1
|
Kang G, Kim M, Lee Y, Yang H, Seong BL, Jung H. Egg microneedles for transdermal vaccination of inactivated influenza virus. Biomater Sci 2024; 12:907-918. [PMID: 38174731 DOI: 10.1039/d3bm01635h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The use of dissolving microneedles (DMNs) is a drug delivery technique in which drug dissolution occurs once it is administered into the skin. The skin is a remarkable site for vaccination due to its significant immunologic properties. Compared to the traditional hypodermic intramuscular (IM) injection, vaccination via DMN does not require cold chains and allows for minimal invasive drug delivery. On account of the significance of skin vaccination, preceding studies have been conducted to elucidate the importance of the DMN technology in vaccination. Most of these studies focused on formulations that maintain the activity of the vaccine, so formulations designed to be specific to the mechanical properties of the microneedle could not be used together independently. In this study, we have developed influenza vaccine loaded egg microneedles (EMN) and characterized the specificity of layer-specific functions of EMN by distinguishing between formulations that can maintain the activity of the vaccine and have the mechanical strength. By the use of in vitro tests such as ELISA and SRID assays, we quantitively evaluated the antigen activity of the formulation candidates to be 87% and 91%, respectively. In vivo tests were also conducted as mouse groups were inoculated with the formulation constructed into egg microneedles (FLU-EMN) to determine the protective efficacy against infection. The results demonstrated that FLU-EMN with functionalized formulations successfully enabled protective immune response even with a fractional dose compared to IM injection.
Collapse
Affiliation(s)
- Geonwoo Kang
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, Republic of Korea
| | - Minkyung Kim
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Youjin Lee
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Huisuk Yang
- Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, Republic of Korea
| | - Baik-Lin Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, 03721, Republic of Korea
- Vaccine Innovative Technology Alliance (VITAL)-Korea, Yonsei University, Seoul 03721, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, Republic of Korea
| |
Collapse
|
2
|
de la Torre Arrieta J, Briceño D, de Castro IG, Roser B. A thermostable tetanus/diphtheria (Td) vaccine in the StablevaX™ pre-filled delivery system. Vaccine 2023; 41:3413-3421. [PMID: 37121799 DOI: 10.1016/j.vaccine.2023.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
A syringe for the long-term, room-temperature storage and injection of vaccines is described. Stabilisation was achieved by drying from a trehalose-containing buffer which formed an inert soluble glass distributed in the internal interconnected voids in an absorbent, compliant, reticulated, medical-grade, porous sponge. The sponge is stored inside the barrel of a syringe and the vaccines are re-solubilised by the aspiration of water. The syringe contains the sponge throughout the filling and drying processes in manufacture, and in transport, stockpiling and finally injection. The active vaccine is delivered to the patient in the normal injection process by depressing the plunger, which compresses the sponge to completely expel the dose. Full recovery of vaccine potency, after 7-10 months @ 45 °C, was shown by complete protection against supra-lethal doses of active toxins in immunised Guinea pigs.
Collapse
Affiliation(s)
| | - Daniela Briceño
- Stablepharma Ltd, 4 Queen Square, Bath BA1 2HA, Somerset, UK
| | | | - Bruce Roser
- Stablepharma Ltd, 4 Queen Square, Bath BA1 2HA, Somerset, UK.
| |
Collapse
|
3
|
Park CO, Kim HL, Park JW. Microneedle Transdermal Drug Delivery Systems for Allergen-Specific Immunotherapy, Skin Disease Treatment, and Vaccine Development. Yonsei Med J 2022; 63:881-891. [PMID: 36168240 PMCID: PMC9520048 DOI: 10.3349/ymj.2022.0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/27/2022] Open
Abstract
Transdermal drug delivery systems (TDDSs) overcome the hurdle of an intact skin barrier by penetrating the skin to allow molecules through. These systems reduce side effects associated with conventional hypodermic needles. Here, we introduce novel microneedle (MN) TDDSs that enhance drug delivery by creating micron-sized pores across the skin. Many MN TDDSs designed to deliver a diverse array of therapeutics, including allergen-specific immunotherapy, skin disease treatments, and vaccines, are under pre-clinical and clinical trials. Although epicutaneous approaches are emerging as new options for treating food allergy in many clinical trials, MN TDDSs could provide a more efficient and convenient route to deliver macromolecules. Furthermore, MN TDDSs may allow for safe vaccine delivery without permanent scars. MN TDDSs are a major emerging strategy for delivering novel vaccines and treatments for diseases, including skin diseases, allergic diseases, and so on.
Collapse
Affiliation(s)
- Chang Ook Park
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Li Kim
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Won Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Oh J, Subbiah J, Kim KH, Park BR, Bhatnagar N, Garcia KR, Liu R, Jung YJ, Shin CH, Seong BL, Kang SM. Impact of hemagglutination activity and M2e immunity on conferring protection against influenza viruses. Virology 2022; 574:37-46. [PMID: 35914365 PMCID: PMC9978532 DOI: 10.1016/j.virol.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
To improve cross-protection of influenza vaccination, we tested conjugation of conserved M2e epitopes to the surface of inactivated influenza virus (iPR8-M2e*). Treatment of virus with chemical cross-linker led to diminished hemagglutination activity and failure to induce hemagglutination inhibiting antibodies. Conjugated iPR8-M2e* vaccine was less protective against homologous and heterosubtypic viruses, despite the induction of virus-specific binding IgG antibodies. In alternative approaches to enhance cross-protection, we developed a genetically linked chimeric protein (M2e-B stalk) vaccine with M2e of influenza A and hemagglutinin (HA) stalk of influenza B virus. Vaccination of mice with inactivated influenza A virus supplemented with M2e-B stalk effectively induced hemagglutination inhibiting antibodies, humoral and cellular M2e immune responses, and enhanced heterosubtypic protection. This study demonstrates the importance of HA functional integrity in influenza vaccine efficacy and that supplementation of influenza vaccines with M2e-B stalk protein could be a feasible strategy of improving cross-protection against influenza viruses.
Collapse
Affiliation(s)
- Judy Oh
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Jeeva Subbiah
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Bo Ryoung Park
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Karla Ruiz Garcia
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Rong Liu
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Chong-Hyun Shin
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Baik-Lin Seong
- Department of Microbiology, College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
5
|
Ju J, Li L, Regmi S, Zhang X, Tang S. Microneedle-Based Glucose Sensor Platform: From Vitro to Wearable Point-of-Care Testing Systems. BIOSENSORS 2022; 12:bios12080606. [PMID: 36005002 PMCID: PMC9405967 DOI: 10.3390/bios12080606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022]
Abstract
Significant advanced have recently been made in exploiting microneedle-based (MN-based) diabetes devices for minimally invasive wearable biosensors and for continuous glucose monitoring. Within this emerging class of skin-worn MN-based sensors, the ISF can be utilized as a rich biomarker source to diagnose diabetes. While initial work of MN devices focused on ISF extraction, the recent research trend has been oriented toward developing in vivo glucose sensors coupled with optical or electrochemical (EC) instrumentation. This outlook highlights the essential characteristics of the sensing mechanisms, rational design, sensing properties, and applications. Finally, we describe the opinions about the challenge and prospects of optical and EC MN-based device platforms for the fabrication of wearable biosensors and their application potential in the future.
Collapse
Affiliation(s)
- Jian Ju
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Oujiang Lab, Wenzhou 325001, China
- Correspondence: (J.J.); (S.T.)
| | - Lin Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325035, China
| | - Sagar Regmi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xinyu Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Shixing Tang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Correspondence: (J.J.); (S.T.)
| |
Collapse
|
6
|
Athirathinam K, Nandakumar S, Kandasamy R. Biopolymers and Osmolytes - A Focus towards the Prospects of Stability and Adjuvanticity of Vaccines. Macromol Res 2022; 30:599-608. [PMID: 35762006 PMCID: PMC9217723 DOI: 10.1007/s13233-022-0068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
Abstract
‘New-Gen Vaccines’ are grabbing the attention of scientists as they are much suitable for an immune-compromised group of individuals as well as infants. The major drawbacks of these vaccines are lower immunogenicity and instability. The need for a convenient and safe adjuvant is still under exploration. On the other hand, thermal instability leads to the inactivation of the vaccine and becomes detrimental in many cases. Thus, there is a need to incorporate new kinds of excipients into vaccine formulation to enhance the potency/immunogenicity of vaccine antigens and also act as stabilizers. A limited or single excipient in providing the required dual-activity is vital to break the stereotypical usage of the well-entrenched adverse ingredients. In the proposed review, the efficiency of naturally occurring biocompatible carbohydrate polymers and osmolytes and their ‘dual-role’ is briefed. In addition, the information on the possible mechanisms of action of carbohydrate polymers in vaccines as adjuvants and stabilizers are also discussed.
