1
|
Matamoros‐Angles A, Karadjuzovic E, Mohammadi B, Song F, Brenna S, Meister SC, Siebels B, Voß H, Seuring C, Ferrer I, Schlüter H, Kneussel M, Altmeppen HC, Schweizer M, Puig B, Shafiq M, Glatzel M. Efficient enzyme-free isolation of brain-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e70011. [PMID: 39508423 PMCID: PMC11541858 DOI: 10.1002/jev2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vesicles (EVs) have gained significant attention as pathology mediators and potential diagnostic tools for neurodegenerative diseases. However, isolation of brain-derived EVs (BDEVs) from tissue remains challenging, often involving enzymatic digestion steps that may compromise the integrity of EV proteins and overall functionality. Here, we describe that collagenase digestion, commonly used for BDEV isolation, produces undesired protein cleavage of EV-associated proteins in brain tissue homogenates and cell-derived EVs. In order to avoid this effect, we studied the possibility of isolating BDEVs with a reduced amount of collagenase or without any protease. Characterization of the isolated BDEVs from mouse and human samples (both female and male) revealed their characteristic morphology and size distribution with both approaches. However, we show that even minor enzymatic digestion induces 'artificial' proteolytic processing in key BDEV markers, such as Flotillin-1, CD81, and the cellular prion protein (PrPC), whereas avoiding enzymatic treatment completely preserves their integrity. We found no major differences in mRNA and protein content between non-enzymatically and enzymatically isolated BDEVs, suggesting that the same BDEV populations are purified with both approaches. Intriguingly, the lack of Golgi marker GM130 signal, often referred to as contamination indicator (or negative marker) in EV preparations, seems to result from enzymatic digestion rather than from its actual absence in BDEV samples. Overall, we show that non-enzymatic isolation of EVs from brain tissue is possible and avoids artificial pruning of proteins while achieving an overall high BDEV yield and purity. This protocol will help to understand the functions of BDEV and their associated proteins in a near-physiological setting, thus opening new research approaches.
Collapse
Affiliation(s)
| | - Emina Karadjuzovic
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Behnam Mohammadi
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Feizhi Song
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Santra Brenna
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | | | - Bente Siebels
- Section Mass Spectrometry and ProteomicsUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Hannah Voß
- Section Mass Spectrometry and ProteomicsUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Carolin Seuring
- Multi‐User‐CryoEM‐FacilityCentre for Structural Systems Biology (CSSB)HamburgGermany
- Department of ChemistryUniversität HamburgHamburgGermany
- Leibniz Institute of Virology (LIV)HamburgGermany
| | - Isidre Ferrer
- IDIBELLUniversity of BarcelonaL'Hospitalet de LlobregatSpain
| | - Hartmut Schlüter
- Section Mass Spectrometry and ProteomicsUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Matthias Kneussel
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | | | - Michaela Schweizer
- Electron Microscopy Core Facility, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Mohsin Shafiq
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Markus Glatzel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| |
Collapse
|
2
|
Soukup J, Moško T, Kereïche S, Holada K. Large extracellular vesicles transfer more prions and infect cell culture better than small extracellular vesicles. Biochem Biophys Res Commun 2023; 687:149208. [PMID: 37949026 DOI: 10.1016/j.bbrc.2023.149208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Prions are responsible for a number of lethal neurodegenerative and transmissible diseases in humans and animals. Extracellular vesicles, especially small exosomes, have been extensively studied in connection with various diseases. In contrast, larger microvesicles are often overlooked. In this work, we compared the ability of large extracellular vesicles (lEVs) and small extracellular vesicles (sEVs) to spread prions in cell culture. We utilized CAD5 cell culture model of prion infection and isolated lEVs by 20,000×g force and sEVs by 110,000×g force. The lEV fraction was enriched in β-1 integrin with a vesicle size starting at 100 nm. The fraction of sEVs was partially depleted of β-1 integrin with a mean size of 79 nm. Both fractions were enriched in prion protein, but the lEVs contained a higher prion-converting activity. In addition, lEV infection led to stronger prion signals in both cell cultures, as detected by cell and western blotting. These results were verified on N2a-PK1 cell culture. Our data suggest the importance of lEVs in the trafficking and spread of prions over extensively studied small EVs.
Collapse
Affiliation(s)
- Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic.
| | - Tibor Moško
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic.
| |
Collapse
|
3
|
Celauro L, Zattoni M, Legname G. Prion receptors, prion internalization, intra- and inter-cellular transport. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:15-41. [PMID: 36813357 DOI: 10.1016/bs.pmbts.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
4
|
Khadka A, Spiers JG, Cheng L, Hill AF. Extracellular vesicles with diagnostic and therapeutic potential for prion diseases. Cell Tissue Res 2022; 392:247-267. [PMID: 35394216 PMCID: PMC10113352 DOI: 10.1007/s00441-022-03621-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/25/2022] [Indexed: 12/14/2022]
Abstract
Prion diseases (PrD) or transmissible spongiform encephalopathies (TSE) are invariably fatal and pathogenic neurodegenerative disorders caused by the self-propagated misfolding of cellular prion protein (PrPC) to the neurotoxic pathogenic form (PrPTSE) via a yet undefined but profoundly complex mechanism. Despite several decades of research on PrD, the basic understanding of where and how PrPC is transformed to the misfolded, aggregation-prone and pathogenic PrPTSE remains elusive. The primary clinical hallmarks of PrD include vacuolation-associated spongiform changes and PrPTSE accumulation in neural tissue together with astrogliosis. The difficulty in unravelling the disease mechanisms has been related to the rare occurrence and long incubation period (over decades) followed by a very short clinical phase (few months). Additional challenge in unravelling the disease is implicated to the unique nature of the agent, its complexity and strain diversity, resulting in the heterogeneity of the clinical manifestations and potentially diverse disease mechanisms. Recent advances in tissue isolation and processing techniques have identified novel means of intercellular communication through extracellular vesicles (EVs) that contribute to PrPTSE transmission in PrD. This review will comprehensively discuss PrPTSE transmission and neurotoxicity, focusing on the role of EVs in disease progression, biomarker discovery and potential therapeutic agents for the treatment of PrD.
Collapse
Affiliation(s)
- Arun Khadka
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jereme G Spiers
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Lesley Cheng
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Andrew F Hill
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia. .,Institute for Health and Sport, Victoria University, Footscray, VIC, Australia.
| |
Collapse
|
5
|
Heumüller SE, Hornberger AC, Hebestreit AS, Hossinger A, Vorberg IM. Propagation and Dissemination Strategies of Transmissible Spongiform Encephalopathy Agents in Mammalian Cells. Int J Mol Sci 2022; 23:ijms23062909. [PMID: 35328330 PMCID: PMC8949484 DOI: 10.3390/ijms23062909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion disorders are fatal infectious diseases that cause characteristic spongiform degeneration in the central nervous system. The causative agent, the so-called prion, is an unconventional infectious agent that propagates by converting the host-encoded cellular prion protein PrP into ordered protein aggregates with infectious properties. Prions are devoid of coding nucleic acid and thus rely on the host cell machinery for propagation. While it is now established that, in addition to PrP, other cellular factors or processes determine the susceptibility of cell lines to prion infection, exact factors and cellular processes remain broadly obscure. Still, cellular models have uncovered important aspects of prion propagation and revealed intercellular dissemination strategies shared with other intracellular pathogens. Here, we summarize what we learned about the processes of prion invasion, intracellular replication and subsequent dissemination from ex vivo cell models.
