1
|
Yu Z, Wang Y, Guo Y, Zhu R, Fang Y, Yao Q, Fu H, Zhou A, Ma L, Shou Q. Exploring the Therapeutic and Gut Microbiota-Modulating Effects of Qingreliangxuefang on IMQ-Induced Psoriasis. Drug Des Devel Ther 2025; 19:3269-3291. [PMID: 40322026 PMCID: PMC12048299 DOI: 10.2147/dddt.s492044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Purpose To investigate the therapeutic and gut microbiota-modulating effects of Qingreliangxuefang (QRLXF) on psoriasis. Materials and Methods We used network pharmacology, a computational approach, to identify key bioactive compounds and biological targets, and explored the molecular mechanisms of QRLXF. The effects of QRLXF on keratinocyte proliferation and inflammation were evaluated using a mouse model of psoriasis. Changes in the gut microbiota were analyzed via 16SrDNA sequencing, and T cell subsets were assessed using flow cytometry. Results Network pharmacology analysis suggested that QRLXF ameliorated psoriasis by modulating Th17 cell differentiation. Further experiments confirmed the anti-inflammatory effects and relief of psoriatic lesions in IMQ-induced mice. 16SrDNA sequencing revealed significant shifts in the gut microbiota, notably increases in Ligilactobacillus and Lactobacillus genera and decreases in Anaerotruncus, Negativibacillus, Bilophila, and Mucispirillum, suggesting a potential relationship between specific microbiota changes and Th17 cell differentiation. Conclusion QRLXF alleviated psoriatic dermatitis by regulating Th17 cell responses and modifying gut microbiota profiles, highlighting its therapeutic potential for psoriasis treatment.
Collapse
Affiliation(s)
- Zhengyao Yu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Yongkang Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang, 321300, People’s Republic of China
| | - Yingying Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Yingxue Guo
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Ruotong Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Yimiao Fang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| | - Qinghua Yao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310005, People’s Republic of China
| | - Huiying Fu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Yongkang Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang, 321300, People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Ang Zhou
- Department of Dermatology, Yiwu Central Hospital Medical Community Choujiang Hospital District, Yiwu, Zhejiang, 322000, People’s Republic of China
| | - Lili Ma
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| | - Qiyang Shou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Yongkang Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang, 321300, People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| |
Collapse
|
2
|
Bakhshandi AK, Minasazi A, Yeganeh O, Behi M. Therapeutic potential of microbiota modulation in psoriasis: current evidence and future directions. Arch Dermatol Res 2025; 317:561. [PMID: 40074992 DOI: 10.1007/s00403-025-04097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
The human microbiota plays a significant role in health and the development of autoimmune diseases by maintaining gut-skin homeostasis through diverse microbial communities. Dysbiosis, or imbalance in these communities, is increasingly recognized as a contributing factor in the pathogenesis of autoimmune and inflammatory diseases, including psoriasis. Psoriasis is characterized by immune dysregulation, leading to red and scaly plaques that significantly reduce patients' quality of life. Current evidence highlights the gut microbiota's critical role in driving immune responses and chronic inflammation associated with psoriasis. Therapeutic strategies aimed at restoring microbial balance, such as probiotics, have demonstrated promise in reducing disease severity. Additionally, fecal microbiota transplantation (FMT) has emerged as a novel intervention, with early studies suggesting its potential to alleviate symptoms by correcting gut dysbiosis. These approaches underscore the importance of microbiota-targeted therapies in addressing the systemic nature of psoriasis and pave the way for advancements in personalized treatment strategies.
Collapse
Affiliation(s)
- Ali Karimi Bakhshandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Department of Natural Health Science, Selinus University, Bologna, Italy.
| | - Asal Minasazi
- Department of Analytical Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Omid Yeganeh
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Behi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ilari S, Nucera S, Morabito L, Caminiti R, Mazza V, Ritorto G, Ussia S, Passacatini LC, Macrì R, Scarano F, Serra M, Scali E, Maiuolo J, Oppedisano F, Palma E, Muscoli S, Proietti S, Tomino C, Mollace V, Muscoli C. A Systematic Review of the Effect of Polyphenols on Alterations of the Intestinal Microbiota and Shared Bacterial Profiles Between Metabolic Syndrome and Acne. Nutrients 2024; 16:3591. [PMID: 39519424 PMCID: PMC11547370 DOI: 10.3390/nu16213591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction: Microbiota, composed of micro-organisms like bacteria, viruses, and non-pathogenic fungi, plays a crucial role in digestion, vitamin production, and protection against dangerous microbes. Several factors, including age, diet, alcohol consumption, stress, environmental microorganisms, and therapies (particularly antibiotics), as well as birth and nursing, could modify the microbiota. Recent research has highlighted its alteration and involvement in a various disease, including metabolic syndrome and acne. This systematic review aimed to identify common biomarkers and microbiota alterations shared between metabolic syndrome and acne, and to explore how the potential prebiotic activities of polyphenols may promote intestinal eubiosis. Materials and methods: A comprehensive search in PubMed and EMBASE resulted in 4142 articles, from which nine studies were selected based on specific criteria after removing duplicates and reviewing abstracts and full texts. All studies correlated the microbiota alteration in both pathologies and the activity of polyphenols in metabolic syndrome. Results: This review suggests that acne may be influenced by some of the same microorganisms involved in metabolic syndrome. While the literature highlights the effectiveness of polyphenols in treating metabolic syndrome, no studies have yet demonstrated their specific impact on acne. Conclusions: The research points to the potential benefits of polyphenols in modulating the microbiota, which could be relevant for individuals with metabolic syndrome. However, due to the limited data available, it was not possible to establish a direct correlation between metabolic syndrome and acne.
Collapse
Affiliation(s)
- Sara Ilari
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Lucrezia Morabito
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Valeria Mazza
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Giovanna Ritorto
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Sara Ussia
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | | | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Elisabetta Scali
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Maiuolo
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Muscoli
- Department of Cardiology, Tor Vergata University, 00133 Rome, Italy
| | | | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Reali E, Caliceti C, Lorenzini A, Rizzo P. The Use of Microbial Modifying Therapies to Prevent Psoriasis Exacerbation and Associated Cardiovascular Comorbidity. Inflammation 2024; 47:13-29. [PMID: 37953417 PMCID: PMC10799147 DOI: 10.1007/s10753-023-01915-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
Psoriasis has emerged as a systemic disease characterized by skin and joint manifestations as well as systemic inflammation and cardiovascular comorbidities. Many progresses have been made in the comprehension of the immunological mechanisms involved in the exacerbation of psoriatic plaques, and initial studies have investigated the mechanisms that lead to extracutaneous disease manifestations, including endothelial disfunction and cardiovascular disease. In the past decade, the involvement of gut dysbiosis in the development of pathologies with inflammatory and autoimmune basis has clearly emerged. More recently, a major role for the skin microbiota in establishing the immunological tolerance in early life and as a source of antigens leading to cross-reactive responses towards self-antigens in adult life has also been evidenced. Gut microbiota can indeed be involved in shaping the immune and inflammatory response at systemic level and in fueling inflammation in the cutaneous and vascular compartments. Here, we summarized the microbiota-mediated mechanisms that, in the skin and gut, may promote and modulate local or systemic inflammation involved in psoriatic disease and endothelial dysfunction. We also analyze the emerging strategies for correcting dysbiosis or modulating skin and gut microbiota composition to integrate systemically existing pharmacological therapies for psoriatic disease. The possibility of merging systemic treatment and tailored microbial modifying therapies could increase the efficacy of the current treatments and potentially lower the effect on patient's life quality.
Collapse
Affiliation(s)
- Eva Reali
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Istituto Nazionale Biosistemi e Biostrutture (INBB), Rome, Italy
| | - Paola Rizzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna, Italy.
| |
Collapse
|
5
|
Yang CC, Wu MS, Hsu H. Management of diabetic foot ulcers using topical probiotics in a soybean-based concentrate: a multicentre study. J Wound Care 2023; 32:S16-S21. [PMID: 38063295 DOI: 10.12968/jowc.2023.32.sup12.s16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE Diabetic foot ulcer (DFU) is a common complication in people with diabetes. Standard management includes strict glycaemic management, control of the infection, revascularisation, debridement, mechanical offloading and foot care education. This study aimed to evaluate the efficacy of using topical probiotics in a soybean-based concentrate in the management of DFUs. METHOD A retrospective, multicentre evaluation of patients with diabetes with non-infected DFUs between October 2020 and October 2021, and who were treated with twice daily topical application of probiotics in a soybean-based concentrate as an adjunct to standard wound care. RESULTS A total of 22 patients were enrolled into this study, including 16 males and six females, with a mean age of 61 years (range: 31-89 years). Defect size ranged from 1-33.5cm2 (mean: 7.2cm2). The mean number of days until complete healing was 51 (range: 21-112 days). Of the patients, 83% showed complete healing at the end of 16 weeks, 72% showed complete healing at 12 weeks, 56% at eight weeks, and 22% at four weeks. The wounds showed an average decrease in size of 0.59cm2 (9%) per week, calculated using generalised estimating equation. CONCLUSION This findings of this study provide a new perspective on the therapeutic potential of probiotics as an effective form of management in patients with small, hard-to-heal (chronic) DFUs.
Collapse
Affiliation(s)
- Chao-Chih Yang
- Attending Plastic Surgeon and Chief of Division of Plastic Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taiwan
| | - Megn-Si Wu
- Attending Plastic Surgeon, Lecturer, Division of Plastic Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Honda Hsu
- School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
- Attending Plastic Surgeon, Associate Professor, Division of Plastic Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| |
Collapse
|
6
|
Bosveld CJ, Guth C, Limjunyawong N, Pundir P. Emerging Role of the Mast Cell-Microbiota Crosstalk in Cutaneous Homeostasis and Immunity. Cells 2023; 12:2624. [PMID: 37998359 PMCID: PMC10670560 DOI: 10.3390/cells12222624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The skin presents a multifaceted microbiome, a balanced coexistence of bacteria, fungi, and viruses. These resident microorganisms are fundamental in upholding skin health by both countering detrimental pathogens and working in tandem with the skin's immunity. Disruptions in this balance, known as dysbiosis, can lead to disorders like psoriasis and atopic dermatitis. Central to the skin's defense system are mast cells. These are strategically positioned within the skin layers, primed for rapid response to any potential foreign threats. Recent investigations have started to unravel the complex interplay between these mast cells and the diverse entities within the skin's microbiome. This relationship, especially during times of both balance and imbalance, is proving to be more integral to skin health than previously recognized. In this review, we illuminate the latest findings on the ties between mast cells and commensal skin microorganisms, shedding light on their combined effects on skin health and maladies.