Collapse
Affiliation(s)
- Krubha Athirathinam
- Department of Pharmaceutical Technology, Centre for Excellence in Nano-Bio Translational Research (CENTRE), Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, Tamil Nadu, 620024 India
| | | | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, Centre for Excellence in Nano-Bio Translational Research (CENTRE), Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, Tamil Nadu, 620024 India
| |
Collapse
|
7
|
Shin JH, Lee JH, Jeong SD, Noh JY, Lee HW, Song CS, Kim YC. C-di-GMP with influenza vaccine showed enhanced and shifted immune responses in microneedle vaccination in the skin. Drug Deliv Transl Res 2021; 10:815-825. [PMID: 32141036 DOI: 10.1007/s13346-020-00728-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A microneedle is a biomedical device which consists of multiple micron scale needles. It is widely used in various fields to deliver drugs and vaccines to the skin effectively. However, when considering improved vaccine efficacy in microneedle vaccination, it is important to find an appropriate adjuvant that is able to be used in transdermal delivery. Herein, we demonstrated the applicability of c-di-GMP, which is a stimulator of interferon genes (STING) agonist, as an adjuvant for influenza microneedle vaccination. Thus, 2 and 10 μg of GMP with the influenza vaccine were coated onto a microneedle, and then, BALB/c mice were immunized with the coated microneedle to investigate the immunogenicity and protection efficacy of the influenza microneedle vaccination. As a result, the adjuvant groups had an enhanced IgG response, IgG subtypes and HI titer compared to the vaccine only group. In addition to the humoral immunity, the use of an adjuvant has also been shown to improve the cellular immune response. In a challenge study, adjuvant groups had a 100% survival rate and rapid weight recovery. Taken together, this study confirms that GMP is an effective adjuvant for influenza microneedle vaccination. Graphical abstract.
Collapse
Affiliation(s)
- Ju-Hyung Shin
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji-Ho Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Seong Dong Jeong
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jin-Yong Noh
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Hyo Won Lee
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea.
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Transdermal drug delivery systems for fighting common viral infectious diseases. Drug Deliv Transl Res 2021; 11:1498-1508. [PMID: 34024014 PMCID: PMC8140753 DOI: 10.1007/s13346-021-01004-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Transdermal drug delivery systems (TDDS) have many advantages and represent an excellent alternative to oral delivery and hypodermic injections. TDDS are more convenient and less invasive tools for disease and viral infection treatment, prevention, detection, and surveillance. The emerging development of microneedles for TDDS has facilitated improved skin barrier penetration for the delivery of macromolecules or hydrophilic drugs. Microneedle TDDS patches can be fabricated to deliver virus vaccines and potentially provide a viable alternative vaccine modality that offers improved immunogenicity, thermostability, simplicity, safety, and compliance as well as sharp-waste reduction, increased cost-effectiveness, and the capacity for self-administration, which could improve vaccine distribution. These advantages make TDDS-based vaccine delivery an especially well-suited option for treatment of widespread viral infectious diseases including pandemics. Because microneedle-based bioassays employ transdermal extraction of interstitial fluid or blood, they can be used as a minimally invasive approach for surveying disease markers and providing point-of-care (POC) diagnostics. For cutaneous viral infections, TDDS can provide localized treatment with high specificity and less systemic toxicity. In summary, TDDS, especially those that employ microneedles, possess special attributes that can be leveraged to reduce morbidity and mortality from viral infectious diseases. In this regard, they may have considerable positive impact as a modality for improving global health. In this article, we introduce the possible role and summarize the current literature regarding TDDS applications for fighting common cutaneous or systemic viral infectious diseases, including herpes simplex, varicella or herpes zoster, warts, influenza, measles, and COVID-19.
Collapse
|
9
|
Characterization of microneedles and microchannels for enhanced transdermal drug delivery. Ther Deliv 2021; 12:77-103. [DOI: 10.4155/tde-2020-0096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microneedle (MN)-based technologies are currently one of the most innovative approaches that are being extensively investigated for transdermal delivery of low molecular weight drugs, biotherapeutic agents and vaccines. Extensive research reports, describing the fabrication and applications of different types of MNs, can be readily found in the literature. Effective characterization tools to evaluate the quality and performance of the MNs as well as for determination of the dimensional and kinetic properties of the microchannels created in the skin, are an essential and critical part of MN-based research. This review paper provides a comprehensive account of all such tools and techniques.
Collapse
|
10
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
11
|
Badizadegan K, Goodson JL, Rota PA, Thompson KM. The potential role of using vaccine patches to induce immunity: platform and pathways to innovation and commercialization. Expert Rev Vaccines 2020; 19:175-194. [PMID: 32182145 PMCID: PMC7814398 DOI: 10.1080/14760584.2020.1732215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/12/2020] [Indexed: 01/14/2023]
Abstract
Introduction: In the last two decades, the evidence related to using vaccine patches with multiple short projections (≤1 mm) to deliver vaccines through the skin increased significantly and demonstrated their potential as an innovative delivery platform.Areas covered: We review the vaccine patch literature published in English as of 1 March 2019, as well as available information from key stakeholders related to vaccine patches as a platform. We identify key research topics related to basic and translational science on skin physical properties and immunobiology, patch development, and vaccine manufacturing.Expert opinion: Currently, vaccine patch developers continue to address some basic science and other platform issues in the context of developing a potential vaccine patch presentation for an existing or new vaccine. Additional clinical data and manufacturing experience could shift the balance toward incentivizing existing vaccine manufactures to further explore the use of vaccine patches to deliver their products. Incentives for innovation of vaccine patches differ for developed and developing countries, which will necessitate different strategies (e.g. public-private partnerships, push, or pull mechanisms) to support the basic and applied research needed to ensure a strong evidence base and to overcome translational barriers for vaccine patches as a delivery platform.
Collapse
Affiliation(s)
| | - James L Goodson
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul A Rota
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
12
|
Ingrole RSJ, Gill HS. Microneedle Coating Methods: A Review with a Perspective. J Pharmacol Exp Ther 2019; 370:555-569. [PMID: 31175217 PMCID: PMC6806358 DOI: 10.1124/jpet.119.258707] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
A coated microneedle array comprises sharp micrometer-sized needle shafts attached to a base substrate and coated with a drug on their surfaces. Coated microneedles are under investigation for drug delivery into the skin and other tissues, and a broad assortment of active materials, including small molecules, peptides, proteins, deoxyribonucleic acids, and viruses, have been coated onto microneedles. To coat the microneedles, different methods have been developed. Some coating methods achieve selective coating of just the microneedle shafts, whereas other methods coat not only microneedle shafts but also the array base substrate. Selective coating of just the microneedle shafts is more desirable since it provides control over drug dosage, prevents drug waste, and offers high delivery efficiency. Different excipients are added to the coating liquid to modulate its viscosity and surface tension in order to achieve uniform coatings on microneedles. Coated microneedles have been used in a broad range of biomedical applications. To highlight these different applications, a table summarizing the different active materials and the amounts coated on microneedles is provided. We also discuss factors that should be considered when deciding suitability of coated microneedles for new-drug delivery applications. In recent years, many coated microneedles have been investigated in human clinical trials, and there is now a strong effort to bring the first coated microneedle-based product to market.
Collapse
Affiliation(s)
- Rohan S J Ingrole
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | | |
Collapse
|
13
|
Nguyen TT, Choi JA, Kim JS, Park H, Yang E, Lee WJ, Baek SK, Song M, Park JH. Skin immunization with third-generation hepatitis B surface antigen using microneedles. Vaccine 2019; 37:5954-5961. [DOI: 10.1016/j.vaccine.2019.08.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/09/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
|
14
|
Kim MC, Kim KH, Lee JW, Lee YN, Choi HJ, Jung YJ, Kim YJ, Compans RW, Prausnitz MR, Kang SM. Co-Delivery of M2e Virus-Like Particles with Influenza Split Vaccine to the Skin Using Microneedles Enhances the Efficacy of Cross Protection. Pharmaceutics 2019; 11:pharmaceutics11040188. [PMID: 31003421 PMCID: PMC6523215 DOI: 10.3390/pharmaceutics11040188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/21/2023] Open
Abstract
It is a high priority to develop a simple and effective delivery method for a cross-protective influenza vaccine. We investigated skin immunization by microneedle (MN) patch with human influenza split vaccine and virus-like particles containing heterologous M2 extracellular (M2e) domains (M2e5x virus-like particles (VLP)) as a cross-protective influenza vaccine candidate. Co-delivery of influenza split vaccine and M2e5x VLP to the skin by MN patch was found to confer effective protection against heterosubtypic influenza virus by preventing weight loss and reducing lung viral loads. Compared to intramuscular immunization, MN-based delivery of combined split vaccine and M2e5x VLPs shaped cellular immune responses toward T helper type 1 responses increasing IgG2a isotype antibodies as well as IFN-γ producing cells in mucosal and systemic sites. This study provides evidence that potential immunological and logistic benefits of M2e5x VLP with human influenza split vaccine delivered by MN patch can be used to develop an easy-to-administer cross-protective influenza vaccine.