Collapse
Affiliation(s)
- Stefanie-Elisabeth Heumüller
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Annika C. Hornberger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Alina S. Hebestreit
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - André Hossinger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Ina M. Vorberg
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Rheinische Friedrich-Wilhelms-Universität Bonn, Siegmund-Freud-Str. 25, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
6
|
Yoshida S, Hasegawa T. Deciphering the prion-like behavior of pathogenic protein aggregates in neurodegenerative diseases. Neurochem Int 2022; 155:105307. [PMID: 35181393 DOI: 10.1016/j.neuint.2022.105307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are hitherto classified based on their core clinical features, the anatomical distribution of neurodegeneration, and the cell populations mainly affected. On the other hand, the wealth of neuropathological, genetic, molecular and biochemical studies have identified the existence of distinct insoluble protein aggregates in the affected brain regions. These findings have spread the use of a collective term, proteinopathy, for neurodegenerative disorders with particular type of structurally altered protein accumulation. Particularly, a recent breakthrough in this field came with the discovery that these protein aggregates can transfer from one cell to another, thereby converting normal proteins to potentially toxic, misfolded species in a prion-like manner. In this review, we focus specifically on the molecular and cellular basis that underlies the seeding activity and transcellular spreading phenomenon of neurodegeneration-related protein aggregates, and discuss how these events contribute to the disease progression.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 9808574, Japan; Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Yamagata, 992-1202, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 9808574, Japan.
| |
Collapse
|
7
|
Liu S, Hossinger A, Heumüller SE, Hornberger A, Buravlova O, Konstantoulea K, Müller SA, Paulsen L, Rousseau F, Schymkowitz J, Lichtenthaler SF, Neumann M, Denner P, Vorberg IM. Highly efficient intercellular spreading of protein misfolding mediated by viral ligand-receptor interactions. Nat Commun 2021; 12:5739. [PMID: 34667166 PMCID: PMC8526834 DOI: 10.1038/s41467-021-25855-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Protein aggregates associated with neurodegenerative diseases have the ability to transmit to unaffected cells, thereby templating their own aberrant conformation onto soluble homotypic proteins. Proteopathic seeds can be released into the extracellular space, secreted in association with extracellular vesicles (EV) or exchanged by direct cell-to-cell contact. The extent to which each of these pathways contribute to the prion-like spreading of protein misfolding is unclear. Exchange of cellular cargo by both direct cell contact or via EV depends on receptor-ligand interactions. We hypothesized that enabling these interactions through viral ligands enhances intercellular proteopathic seed transmission. Using different cellular models propagating prions or pathogenic Tau aggregates, we demonstrate that vesicular stomatitis virus glycoprotein and SARS-CoV-2 spike S increase aggregate induction by cell contact or ligand-decorated EV. Thus, receptor-ligand interactions are important determinants of intercellular aggregate dissemination. Our data raise the possibility that viral infections contribute to proteopathic seed spreading by facilitating intercellular cargo transfer.
Collapse
Affiliation(s)
- Shu Liu
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany ,grid.417830.90000 0000 8852 3623Present Address: German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - André Hossinger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany
| | - Stefanie-Elisabeth Heumüller
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany
| | - Annika Hornberger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany
| | - Oleksandra Buravlova
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany
| | - Katerina Konstantoulea
- grid.511015.1VIB Center for Brain and Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephan A. Müller
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Lydia Paulsen
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany
| | - Frederic Rousseau
- grid.511015.1VIB Center for Brain and Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- grid.511015.1VIB Center for Brain and Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan F. Lichtenthaler
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Manuela Neumann
- grid.411544.10000 0001 0196 8249Department of Neuropathology, University Hospital Tübingen, Tübingen, Germany ,grid.424247.30000 0004 0438 0426Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Philip Denner
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany
| | - Ina M. Vorberg
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany ,grid.10388.320000 0001 2240 3300Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| |
Collapse
|
8
|
Cerebrospinal Fluid and Plasma Small Extracellular Vesicles and miRNAs as Biomarkers for Prion Diseases. Int J Mol Sci 2021; 22:ijms22136822. [PMID: 34201940 PMCID: PMC8268953 DOI: 10.3390/ijms22136822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
Diagnosis of transmissible spongiform encephalopathies (TSEs), or prion diseases, is based on the detection of proteinase K (PK)-resistant PrPSc in post-mortem tissues as indication of infection and disease. Since PrPSc detection is not considered a reliable method for in vivo diagnosis in most TSEs, it is of crucial importance to identify an alternative source of biomarkers to provide useful alternatives for current diagnostic methodology. Ovine scrapie is the prototype of TSEs and has been known for a long time. Using this natural model of TSE, we investigated the presence of PrPSc in exosomes derived from plasma and cerebrospinal fluid (CSF) by protein misfolding cyclic amplification (PMCA) and the levels of candidate microRNAs (miRNAs) by quantitative PCR (qPCR). Significant scrapie-associated increase was found for miR-21-5p in plasma-derived but not in CSF-derived exosomes. However, miR-342-3p, miR-146a-5p, miR-128-3p and miR-21-5p displayed higher levels in total CSF from scrapie-infected sheep. The analysis of overexpressed miRNAs in this biofluid, together with plasma exosomal miR-21-5p, could help in scrapie diagnosis once the presence of the disease is suspected. In addition, we found the presence of PrPSc in most CSF-derived exosomes from clinically affected sheep, which may facilitate in vivo diagnosis of prion diseases, at least during the clinical stage.
Collapse
|
9
|
Ratajczak MZ, Ratajczak J. Extracellular microvesicles/exosomes: discovery, disbelief, acceptance, and the future? Leukemia 2020; 34:3126-3135. [PMID: 32929129 PMCID: PMC7685969 DOI: 10.1038/s41375-020-01041-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/18/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
There are concepts in science that need time to overcome initial disbelief before finally arriving at the moment when they are embraced by the research community. One of these concepts is the biological meaning of the small, spheroidal vesicles released from cells, which are described in the literature as microparticles, microvesicles, or exosomes. In the beginning, this research was difficult, as it was hard to distinguish these small vesicles from cell debris or apoptotic bodies. However, they may represent the first language of cell-cell communication, which existed before a more specific intercellular cross-talk between ligands and receptors emerged during evolution. In this review article, we will use the term "extracellular microvesicles" (ExMVs) to refer to these small spheroidal blebs of different sizes surrounded by a lipid layer of membrane. We have accepted an invitation from the Editor-in-Chief to write this review in observance of the 20th anniversary of the 2001 ASH Meeting when our team demonstrated that, by horizontal transfer of several bioactive molecules, including mRNA species and proteins, ExMVs harvested from embryonic stem cells could modify hematopoietic stem/progenitor cells and expand them ex vivo. Interestingly, the result that moved ExMV research forward was published first in 2005 in Leukemia, having been previously rejected by other major scientific journals out of simple disbelief. Therefore, the best judge of a new concept is the passage of time, although the speed of its adoption is aided by perseverance and confidence in one's own data. In this perspective article, we will provide a brief update on the current status of, hopes for, and likely future of ExMV research as well as therapeutic and diagnostic applications, with a special emphasis on hematopoiesis.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland.
| | - Janina Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
10
|
Abstract
The development of multiple cell culture models of prion infection over the last two decades has led to a significant increase in our understanding of how prions infect cells. In particular, new techniques to distinguish exogenous from endogenous prions have allowed us for the first time to look in depth at the earliest stages of prion infection through to the establishment of persistent infection. These studies have shown that prions can infect multiple cell types, both neuronal and nonneuronal. Once in contact with the cell, they are rapidly taken up via multiple endocytic pathways. After uptake, the initial replication of prions occurs almost immediately on the plasma membrane and within multiple endocytic compartments. Following this acute stage of prion replication, persistent prion infection may or may not be established. Establishment of a persistent prion infection in cells appears to depend upon the achievement of a delicate balance between the rate of prion replication and degradation, the rate of cell division, and the efficiency of prion spread from cell to cell. Overall, cell culture models have shown that prion infection of the cell is a complex and variable process which can involve multiple cellular pathways and compartments even within a single cell.
