1
|
Mondal T, Chattopadhyay D, Saha Mondal P, Das S, Mondal A, Das A, Samanta S, Saha T. Fusobacterium nucleatum modulates the Wnt/β-catenin pathway in colorectal cancer development. Int J Biol Macromol 2025; 299:140196. [PMID: 39848378 DOI: 10.1016/j.ijbiomac.2025.140196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The Wnt/β-catenin signalling pathway normally maintains cellular and tissue homeostasis by regulating cellular differentiation and survival in a controlled manner. An aberrantly regulated Wnt/β-catenin signalling pathway can transform into an oncogenic pathway, which is associated with Colorectal cancer (CRC) as well as other cancers. CRC is one of the most frequently occurring gastrointestinal cancers worldwide. In CRC tissues, deregulation of Wnt/β-catenin pathway is observed, which indicates that this oncogenic pathway directly promotes CRC malignancy, cell migration, angiogenesis, chemoresistance, as well as shorter lifespan of a patient. Growing evidence suggests that human commensal microbes have a strong association with carcinogenesis, particularly the prevalence and high enrichment of Fusobacterium nucleatum in CRC progression. The Wnt/β-catenin pathway is one of the targeted pathways by F. nucleatum in CRC, where Fusobacterium adhesin attaches to E-cadherin to initiate infection. Also, Wnt/β-catenin pathway can be a potential target for the treatment of both CRC and F. nucleatum-positive CRC. Here, we discuss the underlying mechanisms of F. nucleatum-positive CRC development through modulation of Wnt/β-catenin signalling and its possibility for the application in targeted therapy of F. nucleatum-positive CRC.
Collapse
Affiliation(s)
- Tanushree Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Deepanjan Chattopadhyay
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Paromita Saha Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Sanjib Das
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Amalesh Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India; Department of Physiology, Katwa Collage, Katwa, Purba Bardhaman, West Bengal 713130, India
| | - Abhishek Das
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Subhasree Samanta
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Tanima Saha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| |
Collapse
|
2
|
Shadnoush M, Momenan M, Seidel V, Tierling S, Fatemi N, Nazemalhosseini-Mojarad E, Norooz MT, Cheraghpour M. A comprehensive update on the potential of curcumin to enhance chemosensitivity in colorectal cancer. Pharmacol Rep 2025; 77:103-123. [PMID: 39304638 DOI: 10.1007/s43440-024-00652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a major cause of cancer-related mortality worldwide. The efficacy of chemotherapy agents in CRC treatment is often limited due to toxic side effects, heterogeneity of cancer cells, and the possibility of chemoresistance which promotes cancer cell survival through several mechanisms. Combining chemotherapy agents with natural compounds like curcumin, a polyphenol compound from the Curcuma longa plant, has been reported to overcome chemoresistance and increase the sensitivity of cancer cells to chemotherapeutics. Curcumin, alone or in combination with chemotherapy agents, has been demonstrated to prevent chemoresistance by modulating various signaling pathways, reducing the expression of drug resistance-related genes. The purpose of this article is to provide a comprehensive update on studies that have investigated the ability of curcumin to enhance the efficacy of chemotherapy agents used in CRC. It is hoped that it can serve as a template for future research on the efficacy of curcumin, or other natural compounds, combined with chemotherapy agents to maximize the effectiveness of therapy and reduce the side effects that occur in CRC or other cancers.
Collapse
Affiliation(s)
- Mahdi Shadnoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.Box, Tehran, 16635-148, Iran
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Momenan
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.Box, Tehran, 16635-148, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Tayefeh Norooz
- General Surgery Department, Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Makan Cheraghpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.Box, Tehran, 16635-148, Iran.
| |
Collapse
|
3
|
Xiao J, Mukherji R, Sidarous G, Suguru S, Noel M, Weinberg BA, He A, Agarwal S. Longitudinal Circulating Tumor Cell Collection, Culture, and Characterization in Pancreatic Adenocarcinomas. Cancers (Basel) 2025; 17:355. [PMID: 39941724 PMCID: PMC11815863 DOI: 10.3390/cancers17030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic adenocarcinoma (PDAC) remains one of the most lethal cancers, with limited advancements in treatment efficacy due to high rates of chemoresistance. Circulating tumor cells (CTCs) derived from liquid biopsies offer a non-invasive approach to monitoring tumor evolution and identifying molecular mechanisms of resistance. This study aims to longitudinally collect, culture, and characterize CTCs from PDAC patients to elucidate resistance mechanisms and tumor-specific gene expression profiles. METHODS Blood samples from 10 PDAC patients were collected across different treatment stages, yielding 16 CTC cultures. Differential gene expression, pathway dysregulation, and protein-protein interaction studies were utilized, highlighting patient-specific and disease progression-associated changes. Longitudinal comparisons within five patients provided further insights into dynamic molecular changes associated with therapeutic resistance. RESULTS CTC cultures exhibited the activation of key pathways implicated in PDAC progression and resistance, including TNFα/NF-kB, hedgehog signaling, and the epithelial-to-mesenchymal transition. Longitudinal samples revealed dynamic changes in signaling pathways, highlighting upregulated mechanisms of chemoresistance, including PI3K/Akt/mTOR and TGF-β pathways. Additionally, protein-protein interaction analysis emphasized the role of the immune system in PDAC progression and therapy response. Patient-specific gene expression patterns therefore suggest potential applications for precision medicine. CONCLUSIONS This proof-of-concept study demonstrates the feasibility of longitudinally capturing and analyzing CTCs from PDAC patients. The findings provide critical insights into molecular drivers of chemoresistance and highlight the potential of CTC profiling to inform personalized therapeutic strategies. Future large-scale studies are warranted to validate these findings and further explore CTC-based approaches in PDAC management.
Collapse
Affiliation(s)
- Jerry Xiao
- Department of Tumor Biology, Georgetown University, Washington, DC 20057, USA
- Department of Internal Medicine, University of California San Francisco, San Francisco, CA 94115, USA
| | - Reetu Mukherji
- Department of Hematology/Oncology, Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - George Sidarous
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - Shravanthy Suguru
- Department of Pathology, Georgetown University, Washington, DC 20057, USA
| | - Marcus Noel
- Department of Hematology/Oncology, Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - Benjamin A. Weinberg
- Department of Hematology/Oncology, Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - Aiwu He
- Department of Hematology/Oncology, Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - Seema Agarwal
- Department of Pathology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
4
|
Jamialahmadi K, Noruzi S. Matrix metalloproteinases, chemoresistance and cancer. PATHOPHYSIOLOGICAL ASPECTS OF PROTEASES IN CANCER 2025:385-409. [DOI: 10.1016/b978-0-443-30098-1.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Akhlaghipour I, Moghbeli M. Matrix metalloproteinases as the critical regulators of cisplatin response and tumor cell invasion. Eur J Pharmacol 2024; 982:176966. [PMID: 39216742 DOI: 10.1016/j.ejphar.2024.176966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Cisplatin (CDDP) as one of the most common first-line chemotherapy drugs plays a vital role in the treatment of a wide range of malignant tumors. Nevertheless, CDDP resistance is observed as a therapeutic challenge in a large number of cancer patients. Considering the CDDP side effects in normal tissues, predicting the CDDP response of cancer patients can significantly help to choose the appropriate therapeutic strategy. In this regard, investigating the molecular mechanisms involved in CDDP resistance can lead to the introduction of prognostic markers in cancer patients. Matrix metalloproteinases (MMPs) have critical roles in tissue remodeling and cell migration through extracellular matrix degradation. Therefore, defects in MMPs functions can be associated with tumor metastasis and chemo resistance. In the present review, we discussed the role of MMPs in CDDP response and tumor cell invasion. PubMed, Scopus, Google Scholar, and Web of Science were searched using "MMP", "cisplatin", and "cancer" keywords for data retrieval that was limited to Apr 20, 2024. It has been reported that MMPs can increase CDDP resistance in tumor cells as the effectors of PI3K/AKT, MAPK, and NF-κB signaling pathways or independently through the regulation of structural proteins, autophagy, and epithelial-to-mesenchymal transition (EMT) process. This review has an effective role in introducing MMPs as the prognostic markers and therapeutic targets in CDDP-resistant cancer patients.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Shin YJ, Jo EH, Oh Y, Kim DS, Hyun S, Yu A, Hong HK, Cho YB. Improved Drug-Response Prediction Model of APC Mutant Colon Cancer Patient-Derived Organoids for Precision Medicine. Cancers (Basel) 2023; 15:5531. [PMID: 38067236 PMCID: PMC10705195 DOI: 10.3390/cancers15235531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer is the third most common cancer in the world, with an annual incidence of 2 million cases. The success of first-line chemotherapy plays a crucial role in determining the disease outcome. Therefore, there is an increasing demand for precision medicine to predict drug responses and optimize chemotherapy in order to increase patient survival and reduce the related side effects. Patient-derived organoids have become a popular in vitro screening model for drug-response prediction for precision medicine. However, there is no established correlation between oxaliplatin and drug-response prediction. Here, we suggest that organoid culture conditions can increase resistance to oxaliplatin during drug screening, and we developed a modified medium condition to address this issue. Notably, while previous studies have shown that survivin is a mechanism for drug resistance, our study observed consistent survivin expression irrespective of the culture conditions and oxaliplatin treatment. However, clusterin induced apoptosis inhibition and cell survival, demonstrating a significant correlation with drug resistance. This study's findings are expected to contribute to increasing the accuracy of drug-response prediction in patient-derived APC mutant colorectal cancer organoids, thereby providing reliable precision medicine and improving patient survival rates.
Collapse
Affiliation(s)
- Yong Jae Shin
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Eun Hae Jo
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
| | - Yunjeong Oh
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
| | - Da Som Kim
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
| | - Seungyoon Hyun
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea;
| | - Ahran Yu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Hye Kyung Hong
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
| | - Yong Beom Cho
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea;
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon-si 16419, Republic of Korea
| |
Collapse
|
7
|
Zhou Y, Wang L, Zhou F. Clinical Significance of MMP7 Levels in Colorectal Cancer Patients Receiving FOLFOX4 Chemotherapy Treatment. Int J Gen Med 2023; 16:2671-2678. [PMID: 37398512 PMCID: PMC10312346 DOI: 10.2147/ijgm.s416363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023] Open
Abstract
Objective Various studies have shown an association between the anti-cancer drug 5-fluorouracil and matrix metalloproteinase 7 (MMP7). The expression of MMP7 in the serum of colorectal cancer patients, as well as their sensitivity to chemotherapy, were examined using the FOLFOX4 chemotherapy treatment. Methods Serum samples were taken from 216 colorectal cancer patients who had undergone four cycles of gemcitabine and cisplatin treatment. The sera of 216 healthy persons were used as controls. MMP7 levels in the serum were measured by ELISA. Demographic and survival data were collected. Results MMP7 levels were not associated with sex, age, peritoneal dissemination, liver metastasis, lymph node metastasis, lymphatic invasion, or venous invasion in CRC patients, but were associated with histological grade, tumor size, TNM stage, and depth of tumor invasion. Patients' serum MMP7 expression reduced after treatment. MMP7 expression was significantly lower chemotherapy-sensitive patients compared with chemotherapy-resistant patients. Elevated MMP7 expression was associated with worse prognosis and chemotherapy-sensitive patients had markedly better overall survival compared with chemotherapy-resistant patients. Conclusion MMP7 expression was potentially associated with the development of colorectal cancer and elevated levels were associated with chemoresistance in CRC patients. Serum MMP7 levels can be used to screen for drug resistance during FOLFOX4 chemotherapy treatment.
