1
|
Jia Z, Zhang D, Zhu L, Xue J. Animal models of human herpesvirus infection. Animal Model Exp Med 2025; 8:615-628. [PMID: 39921263 PMCID: PMC12067922 DOI: 10.1002/ame2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/18/2025] [Indexed: 02/10/2025] Open
Abstract
Human herpesvirus, a specific group within the herpesvirus family, is responsible for a variety of human diseases. These viruses can infect humans and other vertebrates, primarily targeting the skin, mucous membranes, and neural tissues, thereby significantly impacting the health of both humans and animals. Animal models are crucial for studying virus pathogenesis, vaccine development, and drug testing. Despite several vaccine candidates being in preclinical and clinical stages, no vaccines are current available to prevent lifelong infections caused by these human herpesviruses, except for varicella-zoster virus (VZV) vaccine. However, the strict host tropism of herpesviruses and other limitations mean that no single animal model can fully replicate all key features of human herpesvirus-associated diseases. This makes it challenging to evaluate vaccines and antivirals against human herpesvirus comprehensively. Herein, we summarize the current animal models used to study the human herpesviruses including α-herpesviruses (herpes simplex virus type 1(HSV-1), HSV-2, VZV), β-herpesviruses (human cytomegalovirus (HCMV), γ-herpesviruses (Epstein-Barr virus (EBV)) and Kaposi's sarcoma herpesvirus (KSHV)). By providing concise information and detailed analysis of the potential, limitations and applications of various models, such as non-human primates, mice, rabbits, guinea pigs, and tree shrews, this summary aims to help researchers efficiently select the most appropriate animal model, offering practical guidance for studying human herpesvirus.
Collapse
Affiliation(s)
- Ziqing Jia
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dong Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lin Zhu
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Ministry of EducationChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
García-Lerma JG, McNicholl JM, Heneine W. The predictive value of macaque models of preexposure prophylaxis for HIV prevention. Curr Opin HIV AIDS 2022; 17:179-185. [PMID: 35762371 PMCID: PMC10966437 DOI: 10.1097/coh.0000000000000738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We review macaque models for preexposure prophylaxis (PrEP) for HIV prevention and highlight their role in advancing currently approved and novel PrEP agents. RECENT FINDINGS The development of the repeat low dose simian HIV (SHIV) challenge models represented a significant advancement in preclinical PrEP modeling that has allowed the investigation of PrEP under conditions that better mimic HIV exposures in humans. These models incorporate relevant drug pharmacology to inform drug correlates of PrEP protection. Models of rectal, vaginal, and penile infection are now available and have been found to predict clinical efficacy of all the currently approved PrEP strategies including daily oral PrEP with the combination of emtricitabine and tenofovir disoproxil fumarate or tenofovir alafenamide, and a long-acting formulation of the integrase inhibitor cabotegravir. These models are being used to test new PrEP modalities including the nucleoside reverse transcriptase-translocation inhibitor islatravir and long-acting capsid inhibitors. The SHIV models have also been supplemented by sexually transmitted infection co-infections with Chlamydia trachomatis, Treponema pallidum or Trichomonas vaginalis to assess the impact of inflammation on PrEP efficacy. SUMMARY Clinical efficacy validated current PrEP macaque models supporting their continued use to advance novel PrEP agents to improve global PrEP coverage.
Collapse
Affiliation(s)
- J Gerardo García-Lerma
- Division of HIV Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | |
Collapse
|
3
|
Bernstein DI. Use of the Guinea pig model of genital herpes to evaluate vaccines and antivirals: Review. Antiviral Res 2020; 180:104821. [PMID: 32544409 PMCID: PMC10713199 DOI: 10.1016/j.antiviral.2020.104821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/23/2022]
Abstract
Herpes simplex virus (HSV) infections type 1 (HSV-1) and type 2 (HSV-2) are common throughout the world. Infections are lifelong and may produce both acute and recurrent vesiculoulcerative disease as well as more severe diseases. Despite disappointing results from recent HSV vaccine trials new vaccines and more potent antiviral therapies continue to be developed. These newer approaches require initial evaluations in animal models. In this review I have briefly described some of the models available and then more thoroughly describe the guinea pig model of acute and recurrent genital herpes infections. As discussed, the guinea pig model most closely mimics human disease and provides several important endpoints for evaluating vaccines and antivirals.
Collapse
Affiliation(s)
- David I Bernstein
- University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Kim HC, Lee HK. Vaccines against Genital Herpes: Where Are We? Vaccines (Basel) 2020; 8:vaccines8030420. [PMID: 32727077 PMCID: PMC7566015 DOI: 10.3390/vaccines8030420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023] Open
Abstract
Genital herpes is a venereal disease caused by herpes simplex virus (HSV). Although HSV symptoms can be reduced with antiviral drugs, there is no cure. Moreover, because HSV infected individuals are often unaware of their infection, it is highly likely that they will transmit HSV to their sexual partner. Once infected, an individual has to live with HSV for their entire life, and HSV infection can lead to meningitis, encephalitis, and neonatal herpes as a result of vertical transmission. In addition, HSV infection increases the rates of human immunodeficiency virus (HIV) infection and transmission. Because of the high burden of genital herpes, HSV vaccines have been developed, but none have been very successful. In this review, we discuss the current status of genital herpes vaccine development.
Collapse
Affiliation(s)
- Hyeon Cheol Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
- The Center for Epidemic Preparedness, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Correspondence: ; Tel.: +82-42-350-4241
| |
Collapse
|
5
|
Egan K, Hook LM, LaTourette P, Desmond A, Awasthi S, Friedman HM. Vaccines to prevent genital herpes. Transl Res 2020; 220:138-152. [PMID: 32272093 PMCID: PMC7293938 DOI: 10.1016/j.trsl.2020.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Genital herpes increases the risk of acquiring and transmitting Human Immunodeficiency Virus (HIV), is a source of anxiety for many about transmitting infection to intimate partners, and is life-threatening to newborns. A vaccine that prevents genital herpes infection is a high public health priority. An ideal vaccine will prevent both genital lesions and asymptomatic subclinical infection to reduce the risk of inadvertent transmission to partners, will be effective against genital herpes caused by herpes simplex virus types 1 and 2 (HSV-1, HSV-2), and will protect against neonatal herpes. Three phase 3 human trials were performed over the past 20 years that used HSV-2 glycoproteins essential for virus entry as immunogens. None achieved its primary endpoint, although each was partially successful in either delaying onset of infection or protecting a subset of female subjects that were HSV-1 and HSV-2 uninfected against HSV-1 genital infection. The success of future vaccine candidates may depend on improving the predictive value of animal models by requiring vaccines to achieve near-perfect protection in these models and by using the models to better define immune correlates of protection. Many vaccine candidates are under development, including DNA, modified mRNA, protein subunit, killed virus, and attenuated live virus vaccines. Lessons learned from prior vaccine studies and select candidate vaccines are discussed, including a trivalent nucleoside-modified mRNA vaccine that our laboratory is pursuing. We are optimistic that an effective vaccine for prevention of genital herpes will emerge in this decade.