Collapse
Affiliation(s)
- Cameron Jackson Bosveld
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| | - Colin Guth
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| | - Nathachit Limjunyawong
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Priyanka Pundir
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| |
Collapse
|
7
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
8
|
An HM, Choi YS, Bae SK, Lee YK. Effect of the Combination of Probiotics and Korean Red Ginseng on Diabetic Wound Healing Exposed to Diesel Exhaust Particles(DEPs). MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1155. [PMID: 37374359 DOI: 10.3390/medicina59061155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Diesel exhaust particles (DEPs) are a major component of air pollution and adversely affect respiratory and cardiovascular disease and diabetic foot ulcers if diabetic patients are exposed to them. There are currently no studies on treating diabetic wounds exposed to DEPs. So, the effect of a combination of probiotics and Korean red ginseng on a diabetic wound model exposed to DEPs was confirmed. Materials and Methods: Rats were randomly divided into three groups according to DEP inhalation concentration and whether they underwent applications of probiotics (PB) and Korean red ginseng (KRG). Wound tissue was collected from all rats, and wound healing was evaluated using molecular biology and histology methods. Results: The wound size of all groups decreased over time, but there was no significant difference. As a result of the molecular biology experiment, the expression of NF-κB p65 on day 7 was significantly higher in group 2 than in the normal control group. As a result of histological analysis, unlike the primary control group, it was confirmed that granule tissue was formed on the 14th day in the normal control group and group 2. Conclusions: The findings in this study suggest that combined treatment with PB and KRG can promote the healing of DEP-exposed diabetic wounds.
Collapse
Affiliation(s)
- Hye Min An
- Department of Medical Sciences, Soonchunhyang University, Asan-si 31538, Republic of Korea
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, Bucheon-si 14584, Republic of Korea
| | - Young Suk Choi
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, Bucheon-si 14584, Republic of Korea
- Department of Biology, Soonchunhyang University, Asan-si 31538, Republic of Korea
| | - Sung Kyoung Bae
- Department of Medical Sciences, Soonchunhyang University, Asan-si 31538, Republic of Korea
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, Bucheon-si 14584, Republic of Korea
| | - Young Koo Lee
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, Bucheon-si 14584, Republic of Korea
| |
Collapse
|
9
|
Lupu VV, Adam Raileanu A, Mihai CM, Morariu ID, Lupu A, Starcea IM, Frasinariu OE, Mocanu A, Dragan F, Fotea S. The Implication of the Gut Microbiome in Heart Failure. Cells 2023; 12:1158. [PMID: 37190067 PMCID: PMC10136760 DOI: 10.3390/cells12081158] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Heart failure is a worldwide health problem with important consequences for the overall wellbeing of affected individuals as well as for the healthcare system. Over recent decades, numerous pieces of evidence have demonstrated that the associated gut microbiota represent an important component of human physiology and metabolic homeostasis, and can affect one's state of health or disease directly, or through their derived metabolites. The recent advances in human microbiome studies shed light on the relationship between the gut microbiota and the cardiovascular system, revealing its contribution to the development of heart failure-associated dysbiosis. HF has been linked to gut dysbiosis, low bacterial diversity, intestinal overgrowth of potentially pathogenic bacteria and a decrease in short chain fatty acids-producing bacteria. An increased intestinal permeability allowing microbial translocation and the passage of bacterial-derived metabolites into the bloodstream is associated with HF progression. A more insightful understanding of the interactions between the human gut microbiome, HF and the associated risk factors is mandatory for optimizing therapeutic strategies based on microbiota modulation and offering individualized treatment. The purpose of this review is to summarize the available data regarding the influence of gut bacterial communities and their derived metabolites on HF, in order to obtain a better understanding of this multi-layered complex relationship.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Anca Adam Raileanu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | | | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ancuta Lupu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Iuliana Magdalena Starcea
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Otilia Elena Frasinariu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Adriana Mocanu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Silvia Fotea
- Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| |
Collapse
|
10
|
Zhu W, Hamblin MR, Wen X. Role of the skin microbiota and intestinal microbiome in rosacea. Front Microbiol 2023; 14:1108661. [PMID: 36846769 PMCID: PMC9950749 DOI: 10.3389/fmicb.2023.1108661] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023] Open
Abstract
Rosacea is a chronic inflammatory cutaneous disorder of uncertain etiology that mainly affects the centrofacial region, including cheeks, nose, chin, forehead, and eyes. The pathogenesis of rosacea remains unclear because it involves several complex factors. Additionally, the potential treatment methods need to be explored. We reviewed the common bacterial species in the skin microbiota and gut microbiota of rosacea patients such as Demodex folliculorum, Staphylococcus epidermidis, Bacillus oleronius, Cutibacterium acnes, and Helicobacter pylori and identified their role in the pathogenesis. Besides, we summarized the influence factors such as temperature and age on rosacea patients. We also systematically reviewed the commonly used clinical treatment methods, including antibiotics, probiotics. as well as their treatment mechanism and application precautions.
Collapse
Affiliation(s)
- Weitao Zhu
- Clinical Medicine (Eight-Year Program), West China School of Medicine, Sichuan University, Chengdu, China
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Xiang Wen, ✉
| |
Collapse
|
11
|
Rybak I, Haas KN, Dhaliwal SK, Burney WA, Pourang A, Sandhu SS, Maloh J, Newman JW, Crawford R, Sivamani RK. Prospective Placebo-Controlled Assessment of Spore-Based Probiotic Supplementation on Sebum Production, Skin Barrier Function, and Acne. J Clin Med 2023; 12:jcm12030895. [PMID: 36769543 PMCID: PMC9918080 DOI: 10.3390/jcm12030895] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Probiotic supplementation has been shown to modulate the gut-skin axis. The goal of this study was to investigate whether oral spore-based probiotic ingestion modulates the gut microbiome, plasma short-chain fatty acids (SCFAs), and skin biophysical properties. This was a single-blinded, 8-week study (NCT03605108) in which 25 participants, 7 with noncystic acne, were assigned to take placebo capsules for the first 4 weeks, followed by 4 weeks of probiotic supplementation. Blood and stool collection, facial photography, sebum production, transepidermal water loss (TEWL), skin hydration measurements, and acne assessments were performed at baseline, 4, and 8 weeks. Probiotic supplementation resulted in a decreasing trend for the facial sebum excretion rate and increased TEWL overall. Subanalysis of the participants with acne showed improvement in total, noninflammatory, and inflammatory lesion counts, along with improvements in markers of gut permeability. The gut microbiome of the nonacne population had an increase in the relative abundance of Akkermansia, while the subpopulation of those with acne had an increase in the relative abundance of Lachnospiraceae and Ruminococcus gnavus. Probiotic supplementation augmented the circulating acetate/propionate ratio. There is preliminary evidence for the use of spore-based probiotic supplementation to shift the gut microbiome and augment short-chain fatty acids in those with and without acne. Further spore-based supplementation studies in those with noncystic acne are warranted.
Collapse
Affiliation(s)
- Iryna Rybak
- Department of Dermatology, University of California—Davis, Sacramento, CA 95816, USA
| | - Kelly N. Haas
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Simran K. Dhaliwal
- Department of Dermatology, University of California—Davis, Sacramento, CA 95816, USA
| | - Waqas A. Burney
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
| | - Aunna Pourang
- Department of Dermatology, University of California—Davis, Sacramento, CA 95816, USA
- Department of Dermatology, Wayne StateUniversity, Dearborn, MI 48124, USA
| | - Simran S. Sandhu
- School of Medicine, University of California—Davis, Sacramento, CA 95816, USA
| | - Jessica Maloh
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
| | - John W. Newman
- Department of Nutrition, University of California—Davis, Sacramento, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, Davis, CA 95616, USA
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Robert Crawford
- Department of Biological Sciences, California State University, Sacramento, CA 95819, USA
| | - Raja K. Sivamani
- Department of Dermatology, University of California—Davis, Sacramento, CA 95816, USA
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
- Pacific Skin Institute, Sacramento, CA 95815, USA
- Correspondence:
| |
Collapse
|
12
|
Bozomitu L, Miron I, Adam Raileanu A, Lupu A, Paduraru G, Marcu FM, Buga AML, Rusu DC, Dragan F, Lupu VV. The Gut Microbiome and Its Implication in the Mucosal Digestive Disorders. Biomedicines 2022; 10:biomedicines10123117. [PMID: 36551874 PMCID: PMC9775516 DOI: 10.3390/biomedicines10123117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
The gastrointestinal (GI) tract is one of the most studied compartments of the human body as it hosts the largest microbial community including trillions of germs. The relationship between the human and its associated flora is complex, as the microbiome plays an important role in nutrition, metabolism and immune function. With a dynamic composition, influenced by many intrinsic and extrinsic factors, there is an equilibrium maintained in the composition of GI microbiota, translated as "eubiosis". Any disruption of the microbiota leads to the development of different local and systemic diseases. This article reviews the human GI microbiome's composition and function in healthy individuals as well as its involvement in the pathogenesis of different digestive disorders. It also highlights the possibility to consider flora manipulation a therapeutic option when treating GI diseases.