Collapse
Affiliation(s)
- Min-Chul Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
- Komipharm Co., Ltd., Siheung, Gyeonggi-do 15094, Korea.
| | - Ki-Hye Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Jeong Woo Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yu-Na Lee
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo 39660, Korea.
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2M9, Canada.
| | - Yu-Jin Jung
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Yu-Jin Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Richard W Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
15
|
Tarbox TN, Watts AB, Cui Z, Williams RO. An update on coating/manufacturing techniques of microneedles. Drug Deliv Transl Res 2018; 8:1828-1843. [PMID: 29288358 DOI: 10.1007/s13346-017-0466-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, results have been published for the first successful phase I human clinical trial investigating the use of dissolving polymeric microneedles… Even so, further clinical development represents an important hurdle that remains in the translation of microneedle technology to approved products. Specifically, the potential for accumulation of polymer within the skin upon repeated application of dissolving and coated microneedles, combined with a lack of safety data in humans, predicates a need for further clinical investigation. Polymers are an important consideration for microneedle technology-from both manufacturing and drug delivery perspectives. The use of polymers enables a tunable delivery strategy, but the scalability of conventional manufacturing techniques could arguably benefit from further optimization. Micromolding has been suggested in the literature as a commercially viable means to mass production of both dissolving and swellable microneedles. However, the reliance on master molds, which are commonly manufactured using resource intensive microelectronics industry-derived processes, imparts notable material and design limitations. Further, the inherently multi-step filling and handling processes associated with micromolding are typically batch processes, which can be challenging to scale up. Similarly, conventional microneedle coating processes often follow step-wise batch processing. Recent developments in microneedle coating and manufacturing techniques are highlighted, including micromilling, atomized spraying, inkjet printing, drawing lithography, droplet-born air blowing, electro-drawing, continuous liquid interface production, 3D printing, and polyelectrolyte multilayer coating. This review provides an analysis of papers reporting on potentially scalable production techniques for the coating and manufacturing of microneedles.
Collapse
Affiliation(s)
- Tamara N Tarbox
- College of Pharmacy, University of Texas at Austin , Austin, TX, USA.
| | - Alan B Watts
- College of Pharmacy, University of Texas at Austin , Austin, TX, USA
| | - Zhengrong Cui
- College of Pharmacy, University of Texas at Austin , Austin, TX, USA
| | - Robert O Williams
- College of Pharmacy, University of Texas at Austin , Austin, TX, USA
| |
Collapse
|
16
|
Park S, Lee Y, Kwon YM, Lee YT, Kim KH, Ko EJ, Jung JH, Song M, Graham B, Prausnitz MR, Kang SM. Vaccination by microneedle patch with inactivated respiratory syncytial virus and monophosphoryl lipid A enhances the protective efficacy and diminishes inflammatory disease after challenge. PLoS One 2018; 13:e0205071. [PMID: 30365561 PMCID: PMC6203256 DOI: 10.1371/journal.pone.0205071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Intramuscular (IM) vaccination with formalin-inactivated respiratory syncytial virus (FI-RSV) failed in clinical trials due to vaccine-enhanced respiratory disease. To test the efficacy of skin vaccination against respiratory syncytial virus (RSV), we investigated the immunogenicity, efficacy, and inflammatory disease after microneedle (MN) patch delivery of FI-RSV vaccine (FI-RSV MN) to the mouse skin with or without an adjuvant of monophosphoryl lipid A (MPL). Compared to IM vaccination, MN patch delivery of FI-RSV was more effective in clearing lung viral loads and preventing weight loss, and in diminishing inflammation, infiltrating immune cells, and T helper type 2 (Th2) CD4 T cell responses after RSV challenge. With MPL adjuvant, MN patch delivery of FI-RSV significantly increased the immunogenicity and efficacy as well as preventing RSV disease as evidenced by lung viral clearance and avoiding pulmonary histopathology. Improved efficacy and prevention of disease by FI-RSV MN with MPL were correlated with no sign of airway resistance, lower levels of Th2 cytokines and infiltrating innate inflammatory cells, and higher levels of Th1 T cell responses into the lung. This study suggests that MN patch delivery of RSV vaccines to the skin with MPL adjuvant would be a promising vaccination method.
Collapse
Affiliation(s)
- Soojin Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Jae Hwan Jung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Manki Song
- International Vaccine Institute, Seoul, Korea
| | - Barney Graham
- Vaccine Research Center, National Institute of Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Effects of dissolving microneedle fabrication parameters on the activity of encapsulated lysozyme. Eur J Pharm Sci 2018; 117:290-296. [PMID: 29505815 DOI: 10.1016/j.ejps.2018.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/12/2018] [Accepted: 03/02/2018] [Indexed: 01/06/2023]
Abstract
Dissolving microneedle (DMN) is referred to a microscale needle that encapsulates drug(s) within a biodegradable polymer matrix and delivers it into the skin in a minimally invasive manner. Although vast majority of studies have emphasized DMN as an efficient drug delivery system, the activity of DMN-encapsulated proteins or antigens can be significantly affected due to a series of thermal, physical and chemical stress factors during DMN fabrication process and storage period. The objective of this study is to evaluate the effects of DMN fabrication parameters including polymer type, polymer concentration, fabrication and storage temperature, and drying conditions on the activity of the encapsulated therapeutic proteins by employing lysozyme (LYS) as a model protein. Our results indicate that a combination of low temperature fabrication, mild drying condition, specific polymer concentration, and addition of protein stabilizer can maintain the activity of encapsulated LYS up to 99.8 ± 3.8%. Overall, findings of this study highlight the importance of optimizing DMN fabrication parameters and paves way for the commercialization of an efficient delivery system for therapeutics.
Collapse
|
18
|
Vaccination with Combination DNA and Virus-Like Particles Enhances Humoral and Cellular Immune Responses upon Boost with Recombinant Modified Vaccinia Virus Ankara Expressing Human Immunodeficiency Virus Envelope Proteins. Vaccines (Basel) 2017; 5:vaccines5040052. [PMID: 29257056 PMCID: PMC5748618 DOI: 10.3390/vaccines5040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023] Open
Abstract
Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP), and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env). DNA prime and boost with a combination of VLP and DNA vaccines followed by an rMVA boost induced over a 100-fold increase in Env-specific IgG antibody titers compared to three sequential immunizations with DNA and rMVA. Cellular immune responses were induced by VLP-DNA and rMVA vaccinations at high levels in CD8 T cells, CD4 T cells, and peripheral blood mononuclear cells secreting interferon (IFN)-γ, and spleen cells producing interleukin (IL)-2, 4, 5 cytokines. This study suggests that a DNA and VLP combination vaccine with MVA is a promising strategy in enhancing the efficacy of DNA-rMVA vaccination against HIV-1.
Collapse
|
19
|
Seok H, Noh JY, Lee DY, Kim SJ, Song CS, Kim YC. Effective humoral immune response from a H1N1 DNA vaccine delivered to the skin by microneedles coated with PLGA-based cationic nanoparticles. J Control Release 2017; 265:66-74. [DOI: 10.1016/j.jconrel.2017.04.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/20/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
|
20
|
Das S, Khuda-Bukhsh AR. PLGA-loaded nanomedicines in melanoma treatment: Future prospect for efficient drug delivery. Indian J Med Res 2017; 144:181-193. [PMID: 27934796 PMCID: PMC5206868 DOI: 10.4103/0971-5916.195024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Current treatment methods for melanoma have some limitations such as less target-specific action, severe side effects and resistance to drugs. Significant progress has been made in exploring novel drug delivery systems based on suitable biochemical mechanisms using nanoparticles ranging from 10 to 400 nm for drug delivery and imaging, utilizing their enhanced penetration and retention properties. Poly-lactide-co-glycolide (PLGA), a copolymer of poly-lactic acid and poly-glycolic acid, provides an ideally suited performance-based design for better penetration into skin cells, thereby having a greater potential for the treatment of melanoma. Moreover, encapsulation protects the drug from deactivation by biological reactions and interactions with biomolecules, ensuring successful delivery and bioavailability for effective treatment. Controlled and sustained delivery of drugs across the skin barrier that otherwise prohibits entry of larger molecules can be successfully made with adequately stable biocompatible nanocarriers such as PLGA for taking drugs through the small cutaneous pores permitting targeted deposition and prolonged drug action. PLGA is now being extensively used in photodynamic therapy and targeted therapy through modulation of signal proteins and drug-DNA interactions. Recent advances made on these nanomedicines and their advantages in the treatment of skin melanoma are highlighted and discussed in this review.