Collapse
Affiliation(s)
- Suzette A Priola
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States.
| |
Collapse
|
11
|
Vilette D, Courte J, Peyrin JM, Coudert L, Schaeffer L, Andréoletti O, Leblanc P. Cellular mechanisms responsible for cell-to-cell spreading of prions. Cell Mol Life Sci 2018; 75:2557-2574. [PMID: 29761205 PMCID: PMC11105574 DOI: 10.1007/s00018-018-2823-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Didier Vilette
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France.
| | - Josquin Courte
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
- Laboratoire Physico Chimie Curie, UMR168, UPMC, IPGG, Sorbonne Universités, 6 Rue Jean Calvin, 75005, Paris, France
| | - Jean Michel Peyrin
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France.
| | - Laurent Coudert
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Laurent Schaeffer
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Olivier Andréoletti
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France
| | - Pascal Leblanc
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France.
| |
Collapse
|
12
|
Tadokoro R, Takahashi Y. Intercellular transfer of organelles during body pigmentation. Curr Opin Genet Dev 2017; 45:132-138. [PMID: 28605672 DOI: 10.1016/j.gde.2017.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 01/16/2023]
Abstract
The intercellular transfer of the melanin-producing organelle, called melanosome, from melanocytes to adjacent keratinocytes, is largely responsible for the coat colors and skin pigmentation of amniotes (birds, reptiles, and mammals). Although several hypotheses of melanin-transfer were proposed mainly by in vitro studies and electron microscopies, how the melanosome transfer takes place in the actual skin remained unclear. With advances in technologies of gene manipulations and high-resolution microscopy that allow direct visualization of plasma membrane, we are beginning to understand the amazing behaviors and dynamics of melanocytes. Studies in melanosome transfer further provide a clue to understand a general principle of intercellular organelle transport, including the intercellular translocations of mitochondria.
Collapse
Affiliation(s)
- Ryosuke Tadokoro
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshiko Takahashi
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan; AMED Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
13
|
Lange S, Gallagher M, Kholia S, Kosgodage US, Hristova M, Hardy J, Inal JM. Peptidylarginine Deiminases-Roles in Cancer and Neurodegeneration and Possible Avenues for Therapeutic Intervention via Modulation of Exosome and Microvesicle (EMV) Release? Int J Mol Sci 2017; 18:ijms18061196. [PMID: 28587234 PMCID: PMC5486019 DOI: 10.3390/ijms18061196] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Exosomes and microvesicles (EMVs) are lipid bilayer-enclosed structures released from cells and participate in cell-to-cell communication via transport of biological molecules. EMVs play important roles in various pathologies, including cancer and neurodegeneration. The regulation of EMV biogenesis is thus of great importance and novel ways for manipulating their release from cells have recently been highlighted. One of the pathways involved in EMV shedding is driven by peptidylarginine deiminase (PAD) mediated post-translational protein deimination, which is calcium-dependent and affects cytoskeletal rearrangement amongst other things. Increased PAD expression is observed in various cancers and neurodegeneration and may contribute to increased EMV shedding and disease progression. Here, we review the roles of PADs and EMVs in cancer and neurodegeneration.
Collapse
Affiliation(s)
- Sigrun Lange
- Department of Biomedical Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK.
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Mark Gallagher
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| | - Sharad Kholia
- Molecular Biotechnology Center, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | - Uchini S Kosgodage
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| | - Mariya Hristova
- Institute for Women's Health, University College London, 74 Huntley Street, London WC1N 6HX, UK.
| | - John Hardy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK.
| | - Jameel M Inal
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| |
Collapse
|
14
|
Liu S, Hossinger A, Göbbels S, Vorberg IM. Prions on the run: How extracellular vesicles serve as delivery vehicles for self-templating protein aggregates. Prion 2017; 11:98-112. [PMID: 28402718 PMCID: PMC5399892 DOI: 10.1080/19336896.2017.1306162] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are actively secreted, membrane-bound communication vehicles that exchange biomolecules between cells. EVs also serve as dissemination vehicles for pathogens, including prions, proteinaceous infectious agents that cause transmissible spongiform encephalopathies (TSEs) in mammals. Increasing evidence accumulates that diverse protein aggregates associated with common neurodegenerative diseases are packaged into EVs as well. Vesicle-mediated intercellular transmission of protein aggregates can induce aggregation of homotypic proteins in acceptor cells and might thereby contribute to disease progression. Our knowledge of how protein aggregates are sorted into EVs and how these vesicles adhere to and fuse with target cells is limited. Here we review how TSE prions exploit EVs for intercellular transmission and compare this to the transmission behavior of self-templating cytosolic protein aggregates derived from the yeast prion domain Sup 35 NM. Artificial NM prions are non-toxic to mammalian cell cultures and do not cause loss-of-function phenotypes. Importantly, NM particles are also secreted in association with exosomes that horizontally transmit the prion phenotype to naive bystander cells, a process that can be monitored with high accuracy by automated high throughput confocal microscopy. The high abundance of mammalian proteins with amino acid stretches compositionally similar to yeast prion domains makes the NM cell model an attractive model to study self-templating and dissemination properties of proteins with prion-like domains in the mammalian context.
Collapse
Affiliation(s)
- Shu Liu
- a German Center for Neurodegenerative Diseases (DZNE e.V.) , Bonn , Germany
| | - André Hossinger
- a German Center for Neurodegenerative Diseases (DZNE e.V.) , Bonn , Germany
| | - Sarah Göbbels
- a German Center for Neurodegenerative Diseases (DZNE e.V.) , Bonn , Germany
| | - Ina M Vorberg
- a German Center for Neurodegenerative Diseases (DZNE e.V.) , Bonn , Germany.,b Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| |
Collapse
|
15
|
Leblanc P, Arellano-Anaya ZE, Bernard E, Gallay L, Provansal M, Lehmann S, Schaeffer L, Raposo G, Vilette D. Isolation of Exosomes and Microvesicles from Cell Culture Systems to Study Prion Transmission. Methods Mol Biol 2017; 1545:153-176. [PMID: 27943213 DOI: 10.1007/978-1-4939-6728-5_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Extracellular vesicles (EVs) are composed of microvesicles and exosomes. Exosomes are small membrane vesicles (40-120 nm sized) of endosomal origin released in the extracellular medium from cells when multivesicular bodies fuse with the plasma membrane, whereas microvesicles (i.e., shedding vesicles, 100 nm to 1 μm sized) bud from the plasma membrane. Exosomes and microvesicles carry functional proteins and nucleic acids (especially mRNAs and microRNAs) that can be transferred to surrounding cells and tissues and can impact multiple dimensions of the cellular life. Most of the cells, if not all, from neuronal to immune cells, release exosomes and microvesicles in the extracellular medium, and all biological fluids including blood (serum/plasma), urine, cerebrospinal fluid, and saliva contain EVs.Prion-infected cultured cells are known to secrete infectivity into their environment. We characterized this cell-free form of prions and showed that infectivity was associated with exosomes. Since exosomes are produced by a variety of cells, including cells that actively accumulate prions, they could be a vehicle for infectivity in body fluids and could participate to the dissemination of prions in the organism. In addition, such infectious exosomes also represent a natural, simple, biological material to get key information on the abnormal PrP forms associated with infectivity.In this chapter, we describe first a method that allows exosomes and microvesicles isolation from prion-infected cell cultures and in a second time the strategies to characterize the prions containing exosomes and their ability to disseminate the prion agent.
