest producer of fresh-market tomatoes in the United States. Tomatoes grown along the eastern shore of Virginia are implicated almost yearly in Salmonella illnesses. Traceback implicates contamination occurring in the pre-harvest environment. To get a better understanding of the ecological niches of Salmonella in the tomato agricultural environment, a 2-year study was undertaken at a regional agricultural research farm in Virginia. Environmental samples, including tomato (fruit, blossoms, and leaves), irrigation water, surface water and sediment, were collected over the growing season. These samples were analyzed for the presence of Salmonella using modified FDA-BAM methods. Molecular assays were used to screen the samples. Over 1500 samples were tested. Seventy-five samples tested positive for Salmonella yielding over 230 isolates. The most commonly isolated serovars were S. Newport and S. Javiana with pulsed-field gel electrophoresis yielding 39 different patterns. Genetic diversity was further underscored among many other serotypes, which showed multiple PFGE subtypes. Whole genome sequencing (WGS) of several S. Newport isolates collected in 2010 compared to clinical isolates associated with tomato consumption showed very few single nucleotide differences between environmental isolates and clinical isolates suggesting a source link to Salmonella contaminated tomatoes. Nearly all isolates collected during two growing seasons of surveillance were obtained from surface water and sediment sources pointing to these sites as long-term reservoirs for persistent and endemic contamination of this environment.
Collapse
Affiliation(s)
- Rebecca L. Bell
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Jie Zheng
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Erik Burrows
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Sarah Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Charles Y. Wang
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Christine E. Keys
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - David C. Melka
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Errol Strain
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Yan Luo
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Marc W. Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Steven Rideout
- Eastern Shore Agricultural Research and Extension Center, Virginia TechPainter, VA, USA
| | - Eric W. Brown
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| |
Collapse
|
44
|
Acquisition of Iron Is Required for Growth of Salmonella spp. in Tomato Fruit. Appl Environ Microbiol 2015; 81:3663-70. [PMID: 25795672 DOI: 10.1128/aem.04257-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/14/2015] [Indexed: 11/20/2022] Open
Abstract
Salmonella remains a leading cause of bacterial food-borne disease, sickening millions each year. Although outbreaks of salmonellosis have traditionally been associated with contaminated meat products, recent years have seen numerous disease cases caused by the consumption of produce. Tomatoes have been specifically implicated, due to the ability of Salmonella spp. to enter the tomato fruit and proliferate within, making the decontamination of the raw product impossible. To investigate the genetic means by which Salmonella is able to survive and proliferate within tomatoes, we conducted a screen for bacterial genes of Salmonella enterica serovar Montevideo specifically induced after inoculation into ripe tomato fruit. Among these genes, we found 17 members of the previously described anaerobic Fur (ferric uptake regulator) regulon. Fur is a transcriptional and posttranscriptional regulator known to sense iron, suggesting the importance of this mineral to Salmonella within tomatoes. To test whether iron acquisition is essential for Salmonella growth in tomatoes, we tested a ΔfepDGC mutant, which lacks the ability to import iron-associated siderophores. This mutant grew significantly more poorly within tomatoes than did the wild type, but the growth defect of the mutant was fully reversed by the addition of exogenous iron, demonstrating the need for bacterial iron scavenging. Further, dependence upon iron was not apparent for Salmonella growing in filtered tomato juice, implicating the cellular fraction of the fruit as an important mediator of iron acquisition by the bacteria.