Collapse
Affiliation(s)
- Laura Bozomitu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ingrith Miron
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Anca Adam Raileanu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (A.A.R.); (A.L.)
| | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (A.A.R.); (A.L.)
| | - Gabriela Paduraru
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Florin Mihai Marcu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Ana Maria Laura Buga
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela Carmen Rusu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
13
|
Hybrid Nanoparticles of Proanthocyanidins from Uncaria tomentosa Leaves: QTOF-ESI MS Characterization, Antioxidant Activity and Immune Cellular Response. PLANTS 2022; 11:plants11131737. [PMID: 35807688 PMCID: PMC9268950 DOI: 10.3390/plants11131737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Previous studies in Uncaria tomentosa have shown promising results concerning the characterization of polyphenols with leaves yielding more diverse proanthocyanidins and higher bioactivities values. However, the polyphenols-microbiota interaction at the colonic level and their catabolites avoid the beneficial effects that can be exerted by this medicinal plant when consumed. In this regard, a new generation of hybrid nanoparticles has demonstrated improvements in natural compounds’ activity by increasing their bioavailability. In this line, we report a detailed study of the characterization of a proanthocyanidin-enriched extract (PA-E) from U. tomentosa leaves from Costa Rica using UPLC-QTOF-ESI MS. Moreover, two types of hybrid nanoparticles, a polymeric-lipid (F-1) and a protein-lipid (F-2) loaded with PA-E were synthesized and their characterization was conducted by dynamic light scattering (DLS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR), high-resolution transmission electron microscopy (HR-TEM), and encapsulation efficiency (%EE). In addition, in vitro release, antioxidant activity through 2,2-diphenyl-1-picrylhidrazyl (DPPH) as well as in vivo delayed-type hypersensitivity (DTH) reaction was evaluated. Results allowed the identification of 50 different compounds. The PA-E loaded nanoparticles F-1 and F-2 achieved encapsulation efficiency of ≥92%. The formulations exhibited porosity and spherical shapes with a size average of 26.1 ± 0.8 and 11.8 ± 3.3 nm for F-1 and F-2, respectively. PA-E increased its release rate from the nanoparticles compared to the free extract in water and antioxidant activity in an aqueous solution. In vivo, the delayed-type hypersensitive test shows the higher immune stimulation of the flavan-3-ols with higher molecular weight from U. tomentosa when administered as a nanoformulation, resulting in augmented antigen-specific responses. The present work constitutes to our knowledge, the first report on these bioactivities for proanthocyanidins from Uncaria tomentosa leaves when administrated by nanosystems, hence, enhancing the cellular response in mice, confirming their role in immune modulation.
Collapse
|
14
|
Saeed NK, Al-Beltagi M, Bediwy AS, El-Sawaf Y, Toema O. Gut microbiota in various childhood disorders: Implication and indications. World J Gastroenterol 2022; 28:1875-1901. [PMID: 35664966 PMCID: PMC9150060 DOI: 10.3748/wjg.v28.i18.1875] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota has a significant role in gut development, maturation, and immune system differentiation. It exerts considerable effects on the child's physical and mental development. The gut microbiota composition and structure depend on many host and microbial factors. The host factors include age, genetic pool, general health, dietary factors, medication use, the intestine's pH, peristalsis, and transit time, mucus secretions, mucous immunoglobulin, and tissue oxidation-reduction potentials. The microbial factors include nutrient availability, bacterial cooperation or antagonism, and bacterial adhesion. Each part of the gut has its microbiota due to its specific characteristics. The gut microbiota interacts with different body parts, affecting the pathogenesis of many local and systemic diseases. Dysbiosis is a common finding in many childhood disorders such as autism, failure to thrive, nutritional disorders, coeliac disease, Necrotizing Enterocolitis, helicobacter pylori infection, functional gastrointestinal disorders of childhood, inflammatory bowel diseases, and many other gastrointestinal disorders. Dysbiosis is also observed in allergic conditions like atopic dermatitis, allergic rhinitis, and asthma. Dysbiosis can also impact the development and the progression of immune disorders and cardiac disorders, including heart failure. Probiotic supplements could provide some help in managing these disorders. However, we are still in need of more studies. In this narrative review, we will shed some light on the role of microbiota in the development and management of common childhood disorders.
Collapse
Affiliation(s)
- Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Manama 12, Bahrain
- Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Busaiteen 15503, Bahrain
| | - Mohammed Al-Beltagi
- Department of Pediatrics, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Adel Salah Bediwy
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Yasser El-Sawaf
- Department of Tropical Medicine, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Gastroenterology, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Bahrain
| | - Osama Toema
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
15
|
Sathikulpakdee S, Kanokrungsee S, Vitheejongjaroen P, Kamanamool N, Udompataikul M, Taweechotipatr M. The efficacy of probiotic-derived lotion from Lactobacillus paracasei MSMC 39-1 in mild to moderate acne vulgaris, randomized controlled trial. J Cosmet Dermatol 2022; 21:5092-5097. [PMID: 35384257 DOI: 10.1111/jocd.14971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Probiotics provide benefits for reducing acne. Previous studies showed an anti-inflammatory effect of Lactobacillus paracasei. However, the clinical evidence of topical probiotic lotion and acne treatment is still lacking. OBJECTIVE To evaluate the efficacy and safety of probiotic-derived lotion compared to 2.5 % benzoyl peroxide in the treatment of mild to moderate acne vulgaris. METHODS Topical probiotic-derived lotion was formulated from cell-free supernatant of L. paracasei MSMC 39-1. In vivo study showed the ability of the supernatant to inhibit both antibiotic-resistance and susceptibility strains of C. acnes and inhibit tumor necrosis factor-α. The patients with mild to moderate acne vulgaris on the face were randomized to receive topical probiotic-derived lotion or 2.5 % benzoyl peroxide. Acne lesion counts, erythema index, and side effects were assessed after 2 and 4 weeks of treatment. RESULTS One hundred and four acne vulgaris patients were enrolled. After four weeks of treatment, the inflammatory acne lesion counts and erythema index significantly decreased compared to baseline in both the probiotic lotion group and 2.5 % benzoyl peroxide group (p < 0.001 in both groups) without statistically significant difference between the two groups (p > 0.05). However, the comedones were not affected in both groups. Four patients (7.69%) treated with probiotic-derived lotion and 14 patients (26.92%) treated with 2.5% benzoyl peroxide reported treatment-associated side effects. CONCLUSION Probiotic-derived lotion is safe and effective for treating mild to moderate acne vulgaris, a comparable outcome with 2.5% benzoyl peroxide. It could be an alternative treatment of acne with more minor side effects.
Collapse
Affiliation(s)
- Sunattha Sathikulpakdee
- Skin Center, Faculty of medicine, Srinakharinwirot University, 114 Sukhumvit 21, Bangkok, Thailand, 10110
| | - Silada Kanokrungsee
- Skin Center, Faculty of medicine, Srinakharinwirot University, 114 Sukhumvit 21, Bangkok, Thailand, 10110.,Center of excellence in probiotics, Strategic wisdom and research institute, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Porntipha Vitheejongjaroen
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 21, Bangkok, Thailand, 10110
| | - Nanticha Kamanamool
- Department of Preventive and Social Medicine, Srinakharinwirot University, 114 Sukhumvit 21, Bangkok, Thailand, 10110
| | - Montree Udompataikul
- Skin Center, Faculty of medicine, Srinakharinwirot University, 114 Sukhumvit 21, Bangkok, Thailand, 10110
| | - Malai Taweechotipatr
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 21, Bangkok, Thailand, 10110.,Center of excellence in probiotics, Strategic wisdom and research institute, Srinakharinwirot University, Bangkok, 10110, Thailand
| |
Collapse
|
16
|
Singh V, Ahlawat S, Mohan H, Gill SS, Sharma KK. Balancing reactive oxygen species generation by rebooting gut microbiota. J Appl Microbiol 2022; 132:4112-4129. [PMID: 35199405 DOI: 10.1111/jam.15504] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS; free radical form O2 •‾ , superoxide radical; OH• , hydroxyl radical; ROO• , peroxyl; RO• , alkoxyl and non-radical form 1 O2 , singlet oxygen; H2 O2 , hydrogen peroxide) are inevitable companions of aerobic life with crucial role in gut health. But, overwhelming production of ROS can cause serious damage to biomolecules. In this review, we have discussed several sources of ROS production that can be beneficial or dangerous to the human gut. Microorganisms, organelles and enzymes play crucial role in ROS generation, where, NOX1 is the main intestinal enzyme, which produce ROS in the intestine epithelial cells. Previous studies have reported that probiotics play significant role in gut homeostasis by checking the ROS generation, maintaining the antioxidant level, immune system and barrier protection. With current knowledge, we have critically analyzed the available literature and presented the outcome in the form of bubble maps to suggest the probiotics that help in controlling the ROS-specific intestinal diseases, such as inflammatory bowel disease (IBD) and colon cancer. Finally, it has been concluded that rebooting of the gut microbiota with probiotics, postbiotics or fecal microbiota transplantation (FMT) can have crucial implications in the structuring of gut communities for the personalized management of the gastrointestinal (GI) diseases.
Collapse
Affiliation(s)
- Vandna Singh
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Shruti Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.,Presently at SGT University, Badli Road Chandu, Budhera, Gurugr, Gurgaon, Haryana, India
| | - Hari Mohan
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sarvajeet Singh Gill
- Department of Plant Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
17
|
Rinaldi F, Marotta L, Mascolo A, Amoruso A, Pane M, Giuliani G, Pinto D. Facial Acne: A Randomized, Double-Blind, Placebo-Controlled Study on the Clinical Efficacy of a Symbiotic Dietary Supplement. Dermatol Ther (Heidelb) 2022; 12:577-589. [PMID: 35061237 PMCID: PMC8850513 DOI: 10.1007/s13555-021-00664-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction Treatments other than topical and systemic antibiotics are needed to restore the dysbiosis correlated with acne onset and evolution. In this view, probiotics and botanical extracts could represent a valid adjunctive therapeutic approach. The purpose of this study was to test the efficacy of a dietary supplement containing probiotics (Bifidobacterium breve BR03 DSM 16604, Lacticaseibacillus casei LC03 DSM 27537, and Ligilactobacillus salivarius LS03 DSM 22776) and botanical extract (lupeol from Solanum melongena L. and Echinacea extract) in subjects with mild to moderate acne over an 8-week study period. Methods Monocentric, randomized, double-blind, four-arm, placebo-controlled clinical study involving 114 subjects. Results A significant (p < 0.05) effect on the number of superficial inflammatory lesions was reported over the study period in the subjects taking the study agent (group II) (−56.67%), the botanical extracts (group III) (−40.00%), and the probiotics (group IV) (−38.89%) versus placebo (−10.00%). A significant (p < 0.05) decrease in mean desquamation score, sebum secretion rate, and porphyrin mean count versus baseline was also reported, and the effect was most evident for group II. The analysis of log relative abundance after 4 and 8 weeks of treatment compared with baseline showed a significant (p < 0.01) decrease in Cutibacterium acnes and S. aureus, along with a contextually and significant (p < 0.05) increase in Staphylococcus epidermidis, especially in group II. No significant changes were reported for group I. Conclusion The results from this study suggest that the administration of the dietary supplement under study was effective, safe, and well tolerated in subjects with mild to moderate acne and could represent a promising optional complement for the treatment of inflammatory acne as well as for control of acne-prone skin.