Collapse
Affiliation(s)
- Pascal Leblanc
- CNRS UMR5239, LBMC, Ecole Normale Supérieure de Lyon, Lyon, 69007, France.
- Institut NeuroMyoGène (INMG), CNRS UMR5310 - INSERM U1217, Université de Lyon - Université Claude Bernard, Lyon, 69000, France.
| | | | | | - Laure Gallay
- CNRS UMR5239, LBMC, Ecole Normale Supérieure de Lyon, Lyon, 69007, France
- Institut NeuroMyoGène (INMG), CNRS UMR5310 - INSERM U1217, Université de Lyon - Université Claude Bernard, Lyon, 69000, France
| | | | | | - Laurent Schaeffer
- CNRS UMR5239, LBMC, Ecole Normale Supérieure de Lyon, Lyon, 69007, France
- Institut NeuroMyoGène (INMG), CNRS UMR5310 - INSERM U1217, Université de Lyon - Université Claude Bernard, Lyon, 69000, France
| | - Graça Raposo
- CNRS UMR144, Institut Curie, Paris, 75248, France
| | - Didier Vilette
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France.
| |
Collapse
|
16
|
Vilette D, Laulagnier K, Huor A, Alais S, Simoes S, Maryse R, Provansal M, Lehmann S, Andreoletti O, Schaeffer L, Raposo G, Leblanc P. Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway. Cell Mol Life Sci 2015; 72:4409-27. [PMID: 26047659 PMCID: PMC11113226 DOI: 10.1007/s00018-015-1945-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/06/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Exosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis. Silencing of HRS-ESCRT-0 subunit drastically impairs the formation of cellular infectious prion due to an altered trafficking of cholesterol. Depletion of Tsg101-ESCRT-I subunit or impairment of the production of ceramide significantly strongly decreases infectious prion release. Together, our data reveal that ESCRT-dependent and -independent pathways can concomitantly regulate the exosomal secretion of infectious prion, showing that both pathways operate for the exosomal trafficking of a particular cargo. These data open up a new avenue to regulate prion release and propagation.
Collapse
Affiliation(s)
- Didier Vilette
- UMR INRA/ENVT 1225, Interactions Hôte Agent Pathogène, Toulouse, France.
| | - Karine Laulagnier
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France
- Inserm, U836, Neurodégénérescence et Plasticité, Institute of Neuroscience, Grenoble, France
| | - Alvina Huor
- UMR INRA/ENVT 1225, Interactions Hôte Agent Pathogène, Toulouse, France
| | - Sandrine Alais
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, UCBL, ENS Lyon, Lyon, France
| | - Sabrina Simoes
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Romao Maryse
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Monique Provansal
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, diagnostic et thérapie cellulaire des affections neurodégénératives, INSERM Université Montpellier 1 U1040 CHU de Montpellier, Université Montpellier 1, Montpellier, France
| | - Sylvain Lehmann
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, diagnostic et thérapie cellulaire des affections neurodégénératives, INSERM Université Montpellier 1 U1040 CHU de Montpellier, Université Montpellier 1, Montpellier, France
| | | | - Laurent Schaeffer
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France
| | - Graça Raposo
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Pascal Leblanc
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France.
| |
Collapse
|
17
|
Poncelet P, Robert S, Bailly N, Garnache-Ottou F, Bouriche T, Devalet B, Segatchian JH, Saas P, Mullier F. Tips and tricks for flow cytometry-based analysis and counting of microparticles. Transfus Apher Sci 2015; 53:110-26. [DOI: 10.1016/j.transci.2015.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Bellingham SA, Guo B, Hill AF. The secret life of extracellular vesicles in metal homeostasis and neurodegeneration. Biol Cell 2015; 107:389-418. [PMID: 26032945 DOI: 10.1111/boc.201500030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
Abstract
Biologically active metals such as copper, zinc and iron are fundamental for sustaining life in different organisms with the regulation of cellular metal homeostasis tightly controlled through proteins that coordinate metal uptake, efflux and detoxification. Many of the proteins involved in either uptake or efflux of metals are localised and function on the plasma membrane, traffic between intracellular compartments depending upon the cellular metal environment and can undergo recycling via the endosomal pathway. The biogenesis of exosomes also occurs within the endosomal system, with several major neurodegenerative disease proteins shown to be released in association with these vesicles, including the amyloid-β (Aβ) peptide in Alzheimer's disease and the infectious prion protein involved in Prion diseases. Aβ peptide and the prion protein also bind biologically active metals and are postulated to play important roles in metal homeostasis. In this review, we will discuss the role of extracellular vesicles in Alzheimer's and Prion diseases and explore their potential contribution to metal homeostasis.
Collapse
Affiliation(s)
- Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Belinda Guo
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Extracellular vesicles in Alzheimer's disease: friends or foes? Focus on aβ-vesicle interaction. Int J Mol Sci 2015; 16:4800-13. [PMID: 25741766 PMCID: PMC4394450 DOI: 10.3390/ijms16034800] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
The intercellular transfer of amyloid-β (Aβ) and tau proteins has received increasing attention in Alzheimer’s disease (AD). Among other transfer modes, Aβ and tau dissemination has been suggested to occur through release of Extracellular Vesicles (EVs), which may facilitate delivery of pathogenic proteins over large distances. Recent evidence indicates that EVs carry on their surface, specific molecules which bind to extracellular Aβ, opening the possibility that EVs may also influence Aβ assembly and synaptotoxicity. In this review we focus on studies which investigated the impact of EVs in Aβ-mediated neurodegeneration and showed either detrimental or protective role for EVs in the pathology.
Collapse
|
20
|
Arellano-Anaya ZE, Huor A, Leblanc P, Lehmann S, Provansal M, Raposo G, Andréoletti O, Vilette D. Prion strains are differentially released through the exosomal pathway. Cell Mol Life Sci 2015; 72:1185-96. [PMID: 25227242 PMCID: PMC11113346 DOI: 10.1007/s00018-014-1735-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/20/2014] [Accepted: 09/12/2014] [Indexed: 12/14/2022]
Abstract
Cell-to-cell transfer of prions is a crucial step in the spreading of prion infection through infected tissue. At the cellular level, several distinct pathways including direct cell-cell contacts and release of various types of infectious extracellular vesicles have been described that may potentially lead to infection of naïve cells. The relative contribution of these pathways and whether they may vary depending on the prion strain and/or on the infected cell type are not yet known. In this study we used a single cell type (RK13) infected with three different prion strains. We showed that in each case, most of the extracellular prions resulted from active cell secretion through the exosomal pathway. Further, quantitative analysis of secreted infectivity indicated that the proportion of prions eventually secreted was dramatically dependent on the prion strain. Our data also highlight that infectious exosomes secreted from cultured cells might represent a biologically pertinent material for spiking experiments. Also discussed is the appealing possibility that abnormal PrP from different prion strains may differentially interact with the cellular machinery to promote secretion.