Collapse
Affiliation(s)
- Kevin Egan
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Lauren M Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Philip LaTourette
- University Laboratory Animal Resources, Philadelphia, PA; Department of Pathobiology, School of Veterinary Medicine, Philadelphia, PA
| | - Angela Desmond
- Infectious Disease Division, Department of Pediatrics, The Children's Hospital of Philadelphia; University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
6
|
Bucsan AN, Mehra S, Khader SA, Kaushal D. The current state of animal models and genomic approaches towards identifying and validating molecular determinants of Mycobacterium tuberculosis infection and tuberculosis disease. Pathog Dis 2020; 77:5543892. [PMID: 31381766 PMCID: PMC6687098 DOI: 10.1093/femspd/ftz037] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Animal models are important in understanding both the pathogenesis of and immunity to tuberculosis (TB). Unfortunately, we are beginning to understand that no animal model perfectly recapitulates the human TB syndrome, which encompasses numerous different stages. Furthermore, Mycobacterium tuberculosis infection is a very heterogeneous event at both the levels of pathogenesis and immunity. This review seeks to establish the current understanding of TB pathogenesis and immunity, as validated in the animal models of TB in active use today. We especially focus on the use of modern genomic approaches in these models to determine the mechanism and the role of specific molecular pathways. Animal models have significantly enhanced our understanding of TB. Incorporation of contemporary technologies such as single cell transcriptomics, high-parameter flow cytometric immune profiling, proteomics, proteomic flow cytometry and immunocytometry into the animal models in use will further enhance our understanding of TB and facilitate the development of treatment and vaccination strategies.
Collapse
Affiliation(s)
- Allison N Bucsan
- Tulane Center for Tuberculosis Research, Covington, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Deepak Kaushal
- Tulane Center for Tuberculosis Research, Covington, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA.,Southwest National Primate Research Center, San Antonio, TX, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
7
|
Acute Infection and Subsequent Subclinical Reactivation of Herpes Simplex Virus 2 after Vaginal Inoculation of Rhesus Macaques. J Virol 2019; 93:JVI.01574-18. [PMID: 30333177 PMCID: PMC6321901 DOI: 10.1128/jvi.01574-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 01/25/2023] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a common sexually transmitted infection with a highly variable clinical course. Many infections quickly become subclinical, with episodes of spontaneous virus reactivation. To study host-HSV-2 interactions, an animal model of subclinical HSV-2 infection is needed. In an effort to develop a relevant model, rhesus macaques (RM) were inoculated intravaginally with two or three HSV-2 strains (186, 333, and/or G) at a total dose of 1 × 107 PFU of HSV-2 per animal. Infectious HSV-2 and HSV-2 DNA were consistently shed in vaginal swabs for the first 7 to 14 days after each inoculation. Proteins associated with wound healing, innate immunity, and inflammation were significantly increased in cervical secretions immediately after HSV-2 inoculation. There was histologic evidence of acute herpesvirus pathology, including acantholysis in the squamous epithelium and ballooning degeneration of and intranuclear inclusion bodies in epithelial cells, with HSV antigen in mucosal epithelial cells and keratinocytes. Further, an intense inflammatory infiltrate was found in the cervix and vulva. Evidence of latent infection and reactivation was demonstrated by the detection of spontaneous HSV-2 shedding post-acute inoculation (102 to 103 DNA copies/swab) in 80% of RM. Further, HSV-2 DNA was detected in ganglia in most necropsied animals. HSV-2-specifc T-cell responses were detected in all animals, although antibodies to HSV-2 were detected in only 30% of the animals. Thus, HSV-2 infection of RM recapitulates many of the key features of subclinical HSV-2 infection in women but seems to be more limited, as virus shedding was undetectable more than 40 days after the last virus inoculation.IMPORTANCE Herpes simplex virus 2 (HSV-2) infects nearly 500 million persons globally, with an estimated 21 million incident cases each year, making it one of the most common sexually transmitted infections (STIs). HSV-2 is associated with increased human immunodeficiency virus type 1 (HIV-1) acquisition, and this risk does not decline with the use of antiherpes drugs. As initial acquisition of both HIV and HSV-2 infections is subclinical, study of the initial molecular interactions of the two agents requires an animal model. We found that HSV-2 can infect RM after vaginal inoculation, establish latency in the nervous system, and spontaneously reactivate; these features mimic some of the key features of HSV-2 infection in women. RM may provide an animal model to develop strategies to prevent HSV-2 acquisition and reactivation.
Collapse
|
8
|
Aravantinou M, Mizenina O, Calenda G, Kenney J, Frank I, Lifson JD, Szpara M, Jing L, Koelle DM, Teleshova N, Grasperge B, Blanchard J, Gettie A, Martinelli E, Derby N. Experimental Oral Herpes Simplex Virus-1 (HSV-1) Co-infection in Simian Immunodeficiency Virus (SIV)-Infected Rhesus Macaques. Front Microbiol 2017; 8:2342. [PMID: 29259582 PMCID: PMC5723348 DOI: 10.3389/fmicb.2017.02342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/14/2017] [Indexed: 01/27/2023] Open
Abstract
Herpes simplex virus 1 and 2 (HSV-1/2) similarly initiate infection in mucosal epithelia and establish lifelong neuronal latency. Anogenital HSV-2 infection augments the risk for sexual human immunodeficiency virus (HIV) transmission and is associated with higher HIV viral loads. However, whether oral HSV-1 infection contributes to oral HIV susceptibility, viremia, or oral complications of HIV infection is unknown. Appropriate non-human primate (NHP) models would facilitate this investigation, yet there are no published studies of HSV-1/SIV co-infection in NHPs. Thus, we performed a pilot study for an oral HSV-1 infection model in SIV-infected rhesus macaques to describe the feasibility of the modeling and resultant immunological changes. Three SIV-infected, clinically healthy macaques became HSV-1-infected by inoculation with 4 × 108 pfu HSV-1 McKrae on buccal, tongue, gingiva, and tonsils after gentle abrasion. HSV-1 DNA was shed in oral swabs for up to 21 days, and shedding recurred in association with intra-oral lesions after periods of no shedding during 56 days of follow up. HSV-1 DNA was detected in explant cultures of trigeminal ganglia collected at euthanasia on day 56. In the macaque with lowest baseline SIV viremia, SIV plasma RNA increased following HSV-1 infection. One macaque exhibited an acute pro-inflammatory response, and all three animals experienced T cell activation and mobilization in blood. However, T cell and antibody responses to HSV-1 were low and atypical. Through rigorous assessesments, this study finds that the virulent HSV-1 strain McKrae resulted in a low level HSV-1 infection that elicited modest immune responses and transiently modulated SIV infection.