Collapse
Affiliation(s)
- Sreemanti Das
- Department of Zoology, Cytogenetics & Molecular Biology Laboratory, University of Kalyani, Kalyani, India
| | - Anisur Rahman Khuda-Bukhsh
- Department of Zoology, Cytogenetics & Molecular Biology Laboratory, University of Kalyani, Kalyani, India
| |
Collapse
|
21
|
Kim SJ, Shin JH, Noh JY, Song CS, Kim YC. Development of the novel coating formulations for skin vaccination using stainless steel microneedle. Drug Deliv Transl Res 2016; 6:486-97. [PMID: 27519363 DOI: 10.1007/s13346-016-0321-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study focused on the development of novel coating formulations for stainless steel microneedles against influenza A virus. With in vitro studies, various viscosity enhancers and stabilizers were screened based on the hemagglutination activity of the vaccine, which was coated and dried onto a stainless steel chip at room temperature for 1 day. Following the long-term storage test, the hemagglutination activity and particle size of the vaccine, which was formulated with conventional or methylcellulose or hydroxyethyl cellulose and dried onto the microneedle, were monitored. Next, to evaluate the in vivo immunogenicity and protection effect of each dried vaccine formulation, mice were immunized by the antigen-coated microneedle, which had either the conventional or the proposed formulation. Two novel formulations were chosen in the preliminary screening, and in further evaluations, they exhibited a 20 % higher HA activity during storage for 3 months, and no aggregation was observed during storage after drying. In a mouse model, the microneedle with the novel formulation elicited a higher level of IgG and IgG2a was more prevalent in the IgG isotype profile. In addition, mice immunized with the HEC-coated microneedle survived with small weight loss (>90 %) against lethal challenge infection. Overall, the novel formulation hydroxyethyl cellulose preserved significantly higher HA activity during the production and storage of the microneedle as well as improved the in vivo immunogenicity of the vaccine.
Collapse
Affiliation(s)
- Seong-Jin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ju-Hyung Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jin-Yong Noh
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
22
|
Esser ES, Romanyuk A, Vassilieva EV, Jacob J, Prausnitz MR, Compans RW, Skountzou I. Tetanus vaccination with a dissolving microneedle patch confers protective immune responses in pregnancy. J Control Release 2016; 236:47-56. [PMID: 27327766 DOI: 10.1016/j.jconrel.2016.06.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/24/2016] [Accepted: 06/16/2016] [Indexed: 11/25/2022]
Abstract
Maternal and neonatal tetanus claim tens of thousands lives every year in developing countries, but could be prevented by hygienic practices and improved immunization of pregnant women. This study tested the hypothesis that skin vaccination can overcome the immunologically transformed state of pregnancy and enhance protective immunity to tetanus in mothers and their newborns. To achieve this goal, we developed microneedle patches (MNPs) that efficiently delivered unadjuvanted tetanus toxoid to skin of pregnant mice and demonstrated that this route induced superior immune responses in female mice conferring 100% survival to tetanus toxin challenge when compared to intramuscular vaccination. Mice born to MNP-vaccinated mothers showed detectable tetanus-specific IgG antibodies up to 12weeks of age and complete protection to tetanus toxin challenge up at 6weeks of age. In contrast, none of the 6-week old mice born to intramuscularly vaccinated mothers survived challenge. Although pregnant mice vaccinated with unadjuvanted tetanus toxoid had 30% lower IgG and IgG1 titers than mice vaccinated intramuscularly with Alum®-adjuvanted tetanus toxoid vaccine, IgG2a titers and antibody affinity maturation were similar between these groups. We conclude that skin immunization with MNPs containing unadjuvanted tetanus toxoid can confer potent protective efficacy to mothers and their offspring using a delivery method well suited for expanding vaccination coverage in developing countries.
Collapse
Affiliation(s)
- E Stein Esser
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta 30322, Georgia
| | - AndreyA Romanyuk
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia
| | - Elena V Vassilieva
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta 30322, Georgia
| | - Joshy Jacob
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta 30322, Georgia
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia
| | - Richard W Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta 30322, Georgia
| | - Ioanna Skountzou
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
23
|
Tomar J, Born PA, Frijlink HW, Hinrichs WLJ. Dry influenza vaccines: towards a stable, effective and convenient alternative to conventional parenteral influenza vaccination. Expert Rev Vaccines 2016; 15:1431-1447. [DOI: 10.1080/14760584.2016.1182869] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Marshall S, Sahm LJ, Moore AC. The success of microneedle-mediated vaccine delivery into skin. Hum Vaccin Immunother 2016; 12:2975-2983. [PMID: 27050528 DOI: 10.1080/21645515.2016.1171440] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Microneedles (MNs) are designed to specifically target the outermost, skin barrier layer, the stratum corneum, creating transient pathways for minimally invasive transcutaneous delivery. It is reported that MNs can facilitate delivery without stimulating the pain receptors or damaging blood vessels that lie beneath, thus being perceived as painless and associated with reduced bleeding. This immunocompetence of the skin, coupled with its ease of access, makes this organ an attractive vaccination site. The purpose of this review was to collate primary scientific literature pertaining to MN-mediated in vivo vaccination programmes. A total of 62 original research articles are presented, compiling vaccination strategies in 6 different models (mouse, rat, guinea pig, rabbit, pig, macaque and human). Vaccines tested span a wide range of viral, bacterial and protozoan pathogens and includes 7 of the 13 vaccine-preventable diseases, as defined by the WHO. This review highlights the paucity of available clinical trial data. MN-delivered vaccines have demonstrated safety and immunogenicity in pre-clinical models and boast desirable attributes such as painless administration, thermostability, dose-sparing capacity and the potential for self-administration. These advantages should contribute to enhanced global vaccine access.
Collapse
Affiliation(s)
- Sarah Marshall
- a School of Pharmacy, University College Cork , Cork , Ireland
| | - Laura J Sahm
- a School of Pharmacy, University College Cork , Cork , Ireland.,b Department of Pharmacy , Mercy University Hospital , Cork , Ireland
| | - Anne C Moore
- a School of Pharmacy, University College Cork , Cork , Ireland.,c Department of Pharmacology and Therapeutics , University College Cork , Cork , Ireland
| |
Collapse
|
25
|
Kim YC, Lee SH, Choi WH, Choi HJ, Goo TW, Lee JH, Quan FS. Microneedle delivery of trivalent influenza vaccine to the skin induces long-term cross-protection. J Drug Target 2016; 24:943-951. [PMID: 26957023 DOI: 10.3109/1061186x.2016.1159213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A painless self-immunization method with effective and broad cross-protection is urgently needed to prevent infections against newly emerging influenza viruses. In this study, we investigated the cross-protection efficacy of trivalent influenza vaccine containing inactivated A/PR/8/34 (H1N1), A/Hong Kong/68 (H3N2) and B/Lee/40 after skin vaccination using microneedle patches coated with this vaccine. Microneedle vaccination of mice in the skin provided 100% protection against lethal challenges with heterologous pandemic strain influenza A/California/04/09, heterogeneous A/Philippines/2/82 and B/Victoria/287 viruses 8 months after boost immunization. Cross-reactive serum IgG antibody responses against heterologous influenza viruses A/California/04/09, A/Philippines/2/82 and B/Victoria/287 were induced at high levels. Hemagglutination inhibition titers were also maintained at high levels against these heterogeneous viruses. Microneedle vaccination induced substantial levels of cross-reactive IgG antibody responses in the lung and cellular immune responses, as well as cross-reactive antibody-secreting plasma cells in the spleen. Viral loads in the lung were significantly (p < 0.05) reduced. All mice survived after viral challenges. These results indicate that skin vaccination with trivalent vaccine using a microneedle array could provide protection against seasonal epidemic or new pandemic strain of influenza viruses.
Collapse
Affiliation(s)
- Yeu-Chun Kim
- a Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon, Korea
| | - Su-Hwa Lee
- b Department of Biomedical Science, Graduate School, Kyung Hee University , Seoul, Korea
| | - Won-Hyung Choi
- c Department of Medical Zoology, Kyung Hee University School of Medicine , Seoul, Korea
| | - Hyo-Jick Choi
- d Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta, Canada
| | - Tae-Won Goo
- e Department of Biochemistry, Dongguk University College of Medicine , Gyeongju, Korea
| | - Ju-Hie Lee
- f Department of Pathology, Kyung Hee University Medical Center , Seoul, Korea
| | - Fu-Shi Quan
- c Department of Medical Zoology, Kyung Hee University School of Medicine , Seoul, Korea
| |
Collapse
|
26
|
Raphael AP, Crichton ML, Falconer RJ, Meliga S, Chen X, Fernando GJP, Huang H, Kendall MAF. Formulations for microprojection/microneedle vaccine delivery: Structure, strength and release profiles. J Control Release 2016; 225:40-52. [PMID: 26795684 DOI: 10.1016/j.jconrel.2016.01.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/25/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
To develop novel methods for vaccine delivery, the skin is viewed as a high potential target, due to the abundance of immune cells that reside therein. One method, the use of dissolving microneedle technologies, has the potential to achieve this, with a range of formulations now being employed. Within this paper we assemble a range of methods (including FT-FIR using synchrotron radiation, nanoindentation and skin delivery assays) to systematically examine the effect of key bulking agents/excipients - sugars/polyols - on the material form, structure, strength, failure properties, diffusion and dissolution for dissolving microdevices. We investigated concentrations of mannitol, sucrose, trehalose and sorbitol from 1:1 to 30:1 with carboxymethylcellulose (CMC), although mannitol did not form our micro-structures so was discounted early in the study. The other formulations showed a variety of crystalline (sorbitol) and amorphous (sucrose, trehalose) structures, when investigated using Fourier transform far infra-red (FT-FIR) with synchrotron radiation. The crystalline structures had a higher elastic modulus than the amorphous formulations (8-12GPa compared to 0.05-11GPa), with sorbitol formulations showing a bimodal distribution of results including both amorphous and crystalline behaviour. In skin, diffusion properties were similar among all formulations with dissolution occurring within 5s for our small projection array structures (~100μm in length). Overall, slight variations in formulation can significantly change the ability of our projections to perform their required function, making the choice of bulking/vaccine stabilising agents of great importance for these devices.