Collapse
Affiliation(s)
- Zaira E. Arellano-Anaya
- INRA, UMR 1225, IHAP, 31076 Toulouse, France
- Université de Toulouse, INP, ENVT, UMR 1225, IHAP, 31076 Toulouse, France
| | - Alvina Huor
- INRA, UMR 1225, IHAP, 31076 Toulouse, France
- Université de Toulouse, INP, ENVT, UMR 1225, IHAP, 31076 Toulouse, France
| | - Pascal Leblanc
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC), Equipe Différenciation Neuromusculaire, Ecole Normale Supérieure-Lyon, CNRS, UMR 5239, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Sylvain Lehmann
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, Diagnostic et Thérapie Cellulaire des Affections Neurodégénératives, Institut National de la Santé et de la Recherche Médicale Université Montpellier 1 U1040 Centre Hospitalo-Universitaire de Montpellier, Université Montpellier 1, Montpellier, France
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, UPR 1142, Montpellier, France
| | - Monique Provansal
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, Diagnostic et Thérapie Cellulaire des Affections Neurodégénératives, Institut National de la Santé et de la Recherche Médicale Université Montpellier 1 U1040 Centre Hospitalo-Universitaire de Montpellier, Université Montpellier 1, Montpellier, France
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, UPR 1142, Montpellier, France
| | - Graça Raposo
- Institut Curie, UMR 144, CNRS, Structure and Membrane Compartments, Cell and Tissue Imaging Facility (PICT-IBiSA), 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Olivier Andréoletti
- INRA, UMR 1225, IHAP, 31076 Toulouse, France
- Université de Toulouse, INP, ENVT, UMR 1225, IHAP, 31076 Toulouse, France
| | - Didier Vilette
- INRA, UMR 1225, IHAP, 31076 Toulouse, France
- Université de Toulouse, INP, ENVT, UMR 1225, IHAP, 31076 Toulouse, France
| |
Collapse
|
21
|
Extracellular vesicles--Their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases. Semin Cell Dev Biol 2015; 40:89-96. [PMID: 25704308 DOI: 10.1016/j.semcdb.2015.02.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/13/2022]
Abstract
Many cell types, including neurons, are known to release small membranous vesicles known as exosomes. In addition to their protein content these vesicles have recently been shown to contain messenger RNA (mRNA) and micro RNA (miRNA) species. Roles for these vesicles include cell-cell signalling, removal of unwanted proteins, and transfer of pathogens (including prion-like misfolded proteins) between cells, such as infectious prions. Prions are the infectious particles that are responsible for transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Exosomes are also involved in processing the amyloid precursor protein (APP), which is associated with Alzheimer's disease (AD). As exosomes can be isolated from circulating fluids such as serum, urine, and cerebrospinal fluid (CSF), they provide a potential source of biomarkers for neurological conditions. Here, we review the roles these vesicles play in neurodegenerative disease and highlight their potential in diagnosing these disorders through analysis of their RNA content.
Collapse
|
22
|
Guo BB, Bellingham SA, Hill AF. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 2014; 290:3455-67. [PMID: 25505180 DOI: 10.1074/jbc.m114.605253] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are a group of transmissible, fatal neurodegenerative disorders associated with the misfolding of the host-encoded prion protein, PrP(C), into a disease-associated form, PrP(Sc). The transmissible prion agent is principally formed of PrP(Sc) itself and is associated with extracellular vesicles known as exosomes. Exosomes are released from cells both in vitro and in vivo, and have been proposed as a mechanism by which prions spread intercellularly. The biogenesis of exosomes occurs within the endosomal system, through formation of intraluminal vesicles (ILVs), which are subsequently released from cells as exosomes. ILV formation is known to be regulated by the endosomal sorting complexes required for transport (ESCRT) machinery, although an alternative neutral sphingomyelinase (nSMase) pathway has been suggested to also regulate this process. Here, we investigate a role for the nSMase pathway in exosome biogenesis and packaging of PrP into these vesicles. Inhibition of the nSMase pathway using GW4869 revealed a role for the nSMase pathway in both exosome formation and PrP packaging. In agreement, targeted knockdown of nSMase1 and nSMase2 in mouse neurons using lentivirus-mediated RNAi also decreases exosome release, demonstrating the nSMase pathway regulates the biogenesis and release of exosomes. We also demonstrate that PrP(C) packaging is dependent on nSMase2, whereas the packaging of disease-associated PrP(Sc) into exosomes occurs independently of nSMase2. These findings provide further insight into prion transmission and identify a pathway which directly assists exosome-mediated transmission of prions.
Collapse
Affiliation(s)
- Belinda B Guo
- From the Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC 3010, Australia and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Shayne A Bellingham
- From the Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC 3010, Australia and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Andrew F Hill
- From the Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC 3010, Australia and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
23
|
Saá P, Cervenakova L. Protein misfolding cyclic amplification (PMCA): Current status and future directions. Virus Res 2014; 207:47-61. [PMID: 25445341 DOI: 10.1016/j.virusres.2014.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/05/2014] [Accepted: 11/06/2014] [Indexed: 12/26/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) most commonly known as prion diseases are invariably fatal neurological disorders that affect humans and animals. These disorders differ from other neurodegenerative conformational diseases caused by the accumulation in the brain of misfolded proteins, sometimes with amyloid properties, in their ability to infect susceptible species by various routes. While the infectious properties of amyloidogenic proteins, other than misfolded prion protein (PrP(TSE)), are currently under scrutiny, their potential to transmit from cell to cell, one of the intrinsic properties of the prion, has been recently shown in vitro and in vivo. Over the decades, various cell culture and laboratory animal models have been developed to study TSEs. These assays have been widely used in a variety of applications but showed to be time consuming and entailed elevated costs. Novel economic and fast alternatives became available with the development of in vitro assays that are based on the property of conformationally abnormal PrP(TSE) to recruit normal cellular PrP(C) to misfold. These include the cell-free conversion assay, protein misfolding cyclic amplification (PMCA) and quaking induced conversion assay (QuIC), of which the PMCA has been the only technology shown to generate infectious prions. Moreover, it allows indefinite amplification of PrP(TSE) with strain-specific biochemical and biological properties of the original molecules and under certain conditions may give rise to new spontaneously generated prions. The method also allows addressing the species barrier phenomena and assessing possible risks of animal-to-animal and animal-to-human transmission. Additionally, its unprecedented sensitivity has made possible the detection of as little as one infectious dose of PrP(TSE) and the biochemical identification of this protein in different tissues and biological fluids, including blood, cerebral spinal fluid (CSF), semen, milk, urine and saliva during the pre-clinical and clinical phases of the disease. The mechanistic similarities between TSEs and other conformational disorders have resulted in the adaptation of the PMCA to the amplification and detection of various amyloidogenic proteins. Here we provide a compelling discussion of the different applications of this technology to the study of TSEs and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Paula Saá
- Transmissible Diseases Department, American National Red Cross, Biomedical Services, Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, United States.