Collapse
Affiliation(s)
- Yeting Zhou
- Xuzhou Medical University Jiangsu Key Laboratory of Tumor Biotherapy, Shuyang People’s Hospital, Suqian, 221000, People’s Republic of China
| | - Leiming Wang
- Xuzhou Medical University Jiangsu Key Laboratory of Tumor Biotherapy, Shuyang People’s Hospital, Suqian, 221000, People’s Republic of China
| | - Fei Zhou
- Xuzhou Medical University Jiangsu Key Laboratory of Tumor Biotherapy, Shuyang People’s Hospital, Suqian, 221000, People’s Republic of China
| |
Collapse
|
8
|
Milan TM, Eskenazi APE, de Oliveira LD, da Silva G, Bighetti-Trevisan RL, Freitas GP, de Almeida LO. Interplay between EZH2/β-catenin in stemness of cisplatin-resistant HNSCC and their role as therapeutic targets. Cell Signal 2023:110773. [PMID: 37331417 DOI: 10.1016/j.cellsig.2023.110773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
The Wnt/β-catenin signaling pathway is associated with the regulation of cancer stem cells, and it can be driven by epigenetic modifications. Here, we aim to identify epigenetic modifications involved in the control of the Wnt/β-catenin signaling and investigate the role of this pathway in the accumulation of cancer stem cells (CSC) and chemoresistance of Head and Neck Squamous Cell Carcinoma (HNSCC). Quantitative-PCR, western blot, shRNA assay, viability assay, flow cytometry assay, spheres formation, xenograft model, and chromatin immunoprecipitation were employed to evaluate the Wnt/β-catenin pathway and EZH2 in wild-type and chemoresistant oral carcinoma cell lines, and in the populations of CSC and non-stem cells. We demonstrated that β-catenin and EZH2 were accumulated in cisplatin-resistant and CSC population. The upstream genes of the Wnt/β-catenin signaling (APC and GSK3β) were decreased, and the downstream gene MMP7 was increased in the chemoresistant cell lines. The inhibition of β-catenin and EZH2 combined effectively decreased the CSC population in vitro and reduced the tumor volume and CSC population in vivo. EZH2 inhibition increased APC and GSK3β, and the Wnt/β-catenin inhibition reduced MMP7 levels. In contrast, EZH2 overexpression decreased APC and GSK3β and increased MMP7. EZH2 and β-catenin inhibitors sensitized chemoresistant cells to cisplatin. EZH2 and H3K27me3 bounded the promoter of APC, leading to its repression. These results suggest that EZH2 regulates β-catenin by inhibiting the upstream gene APC contributing to the accumulation of cancer stem cells and chemoresistance. Moreover, the pharmacological inhibition of the Wnt/β-catenin combined with EZH2 can be an effective strategy for treating HNSCC.
Collapse
Affiliation(s)
- Thaís Moré Milan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Ana Patrícia Espaladori Eskenazi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Lucas Dias de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriel da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Rayana Longo Bighetti-Trevisan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Gileade Pereira Freitas
- Departament of Oral and Maxillofacial Surgery, School of Dentistry, Federal University of Goiás, Goiás, Brazil.
| | - Luciana Oliveira de Almeida
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Miri A, Gharechahi J, Samiei Mosleh I, Sharifi K, Jajarmi V. Identification of co-regulated genes associated with doxorubicin resistance in the MCF-7/ADR cancer cell line. Front Oncol 2023; 13:1135836. [PMID: 37397367 PMCID: PMC10311417 DOI: 10.3389/fonc.2023.1135836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The molecular mechanism of chemotherapy resistance in breast cancer is not well understood. The identification of genes associated with chemoresistance is critical for a better understanding of the molecular processes driving resistance. Methods This study used a co-expression network analysis of Adriamycin (or doxorubicin)-resistant MCF-7 (MCF-7/ADR) and its parent MCF-7 cell lines to explore the mechanisms of drug resistance in breast cancer. Genes associated with doxorubicin resistance were extracted from two microarray datasets (GSE24460 and GSE76540) obtained from the Gene Expression Omnibus (GEO) database using the GEO2R web tool. The candidate differentially expressed genes (DEGs) with the highest degree and/or betweenness in the co-expression network were selected for further analysis. The expression of major DEGs was validated experimentally using qRT-PCR. Results We identified twelve DEGs in MCF-7/ADR compared with its parent MCF-7 cell line, including 10 upregulated and 2 downregulated DEGs. Functional enrichment suggests a key role for RNA binding by IGF2BPs and epithelial-to-mesenchymal transition pathways in drug resistance in breast cancer. Discussion Our findings suggested that MMP1, VIM, CNN3, LDHB, NEFH, PLS3, AKAP12, TCEAL2, and ABCB1 genes play an important role in doxorubicin resistance and could be targeted for developing novel therapies by chemical synthesis approaches.
Collapse
Affiliation(s)
- Ali Miri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Iman Samiei Mosleh
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Wang Z, Wang H, Lin S, Labib M, Ahmed S, Das J, Angers S, Sargent EH, Kelley SO. Efficient Delivery of Biological Cargos into Primary Cells by Electrodeposited Nanoneedles via Cell-Cycle-Dependent Endocytosis. NANO LETTERS 2023. [PMID: 37040490 DOI: 10.1021/acs.nanolett.2c05083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nanoneedles are a useful tool for delivering exogenous biomolecules to cells. Although therapeutic applications have been explored, the mechanism regarding how cells interact with nanoneedles remains poorly studied. Here, we present a new approach for the generation of nanoneedles, validated their usefulness in cargo delivery, and studied the underlying genetic modulators during delivery. We fabricated arrays of nanoneedles based on electrodeposition and quantified its efficacy of delivery using fluorescently labeled proteins and siRNAs. Notably, we revealed that our nanoneedles caused the disruption of cell membranes, enhanced the expression of cell-cell junction proteins, and downregulated the expression of transcriptional factors of NFκB pathways. This perturbation trapped most of the cells in G2 phase, in which the cells have the highest endocytosis activities. Taken together, this system provides a new model for the study of interactions between cells and high-aspect-ratio materials.
Collapse
Affiliation(s)
- Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Mahmoud Labib
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, United Kingdom
| | - Sharif Ahmed
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
| | - Shana O Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
11
|
ZHUANG YAN, NING CHUNLAN, LIU PENGFEI, ZHAO YANPENG, LI YUE, MA ZHENCHI, SHAN LULING, PIAO YINGZHE, ZHAO PENG, JIN XUN. LSM12 facilitates the progression of colorectal cancer by activating the WNT/CTNNB1 signaling pathway. Oncol Res 2023; 30:289-300. [PMID: 37303493 PMCID: PMC10207973 DOI: 10.32604/or.2022.028225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Aberrant activation of the WNT signaling pathway is a joint event in colorectal cancer (CRC), but the molecular mechanism is still unclear. Recently, RNA-splicing factor LSM12 (like-Sm protein 12) is highly expressed in CRC tissues. This study aimed to verify whether LSM12 is involved in regulating CRC progression via regulating the WNT signaling pathway. Here, we found that LSM12 is highly expressed in CRC patient-derived tissues and cells. LSM12 is involved in the proliferation, invasion, and apoptosis of CRC cells, similar to the function of WNT signaling in CRC. Furthermore, protein interaction simulation and biochemical experiments proved that LSM12 directly binds to CTNNB1 (also known as β-Catenin) and regulates its protein stability to affect the CTTNB1-LEF1-TCF1 transcriptional complex formation and the associated WNT downstream signaling pathway. LSM12 depletion in CRC cells decreased the in vivo tumor growth through repression of cancer cell growth and acceleration of cancer cell apoptosis. Taken together, we suggest that the high expression of LSM12 is a novel factor leading to aberrant WNT signaling activation, and that strategies targeting this molecular mechanism may contribute to developing a new therapeutic method for CRC.
Collapse
Affiliation(s)
- YAN ZHUANG
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - CHUNLAN NING
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin Medical University, Tianjin, 300070, China
| | - PENGFEI LIU
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - YANPENG ZHAO
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd., Tianjin, 300381, China
| | - YUE LI
- Department of Gastro Colorectal Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300304, China
| | - ZHENCHI MA
- Department of Gastro Colorectal Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300304, China
| | - LULING SHAN
- Department of Gastro Colorectal Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300304, China
| | - YINGZHE PIAO
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060, China
| | - PENG ZHAO
- Department of Gastro Colorectal Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300304, China
| | - XUN JIN
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| |
Collapse
|
12
|
Forgie BN, Prakash R, Telleria CM. Revisiting the Anti-Cancer Toxicity of Clinically Approved Platinating Derivatives. Int J Mol Sci 2022; 23:15410. [PMID: 36499737 PMCID: PMC9793759 DOI: 10.3390/ijms232315410] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin (CDDP), carboplatin (CP), and oxaliplatin (OXP) are three platinating agents clinically approved worldwide for use against a variety of cancers. They are canonically known as DNA damage inducers; however, that is only one of their mechanisms of cytotoxicity. CDDP mediates its effects through DNA damage-induced transcription inhibition and apoptotic signalling. In addition, CDDP targets the endoplasmic reticulum (ER) to induce ER stress, the mitochondria via mitochondrial DNA damage leading to ROS production, and the plasma membrane and cytoskeletal components. CP acts in a similar fashion to CDDP by inducing DNA damage, mitochondrial damage, and ER stress. Additionally, CP is also able to upregulate micro-RNA activity, enhancing intrinsic apoptosis. OXP, on the other hand, at first induces damage to all the same targets as CDDP and CP, yet it is also capable of inducing immunogenic cell death via ER stress and can decrease ribosome biogenesis through its nucleolar effects. In this comprehensive review, we provide detailed mechanisms of action for the three platinating agents, going beyond their nuclear effects to include their cytoplasmic impact within cancer cells. In addition, we cover their current clinical use and limitations, including side effects and mechanisms of resistance.
Collapse
Affiliation(s)
- Benjamin N. Forgie
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Rewati Prakash
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
13
|
Devel L, Guedeney N, Bregant S, Chowdhury A, Jean M, Legembre P. Role of metalloproteases in the CD95 signaling pathways. Front Immunol 2022; 13:1074099. [PMID: 36544756 PMCID: PMC9760969 DOI: 10.3389/fimmu.2022.1074099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
CD95L (also known as FasL or CD178) is a member of the tumor necrosis family (TNF) superfamily. Although this transmembrane ligand has been mainly considered as a potent apoptotic inducer in CD95 (Fas)-expressing cells, more recent studies pointed out its role in the implementation of non-apoptotic signals. Accordingly, this ligand has been associated with the aggravation of inflammation in different auto-immune disorders and in the metastatic occurrence in different cancers. Although it remains to decipher all key factors involved in the ambivalent role of this ligand, accumulating clues suggest that while the membrane bound CD95L triggers apoptosis, its soluble counterpart generated by metalloprotease-driven cleavage is responsible for its non-apoptotic functions. Nonetheless, the metalloproteases (MMPs and ADAMs) involved in the CD95L shedding, the cleavage sites and the different stoichiometries and functions of the soluble CD95L remain to be elucidated. To better understand how soluble CD95L triggers signaling pathways from apoptosis to inflammation or cell migration, we propose herein to summarize the different metalloproteases that have been described to be able to shed CD95L, their cleavage sites and the biological functions associated with the released ligands. Based on these new findings, the development of CD95/CD95L-targeting therapeutics is also discussed.
Collapse
Affiliation(s)
- Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Nicolas Guedeney
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Sarah Bregant
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Animesh Chowdhury
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Mickael Jean
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Patrick Legembre
- CRIBL UMR CNRS 7276 INSERM 1262, Université de Limoges, Rue Marcland, Limoges, France
| |
Collapse
|
14
|
Darvishi B, Eisavand MR, Majidzadeh-A K, Farahmand L. Matrix stiffening and acquired resistance to chemotherapy: concepts and clinical significance. Br J Cancer 2022; 126:1253-1263. [PMID: 35124704 PMCID: PMC9043195 DOI: 10.1038/s41416-021-01680-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/10/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular matrix (ECM) refers to the non-cellular components of the tumour microenvironment, fundamentally providing a supportive scaffold for cellular anchorage and transducing signaling cues that orchestrate cellular behaviour and function. The ECM integrity is abrogated in several cases of cancer, ending in aberrant activation of a number of mechanotransduction pathways and induction of multiple tumorigenic events such as extended proliferation, cell death resistance, epithelial-mesenchymal transition and most importantly the development of chemoresistance. In this regard, the present study mainly aims to elucidate how the ECM-stiffening process may contribute to the development of chemoresistance during cancer progression and what pharmacological approaches are required for tackling this issue. Hence, the first section of this review explains the process of ECM stiffening and the ways it may affect biochemical pathways to induce chemoresistance in a clinic. In addition, the second part focuses on describing some of the most important pharmacological agents capable of targeting ECM components and underlying pathways for overcoming ECM-induced chemoresistance. Finally, the third part discusses the obtained results from the application of these agents in the clinic for overcoming chemoresistance.