Collapse
Affiliation(s)
- Anthony P Raphael
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, QLD 4072, Australia
| | - Michael L Crichton
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, QLD 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia
| | - Robert J Falconer
- University of Sheffield, Department of Chemical & Biological Engineering, ChELSI Institute, Sheffield S1 3JD, England, United Kingdom
| | - Stefano Meliga
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, QLD 4072, Australia
| | - Xianfeng Chen
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, QLD 4072, Australia
| | - Germain J P Fernando
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, QLD 4072, Australia
| | - Han Huang
- The University of Queensland, School of Mechanical and Mining Engineering, QLD 4072, Australia
| | - Mark A F Kendall
- The University of Queensland, Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, QLD 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia; The University of Queensland, Faculty of Medicine and Biomedical Sciences, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia.
| |
Collapse
|
27
|
Vrdoljak A, Allen EA, Ferrara F, Temperton NJ, Crean AM, Moore AC. Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods. J Control Release 2016; 225:192-204. [PMID: 26774221 DOI: 10.1016/j.jconrel.2016.01.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Dissolvable microneedle (DMN) patches for immunization have multiple benefits, including vaccine stability and ease-of-use. However, conventional DMN fabrication methods have several drawbacks. Here we describe a novel, microfluidic, drop dispensing-based dissolvable microneedle production method that overcomes these issues. Uniquely, heterogeneous arrays, consisting of microneedles of diverse composition, can be easily produced on the same patch. Robustness of the process was demonstrated by incorporating and stabilizing adenovirus and MVA vaccines. Clinically-available trivalent inactivated influenza vaccine (TIV) in DMN patches is fully stable for greater than 6months at 40°C. Immunization using low dose TIV-loaded DMN patches induced significantly higher antibody responses compared to intramuscular-based immunization in mice. TIV-loaded patches also induced a broader, heterosubtypic neutralizing antibody response. By addressing issues that will be faced in large-scale fill-finish DMN fabrication processes and demonstrating superior thermostable characteristics and immunogenicity, this study progresses the translation of this microneedle platform to eventual clinical deployment.
Collapse
Affiliation(s)
- Anto Vrdoljak
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Evin A Allen
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | | | - Abina M Crean
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Anne C Moore
- School of Pharmacy, University College Cork, Cork, Ireland; Department of Pharmacology, University College Cork, Cork, Ireland.
| |
Collapse
|
28
|
Lee YN, Hwang HS, Kim MC, Lee YT, Kim YJ, Lee FEH, Kang SM. Protection against respiratory syncytial virus by inactivated influenza virus carrying a fusion protein neutralizing epitope in a chimeric hemagglutinin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:759-770. [PMID: 26656630 DOI: 10.1016/j.nano.2015.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/11/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED A desirable vaccine against respiratory syncytial virus (RSV) should induce neutralizing antibodies without eliciting abnormal T cell responses to avoid vaccine-enhanced pathology. In an approach to deliver RSV neutralizing epitopes without RSV-specific T cell antigens, we genetically engineered chimeric influenza virus expressing RSV F262-276 neutralizing epitopes in the globular head domain as a chimeric hemagglutinin (HA) protein. Immunization of mice with formalin-inactivated recombinant chimeric influenza/RSV F262-276 was able to induce RSV protective neutralizing antibodies and lower lung viral loads after challenge. Formalin-inactivated RSV immune mice showed high levels of pulmonary inflammatory cytokines, macrophages, IL-4-producing T cells, and extensive histopathology. However, RSV-specific T cell responses and enhancement of pulmonary histopathology were not observed after RSV infection of inactivated chimeric influenza/RSV F262-276. This study provides evidence that an inactivated vaccine platform of chimeric influenza/RSV virus can be developed into a safe RSV vaccine candidate without priming RSV-specific T cells and immunopathology. FROM THE CLINICAL EDITOR Respiratory syncytial virus (RSV) is a major cause of respiratory tract illness and morbidity in children. Hence, there is a need to develop an effective vaccine against this virus. In this article, the authors engineered chimeric influenza virus to express RSV neutralizing epitopes. The positive findings in in-vivo experiments provide a beginning for future clinical trials and perhaps eventual product realization.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Animal and Plant Quarantine Agency, Gyeonggi-do, Republic of Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yu-Jin Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
29
|
Rejinold NS, Shin JH, Seok HY, Kim YC. Biomedical applications of microneedles in therapeutics: recent advancements and implications in drug delivery. Expert Opin Drug Deliv 2015; 13:109-31. [DOI: 10.1517/17425247.2016.1115835] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Microneedle patches for vaccination in developing countries. J Control Release 2015; 240:135-141. [PMID: 26603347 DOI: 10.1016/j.jconrel.2015.11.019] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/31/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
Abstract
Millions of people die of infectious diseases each year, mostly in developing countries, which could largely be prevented by the use of vaccines. While immunization rates have risen since the introduction of the Expanded Program on Immunization (EPI), there remain major challenges to more effective vaccination in developing countries. As a possible solution, microneedle patches containing an array of micron-sized needles on an adhesive backing have been developed to be used for vaccine delivery to the skin. These microneedle patches can be easily and painlessly applied by pressing against the skin and, in some designs, do not leave behind sharps waste. The patches are single-dose, do not require reconstitution, are easy to administer, have reduced size to simplify storage, transportation and waste disposal, and offer the possibility of improved vaccine immunogenicity, dose sparing and thermostability. This review summarizes vaccination challenges in developing countries and discusses advantages that microneedle patches offer for vaccination to address these challenges. We conclude that microneedle patches offer a powerful new technology that can enable more effective vaccination in developing countries.