Collapse
Affiliation(s)
- Fabio Rinaldi
- Research and Development Department, Giuliani S.p.A., Palagi, 2, 20129, Milan, MI, Italy.
| | - Laura Marotta
- Research and Development Department, Giuliani S.p.A., Palagi, 2, 20129, Milan, MI, Italy
| | - Antonio Mascolo
- Research and Development Department, Giuliani S.p.A., Palagi, 2, 20129, Milan, MI, Italy
| | | | - Marco Pane
- Probiotical Research S.r.l., Novara, Italy
| | - Giammaria Giuliani
- Research and Development Department, Giuliani S.p.A., Palagi, 2, 20129, Milan, MI, Italy
| | - Daniela Pinto
- Research and Development Department, Giuliani S.p.A., Palagi, 2, 20129, Milan, MI, Italy
| |
Collapse
|
18
|
Sharma G, Khanna G, Sharma P, Deol PK, Kaur IP. Mechanistic Role of Probiotics in Improving Skin Health. PROBIOTIC RESEARCH IN THERAPEUTICS 2022:27-47. [DOI: 10.1007/978-981-16-5628-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Tsai WH, Chou CH, Huang TY, Wang HL, Chien PJ, Chang WW, Lee HT. Heat-Killed Lactobacilli Preparations Promote Healing in the Experimental Cutaneous Wounds. Cells 2021; 10:3264. [PMID: 34831486 PMCID: PMC8625647 DOI: 10.3390/cells10113264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
Probiotics are defined as microorganisms with beneficial health effects when consumed by humans, being applied mainly to improve allergic or intestinal diseases. Due to the increasing resistance of pathogens to antibiotics, the abuse of antibiotics becomes inefficient in the skin and in systemic infections, and probiotics may also provide the protective effect for repairing the healing of infected cutaneous wounds. Here we selected two Lactobacillus strains, L. plantarum GMNL-6 and L. paracasei GMNL-653, in heat-killed format to examine the beneficial effect in skin wound repair through the selection by promoting collagen synthesis in Hs68 fibroblast cells. The coverage of gels containing heat-killed GMNL-6 or GMNL-653 on the mouse tail with experimental wounds displayed healing promoting effects with promoting of metalloproteinase-1 expression at the early phase and reduced excessive fibrosis accumulation and deposition in the later tail-skin recovery stage. More importantly, lipoteichoic acid, the major component of Lactobacillus cell wall, from GMNL-6/GMNL-653 could achieve the anti-fibrogenic benefit similar to the heat-killed bacteria cells in the TGF-β stimulated Hs68 fibroblast cell model. Our study offers a new therapeutic potential of the heat-killed format of Lactobacillus as an alternative approach to treating skin healing disorders.
Collapse
Affiliation(s)
- Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan 741014, Taiwan; (W.-H.T.); (C.-H.C.); (T.-Y.H.)
| | - Chia-Hsuan Chou
- Research and Development Department, GenMont Biotech Incorporation, Tainan 741014, Taiwan; (W.-H.T.); (C.-H.C.); (T.-Y.H.)
| | - Tsuei-Yin Huang
- Research and Development Department, GenMont Biotech Incorporation, Tainan 741014, Taiwan; (W.-H.T.); (C.-H.C.); (T.-Y.H.)
| | - Hui-Ling Wang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan; (H.-L.W.); (P.-J.C.)
| | - Peng-Ju Chien
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan; (H.-L.W.); (P.-J.C.)
| | - Wen-Wei Chang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan; (H.-L.W.); (P.-J.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Hsueh-Te Lee
- Institute of Anatomy & Cell Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115024, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
20
|
Rahmouni F, Saoudi M, Rebai T. Therapeutics studies and biological properties of Teucrium polium (Lamiaceae). Biofactors 2021; 47:952-963. [PMID: 34850466 DOI: 10.1002/biof.1782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 01/30/2023]
Abstract
Teucrium polium has been used in traditional medicine as antifungal, antipyretic, antispasmodic, and antibacterial. It is consumed by many jordanians for the treatment of many diseases. The effects of this plant have been investigated in kidney, liver, and brain. Its antidiabetic, antimicrobial, antioxidant, and anticancer effects have been introduced. Polyphenolic compound, flavonoids, monoterpenes, alkanoides, and essential oils were identified. Several studies revealed that this plant has a hypoglycemic effect and can help to control blood sugar. It was reported that plants containing flavonoids and phenolics compounds exhibit a large array of biological activities like genotoxicity (chromosomal aberrations and sister chromatid exchange) and oxidative stress damage. These phytochemicals are found in herbal and vegetables plants, as well as being reliably protective against oxidative stress damage and lipid peroxidation. In addition, T. polium has secondary effects on different organs, namely liver, kidney and at high doses this plant becomes toxic. In conclusion, this review investigates many pharmacologicals properties and side effects of T. polium.
Collapse
Affiliation(s)
- Fatma Rahmouni
- Laboratory of Histophysiology of Induced and Developmental Diseases, Medicine Faculty of Sfax University, Sfax, Tunisia
| | - Mongi Saoudi
- Laboratory of Animal Physiology, Sciences Faculty of Sfax University, Sfax, Tunisia
| | - Tarek Rebai
- Laboratory of Histophysiology of Induced and Developmental Diseases, Medicine Faculty of Sfax University, Sfax, Tunisia
| |
Collapse
|
21
|
Pandiyan P, McCormick TS. Regulation of IL-17A-Producing Cells in Skin Inflammatory Disorders. J Invest Dermatol 2021; 142:867-875. [PMID: 34561088 DOI: 10.1016/j.jid.2021.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
This review focuses on the IL-17A family of cytokines produced by T lymphocytes and other immune cells and how they are involved in cutaneous pathogenic responses. It will also discuss cutaneous dysbiosis and FOXP3+ regulatory T cells in the context of inflammatory conditions linked to IL-17 responses in the skin. Specifically, it will review key literature on chronic mucocutaneous candidiasis and psoriasis.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Thomas S McCormick
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Laws GL, Hale JDF, Kemp RA. Human Systemic Immune Response to Ingestion of the Oral Probiotic Streptococcus salivarius BLIS K12. Probiotics Antimicrob Proteins 2021; 13:1521-1529. [PMID: 34282568 DOI: 10.1007/s12602-021-09822-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 12/25/2022]
Abstract
Streptococcus salivarius K12 is an oral probiotic known to contribute to protection against oral pathogenic bacteria in humans. Studies of immune responses to S. salivarius K12 have focused on the oral cavity, and systemic immune responses have not yet been reported. The aim of this study was to identify acute systemic immune responses to the commercial product, S. salivarius BLIS K12, in a double-blinded, placebo-controlled human clinical trial. It was hypothesised that consumption of S. salivarius BLIS K12 would induce an anti-inflammatory response and a decrease in pro-inflammatory cytokines. Blood samples were obtained from participants prior to a single dose of S. salivarius BLIS K12 or a placebo and then secondary blood samples were obtained 24 h and 7 days post-consumption. Samples were analysed using multi-parametric flow cytometry, to quantify immune cell frequency changes, and by a LEGENDplex assay of human inflammatory cytokines. Consumption of S. salivarius BLIS K12 was associated with increased levels of IL-8 at 24 h. The frequency of Tregs increased in samples taken 7 days after probiotic consumption, and IL-10 concentrations were higher at 7 days than 24 h after consumption. There was no difference in the frequency and/or activation of CD4+ T cells, CD8+ T cells, B cells and NK cells. Interestingly, there was an increase in IL-12, 7 days after the consumption of S. salivarius BLIS K12. Collectively, this research demonstrates that ingestion of the probiotic S. salivarius K12 can induce changes in the systemic immune response. The implications of the generation and type of immune response warrant further study to determine potential health benefits.
Collapse
Affiliation(s)
- Gemma L Laws
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
23
|
Zhang F, Ferrero M, Dong N, D’Auria G, Reyes-Prieto M, Herreros-Pomares A, Calabuig-Fariñas S, Duréndez E, Aparisi F, Blasco A, García C, Camps C, Jantus-Lewintre E, Sirera R. Analysis of the Gut Microbiota: An Emerging Source of Biomarkers for Immune Checkpoint Blockade Therapy in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13112514. [PMID: 34063829 PMCID: PMC8196639 DOI: 10.3390/cancers13112514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The human gut harbors around 1013-1014 microorganisms, collectively referred to as gut microbiota. Recent studies have found that the gut microbiota may have an impact on the interaction between immune regulation and anti-cancer immunotherapies. METHODS In order to characterize the diversity and composition of commensal microbiota and its relationship with response to immune checkpoint blockade (ICB), 16S ribosomal DNA (rDNA) sequencing was performed on 69 stool samples from advanced non-small cell lung cancer (NSCLC) patients prior to treatment with ICB. RESULTS The use of antibiotics and ICB-related skin toxicity were significantly associated with reduced gut microbiota diversity. However, antibiotics (ATB) usage was not related to low ICB efficacy. Phascolarctobacterium was enriched in patients with clinical benefit and correlated with prolonged progression-free survival, whereas Dialister was more represented in patients with progressive disease, and its higher relative abundance was associated with reduced progression-free survival and overall survival, with independent prognostic value in multivariate analysis. CONCLUSIONS Our results corroborate the relation between the baseline gut microbiota composition and ICB clinical outcomes in advanced NSCLC patients, and provide novel potential predictive and prognostic biomarkers for immunotherapy in NSCLC.
Collapse
Affiliation(s)
- Feiyu Zhang
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (F.Z.); (M.F.); (N.D.); (A.H.-P.); (S.C.-F.); (E.D.); (C.C.)
| | - Macarena Ferrero
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (F.Z.); (M.F.); (N.D.); (A.H.-P.); (S.C.-F.); (E.D.); (C.C.)
- Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe—Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Ning Dong
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (F.Z.); (M.F.); (N.D.); (A.H.-P.); (S.C.-F.); (E.D.); (C.C.)
| | - Giuseppe D’Auria
- Sequencing and Bioinformatics Service, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana, FISABIO, 46020 Valencia, Spain; (G.D.); (M.R.-P.)
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, CIBERESP, 28029 Madrid, Spain
| | - Mariana Reyes-Prieto
- Sequencing and Bioinformatics Service, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana, FISABIO, 46020 Valencia, Spain; (G.D.); (M.R.-P.)
- Evolutionary Genetics, Institute for Integrative Systems Biology, University of Valencia and Spanish Research Council, 46980 Valencia, Spain
| | - Alejandro Herreros-Pomares
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (F.Z.); (M.F.); (N.D.); (A.H.-P.); (S.C.-F.); (E.D.); (C.C.)
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (F.Z.); (M.F.); (N.D.); (A.H.-P.); (S.C.-F.); (E.D.); (C.C.)
- Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe—Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Elena Duréndez
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (F.Z.); (M.F.); (N.D.); (A.H.-P.); (S.C.-F.); (E.D.); (C.C.)
- Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe—Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Francisco Aparisi
- Department of Medical Oncology, Hospital General de Requena, 46340 Valencia, Spain;
| | - Ana Blasco
- Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe—Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
| | - Clara García
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
| | - Carlos Camps
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (F.Z.); (M.F.); (N.D.); (A.H.-P.); (S.C.-F.); (E.D.); (C.C.)
- Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe—Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (F.Z.); (M.F.); (N.D.); (A.H.-P.); (S.C.-F.); (E.D.); (C.C.)
- Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe—Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
- Correspondence: (E.J.-L.); (R.S.)
| | - Rafael Sirera
- Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe—Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
- Correspondence: (E.J.-L.); (R.S.)
| |
Collapse
|
24
|
Lee HJ, Cho HE, Park HJ. Germinated black soybean fermented with Lactobacillus pentosus SC65 alleviates DNFB-induced delayed-type hypersensitivity in C57BL/6N mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113236. [PMID: 32750462 DOI: 10.1016/j.jep.2020.113236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhynchosia nulubilis (black soybean) has many applications in oriental medicine. It is traditionally used to treat disease related with high blood pressure, diabetes, inflammation, and osteoporosis. Furthermore, fermented soybean foods have traditionally been used for immunity enhancement in East Asia. However, the anti-inflammatory effects of germinated R. nulubilis (GR) against delayed-type hypersensitivity (DTH) are not fully understood. AIM OF STUDY This study aimed to investigate the anti-inflammatory effects of germinated Rhynchosia nulubilis (GR) fermented with the lactic acid bacterium Lactobacillus pentosus SC65 (GR-SC65) isolated from pickled burdock. MATERIALS AND METHODS We investigated the effects of GR-SC65 (300 mg/kg/day) on ear thickness and immune cell infiltration in DNFB-induced DTH in mice. We used dexamethasone (3 mg/kg) as a reference drug. Changes in infiltration of CD4+ and CD8+ T cells and NK cells were examined by immunohistochemistry. In addition, we investigated cytokine and chemokine production related to DTH using reverse transcription-polymerase chain reaction. We also investigated DTH-related cytokine production using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. RESULTS Two lactic acid bacterial strains (Lactobacillus pentosus SC65 and Pediococcus pentosaceus ON81A) were selected for fermenting GR due to their high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity. The total polyphenol contents (TPCs) in GR-SC65 and GR-ON81A were higher than that in unfermented GR (∗∗∗P < 0.001 vs. GR). Content of daidzein, glycitein, and genistein, the deglycosylated form of isoflavonoids, was higher in GR-SC65 than in unfermented GR. The ethanol extracts of GR-SC65 exerted a stronger anti-inflammatory activity than GR by inhibiting pro-inflammatory cytokines, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in LPS-induced RAW264.7 macrophages. GR-SC65 reduced 1-fluoro-2,4-dinitrofluorobenzene (DNFB)-induced ear swelling and hyperplasia as well as vascular permeability. Fewer infiltrated CD4+ and CD8+ T cells were observed in the ear tissue of the GR-SC65-treated mice than those of the unfermented GR-treated mice. Furthermore, fewer infiltrated NK cells were observed in the GR-SC65 treated mice, than in the GR-treated mice. GR-SC65 significantly diminished the levels of CCL5 and COX-2 mRNAs and increased the level of IL-10 mRNA. CONCLUSIONS These data suggest that GR-SC65 can be used as a health supplement or a prophylactic against delayed-type hypersensitive inflammatory disease.
Collapse
Affiliation(s)
- Hye-Ji Lee
- Department of Food Science and Biotechnology, College of BioNano, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea
| | - Ha-Eun Cho
- Department of Food Science and Biotechnology, College of BioNano, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea.
| |
Collapse
|
25
|
Abstract
Probiotics and synbiotics are known to have beneficial effects on human health and disease. Hirsutism, a disorder that is characterised by the presence of coarse terminal hairs in a male-like pattern, is usually caused by elevated androgen levels in blood plasma. This disorder is usually observed in PCOS women and it is linked to insulin resistance (IR). Although idiopathic hirsutism (IH) is not shown to have excess androgen production from the ovarian and adrenal glands, increased 5α-reductase in peripheral tissues and insulin resistance are common observations. The effect of probiotics and synbiotics have been recently studied on PCOS women; androgens were also included in the hormonal groups that were investigated. Only a few studies focus on hirsutism and the potential effect of the beneficial microbes mentioned, whereas the increasing interest on insulin resistance and synbiotics indicate a potential beneficial effect on hirsutism through the management of insulin resistance.
Collapse
Affiliation(s)
- Vasiliki Lolou
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| |
Collapse
|
26
|
Chen L, Li J, Zhu W, Kuang Y, Liu T, Zhang W, Chen X, Peng C. Skin and Gut Microbiome in Psoriasis: Gaining Insight Into the Pathophysiology of It and Finding Novel Therapeutic Strategies. Front Microbiol 2020; 11:589726. [PMID: 33384669 PMCID: PMC7769758 DOI: 10.3389/fmicb.2020.589726] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Psoriasis affects the health of myriad populations around the world. The pathogenesis is multifactorial, and the exact driving factor remains unclear. This condition arises from the interaction between hyperproliferative keratinocytes and infiltrating immune cells, with poor prognosis and high recurrence. Better clinical treatments remain to be explored. There is much evidence that alterations in the skin and intestinal microbiome play an important role in the pathogenesis of psoriasis, and restoration of the microbiome is a promising preventive and therapeutic strategy for psoriasis. Herein, we have reviewed recent studies on the psoriasis-related microbiome in an attempt to confidently identify the “core” microbiome of psoriasis patients, understand the role of microbiome in the pathogenesis of psoriasis, and explore new therapeutic strategies for psoriasis through microbial intervention.
Collapse
Affiliation(s)
- Lihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Tao Liu
- Central Laboratory, Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| |
Collapse
|
27
|
Łoś-Rycharska E, Gołębiewski M, Grzybowski T, Rogalla-Ładniak U, Krogulska A. The microbiome and its impact on food allergy and atopic dermatitis in children. Postepy Dermatol Alergol 2020; 37:641-650. [PMID: 33240001 PMCID: PMC7675070 DOI: 10.5114/ada.2019.90120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/29/2019] [Indexed: 01/23/2023] Open
Abstract
Food allergy (FA) affects 4-10% of children, especially children with atopic dermatitis (AD). During infancy the gut microbiome may determine both the course of FA and tolerance to food allergens. Analogically, the skin microbiome changes in the course of AD. Most studies have associated FA with a lower abundance and diversity of Lactobacillales and Clostridiales, but greater numbers of Enterobacterales, while AD in children has been associated with lower numbers of Staphylococcus epidermidis and S. hominis but an abundance of S. aureus and Streptococcus species. An understanding of the impact of the microbiome on the clinical course of FA and AD may allow for the development of new models of allergy treatment and prevention.
Collapse
Affiliation(s)
- Ewa Łoś-Rycharska
- Department of Paediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Marcin Gołębiewski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Torun, Poland
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Torun, Poland
| | - Tomasz Grzybowski
- Chair of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Urszula Rogalla-Ładniak
- Chair of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Aneta Krogulska
- Department of Paediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
28
|
Early life microbial exposures and allergy risks: opportunities for prevention. Nat Rev Immunol 2020; 21:177-191. [PMID: 32918062 DOI: 10.1038/s41577-020-00420-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Allergies, including asthma, food allergy and atopic dermatitis, are increasing in prevalence, particularly in westernized countries. Although a detailed mechanistic explanation for this increase is lacking, recent evidence indicates that, in addition to genetic predisposition, lifestyle changes owing to modernization have an important role. Such changes include increased rates of birth by caesarean delivery, increased early use of antibiotics, a westernized diet and the associated development of obesity, and changes in indoor and outdoor lifestyle and activity patterns. Most of these factors directly and indirectly impact the formation of a diverse microbiota, which includes bacterial, viral and fungal components; the microbiota has a leading role in shaping (early) immune responses. This default programme is markedly disturbed under the influence of environmental and lifestyle risk factors. Here, we review the most important allergy risk factors associated with changes in our exposure to the microbial world and the application of this knowledge to allergy prevention strategies.
Collapse
|
29
|
Lui PP, Cho I, Ali N. Tissue regulatory T cells. Immunology 2020; 161:4-17. [PMID: 32463116 PMCID: PMC7450170 DOI: 10.1111/imm.13208] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Foxp3+ CD4+ regulatory T cells (Tregs) are an immune cell lineage endowed with immunosuppressive functionality in a wide array of contexts, including both anti-pathogenic and anti-self responses. In the past decades, our understanding of the functional diversity of circulating or lymphoid Tregs has grown exponentially. Only recently, the importance of Tregs residing within non-lymphoid tissues, such as visceral adipose tissue, muscle, skin and intestine, has been recognized. Not only are Tregs critical for influencing the kinetics and strength of immune responses, but the regulation of non-immune or parenchymal cells, also fall within the purview of tissue-resident or infiltrating Tregs. This review focuses on providing a systematic and comprehensive comparison of the molecular maintenance, local adaptation and functional specializations of Treg populations operating within different tissues.
Collapse
Affiliation(s)
- Prudence PokWai Lui
- Centre for Stem Cells and Regenerative MedicineSchool of Basic and Biomedical SciencesKing's College LondonLondonUK
| | - Inchul Cho
- Centre for Stem Cells and Regenerative MedicineSchool of Basic and Biomedical SciencesKing's College LondonLondonUK
| | - Niwa Ali
- Centre for Stem Cells and Regenerative MedicineSchool of Basic and Biomedical SciencesKing's College LondonLondonUK
- The Francis Crick InstituteLondonUK
| |
Collapse
|
30
|
Abstract
Our understanding of the role of Cutibacterium acnes in the pathophysiology of acne has recently undergone a paradigm shift: rather than C. acnes hyperproliferation, it is the loss of balance between the different C. acnes phylotypes, together with a dysbiosis of the skin microbiome, which results in acne development. The loss of diversity of C. acnes phylotypes acts as a trigger for innate immune system activation, leading to cutaneous inflammation. A predominance of C. acnes phylotype IA1 has been observed, with a more virulent profile in acne than in normal skin. Other bacteria, mainly Staphylococcus epidermis, are also implicated in acne. S. epidermidis and C. acnes interact and are critical for the regulation of skin homeostasis. Recent studies also showed that the gut microbiome is involved in acne, through interactions with the skin microbiome. As commonly used topical and systemic antibiotics induce cutaneous dysbiosis, our new understanding of acne pathophysiology has prompted a change in direction for acne treatment. In the future, the development of individualized acne therapies will allow targeting of the pathogenic strains, leaving the commensal strains intact. Such alternative treatments, involving modifications of the microbiome, will form the next generation of ‘ecobiological’ anti-inflammatory treatments.