Collapse
Affiliation(s)
- Behrad Darvishi
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Reza Eisavand
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
15
|
Tune BXJ, Sim MS, Poh CL, Guad RM, Woon CK, Hazarika I, Das A, Gopinath SCB, Rajan M, Sekar M, Subramaniyan V, Fuloria NK, Fuloria S, Batumalaie K, Wu YS. Matrix Metalloproteinases in Chemoresistance: Regulatory Roles, Molecular Interactions, and Potential Inhibitors. JOURNAL OF ONCOLOGY 2022; 2022:3249766. [PMID: 35586209 PMCID: PMC9110224 DOI: 10.1155/2022/3249766] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
Cancer is one of the major causes of death worldwide. Its treatments usually fail when the tumor has become malignant and metastasized. Metastasis is a key source of cancer recurrence, which often leads to resistance towards chemotherapeutic agents. Hence, most cancer-related deaths are linked to the occurrence of chemoresistance. Although chemoresistance can emerge through a multitude of mechanisms, chemoresistance and metastasis share a similar pathway, which is an epithelial-to-mesenchymal transition (EMT). Matrix metalloproteinases (MMPs), a class of zinc and calcium-chelated enzymes, are found to be key players in driving cancer migration and metastasis through EMT induction. The aim of this review is to discuss the regulatory roles and associated molecular mechanisms of specific MMPs in regulating chemoresistance, particularly EMT initiation and resistance to apoptosis. A brief presentation on their potential diagnostic and prognostic values was also deciphered. It also aimed to describe existing MMP inhibitors and the potential of utilizing other strategies to inhibit MMPs to reduce chemoresistance, such as upstream inhibition of MMP expressions and MMP-responsive nanomaterials to deliver drugs as well as epigenetic regulations. Hence, manipulation of MMP expression can be a powerful tool to aid in treating patients with chemo-resistant cancers. However, much still needs to be done to bring the solution from bench to bedside.
Collapse
Affiliation(s)
- Bernadette Xin Jie Tune
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu, 88400 Sabah, Malaysia
| | - Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, 47000 Selangor, Malaysia
| | - Iswar Hazarika
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati 781017, India
| | - Anju Das
- Department of Pharmacology, Royal School of Pharmacy, Royal Global University, Guwahati 781035, India
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia
| | - Mariappan Rajan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor 42610, Malaysia
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling, Bedong, Kedah 08100, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| |
Collapse
|
16
|
Van Doren SR. MMP-7 marks severe pancreatic cancer and alters tumor cell signaling by proteolytic release of ectodomains. Biochem Soc Trans 2022; 50:839-851. [PMID: 35343563 PMCID: PMC10443904 DOI: 10.1042/bst20210640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Pancreatic cancer incurs the worst survival rate of the major cancers. High levels of the protease matrix metalloproteinase-7 (MMP-7) in circulation correlate with poor prognosis and limited survival of patients. MMP-7 is required for a key path of pancreatic tumorigenesis in mice and is present throughout tumor progression. Enhancements to chemotherapies are needed for increasing the number of pancreatic tumors that can be removed and for preventing relapses after surgery. With these ends in mind, selective inhibition of MMP-7 may be worth investigation. An anti-MMP-7 monoclonal antibody was recently shown to increase the susceptibility of several pancreatic cancer cell lines to chemotherapeutics, increase their apoptosis, and decrease their migration. MMP-7 activities are most apparent at the surfaces of innate immune, epithelial, and tumor cells. Proteolytic shedding of multiple protein ectodomains by MMP-7 from such cell surfaces influence apoptosis, proliferation, migration, and invasion. These activities warrant targeting of MMP-7 selectively in pancreatic cancer and other tumors of mucosal epithelia. Competitive and non-competitive modes of MMP-7 inhibition are discussed.
Collapse
Affiliation(s)
- Steven R. Van Doren
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
17
|
Kovács PT, Mayer T, Csizmarik A, Váradi M, Oláh C, Széles Á, Tschirdewahn S, Krafft U, Hadaschik B, Nyirády P, Riesz P, Szarvas T. Elevated Pre-Treatment Serum MMP-7 Levels Are Associated with the Presence of Metastasis and Poor Survival in Upper Tract Urothelial Carcinoma. Biomedicines 2022; 10:biomedicines10030698. [PMID: 35327500 PMCID: PMC8945654 DOI: 10.3390/biomedicines10030698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
Upper tract urothelial carcinoma (UTUC) is a rare cancer with a barely predictable clinical behaviour. Serum MMP-7 is a validated prognostic marker in urothelial bladder cancer, a tumour entity with large clinical, histological, and molecular similarity to UTUC. The serum MMP-7 levels have not yet been investigated in UTUC. In the present study, we determined MMP-7 concentrations in an overall number of 103 serum samples from 57 UTUC patients who underwent surgical or systemic (platinum or immune checkpoint inhibitor) therapy by using the ELISA method. In addition to pre-treatment samples, the serum samples collected at predefined time points after or during therapy were also investigated. Serum MMP-7 concentrations were correlated with clinicopathological and follow-up data. Our results revealed significantly, two-fold elevated pre-treatment serum MMP-7 levels in metastatic cases of UTUC in both the radical surgery- and the chemotherapy-treated cohorts (p = 0.045 and p = 0.040, respectively). In addition, high serum MMP-7 levels significantly decreased after radical surgery, and high pre-treatment MMP-7 concentrations were associated with shorter survival both in the surgery- and chemotherapy-treated cohorts (p = 0.029 and p = 0.001, respectively). Our results revealed pre-treatment serum MMP-7 as a prognostic marker for UTUC, which may help to improve preoperative risk-stratification and thereby improve therapeutic decision-making.
Collapse
Affiliation(s)
- Petra Terézia Kovács
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary; (P.T.K.); (T.M.); (A.C.); (M.V.); (Á.S.); (P.N.); (P.R.)
| | - Tamás Mayer
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary; (P.T.K.); (T.M.); (A.C.); (M.V.); (Á.S.); (P.N.); (P.R.)
| | - Anita Csizmarik
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary; (P.T.K.); (T.M.); (A.C.); (M.V.); (Á.S.); (P.N.); (P.R.)
| | - Melinda Váradi
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary; (P.T.K.); (T.M.); (A.C.); (M.V.); (Á.S.); (P.N.); (P.R.)
| | - Csilla Oláh
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, D-45147 Essen, Germany; (C.O.); (S.T.); (U.K.); (B.H.)
| | - Ádám Széles
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary; (P.T.K.); (T.M.); (A.C.); (M.V.); (Á.S.); (P.N.); (P.R.)
| | - Stephan Tschirdewahn
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, D-45147 Essen, Germany; (C.O.); (S.T.); (U.K.); (B.H.)
| | - Ulrich Krafft
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, D-45147 Essen, Germany; (C.O.); (S.T.); (U.K.); (B.H.)
| | - Boris Hadaschik
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, D-45147 Essen, Germany; (C.O.); (S.T.); (U.K.); (B.H.)
| | - Péter Nyirády
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary; (P.T.K.); (T.M.); (A.C.); (M.V.); (Á.S.); (P.N.); (P.R.)
| | - Péter Riesz
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary; (P.T.K.); (T.M.); (A.C.); (M.V.); (Á.S.); (P.N.); (P.R.)
| | - Tibor Szarvas
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary; (P.T.K.); (T.M.); (A.C.); (M.V.); (Á.S.); (P.N.); (P.R.)
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, D-45147 Essen, Germany; (C.O.); (S.T.); (U.K.); (B.H.)
- Correspondence:
| |
Collapse
|
18
|
Rashid K, Röder C, Goumas F, Egberts JH, Kalthoff H. CD95L Inhibition Impacts Gemcitabine-Mediated Effects and Non-Apoptotic Signaling of TNF-α and TRAIL in Pancreatic Tumor Cells. Cancers (Basel) 2021; 13:cancers13215458. [PMID: 34771621 PMCID: PMC8582466 DOI: 10.3390/cancers13215458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the potential apoptotic functions, the CD95/CD95L system can stimulate survival as well as pro-inflammatory signaling, particularly through the activation of NFκB. This holds true for the TNF/TNFR and the TRAIL/TRAILR systems. Thus, signaling pathways of these three death ligands converge, yet the specific impact of the CD95/CD95L system in this crosstalk has not been well studied. In this study, we show that gemcitabine stimulates the expression of pro-inflammatory cytokines, such as IL6 and IL8, under the influence of the CD95/CD95L system and the pharmacological inhibitor, sCD95Fc, substantially reduced the expression in two PDAC cell lines, PancTuI-luc and A818-4. The stem cell phenotype was reduced when induced upon gemcitabine as well by sCD95Fc. Moreover, TNF-α as well as TRAIL up-regulate the expression of CD95 and CD95L in both cell lines. Conversely, we detected a significant inhibitory effect of sCD95Fc on the expression of both IL8 and IL6 induced upon TNF-α and TRAIL stimulation. In vivo, CD95L inhibition reduced xeno-transplanted recurrent PDAC growth. Thus, our findings indicate that inhibition of CD95 signaling altered the chemotherapeutic effects of gemcitabine, not only by suppressing the pro-inflammatory responses that arose from the CD95L-positive tumor cells but also from the TNF-α and TRAIL signaling in a bi-lateral crosstalk manner.
Collapse
Affiliation(s)
- Khalid Rashid
- Institute for Experimental Cancer Research, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (K.R.); (C.R.)
| | - Christian Röder
- Institute for Experimental Cancer Research, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (K.R.); (C.R.)
| | - Freya Goumas
- Department of General, Visceral-, Thoracic-, Transplantation- and Paediatric Surgery, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (F.G.); (J.-H.E.)
| | - Jan-Hendrik Egberts
- Department of General, Visceral-, Thoracic-, Transplantation- and Paediatric Surgery, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (F.G.); (J.-H.E.)
- Department of Visceral Surgery, Israelitisches Krankenhaus, 22297 Hamburg, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (K.R.); (C.R.)
- Correspondence: ; Tel.: +49-171-9531643
| |
Collapse
|
19
|
Conformation-Specific Inhibitory Anti-MMP-7 Monoclonal Antibody Sensitizes Pancreatic Ductal Adenocarcinoma Cells to Chemotherapeutic Cell Kill. Cancers (Basel) 2021; 13:cancers13071679. [PMID: 33918254 PMCID: PMC8038143 DOI: 10.3390/cancers13071679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteases (MMPs) undergo post-translational modifications including pro-domain shedding. The activated forms of these enzymes are effective drug targets, but generating potent biological inhibitors against them remains challenging. We report the generation of anti-MMP-7 inhibitory monoclonal antibody (GSM-192), using an alternating immunization strategy with an active site mimicry antigen and the activated enzyme. Our protocol yielded highly selective anti-MMP-7 monoclonal antibody, which specifically inhibits MMP-7's enzyme activity with high affinity (IC50 = 132 ± 10 nM). The atomic model of the MMP-7-GSM-192 Fab complex exhibited antibody binding to unique epitopes at the rim of the enzyme active site, sterically preventing entry of substrates into the catalytic cleft. In human PDAC biopsies, tissue staining with GSM-192 showed characteristic spatial distribution of activated MMP-7. Treatment with GSM-192 in vitro induced apoptosis via stabilization of cell surface Fas ligand and retarded cell migration. Co-treatment with GSM-192 and chemotherapeutics, gemcitabine and oxaliplatin elicited a synergistic effect. Our data illustrate the advantage of precisely targeting catalytic MMP-7 mediated disease specific activity.