Collapse
|
31
|
Lee YN, Kim MC, Lee YT, Hwang HS, Lee J, Kim C, Kang SM. Cross Protection against Influenza A Virus by Yeast-Expressed Heterologous Tandem Repeat M2 Extracellular Proteins. PLoS One 2015; 10:e0137822. [PMID: 26366729 PMCID: PMC4569442 DOI: 10.1371/journal.pone.0137822] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023] Open
Abstract
The influenza M2 ectodomain (M2e) is well conserved across human influenza A subtypes, but there are few residue changes among avian and swine origin influenza A viruses. We expressed a tandem repeat construct of heterologous M2e sequences (M2e5x) derived from human, swine, and avian origin influenza A viruses using the yeast expression system. Intramuscular immunization of mice with AS04-adjuvanted M2e5x protein vaccines was effective in inducing M2e-specific antibodies reactive to M2e peptide and native M2 proteins on the infected cells with human, swine, or avian influenza virus, mucosal and systemic memory cellular immune responses, and cross-protection against H3N2 virus. Importantly, M2e5x immune sera were found to confer protection against different subtypes of H1N1 and H5N1 influenza A viruses in naïve mice. Also, M2e5x-immune complexes of virus-infected cells stimulated macrophages to secrete cytokines via Fc receptors, indicating a possible mechanism of protection. The present study provides evidence that M2e5x proteins produced in yeast cells could be developed as a potential universal influenza vaccine.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States of America
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States of America
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, South Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States of America
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States of America
| | - Jongsang Lee
- BEAMS Biotechnology Co. Ltd., Seongnam, Gyeonggi-do, South Korea
| | - Cheol Kim
- BEAMS Biotechnology Co. Ltd., Seongnam, Gyeonggi-do, South Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States of America
- * E-mail:
| |
Collapse
|
32
|
Lee YN, Kim MC, Lee YT, Kim YJ, Lee J, Kim C, Ha SH, Kang SM. Co-immunization with tandem repeat heterologous M2 extracellular proteins overcomes strain-specific protection of split vaccine against influenza A virus. Antiviral Res 2015; 122:82-90. [PMID: 26248203 DOI: 10.1016/j.antiviral.2015.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 01/28/2023]
Abstract
Current influenza vaccines are less efficacious against antigenically different influenza A viruses. This study presents an approach to overcome strain-specific protection, using a strategy of co-immunization with seasonal H3N2 split vaccine and yeast-expressed soluble proteins of a tandem repeat containing heterologous influenza M2 ectodomains (M2e5x). Co-immunization with both vaccines in mice was superior to either vaccine alone in inducing cross protection against heterologous H3N2 virus by raising M2e-specific humoral and cellular immune responses toward a T-helper type 1 profile inducing IgG2a isotype antibodies as well as interferon-γ-producing cells in systemic and mucosal sites. In addition, co-immunization sera were found to confer cross-protection against different subtypes of H1N1 and H5N1 influenza A viruses in naïve mice. A mechanistic study provides evidence that activation of dendritic cells by co-stimulation with M2e5x and split vaccine was associated with the proliferation of CD4(+) T cells. Our results suggest that a strategy of co-immunization with seasonal split and M2e5x protein vaccines could be a promising approach for overcoming the limitation of strain-specific protection by current influenza vaccination.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Animal and Plant Quarantine Agency, 175 Anyangro, Anyang, Gyeonggi-do 430-757, Republic of Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Yu-Jin Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jongsang Lee
- BEAMS Biotechnology Co. Ltd., Seongnam, Gyeonggi-do, Republic of Korea
| | - Cheol Kim
- BEAMS Biotechnology Co. Ltd., Seongnam, Gyeonggi-do, Republic of Korea
| | - Suk-Hoon Ha
- Mogam Biotechnology Research Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
33
|
Shin JH, Park JK, Lee DH, Quan FS, Song CS, Kim YC. Microneedle Vaccination Elicits Superior Protection and Antibody Response over Intranasal Vaccination against Swine-Origin Influenza A (H1N1) in Mice. PLoS One 2015; 10:e0130684. [PMID: 26086590 PMCID: PMC4472750 DOI: 10.1371/journal.pone.0130684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 05/24/2015] [Indexed: 12/26/2022] Open
Abstract
Influenza is one of the critical infectious diseases globally and vaccination has been considered as the best way to prevent. In this study, immunogenicity and protection efficacy between intranasal (IN) and microneedle (MN) vaccination was compared using inactivated swine-origin influenza A/H1N1 virus vaccine. Mice were vaccinated by MN or IN administration with 1 μg of inactivated H1N1 virus vaccine. Antigen-specific antibody responses and hemagglutination-inhibition (HI) titers were measured in all immunized sera after immunization. Five weeks after an immunization, a lethal challenge was performed to evaluate the protective efficacy. Furthermore, mice were vaccinated by IN administration with higher dosages (> 1 μg), analyzed in the same manner, and compared with 1 μg-vaccine-coated MN. Significantly higher antigen-specific antibody responses and HI titer were measured in sera in MN group than those in IN group. While 100% protection, slight weight loss, and reduced viral replication were observed in MN group, 0% survival rate were observed in IN group. As vaccine dose for IN vaccination increased, MN-immunized sera showed much higher antigen-specific antibody responses and HI titer than other IN groups. In addition, protective immunity of 1 μg-MN group was similar to those of 20- and 40 μg-IN groups. We conclude that MN vaccination showed more potential immune response and protection than IN vaccination at the same vaccine dosage.
Collapse
Affiliation(s)
- Ju-Hyung Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jae-Keun Park
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Dong-Hun Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
- * E-mail: (CSS); (YCK)
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- * E-mail: (CSS); (YCK)
| |
Collapse
|
34
|
Microneedle patch delivery to the skin of virus-like particles containing heterologous M2e extracellular domains of influenza virus induces broad heterosubtypic cross-protection. J Control Release 2015; 210:208-16. [PMID: 26003039 DOI: 10.1016/j.jconrel.2015.05.278] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 01/24/2023]
Abstract
A broadly cross-protective influenza vaccine that can be administrated by a painless self-immunization method would be a value as a potential universal mass vaccination strategy. This study developed a minimally-invasive microneedle (MN) patch for skin vaccination with virus-like particles containing influenza virus heterologous M2 extracellular (M2e) domains (M2e5x VLPs) as a universal vaccine candidate without adjuvants. The stability of M2e5x VLP-coated microneedles was maintained for 8weeks at room temperature without losing M2e antigenicity and immunogenicity. MN skin immunization induced strong humoral and mucosal M2e antibody responses and conferred cross-protection against heterosubtypic H1N1, H3N2, and H5N1 influenza virus challenges. In addition, M2e5x VLP MN skin vaccination induced T-helper type 1 responses such as IgG2a isotype antibodies and IFN-γ producing cells at higher levels than those by conventional intramuscular injection. These potential immunological and logistic advantages for skin delivery of M2e5x VLP MN vaccines could offer a promising approach to develop an easy-to-administer universal influenza vaccine.
Collapse
|
35
|
Feasibility study for intraepidermal delivery of proteins using a solid microneedle array. Int J Pharm 2015; 486:52-8. [DOI: 10.1016/j.ijpharm.2015.03.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/20/2015] [Indexed: 11/23/2022]
|
36
|
Ginseng protects against respiratory syncytial virus by modulating multiple immune cells and inhibiting viral replication. Nutrients 2015; 7:1021-36. [PMID: 25658239 PMCID: PMC4344572 DOI: 10.3390/nu7021021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 01/23/2023] Open
Abstract
Ginseng has been used in humans for thousands of years but its effects on viral infection have not been well understood. We investigated the effects of red ginseng extract (RGE) on respiratory syncytial virus (RSV) infection using in vitro cell culture and in vivo mouse models. RGE partially protected human epithelial (HEp2) cells from RSV-induced cell death and viral replication. In addition, RGE significantly inhibited the production of RSV-induced pro-inflammatory cytokine (TNF-α) in murine dendritic and macrophage-like cells. More importantly, RGE intranasal pre-treatment prevented loss of mouse body weight after RSV infection. RGE treatment improved lung viral clearance and enhanced the production of interferon (IFN-γ) in bronchoalveolar lavage cells upon RSV infection of mice. Analysis of cellular phenotypes in bronchoalveolar lavage fluids showed that RGE treatment increased the populations of CD8+ T cells and CD11c+ dendritic cells upon RSV infection of mice. Taken together, these results provide evidence that ginseng has protective effects against RSV infection through multiple mechanisms, which include improving cell survival, partial inhibition of viral replication and modulation of cytokine production and types of immune cells migrating into the lung.
Collapse
|
37
|
Lee YN, Lee YT, Kim MC, Hwang HS, Lee JS, Kim KH, Kang SM. Fc receptor is not required for inducing antibodies but plays a critical role in conferring protection after influenza M2 vaccination. Immunology 2014; 143:300-9. [PMID: 24773389 DOI: 10.1111/imm.12310] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/29/2022] Open
Abstract
The ectodomain of matrix protein 2 (M2e) of influenza virus is considered a rational target for a universal influenza A vaccine. To better understand M2e immune-mediated protection, Fc receptor common γ chain deficient (FcRγ(-/-) ) and wild-type mice were immunized with a tandem repeat of M2e presented on virus-like particles (M2e5x VLP). Levels of M2e-specific antibodies that were induced in FcRγ(-/-) mice after immunization with M2e5x VLP were similar to those in wild-type mice. In addition, M2e antibodies induced in FcRγ(-/-) mice were found to be equally protective as those induced in wild-type mice. However, M2e5x VLP-immunized FcRγ(-/-) mice were not well protected, as shown by severe weight loss, higher lung viral titres and interleukin-6 inflammatory cytokine production upon influenza virus challenge compared with M2e5x VLP-immunized wild-type mice. Importantly, FcRγ(-/-) mice that were immunized with inactivated influenza virus induced haemagglutination inhibition activity and were well protected without a significant weight loss. Interestingly, interferon-γ-producing CD4 T and CD8 T cells were found to be prevalent in lungs from M2e5x VLP-immunized FcRγ(-/-) mice, which appeared to be correlated with a faster recovery after infection. These results indicate that Fc receptors play a primary role in conferring M2e-specific antibody-mediated protection whereas T cells may contribute to the recovery at later stages of infection.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Ko EJ, Kwon YM, Lee JS, Hwang HS, Yoo SE, Lee YN, Lee YT, Kim MC, Cho MK, Lee YR, Quan FS, Song JM, Lee S, Moore ML, Kang SM. Virus-like nanoparticle and DNA vaccination confers protection against respiratory syncytial virus by modulating innate and adaptive immune cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:99-108. [PMID: 25109662 DOI: 10.1016/j.nano.2014.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/15/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