| | - Larisa Cervenakova
- Transmissible Diseases Department, American National Red Cross, Biomedical Services, Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, United States
| |
Collapse
|
24
|
Cossetti C, Iraci N, Mercer TR, Leonardi T, Alpi E, Drago D, Alfaro-Cervello C, Saini HK, Davis MP, Schaeffer J, Vega B, Stefanini M, Zhao C, Muller W, Garcia-Verdugo JM, Mathivanan S, Bachi A, Enright AJ, Mattick JS, Pluchino S. Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Mol Cell 2014; 56:193-204. [PMID: 25242146 PMCID: PMC4578249 DOI: 10.1016/j.molcel.2014.08.020] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/22/2014] [Accepted: 08/15/2014] [Indexed: 12/20/2022]
Abstract
The idea that stem cell therapies work only via cell replacement is challenged by the observation of consistent intercellular molecule exchange between the graft and the host. Here we defined a mechanism of cellular signaling by which neural stem/precursor cells (NPCs) communicate with the microenvironment via extracellular vesicles (EVs), and we elucidated its molecular signature and function. We observed cytokine-regulated pathways that sort proteins and mRNAs into EVs. We described induction of interferon gamma (IFN-γ) pathway in NPCs exposed to proinflammatory cytokines that is mirrored in EVs. We showed that IFN-γ bound to EVs through Ifngr1 activates Stat1 in target cells. Finally, we demonstrated that endogenous Stat1 and Ifngr1 in target cells are indispensable to sustain the activation of Stat1 signaling by EV-associated IFN-γ/Ifngr1 complexes. Our study identifies a mechanism of cellular signaling regulated by EV-associated IFN-γ/Ifngr1 complexes, which grafted stem cells may use to communicate with the host immune system.
Collapse
Affiliation(s)
- Chiara Cossetti
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - Nunzio Iraci
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - Tim R Mercer
- Institute for Molecular Bioscience, University of Queensland, St Lucia QLD 4072, Australia
| | - Tommaso Leonardi
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK; The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Emanuele Alpi
- Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Denise Drago
- Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Clara Alfaro-Cervello
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - Harpreet K Saini
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthew P Davis
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Julia Schaeffer
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - Beatriz Vega
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - Matilde Stefanini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - CongJian Zhao
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
| | - Werner Muller
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jose Manuel Garcia-Verdugo
- Departamento de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, 46980 Valencia, Spain
| | - Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Angela Bachi
- Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Anton J Enright
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Stefano Pluchino
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
25
|
Saá P, Yakovleva O, de Castro J, Vasilyeva I, De Paoli SH, Simak J, Cervenakova L. First demonstration of transmissible spongiform encephalopathy-associated prion protein (PrPTSE) in extracellular vesicles from plasma of mice infected with mouse-adapted variant Creutzfeldt-Jakob disease by in vitro amplification. J Biol Chem 2014; 289:29247-60. [PMID: 25157106 PMCID: PMC4200276 DOI: 10.1074/jbc.m114.589564] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/12/2014] [Indexed: 12/31/2022] Open
Abstract
The development of variant Creutzfeldt-Jakob disease (vCJD) in three recipients of non-leukoreduced red blood cells from asymptomatic donors who subsequently developed the disease has confirmed existing concerns about the possible spread of transmissible spongiform encephalopathies (TSEs) via blood products. In addition, the presence of disease-associated misfolded prion protein (PrP(TSE)), generally associated with infectivity, has been demonstrated in the blood of vCJD patients. However, its origin and distribution in this biological fluid are still unknown. Various studies have identified cellular prion protein (PrP(C)) among the protein cargo in human blood-circulating extracellular vesicles released from endothelial cells and platelets, and exosomes isolated from the conditioned media of TSE-infected cells have caused the disease when injected into experimental mice. In this study, we demonstrate the detection of PrP(TSE) in extracellular vesicles isolated from plasma samples collected during the preclinical and clinical phases of the disease from mice infected with mouse-adapted vCJD and confirm the presence of the exosomal marker Hsp70 in these preparations.
Collapse
Affiliation(s)
- Paula Saá
- From the Transmissible Diseases Department, Biomedical Services Holland Laboratory, American National Red Cross, Rockville, Maryland 20855 and
| | - Oksana Yakovleva
- From the Transmissible Diseases Department, Biomedical Services Holland Laboratory, American National Red Cross, Rockville, Maryland 20855 and
| | - Jorge de Castro
- From the Transmissible Diseases Department, Biomedical Services Holland Laboratory, American National Red Cross, Rockville, Maryland 20855 and
| | - Irina Vasilyeva
- From the Transmissible Diseases Department, Biomedical Services Holland Laboratory, American National Red Cross, Rockville, Maryland 20855 and
| | - Silvia H De Paoli
- the Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993
| | - Jan Simak
- the Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993
| | - Larisa Cervenakova
- From the Transmissible Diseases Department, Biomedical Services Holland Laboratory, American National Red Cross, Rockville, Maryland 20855 and
| |
Collapse
|
26
|
Joshi P, Turola E, Ruiz A, Bergami A, Libera DD, Benussi L, Giussani P, Magnani G, Comi G, Legname G, Ghidoni R, Furlan R, Matteoli M, Verderio C. Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles. Cell Death Differ 2013; 21:582-93. [PMID: 24336048 DOI: 10.1038/cdd.2013.180] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/15/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by extracellular amyloid-β (Aβ) deposition, which activates microglia, induces neuroinflammation and drives neurodegeneration. Recent evidence indicates that soluble pre-fibrillar Aβ species, rather than insoluble fibrils, are the most toxic forms of Aβ. Preventing soluble Aβ formation represents, therefore, a major goal in AD. We investigated whether microvesicles (MVs) released extracellularly by reactive microglia may contribute to AD degeneration. We found that production of myeloid MVs, likely of microglial origin, is strikingly high in AD patients and in subjects with mild cognitive impairment and that AD MVs are toxic for cultured neurons. The mechanism responsible for MV neurotoxicity was defined in vitro using MVs produced by primary microglia. We demonstrated that neurotoxicity of MVs results from (i) the capability of MV lipids to promote formation of soluble Aβ species from extracellular insoluble aggregates and (ii) from the presence of neurotoxic Aβ forms trafficked to MVs after Aβ internalization into microglia. MV neurotoxicity was neutralized by the Aβ-interacting protein PrP and anti-Aβ antibodies, which prevented binding to neurons of neurotoxic soluble Aβ species. This study identifies microglia-derived MVs as a novel mechanism by which microglia participate in AD degeneration, and suggest new therapeutic strategies for the treatment of the disease.