Collapse
|
20
|
Micallef I, Baron B. The Mechanistic Roles of ncRNAs in Promoting and Supporting Chemoresistance of Colorectal Cancer. Noncoding RNA 2021; 7:24. [PMID: 33807355 PMCID: PMC8103280 DOI: 10.3390/ncrna7020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal Cancer (CRC) is one of the most common gastrointestinal malignancies which has quite a high mortality rate. Despite the advances made in CRC treatment, effective therapy is still quite challenging, particularly due to resistance arising throughout the treatment regimen. Several studies have been carried out to identify CRC chemoresistance mechanisms, with research showing different signalling pathways, certain ATP binding cassette (ABC) transporters and epithelial mesenchymal transition (EMT), among others to be responsible for the failure of CRC chemotherapies. In the last decade, it has become increasingly evident that certain non-coding RNA (ncRNA) families are involved in chemoresistance. Research investigations have demonstrated that dysregulation of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) contribute towards promoting resistance in CRC via different mechanisms. Considering the currently available data on this phenomenon, a better understanding of how these ncRNAs participate in chemoresistance can lead to suitable solutions to overcome this problem in CRC. This review will first focus on discussing the different mechanisms of CRC resistance identified so far. The focus will then shift onto the roles of miRNAs, lncRNAs and circRNAs in promoting 5-fluorouracil (5-FU), oxaliplatin (OXA), cisplatin and doxorubicin (DOX) resistance in CRC, specifically using ncRNAs which have been recently identified and validated under in vivo or in vitro conditions.
Collapse
Affiliation(s)
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Msida, Malta;
| |
Collapse
|
21
|
Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK. Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer. Cancers (Basel) 2021; 13:1441. [PMID: 33809973 PMCID: PMC8005147 DOI: 10.3390/cancers13061441] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue functionality and integrity demand continuous changes in distribution of major components in the extracellular matrices (ECMs) under normal conditions aiming tissue homeostasis. Major matrix degrading proteolytic enzymes are matrix metalloproteinases (MMPs), plasminogen activators, atypical proteases such as intracellular cathepsins and glycolytic enzymes including heparanase and hyaluronidases. Matrix proteases evoke epithelial-to-mesenchymal transition (EMT) and regulate ECM turnover under normal procedures as well as cancer cell phenotype, motility, invasion, autophagy, angiogenesis and exosome formation through vital signaling cascades. ECM remodeling is also achieved by glycolytic enzymes that are essential for cancer cell survival, proliferation and tumor progression. In this article, the types of major matrix remodeling enzymes, their effects in cancer initiation, propagation and progression as well as their pharmacological targeting and ongoing clinical trials are presented and critically discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | | | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| |
Collapse
|
22
|
Liao HY, Da CM, Liao B, Zhang HH. Roles of matrix metalloproteinase-7 (MMP-7) in cancer. Clin Biochem 2021; 92:9-18. [PMID: 33713636 DOI: 10.1016/j.clinbiochem.2021.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Matrix metalloproteinase-7 (MMP-7) is a small proteolytic enzyme that secretes zinc and calcium endopeptidases. It can degrade a variety of extracellular matrix substrates and other substrates and plays important regulatory roles in many human pathophysiological processes. Since its discovery, MMP-7 has been recognized as a regulatory protein in wound healing, bone growth, and remodeling. Later, MMP-7 was reported to regulate the occurrence and development of cancers and mediate the proliferation, differentiation, metastasis, and invasion of several types of cancer cells via various mechanisms. Thus, matrix metalloproteinase-7 may be a promising tumor biomarker and therapeutic target. The expression of MMP-7 correlates with the clinical characteristics of cancer patients, and its expression profile is a new diagnostic and prognostic biomarker for a variety of human diseases. Hence, manipulating the expression or function of MMP-7 may be a potential treatment strategy for different diseases including cancers. This review summarizes the role played by MMP-7 in carcinogenesis of several human cancers, underlying mechanisms, and its clinical significance of the occurrence and development of cancers.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| | - Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| | - Bei Liao
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China; The First Clinical Medical College of Lanzhou University, 1 Donggang Road, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
23
|
Usman S, Jamal A, Teh MT, Waseem A. Major Molecular Signaling Pathways in Oral Cancer Associated With Therapeutic Resistance. FRONTIERS IN ORAL HEALTH 2021; 1:603160. [PMID: 35047986 PMCID: PMC8757854 DOI: 10.3389/froh.2020.603160] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Oral cancer is a sub-category of head and neck cancers that primarily initiates in the oral cavity. The primary treatment option for oral cancer remains surgery but it is associated with massive disfigurement, inability to carry out normal oral functions, psycho-social stress and exhaustive rehabilitation. Other treatment options such as chemotherapy and radiotherapy have their own limitations in terms of toxicity, intolerance and therapeutic resistance. Immunological treatments to enhance the body's ability to recognize cancer tissue as a foreign entity are also being used but they are new and underdeveloped. Although substantial progress has been made in the treatment of oral cancer, its complex heterogeneous nature still needs to be explored, to elucidate the molecular basis for developing resistance to therapeutic agents and how to overcome it, with the aim of improving the chances of patients' survival and their quality of life. This review provides an overview of up-to-date information on the complex role of the major molecules and associated signaling, epigenetic changes, DNA damage repair systems, cancer stem cells and micro RNAs in the development of therapeutic resistance and treatment failure in oral cancer. We have also summarized the current strategies being developed to overcome these therapeutic challenges. This review will help not only researchers but also oral oncologists in the management of the disease and in developing new therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Szarvas T, Hoffmann MJ, Olah C, Szekely E, Kiss A, Hess J, Tschirdewahn S, Hadaschik B, Grotheer V, Nyirady P, Csizmarik A, Varadi M, Reis H. MMP-7 Serum and Tissue Levels Are Associated with Poor Survival in Platinum-Treated Bladder Cancer Patients. Diagnostics (Basel) 2020; 11:diagnostics11010048. [PMID: 33396213 PMCID: PMC7824149 DOI: 10.3390/diagnostics11010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 01/09/2023] Open
Abstract
Chemotherapy resistance is a main cause of therapeutic failure and death in bladder cancer. With the approval of immune checkpoint inhibitors, prediction of platinum treatment became of great clinical importance. Matrix metalloproteinase-7 (MMP-7) was shown to be involved in cisplatin resistance. Therefore, tissue and circulating MMP-7 levels were evaluated in 124 bladder cancer patients who received postoperative platinum-based chemotherapy. Tissue MMP-7 levels were analyzed by immunohistochemistry in 72 formalin-fixed, paraffin-embedded chemo-naïve tumor samples, while MMP-7 serum concentrations were determined in 132 serum samples of an independent cohort of 52 patients. MMP-7 tissue and serum levels were correlated with clinicopathological and follow-up data. MMP-7 gene expression was determined by RT-qPCR in 20 urothelial cancer cell lines and two non-malignant urothelial cell lines. MMP-7 was overexpressed in RT-112 and T-24 cells by stable transfection, to assess its functional involvement in platinum sensitivity. High MMP-7 tissue expression and pretreatment serum concentrations were independently associated with poor overall survival (tissue HR = 2.296, 95%CI = 1.235–4.268 and p = 0.009; serum HR = 2.743, 95%CI = 1.258–5.984 and p = 0.011). Therefore, MMP-7 tissue and serum analysis may help to optimize therapeutic decisions. Stable overexpression in RT-112 and T-24 cells did not affect platinum sensitivity.
Collapse
Affiliation(s)
- Tibor Szarvas
- Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany; (C.O.); (J.H.); (S.T.); (B.H.)
- Department of Urology, Semmelweis University, 1089 Budapest, Hungary; (P.N.); (A.C.); (M.V.)
- Correspondence: ; Tel.: +49-201-7238-4967
| | - Michèle J. Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Csilla Olah
- Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany; (C.O.); (J.H.); (S.T.); (B.H.)
| | - Eszter Szekely
- 2nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary; (E.S.); (A.K.)
| | - Andras Kiss
- 2nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary; (E.S.); (A.K.)
| | - Jochen Hess
- Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany; (C.O.); (J.H.); (S.T.); (B.H.)
| | - Stephan Tschirdewahn
- Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany; (C.O.); (J.H.); (S.T.); (B.H.)
| | - Boris Hadaschik
- Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany; (C.O.); (J.H.); (S.T.); (B.H.)
| | - Vera Grotheer
- Department of Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Peter Nyirady
- Department of Urology, Semmelweis University, 1089 Budapest, Hungary; (P.N.); (A.C.); (M.V.)
| | - Anita Csizmarik
- Department of Urology, Semmelweis University, 1089 Budapest, Hungary; (P.N.); (A.C.); (M.V.)
| | - Melinda Varadi
- Department of Urology, Semmelweis University, 1089 Budapest, Hungary; (P.N.); (A.C.); (M.V.)
| | - Henning Reis
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
25
|
Gravett AM, Dennis JL, Dalgleish AG, Copier J, Liu WM. The efficacy of chemotherapeutic drug combinations may be predicted by concordance of gene response to the single agents. Oncol Lett 2020; 20:321. [PMID: 33093925 PMCID: PMC7573875 DOI: 10.3892/ol.2020.12184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/10/2020] [Indexed: 11/24/2022] Open
Abstract
Determining the expression of genes in response to different classes of chemotherapeutic drugs may allow for a better understanding as to which may be used effectively in combination. In the present study, the human colorectal cancer cell line HCT116 was cultured with equi-active concentrations of a series of anti-cancer agents. Gene expression profiles were then measured by whole-genome microarray. Although each drug induced a unique signature of gene expression in tumour cells, there were marked similarities between certain drugs, even in those from different classes. For example, the antimalarial agent artesunate and the platinum-containing alkylating agent, oxaliplatin, produced a very similar mRNA expression pattern in HCT116 cells with ~14,000 genes being affected by the two drugs in the same way. Furthermore, the overall correlation of gene responses between two agents could predict whether their use in combination would lead to a greater or lesser effect on cell number, determined experimentally, than predicted by single agent experiments. The results indicated that even when working through different mechanisms, combining drugs that initiate a similar transcriptional response may constitute the best option for determining drug-combination strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Andrew M Gravett
- Institute for Infection and Immunity, Department of Oncology, St. George's, University of London, London SW17 0RE, UK
| | - Jayne L Dennis
- Institute for Infection and Immunity, Department of Oncology, St. George's, University of London, London SW17 0RE, UK
| | - Angus G Dalgleish
- Institute for Infection and Immunity, Department of Oncology, St. George's, University of London, London SW17 0RE, UK
| | - John Copier
- Institute for Infection and Immunity, Department of Oncology, St. George's, University of London, London SW17 0RE, UK
| | - Wai M Liu
- Institute for Infection and Immunity, Department of Oncology, St. George's, University of London, London SW17 0RE, UK
| |
Collapse
|
26
|
Szarvas T, Csizmarik A, Váradi M, Fazekas T, Hüttl A, Nyirády P, Hadaschik B, Grünwald V, Tschirdewahn S, Shariat SF, Sevcenco S, Maj-Hes A, Kramer G. The prognostic value of serum MMP-7 levels in prostate cancer patients who received docetaxel, abiraterone, or enzalutamide therapy. Urol Oncol 2020; 39:296.e11-296.e19. [PMID: 33046366 DOI: 10.1016/j.urolonc.2020.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/06/2020] [Accepted: 09/12/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The rapidly changing treatment landscape in metastatic castration-resistant prostate cancer (mCRPC) calls for biomarkers to guide treatment decisions. We recently identified MMP-7 as a potential serum marker for the prediction of response and survival in mCRPC patients who received docetaxel (DOC) chemotherapy. Here, we aimed to test this finding in an independent patient cohort and in addition to explore the prognostic potential of serum MMP-7 in abiraterone (ABI) or enzalutamide (ENZA) treated patients. METHODS AND MATERIALS MMP-7 levels were measured in 836 serum samples from 320 mCRPC patients collected before and during DOC (n = 95), ABI (n = 140), or ENZA (n = 85) treatment by using the ELISA method. Results were correlated with clinical and follow-up data. RESULTS MMP-7 baseline levels were similar between the 3 treatment groups. In the ABI and ENZA cohorts, baseline MMP-7 levels were lower in patients with prior radical prostatectomy (P = 0.058 and P = 0.041, respectively). Baseline MMP-7 levels above the median were associated with shorter overall survival for the DOC (P = 0.001) and ENZA (P = 0.006) cohorts. Multivariable analyses in the DOC and ENZA cohorts revealed that high pretreatment MMP-7 level is an independent risk factor for patients' survival. In addition, in DOC-treated patients with high baseline MMP-7 level, marker decrease at the third DOC cycle was associated with improved survival. Patients with high baseline MMP-7 levels had better survival when treated with ABI compared to DOC or ENZA. CONCLUSIONS We confirmed the prognostic value of pretreatment MMP-7 serum level and its changes as independent predictors of survival in DOC-treated mCRPC patients. In addition, high MMP-7 was a negative predictor in ENZA-treated but not in ABI-treated patients. These results warrant further research to confirm the predictive value of serum MMP-7 and to explore the potential mechanistic involvement of MMP-7 in DOC and ENZA resistance of mCRPC patients.