Collapse
Affiliation(s)
- Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Olga Mizenina
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Giulia Calenda
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Moriah Szpara
- Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Natalia Teleshova
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, NY, United States
| |
Collapse
|
9
|
Derby N, Aravantinou M, Kenney J, Ugaonkar SR, Wesenberg A, Wilk J, Kizima L, Rodriguez A, Zhang S, Mizenina O, Levendosky K, Cooney ML, Seidor S, Gettie A, Grasperge B, Blanchard J, Piatak M, Lifson JD, Fernández-Romero J, Zydowsky TM, Robbiani M. An intravaginal ring that releases three antiviral agents and a contraceptive blocks SHIV-RT infection, reduces HSV-2 shedding, and suppresses hormonal cycling in rhesus macaques. Drug Deliv Transl Res 2017; 7:840-858. [PMID: 28600625 PMCID: PMC5656733 DOI: 10.1007/s13346-017-0389-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Women globally need access to multipurpose prevention technologies (MPTs) that prevent human immunodeficiency virus (HIV), sexually transmitted infections that increase HIV acquisition/transmission risk, and unintended pregnancy. Seeking an MPT with activity against HIV, herpes simplex virus-2 (HSV-2), and human papillomavirus (HPV), we developed a prototype intravaginal ring (IVR), the MZCL IVR, which released the antiviral agents MIV-150, zinc acetate, and carrageenan (MZC for short) and the contraceptive levonorgestrel (LNG). Previously, we showed that an MZC gel has potent activity against immunodeficiency viruses, HSV-2, and HPV and that the MZCL (MZC with LNG) IVR releases all four components in macaques in vivo at levels associated with efficacy. Vaginal fluid from treated macaques has in vitro activity against HIV, HSV-2, and HPV. Herein, we assessed the ability of the MZCL IVR to protect macaques against repeated co-challenge with HSV-2 and SHIV-RT (simian immunodeficiency virus [SIV] containing the reverse transcriptase gene from HIV) and prevent hormonal cycling. We evaluated in vivo drug release in co-challenged macaques by measuring drug levels in blood and vaginal fluid and residual drug levels in used IVRs. The MZCL IVR significantly prevented SHIV-RT infection, reduced HSV-2 vaginal shedding, and prevented cycling. No non-nucleoside HIV reverse transcriptase inhibitor (NNRTI)-resistant SHIV was detected in macaques that became infected after continuous exposure to MZC from the IVR. Macaques wearing the MZCL IVR also had carrageenan levels in vaginal fluid expected to protect from HPV (extrapolated from mice) and LNG levels in blood associated with contraceptive efficacy. The MZCL IVR is a promising MPT candidate that warrants further development.
Collapse
MESH Headings
- Alphapapillomavirus/drug effects
- Alphapapillomavirus/physiology
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/pharmacology
- Carrageenan/administration & dosage
- Carrageenan/pharmacology
- Contraceptive Agents, Female/administration & dosage
- Contraceptive Agents, Female/pharmacology
- Contraceptive Devices, Female
- Disease Models, Animal
- Drug Therapy, Combination/methods
- Female
- Herpes Simplex/prevention & control
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/physiology
- Humans
- Macaca mulatta
- Menstrual Cycle
- Pyridines/administration & dosage
- Pyridines/pharmacology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Urea/administration & dosage
- Urea/analogs & derivatives
- Urea/pharmacology
- Vaginal Creams, Foams, and Jellies/administration & dosage
- Vaginal Creams, Foams, and Jellies/pharmacology
- Virus Shedding/drug effects
- Zinc Acetate/administration & dosage
- Zinc Acetate/pharmacology
Collapse
Affiliation(s)
- Nina Derby
- Population Council, 1230 York Avenue, New York, NY, 10065, USA.
| | | | - Jessica Kenney
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Asa Wesenberg
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Jolanta Wilk
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Larisa Kizima
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Aixa Rodriguez
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Shimin Zhang
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Olga Mizenina
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | | | | | - Samantha Seidor
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, 455 First Avenue, 7th Floor, New York, NY, 10016, USA
| | - Brooke Grasperge
- Tulane Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433-8915, USA
| | - James Blanchard
- Tulane Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433-8915, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - José Fernández-Romero
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
- Science Department, Borough of Manhattan Community College, The City University of New York, 199 Chambers Street, New York, NY, 10007, USA
| | | | | |
Collapse
|
10
|
Aravantinou M, Frank I, Arrode-Bruses G, Szpara ML, Grasperge B, Blanchard J, Gettie A, Derby N, Martinelli E. A model of genital herpes simplex virus Type 1 infection in Rhesus Macaques. J Med Primatol 2017; 46:121-128. [PMID: 28748667 PMCID: PMC5553447 DOI: 10.1111/jmp.12293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although HSV-2 is the major cause of genital lesions, HSV-1 accounts for half of new cases in developed countries. METHODS Three healthy SHIV-SF162P3-infected Indian rhesus macaques were inoculated with 4×108 pfu of HSV-1 twice, with the second inoculation performed after the vaginal mucosa was gently abraded with a cytobrush. RESULTS HSV-1 DNA was detected in vaginal swabs 5 days after the second but not the first inoculation in all three macaques. An increase in inflammatory cytokines was detected in the vaginal fluids of the animals with no or intermittent shedding. Higher frequency of blood α4 β7high CD4+ T cells was measured in the animals with consistent and intermitted shedding, while a decrease in the frequency of CD69+ CD4+ T cells was present in all animals. CONCLUSIONS This macaque model of genital HSV-1 could be useful to study the impact of the growing epidemic of genital HSV-1 on HIV infection.
Collapse
Affiliation(s)
- M Aravantinou
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - I Frank
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - G Arrode-Bruses
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - ML Szpara
- The Pennsylvania State University, University Park, Pennsylvania, USA
| | - B Grasperge
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - J Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - A Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, USA
| | - N Derby
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - E Martinelli
- Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
11
|
Awasthi S, Hook LM, Shaw CE, Pahar B, Stagray JA, Liu D, Veazey RS, Friedman HM. An HSV-2 Trivalent Vaccine Is Immunogenic in Rhesus Macaques and Highly Efficacious in Guinea Pigs. PLoS Pathog 2017; 13:e1006141. [PMID: 28103319 PMCID: PMC5245903 DOI: 10.1371/journal.ppat.1006141] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
A genital herpes vaccine is urgently needed to prevent pain and suffering, reduce the incidence of neonatal herpes, and decrease the risk of HIV acquisition and transmission that accompanies genital infection. We evaluated a trivalent HSV-2 subunit antigen vaccine administered with CpG and alum in rhesus macaques and guinea pigs. The vaccine contains glycoproteins C, D and E (gC2, gD2, gE2) to block virus entry by gD2 and immune evasion by gC2 and gE2. In rhesus macaques, the trivalent vaccine induced plasma and mucosa neutralizing antibodies, antibodies that block gC2 and gE2 immune evasion activities, and stimulated CD4 T cell responses. After intravaginal challenge, a self-limited vaginal infection of brief duration was detected by histopathology and immunohistochemistry in naïve, but not in trivalent immunized macaques. Vaccine efficacy was evaluated in female guinea pigs. Animals were mock immunized, or immunized with gD2, the trivalent vaccine or the trivalent vaccine followed by a booster dose of gD2 (trivalent + gD2). The trivalent and trivalent + gD2 groups were 97% and 99% efficacious, respectively in preventing genital lesions and both outperformed gD2 alone. As a marker of transmission risk, vaginal swabs were evaluated daily for HSV-2 DNA and replication competent virus between five and seven weeks after challenge. HSV-2 DNA shedding was reduced in all groups compared with mock. Shedding of replication competent virus occurred on fewer days in the trivalent than gD2 immunized animals while the trivalent + gD2 group had no shedding of replication competent virus. Overall, the trivalent group had genital lesions on < 1% days and shedding of replication competent virus on 0.2% days. The vaccine has outstanding