Collapse
|
45
|
Olanya OM, Annous BA, Taylor J. Effects ofPseudomonas chlororaphisand gaseous chlorine dioxide on the survival ofSalmonella entericaon tomatoes. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ocen Modesto Olanya
- Food Safety and Intervention Technology Research Unit; Eastern Regional Research Center; USDA Agricultural Research Service; 600 East Mermaid Lane Wyndmoor PA 19038 USA
| | - Bassam A. Annous
- Food Safety and Intervention Technology Research Unit; Eastern Regional Research Center; USDA Agricultural Research Service; 600 East Mermaid Lane Wyndmoor PA 19038 USA
| | - Janysha Taylor
- Food Safety and Intervention Technology Research Unit; Eastern Regional Research Center; USDA Agricultural Research Service; 600 East Mermaid Lane Wyndmoor PA 19038 USA
| |
Collapse
|
46
|
Wiedemann A, Virlogeux-Payant I, Chaussé AM, Schikora A, Velge P. Interactions of Salmonella with animals and plants. Front Microbiol 2015; 5:791. [PMID: 25653644 PMCID: PMC4301013 DOI: 10.3389/fmicb.2014.00791] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.
Collapse
Affiliation(s)
- Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Anne-Marie Chaussé
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Adam Schikora
- Institute for Phytopathology, Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen Giessen, Germany
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| |
Collapse
|
47
|
Cevallos-Cevallos JM, Gu G, Richardson SM, Hu J, van Bruggen AHC. Survival of Salmonella enterica Typhimurium in water amended with manure. J Food Prot 2014; 77:2035-42. [PMID: 25474048 DOI: 10.4315/0362-028x.jfp-13-472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Outbreaks of Salmonella enterica have been associated with water sources. Survival of S. enterica in various environments has been studied but survival in water has rarely been attempted. In two separate experiments, we examined the survival of S. enterica Typhimurium in clean spring water at various eutrophication levels and temperatures. In the first experiment, lasting for 135 days, survival of S. enterica (10(10) CFU/ml) in water with 0, 50, 100, 500, and 1,000 mg/liter of added carbon at 7, 17, and 27°C was monitored weekly. In the second experiment, lasting for 3 weeks, survival of S. enterica in water at 0, 100, and 200 mg/ liter of added carbon and 27°C was studied daily. Each experiment had four replicates. Dissolved organic carbon was measured daily in each experiment. At the beginning, midpoint, and end of the survival study, microbial communities in both experiments were assessed by denaturing gradient gel electrophoresis (DGGE). Even at minimal carbon concentrations, S. enterica survived for at least 63 d. Survival of Salmonella was highly dependent on eutrophication levels (as measured by dissolved organic carbon) and temperature, increasing at high eutrophication levels, but decreasing at high temperatures. Survival was also strongly affected by microbial competition or predation.
Collapse
Affiliation(s)
- Juan M Cevallos-Cevallos
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral (ESPOL), Km. 30.5 vía Perimetral, Apartado 09-01-5863, Guayaquil, Ecuador
| | | | | | | | | |
Collapse
|
48
|
Wang H, Ryser ET. Efficacy of various sanitizers against Salmonella during simulated commercial packing of tomatoes. J Food Prot 2014; 77:1868-75. [PMID: 25364919 DOI: 10.4315/0362-028x.jfp-14-213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chemical sanitizers are usually added to dump tank water to minimize cross-contamination during tomato packing. However, the efficacy of sanitizers continues to be questioned. This study assessed the ability of six commonly used sanitizers (40 ppm of peroxyacetic acid, 40 ppm of mixed peracid, 40 ppm of available chlorine alone or acidified to pH 6.0 with citric acid or T-128, and electrolyzed water containing 40 ppm of available chlorine at pH 6.7) to reduce Salmonella on tomatoes, in wash water, and on equipment surfaces using a pilot-scale processing line. Red round tomatoes (11.3 kg) were dip inoculated to contain Salmonella at ∼6 log CFU/g, air dried for 2 h, treated for 2 min in a 3.3-m-long dump tank and then dried on a roller conveyor, with sanitizer-free water serving as the control. Tomato and water samples were collected at 15-s intervals during washing with additional dump tank, water tank, and roller conveyor surface samples collected after washing. All samples were appropriately neutralized, diluted, and surface plated on Trypticase soy agar containing 0.6% yeast extract, 0.05% ferric ammonium citrate, and 0.03% sodium thiosulfate with or without membrane filtration to enumerate Salmonella. All six sanitizer treatments were more efficacious than the water control (P ≤ 0.05), with chlorine plus citric acid yielding the greatest Salmonella reduction on tomatoes (3.1 log CFU/g). After processing, all sanitizer wash solutions contained significantly lower (P ≤ 0.05) levels of Salmonella than the water control (3.0 log CFU/ml). The four chlorine-based sanitizer treatments yielded significantly lower Salmonella populations (P ≤ 0.05) in the wash solution compared with peroxyacetic acid and mixed peracid. After processing with sanitizers, Salmonella populations decreased to nondetectable levels (<0.2 log CFU/100 cm(2) ) on the equipment surfaces.