Collapse
Affiliation(s)
- Brigitte Dréno
- Dermatology Department, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
- CIC 1413, CRCINA, U1232, Nantes, France
| | | | - Amir Khammari
- Dermatology Department, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
- CIC 1413, CRCINA, U1232, Nantes, France
| | - Stéphane Corvec
- Bacteriology and Hygiene Unit, Biology Institute, Nantes, France
- CRCINA, U1232, Nantes, France
| |
Collapse
|
31
|
Patra V, Gallais Sérézal I, Wolf P. Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020; 12:E1795. [PMID: 32560310 PMCID: PMC7353315 DOI: 10.3390/nu12061795] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The human skin hosts innumerable microorganisms and maintains homeostasis with the local immune system despite the challenges offered by environmental factors such as ultraviolet radiation (UVR). UVR causes cutaneous alterations such as acute (i.e., sunburn) and chronic inflammation, tanning, photoaging, skin cancer, and immune modulation. Phototherapy on the other hand is widely used to treat inflammatory skin diseases such as psoriasis, atopic dermatitis, polymorphic light eruption and graft-versus-host disease (GvHD), as well as neoplastic skin diseases such as cutaneous T cell lymphoma, among others. Previous work has addressed the use of pro- and pre-biotics to protect against UVR through anti-oxidative, anti-inflammatory, anti-aging, anti-carcinogenic and/or pro-and contra-melanogenic properties. Herein, we discuss and share perspectives of the potential benefits of novel treatment strategies using microbes and pro- and pre-biotics as modulators of the skin response to UVR, and how they could act both for protection against UVR-induced skin damage and as enhancers of the UVR-driven therapeutic effects on the skin.
Collapse
Affiliation(s)
- VijayKumar Patra
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria;
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| | - Irène Gallais Sérézal
- Department of Medicine, Unit of Rheumatology, Karolinska Institutet, 171 77 Solna, Sweden;
- Department of Dermatology, Besançon University Hospital, 25000 Besancon, France
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
32
|
Huang HC, Lee IJ, Huang C, Chang TM. Lactic Acid Bacteria and Lactic Acid for Skin Health and Melanogenesis Inhibition. Curr Pharm Biotechnol 2020; 21:566-577. [DOI: 10.2174/1389201021666200109104701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/26/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
Abstract
Lactic acid bacteria are beneficial to human health. Lactic acid bacteria have wide applications
in food, cosmetic and medicine industries due to being Generally Recognized As Safe (GRAS)
and a multitude of therapeutic and functional properties. Previous studies have reported the beneficial
effects of lactic acid bacteria, their extracts or ferments on skin health, including improvements in skin
conditions and the prevention of skin diseases. Lipoteichoic acid isolated from Lactobacillus plantarum
was reported to inhibit melanogenesis in B16F10 melanoma cells. In particular, lipoteichoic acid
also exerted anti-photoaging effects on human skin cells by regulating the expression of matrix metalloproteinase-
1. The oral administration of Lactobacillus delbrueckii and other lactic acid bacteria has
been reported to inhibit the development of atopic diseases. Additionally, the clinical and histologic
evidence indicates that the topical application of lactic acid is effective for depigmentation and improving
the surface roughness and mild wrinkling of the skin caused by environmental photo-damage. This
review discusses recent findings on the effects of lactic acid bacteria on skin health and their specific
applications in skin-whitening cosmetics.
Collapse
Affiliation(s)
- Huey-Chun Huang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - I. Jung Lee
- Department of Kampo Medicine, Yokohama University of Pharmacy, Yokohama, Japan
| | - Chen Huang
- Office of Paradigm Industrial- Academic R & D Headquarter, Hungkuang University, Taichung, Taiwan
| | - Tsong-Min Chang
- Department of Applied Cosmetology, Hungkuang University, Taichung City, Taiwan
| |
Collapse
|
33
|
Atabati H, Esmaeili SA, Saburi E, Akhlaghi M, Raoofi A, Rezaei N, Momtazi-Borojeni AA. Probiotics with ameliorating effects on the severity of skin inflammation in psoriasis: Evidence from experimental and clinical studies. J Cell Physiol 2020; 235:8925-8937. [PMID: 32346892 DOI: 10.1002/jcp.29737] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Experimental and clinical studies have confirmed safety and the medical benefits of probiotics as immunomodulatory medications. Recent advances have emphasized the critical effect of gastrointestinal bacteria in the pathology of inflammatory disorders, even, outside the gut. Probiotics have shown promising results for curing skin-influencing inflammatory disorders through modulating the immune response by manipulating the gut microbiome. Psoriasis is a complex inflammatory skin disease, which exhibits a microbiome distinct from the normal skin. In the present review, we considered the impact of gastrointestinal microbiota on the psoriasis pathogenesis, and through literature survey, attempted to explore probiotic species utilized for psoriasis treatment.
Collapse
Affiliation(s)
- Hadi Atabati
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Clinical Research Development Center, Imam Hasan Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maedeh Akhlaghi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Amir Raoofi
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology and Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir Abbas Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Goodarzi A, Mozafarpoor S, Bodaghabadi M, Mohamadi M. The potential of probiotics for treating acne vulgaris: A review of literature on acne and microbiota. Dermatol Ther 2020; 33:e13279. [PMID: 32266790 DOI: 10.1111/dth.13279] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022]
Abstract
Acne is known as a chronic inflammatory skin disease with sever adverse effects on quality of life in the patients. The increasing resistance to antibiotics has decreased their effectiveness in treating acne. As viable microbial dietary supplements, probiotics provide health benefits through fighting pathogens and maintaining the homeostasis of the gut and skin microbiome. The present article reviewed the potential of probiotics as beneficial microorganisms for treating acne vulgaris. This review of literature was conducted through a bibliographic search of popular databases, including Science Direct, PubMed, Scielo and Medline, using keywords such as probiotics, prebiotics, synbiotics, microbiome, and acne vulgaris to determine potential applications of these beneficial microbiomes in treating acne vulgaris. Acne lesions are associated with increases in proportion of Propionibacterium acnes as a skin commensal bacterium. The environmental studies showed inhibitory effects of probiotics on P. acnes, mediating by antibacterial proteins and bacteriocin-like inhibitory substances, and their immunomodulatory effects onkeratinocytes and epithelial cells. Probiotics were also found to inhibit cytokine IL-8 in epithelial cells and keratinocytes, suggesting immunomodulatory activities. Moreover, glycerol fermentation by Staphylococcus epidermidis was found to be a natural skin defense against acne and an overgrowth inhibitor of P. acnes. As an antimicrobial agent in lotions and cosmetic formulations, Lactococcus sp. can decrease the inflammatory mediators that are produced by P. acnes and cause vasodilation, edema, mast cell degranulation and TNF-alpha release. Oral administration of probiotics was found to constitute an adjuvant therapy to conventional modalities for treating mild-to-moderate acne vulgaris.
Collapse
Affiliation(s)
- Azadeh Goodarzi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Samaneh Mozafarpoor
- Skin Disease and Leishmaniasis Research Center, Department of Dermatology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bodaghabadi
- Department of Geriatric, Tehran University of Medical Sciences (TUMS), Ziaeian Hospital, Tehran, Iran
| | - Masoumeh Mohamadi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
35
|
Sfriso R, Egert M, Gempeler M, Voegeli R, Campiche R. Revealing the secret life of skin - with the microbiome you never walk alone. Int J Cosmet Sci 2019; 42:116-126. [PMID: 31743445 PMCID: PMC7155096 DOI: 10.1111/ics.12594] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
The human skin microbiome has recently become a focus for both the dermatological and cosmetic fields. Understanding the skin microbiota, that is the collection of vital microorganisms living on our skin, and how to maintain its delicate balance is an essential step to gain insight into the mechanisms responsible for healthy skin and its appearance. Imbalances in the skin microbiota composition (dysbiosis) are associated with several skin conditions, either pathological such as eczema, acne, allergies or dandruff or non‐pathological such as sensitive skin, irritated skin or dry skin. Therefore, the development of approaches which preserve or restore the natural, individual balance of the microbiota represents a novel target not only for dermatologists but also for skincare applications. This review gives an overview on the current knowledge on the skin microbiome, the currently available sampling and analysis techniques as well as a description of current approaches undertaken in the skincare segment to help restoring and balancing the structure and functionality of the skin microbiota.
Collapse
Affiliation(s)
- R Sfriso
- DSM Nutritional Products, Personal care, Wurmisweg 576, CH-4303, Kaiseraugst, Switzerland
| | - M Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, Villingen-Schwenningen, 78054, Germany
| | - M Gempeler
- DSM Nutritional Products, Personal care, Wurmisweg 576, CH-4303, Kaiseraugst, Switzerland
| | - R Voegeli
- DSM Nutritional Products, Personal care, Wurmisweg 576, CH-4303, Kaiseraugst, Switzerland
| | - R Campiche
- DSM Nutritional Products, Personal care, Wurmisweg 576, CH-4303, Kaiseraugst, Switzerland
| |
Collapse
|
36
|
Alesa DI, Alshamrani HM, Alzahrani YA, Alamssi DN, Alzahrani NS, Almohammadi ME. The role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics. J Family Med Prim Care 2019; 8:3496-3503. [PMID: 31803643 PMCID: PMC6881942 DOI: 10.4103/jfmpc.jfmpc_709_19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/17/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
The adult intestine hosts a huge number of diverse bacterial species, collectively referred to as the microbiome, that reside mainly in the lower gut, where they maintain a symbiotic relationship with their host. Recent research points to a central role of the microbiome in many biological processes. These microbial communities are influenced by multiple environmental and dietary factors and can modulate immune responses. In addition to local effects on the gastrointestinal tract, the microbiota is associated with effects on other organs and tissues, such as the skin. Indeed, an altered microbiome has been associated with skin disorders in several instances. Thus, in this review, we describe the recent advances regarding the interplay between gut microbiota and the skin. We explore how this potential link affects skin homeostasis and its influence on modulating the cutaneous immune response, focusing on psoriasis disorder. Finally, we discuss how to take advantage of this interplay to manage this disorder, particularly through probiotics administration. In the gastrointestinal tract, the microbiome has been proven to be important in the maintenance of the balance between effector T cells and regulatory T cells, and the induction of immunoglobulin A. Moreover, gut bacterial dysbiosis is associated with chronic inflammatory disorders of the skin, such as psoriasis. Thus, the microbiome can be considered an effective therapeutical target for treating this disorder. Despite some limitations, interventions with probiotics seem promising for the development of a preventive therapy by restoring altered microbiome functionality or as an adjuvant in specific immunotherapy.