potential for prevention of genital herpes in humans. Approximately a half-billion people worldwide are infected with herpes simplex virus type 2 (HSV-2), the virus that causes genital herpes. In some individuals, infection results in painful, recurrent genital ulcers, while in others, the infection remains quiescent. In both settings, infected individuals may transmit virus to their intimate partners. Genital herpes increases the risk that an infected person will acquire HIV if exposed during sexual intercourse. A vaccine for the prevention of genital herpes is a high priority. We describe a vaccine that induces antibodies that block the ability of the virus to enter cells and that prevents the virus from escaping immune attack mediated by antibody and complement. The vaccine contains HSV-2 glycoproteins C, D and E and is immunogenic in non-human primates. The vaccine protects immunized non-human primates against a mild vaginal infection that develops in naïve animals after intravaginal inoculation of virus. Naïve guinea pigs develop severe genital disease, while immunized animals are almost 100% protected after intravaginal infection. The vaccine greatly reduces the number of days during the recurrent phase of infection that animals shed virus in genital secretions, thereby reducing the risk of transmission. We consider this novel vaccine a leading candidate for clinical trials aimed at preventing genital herpes infection in humans.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lauren M. Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Carolyn E. Shaw
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Jacob A. Stagray
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - David Liu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Harvey M. Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Stanfield BA, Pahar B, Chouljenko VN, Veazey R, Kousoulas KG. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies. Vaccine 2016; 35:536-543. [PMID: 28017425 DOI: 10.1016/j.vaccine.2016.12.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/28/2016] [Accepted: 12/12/2016] [Indexed: 02/08/2023]
Abstract
We have shown that the live-attenuated HSV-1 VC2 vaccine strain with mutations in glycoprotein K (gK) and the membrane protein UL20 is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. To better understand the immune response generated by vaccination with VC2, we tested its ability to elicit immune responses in rhesus macaques. Vaccinated animals showed no signs of disease and developed increasing HSV-1 and HSV-2 reactive IgG1 after two booster vaccinations, while IgG subtypes IgG2 and IgG3 remained at low to undetectable levels. All vaccinated animals produced high levels of cross protective neutralizing antibodies. Flow cytometry analysis of cells isolated from draining lymph nodes showed that VC2 vaccination stimulated significant increases in plasmablast (CD27highCD38high) and mature memory (CD21-IgM-) B cells. T cell analysis on cells isolated from draining lymph node biopsies demonstrated a statistically significant increase in proliferating (Ki67+) follicular T helper cells and regulatory CXCR5+ CD8+ cytotoxic T cells. Analysis of plasma isolated two weeks post vaccination showed significant increases in circulating CXCL13 indicating increased germinal center activity. Cells isolated from vaginal biopsy samples collected over the course of the study exhibited vaccination-dependent increases in proliferating (Ki67+) CD4+ and CD8+ T cell populations. These results suggest that intramuscular vaccination with the live-attenuated HSV-1 VC2 vaccine strain can stimulate robust IgG1 antibody responses that persist for >250days post vaccination. In addition, vaccination lead to the maturation of B cells into plasmablast and mature memory B cells, the expansion of follicular T helper cells, and affects in the mucosal immune responses. These data suggest that the HSV VC2 vaccine induces potent immune responses that could help define correlates of protection towards developing an efficacious HSV-1/HSV-2 vaccine in humans.
Collapse
Affiliation(s)
- Brent A Stanfield
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Bapi Pahar
- Department of Comparative Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, United States
| | - Vladimir N Chouljenko
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Ronald Veazey
- Department of Comparative Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, United States
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
13
|
Villegas G, Calenda G, Ugaonkar S, Zhang S, Kizima L, Mizenina O, Gettie A, Blanchard J, Cooney ML, Robbiani M, Fernández-Romero JA, Zydowsky TM, Teleshova N. A Novel Microbicide/Contraceptive Intravaginal Ring Protects Macaque Genital Mucosa against SHIV-RT Infection Ex Vivo. PLoS One 2016; 11:e0159332. [PMID: 27428377 PMCID: PMC4948912 DOI: 10.1371/journal.pone.0159332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/30/2016] [Indexed: 01/27/2023] Open
Abstract
Women need multipurpose prevention products (MPTs) that protect against sexually transmitted infections (STIs) and provide contraception. The Population Council has developed a prototype intravaginal ring (IVR) releasing the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 (M), zinc acetate (ZA), carrageenan (CG) and levonorgestrel (LNG) (MZCL IVR) to protect against HIV, HSV-2, HPV and unintended pregnancy. Our objective was to evaluate the anti-SHIV-RT activity of MZCL IVR in genital mucosa. First, macaque vaginal tissues were challenged with SHIV-RT in the presence of (i) MIV-150 ± LNG or (ii) vaginal fluids (VF); available from studies completed earlier) collected at various time points post insertion of MZCL and MZC IVRs. Then, (iii) MZCL IVRs (vs. LNG IVRs) were inserted in non-Depo Provera-treated macaques for 24h and VF, genital biopsies, and blood were collected and tissues were challenged with SHIV-RT. Infection was monitored with one step SIV gag qRT-PCR or p27 ELISA. MIV-150 (LCMS/MS, RIA), LNG (RIA) and CG (ELISA) were measured in different compartments. Log-normal generalized mixed linear models were used for analysis. LNG did not affect the anti-SHIV-RT activity of MIV-150 in vitro. MIV-150 in VF from MZC/MZCL IVR-treated macaques inhibited SHIV-RT in vaginal mucosa in a dose-dependent manner (p<0.05). MIV-150 in vaginal tissue from MZCL IVR-treated animals inhibited ex vivo infection relative to baseline (96%; p<0.0001) and post LNG IVR group (90%, p<0.001). No MIV-150 dose-dependent protection was observed, likely because of high MIV-150 concentrations in all vaginal tissue samples. In cervical tissue, MIV-150 inhibited infection vs. baseline (99%; p<0.05). No cervical tissue was available for MIV-150 measurement. Exposure to LNG IVR did not change tissue infection level. These observations support further development of MZCL IVR as a multipurpose prevention technology to improve women's sexual and reproductive health.
Collapse
Affiliation(s)
| | - Giulia Calenda
- Population Council, New York, New York, United States of America
| | - Shweta Ugaonkar
- Population Council, New York, New York, United States of America
| | - Shimin Zhang
- Population Council, New York, New York, United States of America
| | - Larisa Kizima
- Population Council, New York, New York, United States of America
| | - Olga Mizenina
- Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | | | - Melissa Robbiani
- Population Council, New York, New York, United States of America
| | | | | | | |
Collapse
|
14
|
Fernández-Romero JA, Teleshova N, Zydowsky TM, Robbiani M. Preclinical assessments of vaginal microbicide candidate safety and efficacy. Adv Drug Deliv Rev 2015; 92:27-38. [PMID: 25543007 DOI: 10.1016/j.addr.2014.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/04/2014] [Accepted: 12/18/2014] [Indexed: 11/15/2022]
Abstract
Sexually transmitted infections like HIV, HPV, and HSV-2, as well as unplanned pregnancy, take a huge toll on women worldwide. Woman-initiated multipurpose prevention technologies that contain antiviral/antibacterial drugs (microbicides) and a contraceptive to simultaneously target sexually transmitted infections and unplanned pregnancy are being developed to reduce these burdens. This review will consider products that are applied topically to the vagina. Rectally administered topical microbicides in development for receptive anal intercourse are outside the scope of this review. Microbicide and microbicide/contraceptive candidates must be rigorously evaluated in preclinical models of safety and efficacy to ensure that only candidates with favorable risk benefit ratios are advanced into human clinical trials. This review describes the comprehensive set of in vitro, ex vivo, and in vivo models used to evaluate the preclinical safety and antiviral efficacy of microbicide and microbicide/contraceptive candidates.