Collapse
Affiliation(s)
- P Joshi
- 1] Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy [2] Department of Medicine, CNR Institute of Neuroscience, via Vanvitelli 32, Milano 20129, Italy
| | - E Turola
- 1] Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy [2] Department of Medicine, CNR Institute of Neuroscience, via Vanvitelli 32, Milano 20129, Italy
| | - A Ruiz
- Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy
| | - A Bergami
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - D D Libera
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - L Benussi
- Proteomics Unit, IRCCS Istituto centro San Giovanni di Dio Fatebenefratelli, via Pilastroni, Brescia 4 25125, Italy
| | - P Giussani
- Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy
| | - G Magnani
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - G Comi
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - G Legname
- SISSA, Department of Neuroscience, Via Bonomea 265, Trieste I-34136, Italy
| | - R Ghidoni
- Proteomics Unit, IRCCS Istituto centro San Giovanni di Dio Fatebenefratelli, via Pilastroni, Brescia 4 25125, Italy
| | - R Furlan
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - M Matteoli
- 1] Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy [2] IRCCS Humanitas,via Manzoni 56, Rozzano 20089, Italy
| | - C Verderio
- 1] Department of Medicine, CNR Institute of Neuroscience, via Vanvitelli 32, Milano 20129, Italy [2] IRCCS Humanitas,via Manzoni 56, Rozzano 20089, Italy
| |
Collapse
|
27
|
Godsave SF, Wille H, Pierson J, Prusiner SB, Peters PJ. Plasma membrane invaginations containing clusters of full-length PrPSc are an early form of prion-associated neuropathology in vivo. Neurobiol Aging 2013; 34:1621-31. [PMID: 23481568 DOI: 10.1016/j.neurobiolaging.2012.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
During prion disease, cellular prion protein (PrP(C)) is refolded into a pathogenic isoform (PrP(Sc)) that accumulates in the central nervous system and causes neurodegeneration and death. We used immunofluorescence, quantitative cryo-immunogold EM, and tomography to detect nascent, full-length PrP(Sc) in the hippocampus of prion-infected mice from early preclinical disease stages onward. Comparison of uninfected and infected brains showed that sites containing full-length PrP(Sc) could be recognized in the neuropil by bright spots and streaks of immunofluorescence on semi-thin (200-nm) sections, and by clusters of cryo-immunogold EM labeling. PrP(Sc) was found mainly on neuronal plasma membranes, most strikingly on membrane invaginations and sites of cell-to-cell contact, and was evident by 65 days postinoculation, or 54% of the incubation period to terminal disease. Both axons and dendrites in the neuropil were affected. We hypothesize that closely apposed plasma membranes provide a favorable environment for prion conversion and intercellular prion transfer. Only a small proportion of clustered PrP immunogold labeling was found at synapses, indicating that synapses are not targeted specifically in prion disease.
Collapse
Affiliation(s)
- Susan F Godsave
- Department of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
28
|
Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012; 21:R125-34. [PMID: 22872698 DOI: 10.1093/hmg/dds317] [Citation(s) in RCA: 708] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes and microvesicles are extracellular nanovesicles released by most but not all cells. They are specifically equipped to mediate intercellular communication via the transfer of genetic information, including the transfer of both coding and non-coding RNAs, to recipient cells. As a result, both exosomes and microvesicles play a fundamental biological role in the regulation of normal physiological as well as aberrant pathological processes, via altered gene regulatory networks and/or via epigenetic programming. For example, microvesicle-mediated genetic transfer can regulate the maintenance of stem cell plasticity and induce beneficial cell phenotype modulation. Alternatively, such vesicles play a role in tumor pathogenesis and the spread of neurodegenerative diseases via the transfer of specific microRNAs and pathogenic proteins. Given this natural property for genetic information transfer, the possibility of exploiting these vesicles for therapeutic purposes is now being investigated. Stem cell-derived microvesicles appear to be naturally equipped to mediate tissue regeneration under certain conditions, while recent evidence suggests that exosomes might be harnessed for the targeted delivery of human genetic therapies via the introduction of exogenous genetic cargoes such as siRNA. Thus, extracellular vesicles are emerging as potent genetic information transfer agents underpinning a range of biological processes and with therapeutic potential.
Collapse
Affiliation(s)
- Yi Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | |
Collapse
|
29
|
Sorice M, Mattei V, Tasciotti V, Manganelli V, Garofalo T, Misasi R. Trafficking of PrPc to mitochondrial raft-like microdomains during cell apoptosis. Prion 2012; 6:354-8. [PMID: 22842913 DOI: 10.4161/pri.20479] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cellular form of prion protein (PrP (c)) is a highly conserved cell surface GPI-anchored glycoprotein that was identified in cholesterol-enriched, detergent-resistant microdomains, named "rafts." The association with these specialized portions of the cell plasma membrane is required for conversion of PrP (c) to the transmissible spongiform encephalopathy-associated protease-resistant isoform. Usually, PrP (c) is reported to be a plasma membrane protein, however several studies have revealed PrP (c) as an interacting protein mainly with the membrane/organelles, as well as with cytoskeleton network. Recent lines of evidence indicated its association with ER lipid raft-like microdomains for a correct folding of PrP (c), as well as for the export of the protein to the Golgi and proper glycosylation. During cell apoptosis, PrP (c) can undergo intracellular re-localization, via ER-mitochondria associated membranes (MAM) and microtubular network, to mitochondrial raft-like microdomains, where it induced the loss of mitochondrial membrane potential and citochrome c release, after a contained raise of calcium concentration. We suggest that PrP (c) may play a role in the multimolecular signaling complex associated with cell apoptosis Lipid rafts and their components may, thus, be investigated as pharmacological targets of interest, introducing a novel and innovative task in modern pharmacology, i.e., the development of glycosphingolipid targeted drugs.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Coleman BM, Hanssen E, Lawson VA, Hill AF. Prion‐infected cells regulate the release of exosomes with distinct ultrastructural features. FASEB J 2012; 26:4160-73. [DOI: 10.1096/fj.11-202077] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bradley M. Coleman
- Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleVictoriaAustralia
- Department of PathologyThe University of MelbourneParkvilleVictoriaAustralia
- Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Eric Hanssen
- Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
- Bio21 Electron Microscopy UnitThe University of MelbourneParkvilleVictoriaAustralia
| | - Victoria A. Lawson
- Department of PathologyThe University of MelbourneParkvilleVictoriaAustralia
- The Mental Health Research InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Andrew F. Hill
- Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleVictoriaAustralia
- Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
- The Mental Health Research InstituteThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
31
|
Function of membrane rafts in viral lifecycles and host cellular response. Biochem Res Int 2011; 2011:245090. [PMID: 22191032 PMCID: PMC3235436 DOI: 10.1155/2011/245090] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 12/31/2022] Open
Abstract
Membrane rafts are small (10–200 nm) sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process) and the late stage (assembly, budding, and release processes of virus particles). In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.
Collapse
|
32
|
Mattei V, Matarrese P, Garofalo T, Tinari A, Gambardella L, Ciarlo L, Manganelli V, Tasciotti V, Misasi R, Malorni W, Sorice M. Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution. Mol Biol Cell 2011; 22:4842-53. [PMID: 22031292 PMCID: PMC3237627 DOI: 10.1091/mbc.e11-04-0348] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PrPC is identified as a new component of mitochondrial raft-like microdomains in T cells undergoing CD95/Fas–mediated apoptosis, and microtubular network integrity and function could play a role in the redistribution of PrPC from the plasma membrane to the mitochondria. We examined the possibility that cellular prion protein (PrPC) plays a role in the receptor-mediated apoptotic pathway. We first found that CD95/Fas triggering induced a redistribution of PrPC to the mitochondria of T lymphoblastoid CEM cells via a mechanism that brings into play microtubular network integrity and function. In particular, we demonstrated that PrPC was redistributed to raft-like microdomains at the mitochondrial membrane, as well as at endoplasmic reticulum-mitochondria–associated membranes. Our in vitro experiments also demonstrated that, although PrPC had such an effect on mitochondria, it induced the loss of mitochondrial membrane potential and cytochrome c release only after a contained rise of calcium concentration. Finally, the involvement of PrPC in apoptosis execution was also analyzed in PrPC-small interfering RNA–transfected cells, which were found to be significantly less susceptible to CD95/Fas–induced apoptosis. Taken together, these results suggest that PrPC might play a role in the complex multimolecular signaling associated with CD95/Fas receptor–mediated apoptosis.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Laboratory of Experimental Medicine and Environmental Pathology, Sabina Universitas, 02100 Rieti, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McCutcheon S, Alejo Blanco AR, Houston EF, de Wolf C, Tan BC, Smith A, Groschup MH, Hunter N, Hornsey VS, MacGregor IR, Prowse CV, Turner M, Manson JC. All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD. PLoS One 2011; 6:e23169. [PMID: 21858015 PMCID: PMC3157369 DOI: 10.1371/journal.pone.0023169] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/08/2011] [Indexed: 11/19/2022] Open
Abstract
Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion.