Collapse
Affiliation(s)
- Haiqiang Wang
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elliot T Ryser
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
49
|
Soto-Arias JP, Groves RL, Barak JD. Transmission and retention of Salmonella enterica by phytophagous hemipteran insects. Appl Environ Microbiol 2014; 80:5447-56. [PMID: 24973069 PMCID: PMC4136094 DOI: 10.1128/aem.01444-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 11/20/2022] Open
Abstract
Several pest insects of human and livestock habitations are known as vectors of Salmonella enterica; however, the role of plant-feeding insects as vectors of S. enterica to agricultural crops remains unexamined. Using a hemipteran insect pest-lettuce system, we investigated the potential for transmission and retention of S. enterica. Specifically, Macrosteles quadrilineatus and Myzus persicae insects were fed S. enterica-inoculated lettuce leaf discs or artificial liquid diets confined in Parafilm sachets to allow physical contact or exclusively oral ingestion of the pathogen, respectively. After a 24-h acquisition access period, insects were moved onto two consecutive noninoculated leaf discs or liquid diets and allowed a 24-h inoculation access period on each of the two discs or sachets. Similar proportions of individuals from both species ingested S. enterica after a 24-h acquisition access period from inoculated leaf discs, but a significantly higher proportion of M. quadrilineatus retained the pathogen internally after a 48-h inoculation access period. S. enterica was also recovered from the honeydew of both species. After a 48-h inoculation access period, bacteria were recovered from a significantly higher proportion of honeydew samples from M. quadrilineatus than from M. persicae insects. The recovery of S. enterica from leaf discs and liquid diets postfeeding demonstrated that both species of insects were capable of transmitting the bacteria in ways that are not limited to mechanical transmission. Overall, these results suggest that phytophagous insects may serve as potential vectors of S. enterica in association with plants.
Collapse
Affiliation(s)
- José Pablo Soto-Arias
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Russell L Groves
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeri D Barak
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
50
|
Multistate foodborne disease outbreaks associated with raw tomatoes, United States, 1990-2010: a recurring public health problem. Epidemiol Infect 2014; 143:1352-9. [PMID: 25167220 DOI: 10.1017/s0950268814002167] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We examined multistate outbreaks attributed to raw tomatoes in the United States from 1990 to 2010. We summarized the demographic and epidemiological characteristics of 15 outbreaks resulting in 1959 illnesses, 384 hospitalizations, and three deaths. Most (80%) outbreaks were reported during 2000-2010; 73% occurred May-September. Outbreaks commonly affected adult (median age 34 years) women (median 58% of outbreak cases). All outbreaks were caused by Salmonella [serotypes Newport (n = 6 outbreaks), Braenderup (n = 2), Baildon, Enteritidis, Javiana, Montevideo, Thompson, Typhimurium (n = 1 each); multiple serotypes (n = 1)]. Red, round (69% of outbreaks), Roma (23%), and grape (8%) tomatoes were implicated. Most (93%) outbreaks were associated with tomatoes served predominantly in restaurants. However, traceback investigations suggested that contamination occurred on farms, at packinghouses, or at fresh-cut processing facilities. Government agencies, academia, trade associations, and the fresh tomato industry should consider further efforts to identify interventions to reduce contamination of tomatoes during production and processing.
Collapse
|