Collapse
MESH Headings
- Administration, Intravaginal
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/adverse effects
- Antiviral Agents/pharmacokinetics
- Antiviral Agents/therapeutic use
- Contraceptive Agents, Female/administration & dosage
- Contraceptive Agents, Female/adverse effects
- Contraceptive Agents, Female/pharmacokinetics
- Contraceptive Agents, Female/therapeutic use
- Drug Evaluation, Preclinical/methods
- Drug Evaluation, Preclinical/standards
- Female
- HIV Infections/prevention & control
- Haplorhini
- Herpes Genitalis/prevention & control
- Humans
- Mice
- Models, Biological
- Papillomavirus Infections/prevention & control
- Pregnancy
- Pregnancy, Unplanned
- Sexually Transmitted Diseases, Viral/prevention & control
- Vagina/physiology
- Vaginal Absorption
- Vaginal Creams, Foams, and Jellies/pharmacokinetics
- Vaginal Creams, Foams, and Jellies/therapeutic use
Collapse
Affiliation(s)
| | - Natalia Teleshova
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Thomas M Zydowsky
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
15
|
Ugaonkar SR, Wesenberg A, Wilk J, Seidor S, Mizenina O, Kizima L, Rodriguez A, Zhang S, Levendosky K, Kenney J, Aravantinou M, Derby N, Grasperge B, Gettie A, Blanchard J, Kumar N, Roberts K, Robbiani M, Fernández-Romero JA, Zydowsky TM. A novel intravaginal ring to prevent HIV-1, HSV-2, HPV, and unintended pregnancy. J Control Release 2015; 213:57-68. [PMID: 26091920 DOI: 10.1016/j.jconrel.2015.06.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/02/2015] [Accepted: 06/14/2015] [Indexed: 12/12/2022]
Abstract
Women urgently need a self-initiated, multipurpose prevention technology (MPT) that simultaneously reduces their risk of acquiring HIV-1, HSV-2, and HPV (latter two associated with increased risk of HIV-1 acquisition) and prevents unintended pregnancy. Here, we describe a novel core-matrix intravaginal ring (IVR), the MZCL IVR, which effectively delivered the MZC combination microbicide and a contraceptive. The MZCL IVR contains four active pharmaceutical ingredients (APIs): MIV-150 (targets HIV-1), zinc acetate (ZA; targets HIV-1 and HSV-2), carrageenan (CG; targets HPV and HSV-2), and levonorgestrel (LNG; targets unintended pregnancy). The elastomeric IVR body (matrix) was produced by hot melt extrusion of the non-water swellable elastomer, ethylene vinyl acetate (EVA-28), containing the hydrophobic small molecules, MIV-150 and LNG. The solid hydrophilic core, embedded within the IVR by compression, contained the small molecule ZA and the macromolecule CG. Hydrated ZA/CG from the core was released by diffusion via a pore on the IVR while the MIV-150/LNG diffused from the matrix continuously for 94 days (d) in vitro and up to 28 d (study period) in macaques. The APIs released in vitro and in vivo were active against HIV-1ADA-M, HSV-2, and HPV16 PsV in cell-based assays. Serum LNG was at levels associated with local contraceptive effects. The results demonstrate proof-of-concept of a novel core-matrix IVR for sustained and simultaneous delivery of diverse molecules for the prevention of HIV, HSV-2 and HPV acquisition, as well as unintended pregnancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, NY 10065, USA
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | | | | | | | | | | |
Collapse
|
16
|
Henning TR, McNicholl JM, Vishwanathan SA, Kersh EN. Macaque models of enhanced susceptibility to HIV. Virol J 2015; 12:90. [PMID: 26070461 PMCID: PMC4479314 DOI: 10.1186/s12985-015-0320-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/03/2015] [Indexed: 01/26/2023] Open
Abstract
There are few nonhuman primate models of enhanced HIV susceptibility. Such models can improve comprehension of HIV acquisition risk factors and provide rigorous testing platforms for preclinical prevention strategies. This paper reviews past, current, and proposed research on macaque HIV acquisition risk models and identifies areas where modeling is significantly lacking. We compare different experimental approaches and provide practical considerations for designing macaque susceptibility studies. Modifiable (mucosal and systemic coinfections, hormonal contraception, and rectal lubricants) and non-modifiable (hormonal fluctuations) risk factors are highlighted. Risk acquisition models via vaginal, rectal, and penile challenge routes are discussed. There is no consensus on the best statistical model for evaluating increased susceptibility, and additional research is required. The use of enhanced susceptibility macaque models would benefit multiple facets of the HIV research field, including basic acquisition and pathogenesis studies as well as the vaccine and other biomedical preventions pipeline.
Collapse
Affiliation(s)
- Tara R Henning
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A-25, Atlanta, GA, 30333, USA.
| | - Janet M McNicholl
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A-25, Atlanta, GA, 30333, USA.
| | - Sundaram A Vishwanathan
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A-25, Atlanta, GA, 30333, USA.
| | - Ellen N Kersh
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A-25, Atlanta, GA, 30333, USA.
| |
Collapse
|
17
|
Goode D, Truong R, Villegas G, Calenda G, Guerra-Perez N, Piatak M, Lifson JD, Blanchard J, Gettie A, Robbiani M, Martinelli E. HSV-2-driven increase in the expression of α4β7 correlates with increased susceptibility to vaginal SHIV(SF162P3) infection. PLoS Pathog 2014; 10:e1004567. [PMID: 25521298 PMCID: PMC4270786 DOI: 10.1371/journal.ppat.1004567] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022] Open
Abstract
The availability of highly susceptible HIV target cells that can rapidly reach the mucosal lymphoid tissues may increase the chances of an otherwise rare transmission event to occur. Expression of α4β7 is required for trafficking of immune cells to gut inductive sites where HIV can expand and it is expressed at high level on cells particularly susceptible to HIV infection. We hypothesized that HSV-2 modulates the expression of α4β7 and other homing receptors in the vaginal tissue and that this correlates with the increased risk of HIV acquisition in HSV-2 positive individuals. To test this hypothesis we used an in vivo rhesus macaque (RM) model of HSV-2 vaginal infection and a new ex vivo model of macaque vaginal explants. In vivo we found that HSV-2 latently infected RMs appeared to be more susceptible to vaginal SHIVSF162P3 infection, had higher frequency of α4β7high CD4+ T cells in the vaginal tissue and higher expression of α4β7 and CD11c on vaginal DCs. Similarly, ex vivo HSV-2 infection increased the susceptibility of the vaginal tissue to SHIVSF162P3. HSV-2 infection increased the frequencies of α4β7high CD4+ T cells and this directly correlated with HSV-2 replication. A higher amount of inflammatory cytokines in vaginal fluids of the HSV-2 infected animals was similar to those found in the supernatants of the infected explants. Remarkably, the HSV-2-driven increase in the frequency of α4β7high CD4+ T cells directly correlated with SHIV replication in the HSV-2 infected tissues. Our results suggest that the HSV-2-driven increase in availability of CD4+ T cells and DCs that express high levels of α4β7 is associated with the increase in susceptibility to SHIV due to HSV-2. This may persists in absence of HSV-2 shedding. Hence, higher availability of α4β7 positive HIV target cells in the vaginal tissue may constitute a risk factor for HIV transmission.