Collapse
Affiliation(s)
- T Szarvas
- Department of Urology, Semmelweis University, Budapest, Hungary; Department of Urology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.
| | - A Csizmarik
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - M Váradi
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - T Fazekas
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - A Hüttl
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - P Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - B Hadaschik
- Department of Urology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - V Grünwald
- Department of Urology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - S Tschirdewahn
- Department of Urology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - S F Shariat
- Department of Urology, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria; Department of Urology, Weill Cornell Medical College, New York, NY; Department of Urology, University of Texas Southwestern, Dallas, TX; Department of Urology, Second Faculty of Medicine, Charles University, Prag, Czech Republic; Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - S Sevcenco
- Department of Urology, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - A Maj-Hes
- Department of Urology, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - G Kramer
- Department of Urology, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Role of Wnt/ β-Catenin Signaling in the Chemoresistance Modulation of Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9390878. [PMID: 32258160 PMCID: PMC7109575 DOI: 10.1155/2020/9390878] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is a common malignancy with high morbidity and mortality worldwide. To date, chemotherapy plays an important role in the treatment of CRC patients. Multidrug resistance (MDR) is one of the major hurdles in chemotherapy for CRC, and the underlying mechanisms need to be explored. Studies have demonstrated that Wnt/β-catenin signaling plays a critical role in oncogenesis and tumor development, and its function in inhibiting apoptosis could facilitate tumor chemoresistance. Recent investigations have also suggested the regulatory effects of the Wnt/β-catenin signaling pathway in response to chemotherapeutic agents in CRC. Here, we particularly focus on reviewing the evidences suggesting the mechanisms of Wnt/β-catenin signaling in the chemoresistance modulation of colorectal cancer.
Collapse
|
28
|
Young D, Das N, Anowai A, Dufour A. Matrix Metalloproteases as Influencers of the Cells' Social Media. Int J Mol Sci 2019; 20:E3847. [PMID: 31394726 PMCID: PMC6720954 DOI: 10.3390/ijms20163847] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have been studied in the context of cancer due to their ability to increase cell invasion, and were initially thought to facilitate metastasis solely through the degradation of the extracellular matrix (ECM). MMPs have also been investigated in the context of their ECM remodeling activity in several acute and chronic inflammatory diseases. However, after several MMP inhibitors failed in phase III clinical trials, a global reassessment of their biological functions was undertaken, which has revealed multiple unanticipated functions including the processing of chemokines, cytokines, and cell surface receptors. Despite what their name suggests, the matrix aspect of MMPs could contribute to a lesser part of their physiological functions in inflammatory diseases, as originally anticipated. Here, we present examples of MMP substrates implicated in cell signaling, independent of their ECM functions, and discuss the impact for the use of MMP inhibitors.
Collapse
Affiliation(s)
- Daniel Young
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nabangshu Das
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Anthonia Anowai
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
29
|
Wang X, Ghareeb WM, Zhang Y, Yu Q, Lu X, Huang Y, Huang S, Sun Y, Chi P. Hypermethylated and downregulated MEIS2 are involved in stemness properties and oxaliplatin-based chemotherapy resistance of colorectal cancer. J Cell Physiol 2019; 234:18180-18191. [PMID: 30859572 DOI: 10.1002/jcp.28451] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
Abstract
The resistance against oxaliplatin (L-OHP) based regimens remains a major obstacle for its efficient usage in treating metastatic colorectal cancer (mCRC). In this study, we performed weighted gene coexpression network analysis (WGCNA) to systematically screen the relevant hub genes for L-OHP resistance using the raw microarray data of 30 consecutive mCRC samples from our earlier study (GSE69657). The results were further confirmed through datasets from Gene Expression Omnibus (GEO). From L-OHP resistance module, nine genes in both the coexpression and protein-protein interaction networks were chosen as hub genes. Among these genes, Meis Homeobox 2 (MEIS2) had the highest correlation with L-OHP resistance (r = -0.443) and was deregulated in L-OHP resistant tissues compared with L-OHP sensitive tissues in both our own dataset and GSE104645 testing dataset. The receiver operating characteristic curve validated that MEIS2 had a good ability in predicting L-OHP response in both our own dataset (area under the curve [AUC] = 0.802) and GSE104645 dataset (AUC = 0.746). Then, the down expression of MEIS2 was observed in CRC tissue compared with normal tissue in 12 GEO-sourced datasets and The Cancer Genome Atlas (TCGA) and was correlated with poor event-free survival. Furthermore, analyzing methylation data from TCGA showed that MEIS2 had increased promoter hypermethylation. In addition, MEIS2 expression was significantly decreased in CRC stem cells compared with nonstem cells in two GEO datasets (GSE14773 and GSE24747). Further methylation analysis from GSE104271 demonstrated that CRC stem cells had higher MEIS2 promoter methylation levels in cg00366722 and cg00610348 sites. Gene set enrichment analysis showed that MEIS2 might be involved in the Wnt/β-catenin pathway. In the overall view, MEIS2 had increased promoter hypermethylation and was downregulated in poor L-OHP response mCRC tissues. MEIS2 might be involved in the Wnt/β-catenin pathway to maintain CRC stemness, which leads to L-OHP resistance.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Waleed M Ghareeb
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of General and Gastrointestinal Surgery, Suez Canal University, Ismailia, Egypt
| | - Yiyi Zhang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qian Yu
- Department of Pathology, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xingrong Lu
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Huang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shenghui Huang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanwu Sun
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Pan Chi
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
30
|
Niu J, Li XM, Wang X, Liang C, Zhang YD, Li HY, Liu FY, Sun H, Xie SQ, Fang D. DKK1 inhibits breast cancer cell migration and invasion through suppression of β-catenin/MMP7 signaling pathway. Cancer Cell Int 2019; 19:168. [PMID: 31285694 PMCID: PMC6591985 DOI: 10.1186/s12935-019-0883-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background DKK1 has been reported to act as a tumor suppressor in breast cancer. However, the mechanism of DKK1 inhibits breast cancer migration and invasion was still unclear. Methods Western blot and real time PCR was used to detect the expression of DKK1, β-catenin and MMP7 in breast cancer cells. Wound scratch assay and transwell assay was employed to examine migration and invasion of breast cancer cell. Results DKK1 overexpression dramatically inhibits breast cancer cell migration and invasion. Knockdown of DKK1 promotes migration and invasion of breast cancer cells. DKK1 suppressed breast cancer cell migration and invasion through suppression of β-catenin and MMP7 expression. XAV-939, an inhibitor of β-catenin accumulation could reverse DKK1 silencing-induced MMP7 expression in breast cancer cells. Meanwhile, XAV-939 also could reverse the increase in the cell number invaded through Matrigel when DKK1 was knockdown. Furthermore, depletion of MMP7 also could reverse DKK1 knockdown-induced increase in the cell number invaded through Matrigel. Conclusions DKK1 inhibits migration and invasion of breast cancer cell through suppression of β-catenin/MMP7 pathway, our findings offered a potential alternative for breast cancer prevention and treatment.
Collapse
Affiliation(s)
- Jie Niu
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Xiao-Meng Li
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Xiao Wang
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Chao Liang
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Yi-Dan Zhang
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Hai-Ying Li
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Fan-Ye Liu
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Hua Sun
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Song-Qiang Xie
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China.,2Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Dong Fang
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| |
Collapse
|
31
|
Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 2019; 137:57-83. [PMID: 31014516 DOI: 10.1016/j.critrevonc.2019.02.010] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) participate from the initial phases of cancer onset to the settlement of a metastatic niche in a second organ. Their role in cancer progression is related to their involvement in the extracellular matrix (ECM) degradation and in the regulation and processing of adhesion and cytoskeletal proteins, growth factors, chemokines and cytokines. MMPs participation in cancer progression makes them an attractive target for cancer therapy. MMPs have also been used for theranostic purposes in the detection of primary tumor and metastatic tissue in which a particular MMP is overexpressed, to follow up on therapy responses, and in the activation of cancer cytotoxic pro-drugs as part of nano-delivery-systems that increase drug concentration in a specific tumor target. Herein, we review MMPs molecular characteristics, their synthesis regulation and enzymatic activity, their participation in the metastatic process, and how their functions have been used to improve cancer treatment.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando Garcia-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ramces Falfan-Valencia
- Laboratorio de HLA, Departamento de Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
32
|
Gravett AM, Dalgleish AG, Copier J. In vitro culture with gemcitabine augments death receptor and NKG2D ligand expression on tumour cells. Sci Rep 2019; 9:1544. [PMID: 30733494 PMCID: PMC6367314 DOI: 10.1038/s41598-018-38190-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/06/2018] [Indexed: 01/11/2023] Open
Abstract
Much effort has been made to try to understand the relationship between chemotherapeutic treatment of cancer and the immune system. Whereas much of that focus has been on the direct effect of chemotherapy drugs on immune cells and the release of antigens and danger signals by malignant cells killed by chemotherapy, the effect of chemotherapy on cells surviving treatment has often been overlooked. In the present study, tumour cell lines: A549 (lung), HCT116 (colon) and MCF-7 (breast), were treated with various concentrations of the chemotherapeutic drugs cyclophosphamide, gemcitabine (GEM) and oxaliplatin (OXP) for 24 hours in vitro. In line with other reports, GEM and OXP upregulated expression of the death receptor CD95 (fas) on live cells even at sub-cytotoxic concentrations. Further investigation revealed that the increase in CD95 in response to GEM sensitised the cells to fas ligand treatment, was associated with increased phosphorylation of stress activated protein kinase/c-Jun N-terminal kinase and that other death receptors and activatory immune receptors were co-ordinately upregulated with CD95 in certain cell lines. The upregulation of death receptors and NKG2D ligands together on cells after chemotherapy suggest that although the cells have survived preliminary treatment with chemotherapy they may now be more susceptible to immune cell-mediated challenge. This re-enforces the idea that chemotherapy-immunotherapy combinations may be useful clinically and has implications for the make-up and scheduling of such treatments.