Collapse
Affiliation(s)
- Dalal I Alesa
- Dermatology Resident, Alnoor Specialist Hospital, Makkah, Saudi Arabia
| | | | - Yahya A Alzahrani
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dania N Alamssi
- General Practitioner, Consultant Center for Dermatology and Venereology Clinics, Makkah, Saudi Arabia
| | - Nada S Alzahrani
- Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
37
|
Venosi S, Ceccarelli G, de Angelis M, Laghi L, Bianchi L, Martinelli O, Maruca D, Cavallari EN, Toscanella F, Vassalini P, Trinchieri V, Oliva A, d'Ettorre G. Infected chronic ischemic wound topically treated with a multi-strain probiotic formulation: a novel tailored treatment strategy. J Transl Med 2019; 17:364. [PMID: 31706326 PMCID: PMC6842486 DOI: 10.1186/s12967-019-2111-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/26/2019] [Indexed: 12/31/2022] Open
Abstract
Background A wide debate is ongoing regarding the role of cutaneous dysbiosis in the pathogenesis and evolution of difficult-to-treat chronic wounds. Nowadays, probiotic treatment considered as an useful tool to counteract dysbiosis but the evidence in regard to their therapeutic use in the setting of difficult-to-treat cutaneous ulcers is still poor. Aim: clinical report An 83-year-old woman suffering a critical limb ischemia and an infected difficult-to-treat ulcerated cutaneous lesion of the right leg, was complementary treated with local application of a mixture of probiotic bacteria. Methods Microbiological and metabolomic analysis were conducted on wound swabs obtained before and after bacteriotherapy. Results During the treatment course, a progressive healing of the lesion was observed with microbiological resolution of the polymicrobial infection of the wound. Metabolomic analysis showed a significant difference in the local concentration of propionate, 2-hydroxyisovalerate, 2-oxoisocaproate, 2,3-butanediol, putrescine, thymine, and trimethylamine before and after bacteriotherapy. Conclusion The microbiological and metabolomic results seem to confirm the usefulness of complementary probiotic treatment in difficult-to-treat infected wounds. Further investigations are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Salvatore Venosi
- Department of Cardio-Thoraco-Vascular, Surgery and Transplants, University of Rome Sapienza, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy.
| | - Massimiliano de Angelis
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy
| | - Luca Laghi
- Department of Agri-Food Science and Technology, University of Bologna, Bologna, Italy
| | - Laura Bianchi
- Functional Proteomic Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Ombretta Martinelli
- Department of Cardio-Thoraco-Vascular, Surgery and Transplants, University of Rome Sapienza, Rome, Italy
| | - Debora Maruca
- Department of Cardio-Thoraco-Vascular, Surgery and Transplants, University of Rome Sapienza, Rome, Italy
| | - Eugenio Nelson Cavallari
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy
| | - Fabrizia Toscanella
- Diabetic Foot Center, Istituto Nazionale Ricovero e Cura Anziani (INRCA), Ancona, Italy
| | - Paolo Vassalini
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy
| | - Vito Trinchieri
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy
| |
Collapse
|
38
|
Lee YB, Byun EJ, Kim HS. Potential Role of the Microbiome in Acne: A Comprehensive Review. J Clin Med 2019; 8:jcm8070987. [PMID: 31284694 PMCID: PMC6678709 DOI: 10.3390/jcm8070987] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
Acne is a highly prevalent inflammatory skin condition involving sebaceous sties. Although it clearly develops from an interplay of multiple factors, the exact cause of acne remains elusive. It is increasingly believed that the interaction between skin microbes and host immunity plays an important role in this disease, with perturbed microbial composition and activity found in acne patients. Cutibacterium acnes (C. acnes; formerly called Propionibacterium acnes) is commonly found in sebum-rich areas and its over-proliferation has long been thought to contribute to the disease. However, information provided by advanced metagenomic sequencing has indicated that the cutaneous microbiota in acne patients and acne-free individuals differ at the virulent-specific lineage level. Acne also has close connections with the gastrointestinal tract, and many argue that the gut microbiota could be involved in the pathogenic process of acne. The emotions of stress (e.g., depression and anxiety), for instance, have been hypothesized to aggravate acne by altering the gut microbiota and increasing intestinal permeability, potentially contributing to skin inflammation. Over the years, an expanding body of research has highlighted the presence of a gut–brain–skin axis that connects gut microbes, oral probiotics, and diet, currently an area of intense scrutiny, to acne severity. This review concentrates on the skin and gut microbes in acne, the role that the gut–brain–skin axis plays in the immunobiology of acne, and newly emerging microbiome-based therapies that can be applied to treat acne.
Collapse
Affiliation(s)
- Young Bok Lee
- Department of Dermatology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Jung Byun
- Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea.
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| |
Collapse
|
39
|
Abstract
Scientific and commercial interest of probiotics, prebiotics and their effect on human health and disease has increased in the last decade. The aim of this review article is to evaluate the role of pro- and prebiotics on the normal function of healthy skin as well as their role in the prevention and therapy of skin disease. Lactobacilli and Bifidobacterium are the most commonly used probiotics and thought to mediate skin inflammation, treat atopic dermatitis (AD) and prevent allergic contact dermatitis (ACD). Probiotics are shown to decolonise skin pathogens (e.g., P. aeruginosa, S. aureus, A. Vulgaris, etc.) while kefir is also shown to support the immunity of the skin and treat skin pathogens through the production of antimicrobial substances and prebiotics. Finally, prebiotics (e.g., Fructo-oligosaccharides, galacto-oligosaccharides and konjac glucomannan hydrolysates) can contribute to the treatment of diseases including ACD, acne and photo aging primarily by enhancing the growth of probiotics.
Collapse
|
40
|
Cutting Edge: Probiotics and Fecal Microbiota Transplantation in Immunomodulation. J Immunol Res 2019; 2019:1603758. [PMID: 31143780 PMCID: PMC6501133 DOI: 10.1155/2019/1603758] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
Probiotics are commensal or nonpathogenic microbes that confer beneficial effects on the host through several mechanisms such as competitive exclusion, antibacterial effects, and modulation of immune responses. Some probiotics have been found to regulate immune responses via immune regulatory mechanisms. T regulatory (Treg) cells, T helper cell balances, dendritic cells, macrophages, B cells, and natural killer (NK) cells can be considered as the most determinant dysregulated mediators in immunomodulatory status. Recently, fecal microbiota transplantation (FMT) has been defined as the transfer of distal gut microbial communities from a healthy individual to a patient's intestinal tract to cure some immune disorders (mainly inflammatory bowel diseases). The aim of this review was followed through the recent literature survey on immunomodulatory effects and mechanisms of probiotics and FMT and also efficacy and safety of probiotics and FMT in clinical trials and applications.
Collapse
|
41
|
Vitetta L, Vitetta G, Hall S. Immunological Tolerance and Function: Associations Between Intestinal Bacteria, Probiotics, Prebiotics, and Phages. Front Immunol 2018; 9:2240. [PMID: 30356736 PMCID: PMC6189397 DOI: 10.3389/fimmu.2018.02240] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Post-birth there is a bacterial assault on all mucosal surfaces. The intestinal microbiome is an important participant in health and disease. The pattern of composition and concentration of the intestinal microbiome varies greatly. Therefore, achieving immunological tolerance in the first 3-4 years of life is critical for maintaining health throughout a lifetime. Probiotic bacteria are organisms that afford beneficial health effects to the host and in certain instances may protect against the development of disease. The potential benefits of modifying the composition of the intestinal microbial cohort for therapeutic benefit is evident in the use in high risks groups such as premature infants, children receiving antibiotics, rotavirus infections in non-vaccinated children and traveler's diarrhea in adults. Probiotics and prebiotics are postulated to have immunomodulating capabilities by influencing the intestinal microbial cohort and dampening the activity of pathobiont intestinal microbes, such as Klebsiella pneumonia and Clostridia perfringens. Lactobacilli and Bifidobacteria are examples of probiotics found in the large intestine and so far, the benefits afforded to probiotics have varied in efficacy. Most likely the efficacy of probiotic bacteria has a multifactorial dependency, namely on a number of factors that include agents used, the dose, the pattern of dosing, and the characteristics of the host and the underlying luminal microbial environment and the activity of bacteriophages. Bacteriophages, are small viruses that infect and lyse intestinal bacteria. As such it can be posited that these viruses display an effective local protective control mechanism for the intestinal barrier against commensal pathobionts that indirectly may assist the host in controlling bacterial concentrations in the gut. A co-operative activity may be envisaged between the intestinal epithelia, mucosal immunity and the activity of bacteriophages to eliminate pathobiots, highlighting the potential role of bacteriophages in assisting with maintaining intestinal homeostasis. Hence bacteriophage local control of inflammation and immune responses may be an additional immunological defense mechanism that exploits bacteriophage-mucin glycoprotein interactions that controls bacterial diversity and abundance in the mucin layers of the gut. Moreover, and importantly the efficacy of probiotics may be dependent on the symbiotic incorporation of prebiotics, and the abundance and diversity of the intestinal microbiome encountered. The virome may be an important factor that determines the efficacy of some probiotic formulations.