Collapse
Affiliation(s)
- Diana Goode
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Rosaline Truong
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Guillermo Villegas
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Giulia Calenda
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Natalia Guerra-Perez
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Sciences Center, Covington, Louisiana, United States of America
| | - Agegnehu Gettie
- Tulane National Primate Research Center, Tulane University Sciences Center, Covington, Louisiana, United States of America
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| |
Collapse
|
18
|
Kenney J, Derby N, Aravantinou M, Kleinbeck K, Frank I, Gettie A, Grasperge B, Blanchard J, Piatak M, Lifson JD, Zydowsky TM, Robbiani M. Short communication: a repeated simian human immunodeficiency virus reverse transcriptase/herpes simplex virus type 2 cochallenge macaque model for the evaluation of microbicides. AIDS Res Hum Retroviruses 2014; 30:1117-24. [PMID: 25354024 DOI: 10.1089/aid.2014.0207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies suggest that prevalent herpes simplex virus type 2 (HSV-2) infection increases the risk of HIV acquisition, underscoring the need to develop coinfection models to evaluate promising prevention strategies. We previously established a single high-dose vaginal coinfection model of simian human immunodeficiency virus (SHIV)/HSV-2 in Depo-Provera (DP)-treated macaques. However, this model does not appropriately mimic women's exposure. Repeated limiting dose SHIV challenge models are now used routinely to test prevention strategies, yet, at present, there are no reports of a repeated limiting dose cochallenge model in which to evaluate products targeting HIV and HSV-2. Herein, we show that 20 weekly cochallenges with 2-50 TCID50 simian human immunodeficiency virus reverse transcriptase (SHIV-RT) and 10(7) pfu HSV-2 results in infection with both viruses (4/6 SHIV-RT, 6/6 HSV-2). The frequency and level of vaginal HSV-2 shedding were significantly greater in the repeated exposure model compared to the single high-dose model (p<0.0001). We used this new model to test the Council's on-demand microbicide gel, MZC, which is active against SHIV-RT in DP-treated macaques and HSV-2 and human papillomavirus (HPV) in mice. While MZC reduced SHIV and HSV-2 infections in our repeated limiting dose model when cochallenging 8 h after each gel application, a barrier effect of carrageenan (CG) that was not seen in DP-treated animals precluded evaluation of the significance of the antiviral activity of MZC. Both MZC and CG significantly (p<0.0001) reduced the frequency and level of vaginal HSV-2 shedding compared to no gel treatment. This validates the use of this repeated limiting dose cochallenge model for testing products targeting HIV and HSV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland
| | | | | |
Collapse
|
19
|
Fernández Romero JA, Gil PI, Ré V, Robbiani M, Paglini G. [Microbicides for preventing sexually transmitted infections: Current status and strategies for preclinical evaluation of new candidates]. Rev Argent Microbiol 2014; 46:256-68. [PMID: 25444135 DOI: 10.1016/s0325-7541(14)70080-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/26/2014] [Indexed: 01/02/2023] Open
Abstract
Microbicides are a new tool, still under investigation, which could help prevent infection by the human immunodeficiency virus (HIV) and other sexually transmitted infections (STIs). Increasing evidence shows that the complexity of sexual transmission of viral pathogens requires the identification of compounds able to block the early events during the cycle of viral infection. In this manuscript we provide a comprehensive review of the different microbicide strategies that have been studied or are currently being considered for STI prevention, particularly emphasizing those having the potential to block HIV infection. The manuscript also reviews the complex process that is required to conduct future clinical studies in humans and concludes with a brief discussion of the strategies that could be part of the immediate future in microbicide research.
Collapse
Affiliation(s)
- José A Fernández Romero
- Center for Biomedical Research, Population Council, Nueva York, Nueva York, EE. UU; Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pedro I Gil
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viviana Ré
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, Nueva York, Nueva York, EE. UU
| | - Gabriela Paglini
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
20
|
Henning TR, Butler K, Hanson D, Sturdevant G, Ellis S, Sweeney EM, Mitchell J, Deyounks F, Phillips C, Farshy C, Fakile Y, Papp J, Evan Secor W, Caldwell H, Patton D, McNicholl JM, Kersh E. Increased susceptibility to vaginal simian/human immunodeficiency virus transmission in pig-tailed macaques coinfected with Chlamydia trachomatis and Trichomonas vaginalis. J Infect Dis 2014; 210:1239-47. [PMID: 24755433 PMCID: PMC4271071 DOI: 10.1093/infdis/jiu240] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/03/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sexually transmitted infections (STIs) are associated with an increased risk of human immunodeficiency virus (HIV) infection, but their biological effect on HIV susceptibility is not fully understood. METHODS Female pig-tailed macaques inoculated with Chlamydia trachomatis and Trichomonas vaginalis (n = 9) or medium (controls; n = 7) were repeatedly challenged intravaginally with SHIVSF162p3. Virus levels were evaluated by real-time polymerase chain reaction, plasma and genital cytokine levels by Luminex assays, and STI clinical signs by colposcopy. RESULTS Simian/HIV (SHIV) susceptibility was enhanced in STI-positive macaques (P = .04, by the log-rank test; relative risk, 2.5 [95% confidence interval, 1.1-5.6]). All STI-positive macaques were SHIV infected, whereas 3 controls (43%) remained uninfected. Moreover, relative to STI-negative animals, SHIV infections occurred earlier in the menstrual cycle in STI-positive macaques (P = .01, by the Wilcoxon test). Levels of inflammatory cytokines (interferon γ, interleukin 6, and granulocyte colony-stimulating factor [G-CSF]) were higher in STI-positive macaques during STI inoculation and SHIV exposure periods (P ≤ .05, by the Wilcoxon test). CONCLUSIONS C. trachomatis and T. vaginalis infection increase the susceptibility to SHIV, likely because of prolonged genital tract inflammation. These novel data demonstrate a biological link between these nonulcerative STIs and the risk of SHIV infection, supporting epidemiological associations of HIV and STIs. This study establishes a macaque model for studies of high-risk HIV transmission and prevention.
Collapse
Affiliation(s)
| | | | | | - Gail Sturdevant
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | | | | | | | | | | | | | | | | | - W Evan Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention
| | - Harlan Caldwell
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Dorothy Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle
| | | | | |
Collapse
|
21
|
Barnable P, Calenda G, Ouattara L, Gettie A, Blanchard J, Jean-Pierre N, Kizima L, Rodríguez A, Abraham C, Menon R, Seidor S, Cooney ML, Roberts KD, Sperling R, Piatak M, Lifson JD, Fernandez-Romero JA, Zydowsky TM, Robbiani M, Teleshova N. A MIV-150/zinc acetate gel inhibits SHIV-RT infection in macaque vaginal explants. PLoS One 2014; 9:e108109. [PMID: 25259616 PMCID: PMC4178065 DOI: 10.1371/journal.pone.0108109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022] Open
Abstract
To extend our observations that single or repeated application of a gel containing the NNRTI MIV-150 (M) and zinc acetate dihydrate (ZA) in carrageenan (CG) (MZC) inhibits vaginal transmission of simian/human immunodeficiency virus (SHIV)-RT in macaques, we evaluated safety and anti-SHIV-RT activity of MZC and related gel formulations ex vivo in macaque mucosal explants. In addition, safety was further evaluated in human ectocervical explants. The gels did not induce mucosal toxicity. A single ex vivo exposure to diluted MZC (1∶30, 1∶100) and MC (1∶30, the only dilution tested), but not to ZC gel, up to 4 days prior to viral challenge, significantly inhibited SHIV-RT infection in macaque vaginal mucosa. MZC's activity was not affected by seminal plasma. The antiviral activity of unformulated MIV-150 was not enhanced in the presence of ZA, suggesting that the antiviral activity of MZC was mediated predominantly by MIV-150. In vivo administration of MZC and CG significantly inhibited ex vivo SHIV-RT infection (51-62% inhibition relative to baselines) of vaginal (but not cervical) mucosa collected 24 h post last gel exposure, indicating barrier effect of CG. Although the inhibitory effect of MZC (65-74%) did not significantly differ from CG (32-45%), it was within the range of protection (∼75%) against vaginal SHIV-RT challenge 24 h after gel dosing. Overall, the data suggest that evaluation of candidate microbicides in macaque explants can inform macaque efficacy and clinical studies design. The data support advancing MZC gel for clinical evaluation.