Collapse
Affiliation(s)
- Andrew M Gravett
- Oncology Group, Institute for Infection and Immunity, St. George's, University of London, London, UK.
| | - Angus G Dalgleish
- Oncology Group, Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - John Copier
- Oncology Group, Institute for Infection and Immunity, St. George's, University of London, London, UK
| |
Collapse
|
33
|
Hisamatsu T, McGuire M, Wu SY, Rupaimoole R, Pradeep S, Bayraktar E, Noh K, Hu W, Hansen JM, Lyons Y, Gharpure KM, Nagaraja AS, Mangala LS, Mitamura T, Rodriguez-Aguayo C, Eun YG, Rose J, Bartholomeusz G, Ivan C, Lee JS, Matsuo K, Frumovitz M, Wong KK, Lopez-Berestein G, Sood AK. PRKRA/PACT Expression Promotes Chemoresistance of Mucinous Ovarian Cancer. Mol Cancer Ther 2019; 18:162-172. [PMID: 30305341 PMCID: PMC6318044 DOI: 10.1158/1535-7163.mct-17-1050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 07/11/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
For mucinous ovarian cancer (MOC), standard platinum-based therapy is largely ineffective. We sought to identify possible mechanisms of oxaliplatin resistance of MOC and develop strategies to overcome this resistance. A kinome-based siRNA library screen was carried out using human MOC cells to identify novel targets to enhance the efficacy of chemotherapy. In vitro and in vivo validations of antitumor effects were performed using mouse MOC models. Specifically, the role of PRKRA/PACT in oxaliplatin resistance was interrogated. We focused on PRKRA, a known activator of PKR kinase, and its encoded protein PACT because it was one of the five most significantly downregulated genes in the siRNA screen. In orthotopic mouse models of MOC, we observed a significant antitumor effect of PRKRA siRNA plus oxaliplatin. In addition, expression of miR-515-3p was regulated by PACT-Dicer interaction, and miR-515-3p increased the sensitivity of MOC to oxaliplatin. Mechanistically, miR-515-3p regulated chemosensitivity, in part, by targeting AXL. The PRKRA/PACT axis represents an important therapeutic target in MOC to enhance sensitivity to oxaliplatin.
Collapse
Affiliation(s)
- Takeshi Hisamatsu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael McGuire
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyunghee Noh
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Gene Therapy Research Unit, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jean M Hansen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasmin Lyons
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kshipra M Gharpure
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Archana S Nagaraja
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Takashi Mitamura
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Young Gyu Eun
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johnathon Rose
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Geoffrey Bartholomeusz
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, California
| | - Michael Frumovitz
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kwong K Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
34
|
Wu G, Cao L, Zhu J, Tan Z, Tang M, Li Z, Hu Y, Yu R, Zhang S, Song L, Li J. Loss of RBMS3 Confers Platinum Resistance in Epithelial Ovarian Cancer via Activation of miR-126-5p/β-catenin/CBP signaling. Clin Cancer Res 2018; 25:1022-1035. [PMID: 30279231 DOI: 10.1158/1078-0432.ccr-18-2554] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE The development of resistance to platinum-based chemotherapy remains the unsurmountable obstacle in cancer treatment and consequently leads to tumor relapse. This study aims to investigate the mechanism by which loss of RBMS3 induced chemoresistance in epithelial ovarian cancer (EOC). EXPERIMENTAL DESIGN FISH and IHC were used to determine deletion frequency and expression of RBMS3 in 15 clinical EOC tissues and 150 clinicopathologically characterized EOC specimens. The effects of RBMS3 deletion and CBP/β-catenin antagonist PRI-724 in chemoresistance were examined by clone formation and Annexin V assays in vitro, and by intraperitoneal tumor model in vivo. The mechanism by which RBMS3 loss sustained activation of miR-126-5p/β-catenin/CBP signaling and the effects of RBMS3 and miR-126-5p competitively regulating DKK3, AXIN1, BACH1, and NFAT5 was explored using CLIP-seq, RIP, electrophoretic mobility shift, and immunoblotting and immunofluorescence assays. RESULTS Loss of RBMS3 in EOC was correlated with the overall and relapse-free survival. Genetic ablation of RBMS3 significantly enhanced, whereas restoration of RBMS3 reduced, the chemoresistance ability of EOC cells both in vitro and in vivo. RBMS3 inhibited β-catenin/CBP signaling through directly associating with and stabilizing multiple negative regulators, including DKK3, AXIN1, BACH1, and NFAT5, via competitively preventing the miR-126-5p-mediated repression of these transcripts. Importantly, cotherapy of CBP/β-catenin antagonist PRI-724 induced sensitization of RBMS3-deleted EOC to platinum therapy. CONCLUSIONS Our results demonstrate that genetic ablation of RBMS3 contributes to chemoresistance and PRI-724 may serve as a potential tailored treatment for patients with RBMS3-deleted EOC.
Collapse
Affiliation(s)
- Geyan Wu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lixue Cao
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinrong Zhu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhanyao Tan
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Miaoling Tang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ziwen Li
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yameng Hu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruyuan Yu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuxia Zhang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jun Li
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Wang J, Zhang XS, Tao R, Zhang J, Liu L, Jiang YH, Ma SH, Song LX, Xia LJ. Upregulation of CX3CL1 mediated by NF-κB activation in dorsal root ganglion contributes to peripheral sensitization and chronic pain induced by oxaliplatin administration. Mol Pain 2018; 13:1744806917726256. [PMID: 28849713 PMCID: PMC5580849 DOI: 10.1177/1744806917726256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Painful peripheral neuropathy is a severe side effect in oxaliplatin therapy that compromises cancer patients' quality of life. However, its underlying pathogenic mechanisms remain largely unknown. Here, we found that intraperitoneal consecutive administration of oxaliplatin significantly increased excitability of small diameter dorsal root ganglion neurons and induced thermal hyperalgesia in rats. Furthermore, the CX3CL1 expression was significantly increased after oxaliplatin treatment, and intrathecal injection of a neutralizing antibody against CX3CL1 markedly attenuated the enhanced excitability of dorsal root ganglion neurons and thermal hyperalgesia. Importantly, the upregulated CX3CL1 is mediated by the NF-κB signaling pathway, as inhibition of NF-κB p65 activation with pyrrolidine dithiocarbamate or p65 siRNA inhibited the upregulation of CX3CL1, the enhanced excitability of dorsal root ganglion neurons, and thermal hyperalgesia induced by oxaliplatin. Further studies with chromatin immunoprecipitation found that oxaliplatin treatment increased the recruitment of NF-κB p65 to the CX3Cl1 promoter region. Our results suggest that upregulation of CX3CL1 in dorsal root ganglion mediated by NF-κB activation contributes to the peripheral sensitization and chronic pain induced by oxaliplatin administration.
Collapse
Affiliation(s)
- Jing Wang
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Xin-Sheng Zhang
- 2 Department of Orthopaedics, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Rong Tao
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- 3 Department of Rehabilitation Medicine, Guangdong Woman and Children Hospital, Guangzhou, China
| | - Lin Liu
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Ying-Hai Jiang
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Song-He Ma
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Lin-Xia Song
- 4 College of Life Science, Shandong University of Technology, Zibo, China
| | - Ling-Jie Xia
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Szarvas T, Sevcenco S, Módos O, Keresztes D, Nyirády P, Csizmarik A, Ristl R, Puhr M, Hoffmann MJ, Niedworok C, Hadaschik B, Maj-Hes A, Shariat SF, Kramer G. Matrix metalloproteinase 7, soluble Fas and Fas ligand serum levels for predicting docetaxel resistance and survival in castration-resistant prostate cancer. BJU Int 2018; 122:695-704. [PMID: 29802777 DOI: 10.1111/bju.14415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To assess the predictive value of pre-chemotherapy matrix metalloproteinase 7 (MMP-7), soluble Fas (sFas) and Fas ligand (FasL) serum levels, as well as their changes during therapy. PATIENTS AND METHODS Serum levels of MMP-7, Fas and FasL were determined by ELISA in 96 patients with castration-resistant prostate cancer (CRPC): 21 docetaxel-resistant patients who received one single series and 75 docetaxel-sensitive patients who received repeated series of docetaxel. In addition to the 96 pretreatment serum samples, 987 sera collected during chemotherapy were also analysed. RESULTS Higher pretreatment serum MMP-7, sFas and prostate-specific antigen (PSA) levels were significantly associated with both docetaxel resistance (P = 0.007, P = 0.001, P < 0.001, respectively) and shorter cancer-specific survival (P < 0.001, P = 0.041, P < 0.001, respectively). High MMP-7 level remained an independent predictor of both docetaxel resistance (hazard ratio [HR] 2.298, 95% confidence interval [CI]: 1.354-3.899; P = 0.002) and poor cancer-specific survival (HR 2.11, 95% CI: 1.36-3.30; P = 0.001) in multivariable analyses. Greater increase in MMP-7 levels in the second treatment holiday and greater increase in PSA levels in the first and second treatment holidays were predictive of survival. CONCLUSIONS Pretreatment serum MMP-7 levels may help to select patients with CRPC who are likely to benefit from docetaxel chemotherapy. Furthermore, MMP-7 levels alone or in combination with PSA levels could be used for therapy monitoring. Correlative studies embedded in clinical trials are necessary to validate these biomarkers for clinical decision-making.