Respiratory syncytial virus (RSV) is an important human pathogen. Expression of virus structural proteins produces self-assembled virus-like nanoparticles (VLP). We investigated immune phenotypes after RSV challenge of immunized mice with VLP containing RSV F and G glycoproteins mixed with F-DNA (FdFG VLP). In contrast to formalin-inactivated RSV (FI-RSV) causing vaccination-associated eosinophilia, FdFG VLP immunization induced low bronchoalveolar cellularity, higher ratios of CD11c(+) versus CD11b(+) phenotypic cells and CD8(+) T versus CD4(+) T cells secreting interferon (IFN)-γ, T helper type-1 immune responses, and no sign of eosinophilia upon RSV challenge. Furthermore, RSV neutralizing activity, lung viral clearance, and histology results suggest that FdFG VLP can be comparable to live RSV in conferring protection against RSV and in preventing RSV disease. This study provides evidence that a combination of recombinant RSV VLP and plasmid DNA may have a potential anti-RSV prophylactic vaccine inducing balanced innate and adaptive immune responses.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jong Seok Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Si-Eun Yoo
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Animal and Plant Quarantine Agency, Anyang City, Gyeonggi-do, Republic of Korea
| | - Min Kyoung Cho
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - You Ri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jae-Min Song
- Department of Global Medical Science, Sungshin Women's University, Seoul, Republic of Korea
| | - Sujin Lee
- Department of Pediatrics, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Martin L Moore
- Department of Pediatrics, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
39
|
Lee YN, Kim MC, Lee YT, Hwang HS, Cho MK, Lee JS, Ko EJ, Kwon YM, Kang SM. AS04-adjuvanted virus-like particles containing multiple M2 extracellular domains of influenza virus confer improved protection. Vaccine 2014; 32:4578-4585. [PMID: 24951867 DOI: 10.1016/j.vaccine.2014.06.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/15/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
The ectodomain of matrix protein 2 (M2e) of influenza virus is suggested to be a rational target for a universal influenza A vaccine. However, there are some concerns that M2e vaccines might not be highly effective in the general population with diverse genetic backgrounds. Here we examined the immunogenicity and protective efficacy of the baculovirus-derived virus-like particles containing multiple M2e (M2eVLP) with AS04 adjuvant in a C57BL/6 mouse strain (H-2(b)). M2eVLP vaccine induced significant levels of M2e-specific IgG in C57BL/6 mice after vaccination. Furthermore, M2eVLP adjuvanted with AS04 was more effective than M2eVLP alone in conferring protection as well as in inducing recall humoral and T cell responses specific for M2e after lethal influenza virus challenge. A mechanistic study provides evidence that activation of dendritic cells by the toll-like receptor 4 agonist MPL in the AS04 adjuvant was associated with interferon-γ producing CD4 T cell responses. Our results suggest that AS04 adjuvanted M2eVLP vaccines have the potential to improve cross-protection.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, South Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Kyoung Cho
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jong Seok Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
40
|
Gill HS, Kang SM, Quan FS, Compans RW. Cutaneous immunization: an evolving paradigm in influenza vaccines. Expert Opin Drug Deliv 2014; 11:615-27. [PMID: 24521050 DOI: 10.1517/17425247.2014.885947] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Most vaccines are administered by intramuscular injection using a hypodermic needle and syringe. Some limitations of this procedure include reluctance to be immunized because of fear of needlesticks, and concerns associated with the safe disposal of needles after their use. Skin delivery is an alternate route of vaccination that has potential to be painless and could even lead to dose reduction of vaccines. Recently, microneedles have emerged as a novel painless approach for delivery of influenza vaccines via the skin. AREAS COVERED In this review, we briefly summarize the approaches and devices used for skin vaccination, and then focus on studies of skin immunization with influenza vaccines using microneedles. We discuss both the functional immune response and the nature of this immune response following vaccination with microneedles. EXPERT OPINION The cutaneous administration of influenza vaccines using microneedles offers several advantages: it is painless, elicits stronger immune responses in preclinical studies and could improve responses in high-risk populations. These dry formulations of vaccines provide enhanced stability, a property of high importance in enabling their rapid global distribution in response to possible outbreaks of pandemic influenza and newly emerging infectious diseases.
Collapse
Affiliation(s)
- Harvinder S Gill
- Texas Tech University, Department of Chemical Engineering , Lubbock, TX , USA
| | | | | | | |
Collapse
|
41
|
Leite-Silva VR, de Almeida MM, Fradin A, Grice JE, Roberts MS. Delivery of drugs applied topically to the skin. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.12.32] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Skountzou I, Compans RW. Skin immunization with influenza vaccines. Curr Top Microbiol Immunol 2014; 386:343-69. [PMID: 25038939 DOI: 10.1007/82_2014_407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Problems with existing influenza vaccines include the strain specificity of the immune response, resulting in the need for frequent reformulation in response to viral antigenic drift. Even in years when the same influenza strains are prevalent, the duration of immunity is limited, and results in the need for annual revaccination. The immunogenicity of the present split or subunit vaccines is also lower than that observed with whole inactivated virus, and the vaccines are not very effective in high risk groups such as the young or the elderly. Vaccine coverage is incomplete, due in part to concerns about the use of hypodermic needles for delivery. Alternative approaches for vaccination are being developed which address many of these concerns. Here we review new approaches which focus on skin immunization, including the development of needle-free delivery systems which use stable dry formulations and induce stronger and longer-lasting immune responses.
Collapse
Affiliation(s)
- Ioanna Skountzou
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, CNR Building, 1518 Clifton Road, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
43
|
Suh H, Shin J, Kim YC. Microneedle patches for vaccine delivery. Clin Exp Vaccine Res 2013; 3:42-9. [PMID: 24427762 PMCID: PMC3890449 DOI: 10.7774/cevr.2014.3.1.42] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 09/30/2013] [Accepted: 10/10/2013] [Indexed: 11/15/2022] Open
Abstract
In today's medical industry, the range of vaccines that exist for administration in humans represents an eclectic variety of forms and immunologic mechanisms. Namely, these are the live attenuated viruses, inactivated viruses, subunit proteins, and virus-like particles for treating virus-caused diseases, as well as the bacterial-based polysaccharide, protein, and conjugated vaccines. Currently, a new approach to vaccination is being investigated with the concept of DNA vaccines. As an alternative delivery route to enhance the vaccination efficacy, microneedles have been devised to target the rich network of immunologic antigen-presenting cells in the dermis and epidermis layers under the skin. Numerous studies have outlined the parameters of microneedle delivery of a wide range of vaccines, revealing comparable or higher immunogenicity to conventional intramuscular routes, overall level of stability, and dose-sparing advantages. Furthermore, recent mechanism studies have begun to successfully elucidate the biological mechanisms behind microneedle vaccination. This paper describes the current status of microneedle vaccine research.
Collapse
Affiliation(s)
- Hyemee Suh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Juhyung Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
44
|
Kim YC, Yoo DG, Compans RW, Kang SM, Prausnitz MR. Cross-protection by co-immunization with influenza hemagglutinin DNA and inactivated virus vaccine using coated microneedles. J Control Release 2013; 172:579-88. [PMID: 23643528 PMCID: PMC3815987 DOI: 10.1016/j.jconrel.2013.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/16/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
The need for annual revaccination against influenza is a burden on the healthcare system, leads to low vaccination rates and makes timely vaccination difficult against pandemic strains, such as during the 2009 H1N1 influenza pandemic. In an effort toward achieving a broadly protective vaccine that provides cross-protection against multiple strains of influenza, this study developed a microneedle patch to co-immunize with A/PR8 influenza hemagglutinin DNA and A/PR8 inactivated virus vaccine. We hypothesize that this dual component vaccination strategy administered to the skin using microneedles will provide cross-protection against other strains of influenza. To test this hypothesis, we developed a novel coating formulation that did not require additional excipients to increase coating solution viscosity by using the DNA vaccine itself to increase viscosity and thereby enable thick coatings of DNA vaccine and inactivated virus vaccine on metal microneedles. Co-immunization in this way not only generated robust antibody responses against A/PR8 influenza but also generated robust heterologous antibody responses against pandemic 2009 H1N1 influenza in mice. Challenge studies showed complete cross-protection against lethal challenge with live pandemic 2009 H1N1 virus. Control experiments using A/PR8 inactivated influenza virus vaccine with placebo DNA coated onto microneedles produced lower antibody titers and provided incomplete protection against challenge. Overall, this is the first study showing DNA solution as a microneedle coating agent and demonstrating cross-protection by co-immunization with inactivated virus and DNA vaccine using coated microneedles.
Collapse
MESH Headings
- Animals
- Antibody Formation
- Drug Delivery Systems/instrumentation
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Humans
- Immunization
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Injections, Intradermal
- Mice
- Mice, Inbred BALB C
- Needles
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Dae-Goon Yoo
- Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Richard W. Compans
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Sang-Moo Kang
- Center for Inflammation, Immunity, and Infection, Georgia State University, Atlanta, GA30303, USA
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
45
|
Long-term protective immunity from an influenza virus-like particle vaccine administered with a microneedle patch. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1433-9. [PMID: 23863506 DOI: 10.1128/cvi.00251-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skin vaccination with influenza virus-like particles (VLPs) using microneedles has been shown to induce protection similar to or better than that induced by intramuscular immunization. In this study, we examined the long-term protective efficacy of influenza (H1N1 A/PR/8/34) VLPs after skin vaccination using microneedle patches coated with the vaccine. Microneedle vaccination of mice in the skin induced 100% protection against lethal challenge infection with influenza A/PR/8/34 virus 14 months after a single vaccine dose. Influenza virus-specific total IgG response and hemagglutination inhibition (HAI) titers were maintained at high levels for over 1 year after microneedle vaccination. Microneedle vaccination also induced substantial levels of lung IgG and IgA antibody responses, and antibody-secreting plasma cells from spleen and bone marrow, as well as conferring effective control of lung viral loads, resulting in complete protection 14 months after vaccination. These strong and long-lasting immune responses were enabled in part by stabilization of the vaccine by formulation with trehalose during microneedle patch fabrication. Administration of the stabilized vaccine using microneedles was especially effective at enabling strong recall responses measured 4 days after lethal virus challenge, including increased HAI and antibody-secreting cells in the spleen and reduced viral titer and inflammatory response in the lung. The results in this study indicate that skin vaccination with VLP vaccine using a microneedle patch provides long-term protection against influenza in mice.