Collapse
Affiliation(s)
- Patrick Barnable
- Population Council, New York, New York, United States of America
| | - Giulia Calenda
- Population Council, New York, New York, United States of America
| | - Louise Ouattara
- Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | | | - Larisa Kizima
- Population Council, New York, New York, United States of America
| | - Aixa Rodríguez
- Population Council, New York, New York, United States of America
| | - Ciby Abraham
- Population Council, New York, New York, United States of America
| | - Radhika Menon
- Population Council, New York, New York, United States of America
| | - Samantha Seidor
- Population Council, New York, New York, United States of America
| | | | - Kevin D. Roberts
- Population Council, New York, New York, United States of America
| | - Rhoda Sperling
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | | | | | - Melissa Robbiani
- Population Council, New York, New York, United States of America
| | | |
Collapse
|
22
|
Temchura V, Tenbusch M. The two faces of vaccine-induced immune response: protection or increased risk of HIV infection?! Virol Sin 2014; 29:7-9. [PMID: 24452542 DOI: 10.1007/s12250-014-3419-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Vladimir Temchura
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, 44801, Germany
| | | |
Collapse
|
23
|
Awasthi S, Shaw C, Friedman H. Improving immunogenicity and efficacy of vaccines for genital herpes containing herpes simplex virus glycoprotein D. Expert Rev Vaccines 2014; 13:1475-88. [PMID: 25138572 DOI: 10.1586/14760584.2014.951336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
No vaccines are approved for prevention or treatment of genital herpes. The focus of genital herpes vaccine trials has been on prevention using herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) alone or combined with glycoprotein B. These prevention trials did not achieve their primary end points. However, subset analyses reported some positive outcomes in each study. The most recent trial was the Herpevac Trial for Women that used gD2 with monophosphoryl lipid A and alum as adjuvants in herpes simplex virus type 1 (HSV-1) and HSV-2 seronegative women. Unexpectedly, the vaccine prevented genital disease by HSV-1 but not HSV-2. Currently, HSV-1 causes more first episodes of genital herpes than HSV-2, highlighting the importance of protecting against HSV-1. The scientific community is conflicted between abandoning vaccine efforts that include gD2 and building upon the partial successes of previous trials. We favor building upon success and present approaches to improve outcomes of gD2-based subunit antigen vaccines.
Collapse
Affiliation(s)
- Sita Awasthi
- 522F Johnson Pavilion, Infectious Disease Division, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | | | | |
Collapse
|
24
|
Rodríguez A, Kleinbeck K, Mizenina O, Kizima L, Levendosky K, Jean-Pierre N, Villegas G, Ford BE, Cooney ML, Teleshova N, Robbiani M, Herold BC, Zydowsky T, Fernández Romero JA. In vitro and in vivo evaluation of two carrageenan-based formulations to prevent HPV acquisition. Antiviral Res 2014; 108:88-93. [PMID: 24909570 DOI: 10.1016/j.antiviral.2014.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 11/19/2022]
Abstract
Commercial vaccines against human papillomavirus (HPV) have low uptake due to parental autonomy, dosing regimen, cost, and cold chain storage requirements. Carrageenan (CG)-based formulations prevent HPV infection in vitro and in vivo but data are needed on the durability of anti-HPV activity and the effect of seminal plasma (SP). The Population Council's PC-515 gel and the lubricant Divine 9 were tested for their physicochemical properties and anti-HPV activity against HPV16, 18, and 45 pseudoviruses (PsVs). Anti-PsV activity was estimated using the luciferase assay in HeLa cells and the HPV PsV luciferase mouse model. Formulations were applied intravaginally either 2h pre/2h post (-2h/+2h) or 24h pre (-24h) relative to challenge with HPV16 or 45 PsV in PBS or SP/PBS. Both formulations showed broad-spectrum anti-HPV activity in vitro (IC50: 1-20ng/ml), significantly decreasing HPV PsV infection in the mouse model (-2h/+2h, p<0.0001). PC-515 protected better than Divine 9 in the -24h dosing regimen (p<0.0001) and comparable to Divine 9 in the -2h/+2h regimen (p=0.9841). PC-515 retained full activity in the murine model when PsV solutions contained human SP. The durable, potential broad-spectrum anti-HPV activity of CG formulations in the presence of SP supports their further development to prevent HPV acquisition.
Collapse
|
25
|
Kizima L, Rodríguez A, Kenney J, Derby N, Mizenina O, Menon R, Seidor S, Zhang S, Levendosky K, Jean-Pierre N, Pugach P, Villegas G, Ford BE, Gettie A, Blanchard J, Piatak M, Lifson JD, Paglini G, Teleshova N, Zydowsky TM, Robbiani M, Fernández-Romero JA. A potent combination microbicide that targets SHIV-RT, HSV-2 and HPV. PLoS One 2014; 9:e94547. [PMID: 24740100 PMCID: PMC3989196 DOI: 10.1371/journal.pone.0094547] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/17/2014] [Indexed: 11/30/2022] Open
Abstract
Prevalent infection with human herpes simplex 2 (HSV-2) or human papillomavirus (HPV) is associated with increased human immunodeficiency virus (HIV) acquisition. Microbicides that target HIV as well as these sexually transmitted infections (STIs) may more effectively limit HIV incidence. Previously, we showed that a microbicide gel (MZC) containing MIV-150, zinc acetate (ZA) and carrageenan (CG) protected macaques against simian-human immunodeficiency virus (SHIV-RT) infection and that a ZC gel protected mice against HSV-2 infection. Here we evaluated a modified MZC gel (containing different buffers, co-solvents, and preservatives suitable for clinical testing) against both vaginal and rectal challenge of animals with SHIV-RT, HSV-2 or HPV. MZC was stable and safe in vitro (cell viability and monolayer integrity) and in vivo (histology). MZC protected macaques against vaginal (p<0.0001) SHIV-RT infection when applied up to 8 hours (h) prior to challenge. When used close to the time of challenge, MZC prevented rectal SHIV-RT infection of macaques similar to the CG control. MZC significantly reduced vaginal (p<0.0001) and anorectal (p = 0.0187) infection of mice when 10(6) pfu HSV-2 were applied immediately after vaginal challenge and also when 5×10(3) pfu were applied between 8 h before and 4 h after vaginal challenge (p<0.0248). Protection of mice against 8×10(6) HPV16 pseudovirus particles (HPV16 PsV) was significant for MZC applied up to 24 h before and 2 h after vaginal challenge (p<0.0001) and also if applied 2 h before or after anorectal challenge (p<0.0006). MZC provides a durable window of protection against vaginal infection with these three viruses and, against HSV-2 and HPV making it an excellent candidate microbicide for clinical use.