Collapse
Affiliation(s)
- Tibor Szarvas
- Department of Urology, Semmelweis University, Budapest, Hungary.,Department of Urology, Vienna General Hospital, Medical University Vienna, Vienna, Austria.,Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Sabina Sevcenco
- Department of Urology, Vienna General Hospital, Medical University Vienna, Vienna, Austria
| | - Orsolya Módos
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Dávid Keresztes
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Anita Csizmarik
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Robin Ristl
- Centre for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Martin Puhr
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christian Niedworok
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Agnieszka Maj-Hes
- Department of Urology, Vienna General Hospital, Medical University Vienna, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Vienna General Hospital, Medical University Vienna, Vienna, Austria
| | - Gero Kramer
- Department of Urology, Vienna General Hospital, Medical University Vienna, Vienna, Austria
| |
Collapse
|
37
|
Muraki M, Hirota K. Confirmation of covalently-linked structure and cell-death inducing activity in site-specific chemical conjugates of human Fas ligand extracellular domain. BMC Res Notes 2018; 11:395. [PMID: 29907131 PMCID: PMC6003068 DOI: 10.1186/s13104-018-3501-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/07/2018] [Indexed: 12/03/2022] Open
Abstract
Objective In this study, we aimed to identify the structural components and to clarify the biological activity in the site-specific conjugates of human Fas ligand extracellular domain (hFasLECD) with either fluorescein moiety (FL) or chicken egg-white avidin (Avi). The conjugates were characterized by molecular-weight measurement using MALDI-TOF mass-spectrometric analysis and by cell-death inducing activity measurement against a human colorectal cancer cell line, HT-29, using MTT cell-viability assay. Pretreatment effect with human interferon-γ (IFN-γ) on the cell-death inducing activity was evaluated. Results The mass-spectrometric analysis of the hFasLECD-Avi conjugate showed that it was possible to detect the signal peak of molecular-weight to electric charge (m/z) derived from the component involved in the covalent linking as the sum of the molecular-weight of unconjugated hFasLECD- and Avi-derivative subunits, in addition to the signals from each corresponding subunit component irrelevant to the covalent linking. The cell-viability assay revealed that both conjugates possessed a remarkable death-inducing activity against HT-29 cells in synergy with the pretreatment using human IFN-γ. Following 24 h pretreatment with 100 IU/ml of human IFN-γ, almost no viable cells existed after 72 h treatment with either 100 or 1000 ng/ml of FL-hFasLECD and hFasLECD-Avi conjugates. Electronic supplementary material The online version of this article (10.1186/s13104-018-3501-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michiro Muraki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Kiyonori Hirota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
38
|
Yang M, Li H, Li Y, Ruan Y, Quan C. Identification of genes and pathways associated with MDR in MCF-7/MDR breast cancer cells by RNA-seq analysis. Mol Med Rep 2018; 17:6211-6226. [PMID: 29512753 PMCID: PMC5928598 DOI: 10.3892/mmr.2018.8704] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/15/2018] [Indexed: 12/26/2022] Open
Abstract
Multidrug resistance (MDR) is a major problem in the treatment of breast cancer. In the present study, next-generation sequencing technology was employed to identify differentially expressed genes in MCF-7/MDR cells and MCF-7 cells, and aimed to investigate the underlying molecular mechanisms of MDR in breast cancer. Differentially expressed genes between MCF-7/MDR and MCF-7 cells were selected using software; a total of 2085 genes were screened as differentially expressed in MCF-7/MDR cells. Furthermore, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database. Finally, a protein-protein interaction network was constructed and the hub genes in the network were analyzed using the STRING database. GO annotation demonstrated that the differentially expressed genes were enriched in various biological processes, including ‘regulation of cell differentiation’, ‘cell development’, ‘neuron development’, ‘movement of cell or subcellular component’ and ‘cell morphogenesis involved in neuron differentiation’. Cellular component analysis by GO revealed that differentially expressed genes were enriched in ‘plasma membrane region’ and ‘extracellular matrix’ terms. Furthermore, KEGG analysis demonstrated that the target genes were enriched in various pathways, including ‘cell adhesion molecules (CAMs)’, ‘calcium signaling pathway’, ‘tight junction’, ‘Wnt signaling pathway’ and ‘pathways in cancer’ terms. A protein-protein interaction network demonstrated that certain hub genes, including cyclin D1, nitric oxide synthase 3 (NOS3), NOTCH3, brain-derived neurotrophic factor (BDNF), paired box 6, neuropeptide Y, phospholipase C β (PLCB) 4, PLCB2 and actin α cardiac muscle 1, may be associated with MDR in breast cancer. Subsequently, RT-qPCR confirmed that the expression of these 9 hub genes was higher in MCF-7/MDR cells compared with MCF-7 cells, consistent with the RNA-sequencing analysis. Additionally, a Cell Counting Kit-8 assay demonstrated that specific inhibitors of NOS3 and BDNF/neurotrophic receptor tyrosine kinase, type 2 signaling reduced the IC50 of MCF-7/MDR cells in response to various anticancer drugs, including adriamycin, cisplatin and 5-fluorouracil. The results of the present study provide novel insights into the mechanism underlying MDR in MCF-7 cells and may identify novel targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Minlan Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 310021, P.R. China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093‑0651, USA
| | - Yanru Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 310021, P.R. China
| | - Yang Ruan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 310021, P.R. China
| | - Chengshi Quan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 310021, P.R. China
| |
Collapse
|
39
|
Piperigkou Z, Manou D, Karamanou K, Theocharis AD. Strategies to Target Matrix Metalloproteinases as Therapeutic Approach in Cancer. Methods Mol Biol 2018; 1731:325-348. [PMID: 29318564 DOI: 10.1007/978-1-4939-7595-2_27] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that are capable of degrading numerous extracellular matrix (ECM) components thus participating in physiological and pathological processes. Apart from the remodeling of ECM, they affect cell-cell and cell-matrix interactions and are implicated in the development and progression of various diseases such as cancer. Numerous studies have demonstrated that MMPs evoke epithelial to mesenchymal transition (EMT) of cancer cells and affect their signaling, adhesion, migration and invasion to promote cancer cell aggressiveness. Various studies have suggested MMPs as suitable targets for treatment of malignancies, and several MMP inhibitors (MMPIs) have been developed. Although initial trials have failed to establish MMPIs as anticancer agents due to lack of specificity and side effects, new MMPIs have been developed with improved action that are currently being investigated. Furthermore, novel strategies that target MMPs for improving drug delivery and regulating their activity in tumors are presented. This review summarizes the implication of MMPs in cancer progression and discusses the advancements in their targeting.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Konstantina Karamanou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
| |
Collapse
|
40
|
Lee CT, Zhou Y, Roy-Choudhury K, Siamakpour-Reihani S, Young K, Hoang P, Kirkpatrick JP, Chi JT, Dewhirst MW, Horton JK. Subtype-Specific Radiation Response and Therapeutic Effect of FAS Death Receptor Modulation in Human Breast Cancer. Radiat Res 2017; 188:169-180. [PMID: 28598289 DOI: 10.1667/rr14664.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Breast cancer is the most common malignancy diagnosed among women and represents a heterogeneous group of subtypes. Radiation therapy is a critical component of treatment for breast cancer patients. However, little is known about radiation response among these intrinsic subtypes. In previous studies, we identified a significant induction of FAS after irradiation in biologically favorable breast cancer patients and breast cancer cell lines. Here, we expanded our study and investigated radiation response in a mouse model of breast cancer. MCF7 (luminal), HCC1954 (HER2+) or SUM159 (basal) cells were implanted orthotopically into the dorsal mammary fat pad of nude mice. These mice were then treated with different doses of radiation to assess tumor growth control. We further investigated the therapeutic effect of FAS modulation by silencing FAS in radiation-responsive tumors and injecting FAS agonist antibody into radiation-resistant tumors. Exposure to radiation inhibited MCF7, and to a lesser extent HCC1954 tumor growth in a dose-dependent manner. In contrast, SUM159 tumors were resistant to radiation. The estimated TCD50 values were 19.3 Gy for MCF7 and 44.9 Gy for SUM159. Radiation induced FAS expression in MCF7 tumors, but not SUM159 tumors. We found that silencing of FAS did not negatively impact radiation response in MCF7 tumors, possibly due to compensation by other apoptotic pathways. On the other hand, FAS activating antibody in combination with radiation treatment delayed SUM159 and HCC1954 tumor growth. However, it did not reach statistical significance compared to radiation treatment alone. Our results suggest that there is intrinsic variation in radiation response among breast cancer subtypes. FAS activation concurrent with radiation slows tumor growth in the radiation-resistant subtypes, but the effect was not significant. Alternative subtype-specific modulators of radiation response are under investigation.
Collapse
Affiliation(s)
- Chen-Ting Lee
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Yingchun Zhou
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Kingshuk Roy-Choudhury
- b Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | | | - Kenneth Young
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Peter Hoang
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - John P Kirkpatrick
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Jen-Tsan Chi
- c Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina.,d Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina
| | - Mark W Dewhirst
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Janet K Horton
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
41
|
Chien MH, Chang WM, Lee WJ, Chang YC, Lai TC, Chan DV, Sharma R, Lin YF, Hsiao M. A Fas Ligand (FasL)-Fused Humanized Antibody Against Tumor-Associated Glycoprotein 72 Selectively Exhibits the Cytotoxic Effect Against Oral Cancer Cells with a Low FasL/Fas Ratio. Mol Cancer Ther 2017; 16:1102-1113. [PMID: 28292939 DOI: 10.1158/1535-7163.mct-16-0314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 03/07/2017] [Indexed: 12/16/2022]
Abstract
Altered expression of the Fas ligand (FasL)/Fas ratio exhibits a direct impact on the prognosis of cancer patients, and its impairment in cancer cells may lead to apoptosis resistance. Thus, the development of effective therapies targeting the FasL/Fas system may play an important role in the fight against cancer. In this study, we evaluated whether a fusion protein (hcc49scFv-FasL) comprising of the cytotoxicity domain of the FasL fused to a humanized antibody (CC49) against tumor-associated glycoprotein 72, which is expressed on oral squamous cell carcinoma (OSCC), can selectively kill OSCC cells with different FasL/Fas ratios. In clinical samples, the significantly low FasL and high Fas transcripts were observed in tumors compared with normal tissues. A lower FasL/Fas ratio was correlated with a worse prognosis of OSCC patients and higher proliferative and invasive abilities of OSCC cells. The hcc49scFv-FasL showed a selective cytotoxic effect on OSCC cells (Cal-27 and SAS) but not on normal oral keratinocytes cells (HOK) through apoptosis induction. Moreover, SAS cells harboring a lower FasL/Fas ratio than Cal-27 were more sensitive to the cytotoxic effect of hcc49scFv-FasL. Unlike wild-type FasL, hcc49scFv-FasL was not cleaved by matrix metalloproteinases and did not induce nonapoptotic signaling in SAS cells. In vivo, we found that hcc49scFv-FasL drastically reduced the formation of lymph node metastasis and decreased primary tumor growth in SAS orthotopic and subcutaneous xenograft tumor models. Collectively, our data indicate that a tumor-targeting antibody fused to the FasL can be a powerful tool for OSCC treatment, especially in populations with a low FasL/Fas ratio. Mol Cancer Ther; 16(6); 1102-13. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibody-Dependent Cell Cytotoxicity/immunology
- Antigens, Neoplasm/immunology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Survival
- Cell Transformation, Neoplastic/metabolism
- Disease Models, Animal
- Fas Ligand Protein/genetics
- Fas Ligand Protein/metabolism
- Glycoproteins/antagonists & inhibitors
- Glycoproteins/immunology
- Humans
- Mice
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/immunology
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Prognosis
- Protein Binding
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacology
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/pharmacology
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Min Chang
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chan Chang
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tsung-Ching Lai
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Derek V Chan
- Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Rahul Sharma
- Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- The PhD Program for Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
42
|
Isaacson KJ, Martin Jensen M, Subrahmanyam NB, Ghandehari H. Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. J Control Release 2017; 259:62-75. [PMID: 28153760 DOI: 10.1016/j.jconrel.2017.01.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
Abstract
While commonly known for degradation of the extracellular matrix, matrix metalloproteinases (MMPs) exhibit broad potential for use in targeting of bioactive and imaging agents in cancer treatment. MMPs are upregulated at all stages of expression in cancers. A comprehensive analysis of published literature on expression of all MMP subtypes at the genetic, protein, and activity levels in normal and diseased tissues indicate targeting applicability in a variety of cancers. This expression significantly increases at advanced cancer stages, providing an improved opportunity for controlled release in higher-stage patients. Since MMPs are integral at every stage of metastasis, MMP roles in cancer are discussed with a focus on MMP distribution and mobility within cells and tumors for cancer targeting applications. Several strategies for MMP utilization in targeting - such as matrix degradation, MMP cleavage, MMP binding, and MMP-induced environmental changes - are addressed.
Collapse
Affiliation(s)
- Kyle J Isaacson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - M Martin Jensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Nithya B Subrahmanyam
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
43
|
Modi S, Kir D, Banerjee S, Saluja A. Control of Apoptosis in Treatment and Biology of Pancreatic Cancer. J Cell Biochem 2016. [PMID: 26206252 DOI: 10.1002/jcb.25284] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer is estimated to be the 12th most common cancer in the United States in 2014 and yet this malignancy is the fourth leading cause of cancer-related death in the United States. Late detection and resistance to therapy are the major causes for its dismal prognosis. Apoptosis is an actively orchestrated cell death mechanism that serves to maintain tissue homoeostasis. Cancer develops from normal cells by accruing significant changes through one or more mechanisms, leading to DNA damage and mutations, which in a normal cell would induce this programmed cell death pathway. As a result, evasion of apoptosis is one of the hallmarks of cancer cells. PDAC is notoriously resistant to apoptosis, thereby explaining its aggressive nature and resistance to conventional treatment modalities. The current review is focus on understanding different intrinsic and extrinsic pathways in pancreatic cancer that may affect apoptosis in this disease.
Collapse
Affiliation(s)
- Shrey Modi
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| | - Devika Kir
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| | - Sulagna Banerjee
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| | - Ashok Saluja
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| |
Collapse
|
44
|
Martinez-Balibrea E, Martínez-Cardús A, Ginés A, Ruiz de Porras V, Moutinho C, Layos L, Manzano JL, Bugés C, Bystrup S, Esteller M, Abad A. Tumor-Related Molecular Mechanisms of Oxaliplatin Resistance. Mol Cancer Ther 2015; 14:1767-76. [PMID: 26184483 DOI: 10.1158/1535-7163.mct-14-0636] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 05/16/2015] [Indexed: 01/04/2023]
Abstract
Oxaliplatin was the first platinum drug with proven activity against colorectal tumors, becoming a standard in the management of this malignancy. It is also considered for the treatment of pancreatic and gastric cancers. However, a major reason for treatment failure still is the existence of tumor intrinsic or acquired resistance. Consequently, it is important to understand the molecular mechanisms underlying the appearance of this phenomenon to find ways of circumventing it and to improve and optimize treatments. This review will be focused on recent discoveries about oxaliplatin tumor-related resistance mechanisms, including alterations in transport, detoxification, DNA damage response and repair, cell death (apoptotic and nonapoptotic), and epigenetic mechanisms.