Collapse
Affiliation(s)
- Luis Vitetta
- Discipline of Pharmacology, Faculty of Medicine and Health, School of Medicine, The University of Sydney, Camperdown, NSW, Australia
- Medlab Clinical Ltd., Sydney, NSW, Australia
| | | | - Sean Hall
- Medlab Clinical Ltd., Sydney, NSW, Australia
| |
Collapse
|
42
|
O’Neill AM, Gallo RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. MICROBIOME 2018; 6:177. [PMID: 30285861 PMCID: PMC6169095 DOI: 10.1186/s40168-018-0558-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/11/2018] [Indexed: 05/07/2023]
Abstract
Acne is one of the most common skin diseases worldwide and results in major health care costs and significant morbidity to severely affected individuals. However, the pathophysiology of this disorder is not well understood. Host-microbiome interactions that affect both innate and adaptive immune homeostasis appear to be a central factor in this disease, with recent observations suggesting that the composition and activities of the microbiota in acne is perturbed. Staphylococcus epidermidis and Cutibacterium acnes (C. acnes; formerly Propionibacterium acnes) are two major inhabitants of the skin that are thought to contribute to the disease but are also known to promote health by inhibiting the growth and invasion of pathogens. Because C. acnes is ubiquitous in sebaceous-rich skin, it is typically labeled as the etiological agent of acne yet it fails to fulfill all of Koch's postulates. The outdated model of acne progression proposes that increased sebum production promotes over-proliferation of C. acnes in a plugged hair follicle, thereby driving inflammation. In contrast, growing evidence indicates that C. acnes is equally abundant in both unaffected and acne-affected follicles. Moreover, recent advances in metagenomic sequencing of the acne microbiome have revealed a diverse population structure distinct from healthy individuals, uncovering new lineage-specific virulence determinants. In this article, we review recent developments in the interactions of skin microbes with host immunity, discussing the contribution of dysbiosis to the immunobiology of acne and newly emerging skin microbiome-based therapeutics to treat acne.
Collapse
Affiliation(s)
- Alan M. O’Neill
- Department of Dermatology, University of California San Diego, La Jolla, CA 92037 USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA 92037 USA
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr., #0869, La Jolla, CA 92093 USA
| |
Collapse
|
43
|
Salem I, Ramser A, Isham N, Ghannoum MA. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front Microbiol 2018; 9:1459. [PMID: 30042740 PMCID: PMC6048199 DOI: 10.3389/fmicb.2018.01459] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The adult intestine hosts a myriad of diverse bacterial species that reside mostly in the lower gut maintaining a symbiosis with the human habitat. In the current review, we describe the neoteric advancement in our comprehension of how the gut microbiota communicates with the skin as one of the main regulators in the gut-skin axis. We attempted to explore how this potential link affects skin differentiation and keratinization, its influence on modulating the cutaneous immune response in various diseases, and finally how to take advantage of this communication in the control of different skin conditions.
Collapse
Affiliation(s)
- Iman Salem
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
| | - Amy Ramser
- Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Nancy Isham
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
| | - Mahmoud A. Ghannoum
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
- Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
44
|
Claudel JP, Auffret N, Leccia MT, Poli F, Dréno B. Acne and nutrition: hypotheses, myths and facts. J Eur Acad Dermatol Venereol 2018; 32:1631-1637. [PMID: 29633388 DOI: 10.1111/jdv.14998] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022]
Abstract
Acne is an inflammatory and multifactorial skin disease. Different external and internal factors, including air pollution, aggressive skincare products, medication, mechanical, hormonal and familial factors and, more recently, lifestyle and stress, have been suggested as having an impact on acne. Moreover, for many years nutrition was believed to cause or worsen acne. Over the last decades, however, it has become a dermatological doctrine that there is no direct association between diet and acne. Even if recent research has allowed to identify certain nutritional elements and behaviour that may impact on acne, including the excessive intake of dairy products and hyperglycaemic food, modern lifestyle nutrition, obesity and eating disorders, knowledge about the role of nutrition in the physiopathology of acne still remains sparse and hypotheses and myths continue to dominate the debate. Thus, further clinical and translational research is necessary to investigate and confirm the association between nutrition and acne.
Collapse
Affiliation(s)
| | | | - M T Leccia
- Department of Dermatology, Allergology and Photobiology, CHU A Michallon, Grenoble, France
| | - F Poli
- Private Practice, Paris, France
| | - B Dréno
- Department of Dermatology, CIC 1413, CRCINA Inserm 1232, Nantes University Hospital, Nantes, France
| |
Collapse
|
45
|
Park HJ, Lee SW, Hong S. Regulation of Allergic Immune Responses by Microbial Metabolites. Immune Netw 2018; 18:e15. [PMID: 29503745 PMCID: PMC5833122 DOI: 10.4110/in.2018.18.e15] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 01/06/2023] Open
Abstract
Emerging evidence demonstrates that the microbiota plays an essential role in shaping the development and function of host immune responses. A variety of environmental stimuli, including foods and commensals, are recognized by the host through the epithelium, acting as a physical barrier. Two allergic diseases, atopic dermatitis and food allergy, are closely linked to the microbiota, because inflammatory responses occur on the epidermal border. The microbiota generates metabolites such as short-chain fatty acids and poly-γ-glutamic acid (γPGA), which can modulate host immune responses. Here, we review how microbial metabolites can regulate allergic immune responses. Furthermore, we focus on the effect of γPGA on allergic T helper (Th) 2 responses and its therapeutic application.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Korea
| | - Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Korea
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Korea
| |
Collapse
|
46
|
Lukic J, Chen V, Strahinic I, Begovic J, Lev-Tov H, Davis SC, Tomic-Canic M, Pastar I. Probiotics or pro-healers: the role of beneficial bacteria in tissue repair. Wound Repair Regen 2017; 25:912-922. [PMID: 29315980 PMCID: PMC5854537 DOI: 10.1111/wrr.12607] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
Probiotics are beneficial microorganisms, known to exert numerous positive effects on human health, primarily in the battle against pathogens. Probiotics have been associated with improved healing of intestinal ulcers, and healing of infected cutaneous wounds. This article reviews the latest findings on probiotics related to their pro-healing properties on gut epithelium and skin. Proven mechanisms by which probiotic bacteria exert their beneficial effects include direct killing of pathogens, competitive displacement of pathogenic bacteria, reinforcement of epithelial barrier, induction of fibroblasts, and epithelial cells' migration and function. Beneficial immunomodulatory effects of probiotics relate to modulation and activation of intraepithelial lymphocytes, natural killer cells, and macrophages through induced production of cytokines. Systemic effects of beneficial bacteria and link between gut microbiota, immune system, and cutaneous health through gut-brain-skin axes are discussed as well. In light of growing antibiotic resistance of pathogens, antibiotic use is becoming less effective in treating cutaneous and systemic infections. This review points to a new perspective and therapeutic potential of beneficial probiotic species as a safe alternative approach for treatment of patients affected by wound healing disorders and cutaneous infections.
Collapse
Affiliation(s)
- Jovanka Lukic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Vivien Chen
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Ivana Strahinic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Jelena Begovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Hadar Lev-Tov
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Stephen C Davis
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Marjana Tomic-Canic
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Irena Pastar
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| |
Collapse
|
47
|
Weiss E, Katta R. Diet and rosacea: the role of dietary change in the management of rosacea. Dermatol Pract Concept 2017; 7:31-37. [PMID: 29214107 PMCID: PMC5718124 DOI: 10.5826/dpc.0704a08] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
Dietary change may play a role in the therapy of rosacea. Certain foods and beverages may act as "triggers" for rosacea exacerbations. These may be divided into heat-related, alcohol-related, capsaicin-related, and cinnamaldehyde-related. One potential pathogenic mechanism may be via the activation of transient receptor potential cation channels, which result in neurogenic vasodilatation. Further research is needed on the role of the gut skin connection in rosacea. Epidemiologic studies suggest that patients with rosacea have a higher prevalence of gastrointestinal disease, and one study reported improvement in rosacea following successful treatment of small intestinal bacterial overgrowth. While further research is required in this area, patients may be advised on measures to support a healthy gut microbiome, including the consumption of a fiber-rich (prebiotic) diet.
Collapse
Affiliation(s)
- Emma Weiss
- Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
48
|
Dolan KE, Pizano JM, Gossard CM, Williamson CB, Burns CM, Gasta MG, Finley HJ, Parker EC, Lipski EA. Probiotics and Disease: A Comprehensive Summary-Part 6, Skin Health. Integr Med (Encinitas) 2017; 16:32-41. [PMID: 30881255 PMCID: PMC6415629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This article series provides a literature review of the disease-specific probiotic strains associated with dermatological disorders and conditions that have been studied in published clinical trials in humans and animals. This is not an exhaustive review. The table design allows for quick access to supportive data and will be helpful as a guide for both researchers and clinicians. The goal of the probiotics and disease series is to provide clinically useful tools. The first article (part 1) focused on mental health and neurological conditions, and the second article (part 2) explored cultured and fermented foods that are commonly available in the United States. The third article (part 3) explored the relationship between bacterial strains and 2 of the most prevalent diseases we have in modern society: cardiometabolic disease and fatigue syndromes. The fourth article (part 4) elucidated the role of the microbiome in infectious diseases, and the fifth article (part 5) examined respiratory conditions and conditions of the ears, nose, and throat. This sixth article (part 6) article explores the relationship between the microbiome and skin disorders. Future articles will review conditions related to autoimmunity and dermatological conditions; the influence of the microbiome on cancer development and prognosis, gastrointestinal and genitourinary diseases associated with dysbiosis conditions; followed by an article focused on probiotic supplements. This literature review is specific to disease condition, probiotic classification, and individual strain.
Collapse
Affiliation(s)
- Keren E. Dolan
- Corresponding author: Keren E. Dolan, MS, CNS E-mail address:
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Strzępa A, Majewska-Szczepanik M, Lobo FM, Wen L, Szczepanik M. Broad spectrum antibiotic enrofloxacin modulates contact sensitivity through gut microbiota in a murine model. J Allergy Clin Immunol 2017; 140:121-133.e3. [DOI: 10.1016/j.jaci.2016.11.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 12/24/2022]
|
50
|
Message in a Bottle: Dialog between Intestine and Skin Modulated by Probiotics. Int J Mol Sci 2017; 18:ijms18061067. [PMID: 28598354 PMCID: PMC5485927 DOI: 10.3390/ijms18061067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022] Open
Abstract
At the beginning, probiotics were used exclusively for gastrointestinal conditions. However, over the years, evidence has shown that probiotics exert systemic effects. In this review article, we will summarize recent reports that postulate probiotic treatment as an efficient one against skin pathologies, such as cancer, allergy, photoaging and skin infections. The focus will be restricted to oral probiotics that could potentially counteract the ultraviolet irradiation-induced skin alterations. Moreover, the possible underlying mechanisms by which probiotics can impact on the gut and exert their skin effects will be reviewed. Furthermore, how the local and systemic immune system is involved in the intestine-cutaneous crosstalk will be analyzed. In conclusion, this article will be divided into three core ideas: (a) probiotics regulate gut homeostasis; (b) gut and skin homeostasis are connected; (c) probiotics are a potentially effective treatment against skin conditions.
Collapse
|