Collapse
|
46
|
Pearson FE, McNeilly CL, Crichton ML, Primiero CA, Yukiko SR, Fernando GJP, Chen X, Gilbert SC, Hill AVS, Kendall MAF. Dry-coated live viral vector vaccines delivered by nanopatch microprojections retain long-term thermostability and induce transgene-specific T cell responses in mice. PLoS One 2013; 8:e67888. [PMID: 23874462 PMCID: PMC3706440 DOI: 10.1371/journal.pone.0067888] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/23/2013] [Indexed: 11/20/2022] Open
Abstract
The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara--two vectors under evaluation for the delivery of malaria antigens to humans--were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8(+) T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates.
Collapse
Affiliation(s)
- Frances E. Pearson
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- The Jenner Institute, The University of Oxford, Oxford, United Kingdom
| | - Celia L. McNeilly
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael L. Crichton
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Vaxxas Pty Ltd, Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland, Australia
| | - Clare A. Primiero
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Sally R. Yukiko
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Vaxxas Pty Ltd, Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland, Australia
| | - Germain J. P. Fernando
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Vaxxas Pty Ltd, Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland, Australia
| | - Xianfeng Chen
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarah C. Gilbert
- The Jenner Institute, The University of Oxford, Oxford, United Kingdom
| | - Adrian V. S. Hill
- The Jenner Institute, The University of Oxford, Oxford, United Kingdom
| | - Mark A. F. Kendall
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
- Vaxxas Pty Ltd, Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland, Australia
| |
Collapse
|
47
|
Choi HJ, Ebersbacher CF, Kim MC, Kang SM, Montemagno CD. A mechanistic study on the destabilization of whole inactivated influenza virus vaccine in gastric environment. PLoS One 2013; 8:e66316. [PMID: 23776657 PMCID: PMC3679046 DOI: 10.1371/journal.pone.0066316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/03/2013] [Indexed: 11/19/2022] Open
Abstract
Oral immunization using whole inactivated influenza virus vaccine promises an efficient vaccination strategy. While oral vaccination was hampered by harsh gastric environment, a systematic understanding about vaccine destabilization mechanisms was not performed. Here, we investigated the separate and combined effects of temperature, retention time, pH, and osmotic stress on the stability of influenza vaccine by monitoring the time-dependent morphological change using stopped-flow light scattering. When exposed to osmotic stress, clustering of vaccine particles was enhanced in an acidic medium (pH 2.0) at ≥25°C. Fluorescence spectroscopic studies showed that hyper-osmotic stress at pH 2.0 and 37°C caused a considerable increase in conformational change of antigenic proteins compared to that in acidic iso-osmotic medium. A structural integrity of membrane was destroyed upon exposure to hyper-osmotic stress, leading to irreversible morphological change, as observed by undulation in stopped-flow light scattering intensity and transmission electron microscopy. Consistent with these analyses, hemagglutination activity decreased more significantly with an increasing magnitude of hyper-osmotic stress than in the presence of the hypo- and iso-osmotic stresses. This study shows that the magnitude and direction of the osmotic gradient has a substantial impact on the stability of orally administrated influenza vaccine.
Collapse
Affiliation(s)
- Hyo-Jick Choi
- School of Energy, Environmental, Biological and Medical Engineering University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Charles F. Ebersbacher
- School of Energy, Environmental, Biological and Medical Engineering University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Min-Chul Kim
- Center for Inflammation, Immunity and Infection and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Carlo D. Montemagno
- National Institute for Nanotechnology, Nanotechnology Accelerator and Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
48
|
Chen MC, Huang SF, Lai KY, Ling MH. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials 2013; 34:3077-86. [PMID: 23369214 DOI: 10.1016/j.biomaterials.2012.12.041] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/31/2012] [Indexed: 11/27/2022]
Abstract
This study introduces a microneedle transdermal delivery system, composed of embeddable chitosan microneedles and a poly(L-lactide-co-D,L-lactide) (PLA) supporting array, for complete and sustained delivery of encapsulated antigens to the skin. Chitosan microneedles were mounted to the top of a strong PLA supporting array, providing mechanical strength to fully insert the microneedles into the skin. When inserted into rat skin in vivo, chitosan microneedles successfully separated from the supporting array and were left within the skin for sustained drug delivery without requiring a transdermal patch. The microneedle penetration depth was approximately 600 μm (i.e. the total length of the microneedle), which is beneficial for targeted delivery of antigens to antigen-presenting cells in the epidermis and dermis. To evaluate the utility of chitosan microneedles for intradermal vaccination, ovalbumin (OVA; MW = 44.3 kDa) was used as a model antigen. When the OVA-loaded microneedles were embedded in rat skin in vivo, histological examination showed that the microneedles gradually degraded and prolonged OVA exposure at the insertion sites for up to 14 days. Compared to traditional intramuscular immunization, rats immunized by a single microneedle dose of OVA showed a significantly higher OVA-specific antibody response which lasted for at least 6 weeks. These results suggest that embeddable chitosan microneedles are a promising depot for extended delivery of encapsulated antigens to provide sustained immune stimulation and improve immunogenicity.
Collapse
Affiliation(s)
- Mei-Chin Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC.
| | | | | | | |
Collapse
|
49
|
Kim MC, Song JM, O E, Kwon YM, Lee YJ, Compans RW, Kang SM. Virus-like particles containing multiple M2 extracellular domains confer improved cross-protection against various subtypes of influenza virus. Mol Ther 2012; 21:485-92. [PMID: 23247101 DOI: 10.1038/mt.2012.246] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The extracellular domain of M2 (M2e), a small ion channel membrane protein, is well conserved among different human influenza A virus strains. To improve the protective efficacy of M2e vaccines, we genetically engineered a tandem repeat of M2e epitope sequences (M2e5x) of human, swine, and avian origin influenza A viruses, which was expressed in a membrane-anchored form and incorporated in virus-like particles (VLPs). The M2e5x protein with the transmembrane domain of hemagglutinin (HA) was effectively incorporated into VLPs at a several 100-fold higher level than that on influenza virions. Intramuscular immunization with M2e5x VLP vaccines was highly effective in inducing M2e-specific antibodies reactive to different influenza viruses, mucosal and systemic immune responses, and cross-protection regardless of influenza virus subtypes in the absence of adjuvant. Importantly, immune sera were found to be sufficient for conferring protection in naive mice, which was long-lived and cross-protective. Thus, molecular designing and presenting M2e immunogens on VLPs provide a promising platform for developing universal influenza vaccines without using adjuvants.
Collapse
Affiliation(s)
- Min-Chul Kim
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Choi HJ, Bondy BJ, Yoo DG, Compans RW, Kang SM, Prausnitz MR. Stability of whole inactivated influenza virus vaccine during coating onto metal microneedles. J Control Release 2012; 166:159-71. [PMID: 23246470 DOI: 10.1016/j.jconrel.2012.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/03/2012] [Accepted: 12/04/2012] [Indexed: 12/22/2022]
Abstract
Immunization using a microneedle patch coated with vaccine offers the promise of simplified vaccination logistics and increased vaccine immunogenicity. This study examined the stability of influenza vaccine during the microneedle coating process, with a focus on the role of coating formulation excipients. Thick, uniform coatings were obtained using coating formulations containing a viscosity enhancer and surfactant, but these formulations retained little functional vaccine hemagglutinin (HA) activity after coating. Vaccine coating in a trehalose-only formulation retained about 40-50% of vaccine activity, which is a significant improvement. The partial viral activity loss observed in the trehalose-only formulation was hypothesized to come from osmotic pressure-induced vaccine destabilization. We found that inclusion of a viscosity enhancer, carboxymethyl cellulose, overcame this effect and retained full vaccine activity on both washed and plasma-cleaned titanium surfaces. The addition of polymeric surfactant, Lutrol® micro 68, to the trehalose formulation generated phase transformations of the vaccine coating, such as crystallization and phase separation, which was correlated to additional vaccine activity loss, especially when coating on hydrophilic, plasma-cleaned titanium. Again, the addition of a viscosity enhancer suppressed the surfactant-induced phase transformations during drying, which was confirmed by in vivo assessment of antibody response and survival rate after immunization in mice. We conclude that trehalose and a viscosity enhancer are beneficial coating excipients, but the inclusion of surfactant is detrimental to vaccine stability.
Collapse
Affiliation(s)
- Hyo-Jick Choi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|