Collapse
Affiliation(s)
- Sandra McCutcheon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Edinburgh, United Kingdom
| | - Anthony Richard Alejo Blanco
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Edinburgh, United Kingdom
| | - E. Fiona Houston
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, United Kingdom
| | - Christopher de Wolf
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Edinburgh, United Kingdom
| | - Boon Chin Tan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Edinburgh, United Kingdom
| | - Antony Smith
- The Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Martin H. Groschup
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Germany
| | - Nora Hunter
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Edinburgh, United Kingdom
| | - Valerie S. Hornsey
- National Science Laboratory, Scottish National Blood Transfusion Service (SNBTS), Edinburgh, United Kingdom
| | - Ian R. MacGregor
- National Science Laboratory, Scottish National Blood Transfusion Service (SNBTS), Edinburgh, United Kingdom
| | - Christopher V. Prowse
- National Science Laboratory, Scottish National Blood Transfusion Service (SNBTS), Edinburgh, United Kingdom
| | - Marc Turner
- University of Edinburgh and SNBTS, Edinburgh, United Kingdom
| | - Jean C. Manson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Moreno-Gonzalez I, Soto C. Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol 2011; 22:482-7. [PMID: 21571086 DOI: 10.1016/j.semcdb.2011.04.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/15/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Some of the most prevalent human degenerative diseases appear as a result of the misfolding and aggregation of proteins. Compelling evidence suggest that misfolded protein aggregates play an important role in cell dysfunction and tissue damage, leading to the disease. Prion protein (Prion diseases), amyloid-beta (Alzheimer's disease), alpha-synuclein (Parkinson's disease), Huntingtin (Huntington's disease), serum amyloid A (AA amyloidosis) and islet amyloid polypeptide (type 2 diabetes) are some of the proteins that trigger disease when they get misfolded. The recent understanding of the crucial role of misfolded proteins as well as the structural requirements and mechanism of protein misfolding have raised the possibility that these diseases may be transmissible by self-propagation of the protein misfolding process in a similar way as the infamous prions transmit prion diseases. Future research in this field should aim to clarify this possibility and translate the knowledge of the basic disease mechanisms into development of novel strategies for early diagnosis and efficient treatment.
Collapse
Affiliation(s)
- Ines Moreno-Gonzalez
- Mitchell Center Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, 6431 Fannin St, Houston, TX 77030, USA
| | | |
Collapse
|
35
|
Global network analysis of lipid-raft-related proteins reveals their centrality in the network and their roles in multiple biological processes. J Mol Biol 2010; 402:761-73. [PMID: 20709075 DOI: 10.1016/j.jmb.2010.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 08/03/2010] [Accepted: 08/09/2010] [Indexed: 11/20/2022]
Abstract
Lipid rafts are specialized cholesterol-enriched microdomains in the cell membrane. They have been known as a platform for protein-protein interactions and to take part in multiple biological processes. Nevertheless, how lipid rafts influence protein properties at the proteomic level is still an open question for researchers using traditional biochemical approaches. Here, by annotating the lipid raft localization of proteins in human protein-protein interaction networks, we performed a systematic analysis of the function of proteins related to lipid rafts. Our results demonstrated that lipid raft proteins and their interactions were critical for the structure and stability of the whole network, and that the interactions between them were significantly enriched. Furthermore, for each protein in the network, we calculated its "lipid raft dependency (LRD)," which indicates how close it is topologically associated with lipid rafts, and we then uncovered the connection between LRD and protein functions. Proteins with high LRD tended to be essential for mammalian development, and malfunction of these proteins was inclined to cause human diseases. Coordinated with their neighbors, high-LRD proteins participated in multiple biological processes and targeted many pathways in diseases pathogenesis. High-LRD proteins were also found to have tissue specificity of expression. In summary, our network-based analysis denotes that lipid raft proteins have higher centrality in the network, and that lipid-raft-related proteins have multiple functions and are probably concerned with many biological processes in disease development.
Collapse
|
36
|
Nakamitsu S, Kurokawa A, Yamasaki T, Uryu M, Hasebe R, Horiuchi M. Cell density-dependent increase in the level of protease-resistant prion protein in prion-infected Neuro2a mouse neuroblastoma cells. J Gen Virol 2009; 91:563-9. [DOI: 10.1099/vir.0.016287-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
37
|
Guillerme-Bosselut F, Forestier L, Jayat-Vignoles C, Vilotte JL, Popa I, Portoukalian J, Le Dur A, Laude H, Julien R, Gallet PF. Glycosylation-related gene expression profiling in the brain and spleen of scrapie-affected mouse. Glycobiology 2009; 19:879-89. [PMID: 19386898 DOI: 10.1093/glycob/cwp062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A central event in the formation of infectious prions is the conformational change of a host-encoded glycoprotein, PrP(C), into a pathogenic isoform, PrP(Sc). The molecular requirements for efficient PrP conversion remain unknown. Altered glycosylation has been linked to various pathologies and the N-glycans harbored by two prion protein isoforms are different. In order to search for glycosylation-related genes that could mark prion infection, we used a glycosylation-dedicated microarray that allowed the simultaneous analysis of the expression of 165 glycosylation-related genes encoding proteins of the glycosyltransferase, glycosidase, lectin, and sulfotransferase families to compare the gene expression profiles of normal and scrapie-infected mouse brain and spleen. Eight genes were found upregulated in "scrapie brain" at the final state of the disease. In the spleen, five genes presented a modified expression. Three genes were also upregulated in the spleen of infected mice, and two (Pigq and St3gal5) downregulated. All changes were confirmed by qPCR and biochemical analyses applied to Pigq and St3gal5 proteins.
Collapse
|
38
|
Abstract
The discovery of tunnelling nanotubes (TNTs) and their proposed role in long intercellular transport of organelles, bacteria and viruses have led us to examine their potential role during prion spreading. We have recently shown that these membrane bridges can form between neuronal cells, as well as between dendritic cells and primary neurons and that both endogenous and exogenous PrP(Sc) appear to traffic through these structures between infected and non-infected cells. Furthermore, prion infection can be efficiently transmitted from infected dendritic cells to primary neurons only in co-culture conditions permissive for TNT formation. Therefore, we propose a role for TNTs during prion spreading from the periphery to the central nervous system (CNS). Here, we discuss some of the key steps where TNTs might play a role during prion neuroinvasion.
Collapse
Affiliation(s)
- Karine Gousset
- Institut Pasteur, Unité de Trafic Membranaire et Pathogénèse, Paris, France
| | | |
Collapse
|