Collapse
Affiliation(s)
- Eva Martinez-Balibrea
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain. Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain.
| | - Anna Martínez-Cardús
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain
| | - Alba Ginés
- Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain
| | - Vicenç Ruiz de Porras
- Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain
| | - Catia Moutinho
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain
| | - Laura Layos
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain
| | - José Luis Manzano
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain
| | - Cristina Bugés
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain. Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain. Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain. Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain. Oncology Unit, Hospital CIMA Sanitas, Barcelona, Catalonia, Spain
| | - Sara Bystrup
- Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain. Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Albert Abad
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain. Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain. Oncology Unit, Hospital CIMA Sanitas, Barcelona, Catalonia, Spain
| |
Collapse
|
45
|
Alias C, Rocchi L, Ribatti D, Caraffi S, D'Angelo A, Perris R, Mangieri D. MMPs and angiogenesis affect the metastatic potential of a human vulvar leiomyosarcoma cell line. J Cell Mol Med 2015; 19:2098-107. [PMID: 26010680 PMCID: PMC4568914 DOI: 10.1111/jcmm.12565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/20/2015] [Indexed: 01/22/2023] Open
Abstract
Gynaecological leiomyosarcoma (gLMS) represent a heterogeneous group of soft tissue sarcoma, characterized by rare incidence, high aggressiveness and propensity to infiltrate secondary organs, poor prognosis and lethality, because of the lack of biological mechanisms that underlying their progression and effective pharmaceutical treatments. This study was focused on some of the aspects of progression and dissemination of a subtype of gLMS namely vulvar LMS (vLMS). We therefore used a vulvar LMS-derived cell line namely SK-LMS-1, coupled with in vitro and in vivo assays. We observed that SK-LMS-1 cells have a strong invasive capacity in vitro, through the activity of matrix metalloproteinases 2 and 9, while in vivo these cells induce a strong angiogenic response and disseminate to the chick embryo liver. Therefore, we postulate that metalloproteinases are involved in the spreading behaviour of SK-LMS-1. Further investigations are necessary to better understand the molecular and cellular machinery involved in the progression of this malignancy.
Collapse
Affiliation(s)
- Carlotta Alias
- Department of Life Sciences, University of Parma, Parma, Italy
| | - Laura Rocchi
- Surgical Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Stefano Caraffi
- Surgical Pathology Unit, University Hospital of Parma, Parma, Italy
| | | | - Roberto Perris
- Department of Life Sciences, University of Parma, Parma, Italy.,Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| | - Domenica Mangieri
- Surgical Pathology Unit, University Hospital of Parma, Parma, Italy.,Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| |
Collapse
|
46
|
Shay G, Lynch CC, Fingleton B. Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biol 2015; 44-46:200-6. [PMID: 25652204 DOI: 10.1016/j.matbio.2015.01.019] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/24/2015] [Accepted: 01/24/2015] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases have long been associated with cancer. Clinical trials of small molecule inhibitors for this family of enzymes however, were spectacularly unsuccessful in a variety of tumor types. Here, we discuss some of the newer roles that have been uncovered for MMPs in cancer that would not have been targeted with those initial inhibitors or in the patient populations analyzed. We also consider novel ways of using cancer-associated MMP activity for clinical benefit.
Collapse
Affiliation(s)
- Gemma Shay
- Dept. of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Conor C Lynch
- Dept. of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Barbara Fingleton
- Dept of Cancer Biology, Vanderbilt University Medical Center, 2220 Pierce Ave, Nashville, TN 37232, USA.
| |
Collapse
|
47
|
Saigusa S, Tanaka K, Ohi M, Toiyama Y, Yasuda H, Kitajima T, Okugawa Y, Inoue Y, Mohri Y, Kusunoki M. Clinical implications of Fas/Fas ligand expression in patients with esophageal squamous cell carcinoma following neoadjuvant chemoradiotherapy. Mol Clin Oncol 2014; 3:151-156. [PMID: 25469286 DOI: 10.3892/mco.2014.431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/10/2014] [Indexed: 12/23/2022] Open
Abstract
Recent epidemiological studies demonstrated that the incidence of esophageal squamous cell carcinoma (ESCC) is on the increase. Although neoadjuvant chemoradiotherapy (CRT) followed by surgery may improve long-term survival and reduce local recurrence in patients with esophageal cancer, the overall cure rate of esophageal cancer is low. Fas/Fas ligand (FasL) signaling initiates the cell death pathway. The roles of FasL in tumor growth, progression and resistance to treatment have been demonstrated in several malignancies. The aim of this preliminary study was to evaluate Fas/FasL expression in ESCC with neoadjuvant CRT. A total of 20 patients who received neoadjuvant CRT (30-40 Gy; 5-fluorouracil plus cisplatin followed by surgery) were enrolled. We evaluated the expression of Fas, FasL and Ki67 (a proliferative marker) using immunohistochemistry and analyzed the correlations between their expression and clinical outcomes. Additionally, we investigated the association of Fas/FasL expression with peritumoral immune CD8-positive and Foxp3-positive cells. High FasL expression was significantly correlated with disease recurrence (P=0.0134). Patients with high FasL expression exhibited poorer recurrence-free and overall survival (P=0.0102 and 0.0385, respectively). Patients with low Fas and high FasL exhibited significantly poorer recurrence-free survival (P=0.0035). Although statistical significance was not reached, Fas expression appeared to be inversely correlated with Foxp3-positive cells and FasL expression appeared to be inversely correlated with CD8-positive cells. In conclusion, FasL expression was associated with tumor relapse and poor prognosis in patients with ESCC following CRT. Pharmacological control of Fas/FasL signaling may improve therapeutic efficacy and outcome in ESCC patients receiving preoperative CRT.
Collapse
Affiliation(s)
- Susumu Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiromi Yasuda
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takahito Kitajima
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yasuhiko Mohri
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
48
|
Huang Y, Yu H, Lei H, Xie C, Zhong Y. Matrix metalloproteinase 7 is a useful marker for 5-fluorouracil-based adjuvant chemotherapy in stage II and stage III colorectal cancer patients. Med Oncol 2014; 31:824. [PMID: 24469951 DOI: 10.1007/s12032-013-0824-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/18/2013] [Indexed: 12/23/2022]
Abstract
Matrix metalloproteinase 7 (MMP7) was reported to be a negative regulator in Fas-mediated apoptosis. The mechanism of cell killing associated with 5-FU treatment in colon cancer was also closely related to Fas-induced apoptosis, which implied that the expression level of MMP7 in colorectal cancer may be associated with the sensitivity of 5-FU treatment. To prove the hypothesis, first we verified the negative relevance between the colorectal cancer cells apoptosis in response to 5-FU treatment and MMP7 level by MTT and flow cytometry assay in vitro. Further, we found the apoptosis was in a positive relation with the Fas ligand level collected from the medium, suggesting a Fas-induced apoptosis. We found that increased level of MMP7 resulted in the enhanced drug resistance in SW620 colon cancer cells treated with 5-FU in vitro. Besides, we analyzed the influence of MMP7 on prognosis of 76 patients with TNM stage II-III colorectal cancers who had undergone curative resections and received 5-FU-based adjuvant chemotherapy. The expression of MMP7 was detected by IHC, and the relationship between the expression of MMP7 and disease-free survival was analyzed by univariate analysis and multivariate analysis. Patients with higher expression of MMP7 showed inferior disease-free survival (p=0.007), and high expression of MMP7 was a significant independent unfavorable prognostic factor (p=0.012). These data suggested that MMP7 is a useful marker for 5-FU chemotherapy sensitivity in patients with stage II-III colorectal cancer.
Collapse
Affiliation(s)
- Yong Huang
- Department of Radio-Chemo Therapy, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
49
|
Tumour-microenvironment interactions: role of tumour stroma and proteins produced by cancer-associated fibroblasts in chemotherapy response. Cell Oncol (Dordr) 2013; 36:95-112. [PMID: 23494412 DOI: 10.1007/s13402-013-0127-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cytotoxic chemotherapy improves survival for some, but not all, cancer patients. Non-responders may experience unnecessary toxicity and cancer progression, thus creating an urgent need for biomarkers that can predict the response to chemotherapy. So far, the search for such biomarkers has primarily been focused on the cancer cells and less on their surrounding stroma. This stroma is known to act as a key regulator of tumour progression and, in addition, has been associated with drug delivery and drug efficacy. Fibroblasts represent the major cell type in cancer-associated stroma and they secrete extracellular matrix proteins as well as growth factors. This Medline-based literature review summarises the results from studies on epithelial cancers and aimed at investigating relationships between the quantity and quality of the intra-tumoral stroma, the cancer-associated fibroblasts, the proteins they produce and the concomitant response to chemotherapy. Biomarkers were selected for review that are known to affect cancer-related characteristics and patient prognosis. RESULTS The current literature supports the hypothesis that biomarkers derived from the tumour stroma may be useful to predict response to chemotherapy. This notion appears to be related to the overall quantity and cellularity of the intra-tumoural stroma and the predominant constituents of the extracellular matrix. CONCLUSION Increasing evidence is emerging showing that tumour-stroma interactions may not only affect tumour progression and patient prognosis, but also the response to chemotherapy. The tumour stroma-derived biomarkers that appear to be most appropriate to determine the patient's response to chemotherapy vary by tumour origin and the availability of pre-treatment tissue. For patients scheduled for adjuvant chemotherapy, the most promising biomarker appears to be the PLAU: SERPINE complex, whereas for patients scheduled for neo-adjuvant chemotherapy the tumour stroma quantity appears to be most relevant.
Collapse
|
50
|
Codony-Servat J, Garcia-Albeniz X, Pericay C, Alonso V, Escudero P, Fernández-Martos C, Gallego R, Martínez-Cardús A, Martinez-Balibrea E, Maurel J. Soluble FAS in the prediction of benefit from cetuximab and irinotecan for patients with advanced colorectal cancer. Med Oncol 2013; 30:428. [PMID: 23338968 DOI: 10.1007/s12032-012-0428-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/16/2012] [Indexed: 12/13/2022]
Abstract
The FAS/FASL system, comprising membrane-bound (mFAS and mFASL) and soluble forms (sFAS and sFASL), has been related to apoptosis driven by chemotherapy administration. In vitro experiments show chemotherapy upregulating membrane-bound forms, leading to an increase of receptor availability (at 24-72 h) and favoring apoptosis. The regulatory effect of chemotherapy on sFAS in patients has never been explored prospectively in advanced colorectal cancer (ACRC). We performed a pharmacodynamic study to address sFAS/sFASL variation. A prospective phase II translational multicenter study was designed to evaluate progression-free rate (PFR) in patients with ACRC treated with irinotecan and cetuximab in third-line therapy. The effect of sFAS was studied in vitro in colorectal cancer cell lines. Our results showed that statistically significant changes were observed in sFAS at 24-72 h compared to baseline levels in the pharmacodynamic study. Of the 93 patients enrolled in the prospective study in third-line therapy with cetuximab-irinotecan, 85 were evaluated for sFAS/sFASL changes at 48 h. There was no difference in PFR at 4 months between patients with sFAS and sFASL changes. In vitro analysis showed that although LoVo cell lines were sensitive to oxaliplatin and fluorouracil due to modulation of sFAS and FAS, HT29 lines were not. In summary, chemotherapy regulates FAS soluble fractions in vitro and in vivo, but does not predict PFR in ACRC patients undergoing third-line therapy with the combination of cetuximab and irinotecan.
Collapse
Affiliation(s)
- Jordi Codony-Servat
- Medical Oncology Department, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|