Collapse
Affiliation(s)
- Larisa Kizima
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Aixa Rodríguez
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Olga Mizenina
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Radhika Menon
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Samantha Seidor
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Shimin Zhang
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Keith Levendosky
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Ninochka Jean-Pierre
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Pavel Pugach
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Guillermo Villegas
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Brian E. Ford
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. (Formerly SAIC-Frederick, Inc.), Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. (Formerly SAIC-Frederick, Inc.), Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Gabriela Paglini
- Instituto de Virología J.M.Vanella-Facultad de Ciencias Médicas-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia Teleshova
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Thomas M. Zydowsky
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - José A. Fernández-Romero
- Center for Biomedical Research, Population Council, New York, New York, United States of America
- Instituto de Virología J.M.Vanella-Facultad de Ciencias Médicas-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
26
|
McNicholl JM, Henning TC, Vishwanathan SA, Kersh EN. Non-human primate models of hormonal contraception and HIV. Am J Reprod Immunol 2014; 71:513-22. [PMID: 24716832 DOI: 10.1111/aji.12246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/03/2014] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Recent concerns that hormonal contraception (HC) may increase risk of HIV acquisition has led to keen interest in using non-human primates (NHP) to understand the underlying mechanism and the magnitude of the risk. This is, in part, because some experiments which would be difficult or logistically impossible in women are more easily conducted in NHP. METHOD OF STUDY NHP models of HIV can inform HIV acquisition and pathogenesis research and identify and evaluate biomedical preventions and treatments for HIV/AIDS. Widely used species include rhesus, pigtail, and cynomolgous macaques. RESULTS This paper reviews past, current and proposed NHP research around the intersection of HIV and HC. CONCLUSION NHP research may lead to the identification of hormonally regulated biomarkers that correlate with HIV-acquisition risk, to a ranking of existing or next-generation HC along an HIV-acquisition risk profile, and inform research around new biomedical preventions for HIV.
Collapse
Affiliation(s)
- Janet M McNicholl
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | |
Collapse
|
27
|
MIV-150-containing intravaginal rings protect macaque vaginal explants against SHIV-RT infection. Antimicrob Agents Chemother 2014; 58:2841-8. [PMID: 24614384 DOI: 10.1128/aac.01529-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies demonstrated that intravaginal rings (IVRs) containing 100 mg of the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 significantly protect macaques against a chimeric simian-human immunodeficiency virus that expresses the HIV-1 HxB2 reverse transcriptase (SHIV-RT) when present before and after vaginal challenge. The objectives of this study were to (i) evaluate the pharmacodynamics (PD) of MIV-150 in vaginal fluids (VF) and in ectocervical and vaginal tissues following 100-mg MIV-150 IVR exposure and to (ii) gain more insight whether pharmacokinetics (PK) of MIV-150 can predict PD. MIV-150 in VF collected at 1 day and 14 days post-MIV-150 IVR insertion inhibited ex vivo SHIV-RT infection in vaginal biopsy specimens from untreated animals (not carrying IVRs) in a dose-dependent manner. Previous PK studies demonstrated a significant increase of ectocervical and vaginal tissue MIV-150 concentrations 14 days versus 1 day post-IVR insertion, with the highest increase in vaginal tissue. Therefore, we tested PD of MIV-150 in tissues 14 days post-MIV-150 IVR insertion. Ex vivo SHIV-RT infection of vaginal, but not ectocervical, tissues collected 14 days post-MIV-150 IVR insertion was significantly inhibited compared to infection at the baseline (prior to MIV-150 IVR exposure). No changes in vaginal and ectocervical tissue infection were observed after placebo IVR exposure. Overall, these data underscore the use of the ex vivo macaque explant challenge models to evaluate tissue and VF PK/PD of candidate microbicides before in vivo animal efficacy studies. The data support further development of MIV-150-containing IVRs.
Collapse
|
28
|
Hsu M, Keele BF, Aravantinou M, Krawczyk N, Seidor S, Abraham CJ, Zhang S, Rodriguez A, Kizima L, Derby N, Jean-Pierre N, Mizenina O, Gettie A, Grasperge B, Blanchard J, Piatak MJ, Lifson JD, Fernández-Romero JA, Zydowsky TM, Robbiani M. Exposure to MIV-150 from a high-dose intravaginal ring results in limited emergence of drug resistance mutations in SHIV-RT infected rhesus macaques. PLoS One 2014; 9:e89300. [PMID: 24586674 PMCID: PMC3937329 DOI: 10.1371/journal.pone.0089300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
When microbicides used for HIV prevention contain antiretroviral drugs, there is concern for the potential emergence of drug-resistant HIV following use in infected individuals who are either unaware of their HIV infection status or who are aware but still choose to use the microbicide. Resistant virus could ultimately impact their responsiveness to treatment and/or result in subsequent transmission of drug-resistant virus. We tested whether drug resistance mutations (DRMs) would emerge in macaques infected with simian immunodeficiency virus expressing HIV reverse transcriptase (SHIV-RT) after sustained exposure to the potent non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 delivered via an intravaginal ring (IVR). We first treated 4 SHIV-RT-infected animals with daily intramuscular injections of MIV-150 over two 21 day (d) intervals separated by a 7 d drug hiatus. In all 4 animals, NNRTI DRMs (single and combinations) were detected within 14 d and expanded in proportion and diversity with time. Knowing that we could detect in vivo emergence of NNRTI DRMs in response to MIV-150, we then tested whether a high-dose MIV-150 IVR (loaded with >10 times the amount being used in a combination microbicide IVR in development) would select for resistance in 6 infected animals, modeling use of this prevention method by an HIV-infected woman. We previously demonstrated that this MIV-150 IVR provides significant protection against vaginal SHIV-RT challenge. Wearing the MIV-150 IVR for 56 d led to only 2 single DRMs in 2 of 6 animals (430 RT sequences analyzed total, 0.46%) from plasma and lymph nodes despite MIV-150 persisting in the plasma, vaginal fluids, and genital tissues. Only wild type virus sequences were detected in the genital tissues. These findings indicate a low probability for the emergence of DRMs after topical MIV-150 exposure and support the advancement of MIV-150-containing microbicides.
Collapse
Affiliation(s)
- Mayla Hsu
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Noa Krawczyk
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Samantha Seidor
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Ciby J. Abraham
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Shimin Zhang
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Aixa Rodriguez
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Larisa Kizima
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Ninochka Jean-Pierre
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Olga Mizenina
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - Brooke Grasperge
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Michael J. Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick National Laboratory, Frederick, Maryland, United States of America
| | - José A. Fernández-Romero
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Thomas M. Zydowsky
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| |
Collapse
|
29
|
Hsu M, Aravantinou M, Menon R, Seidor S, Goldman D, Kenney J, Derby N, Gettie A, Blanchard J, Piatak M, Lifson JD, Fernández-Romero JA, Zydowsky TM, Robbiani M. A combination microbicide gel protects macaques against vaginal simian human immunodeficiency virus-reverse transcriptase infection, but only partially reduces herpes simplex virus-2 infection after a single high-dose cochallenge. AIDS Res Hum Retroviruses 2014; 30:174-83. [PMID: 24117013 PMCID: PMC3910668 DOI: 10.1089/aid.2013.0165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides.
Collapse
Affiliation(s)
- Mayla Hsu
- Center for Biomedical Research, Population Council, New York, New York
| | | | - Radhika Menon
- Center for Biomedical Research, Population Council, New York, New York
| | - Samantha Seidor
- Center for Biomedical Research, Population Council, New York, New York
| | - Daniel Goldman
- Center for Biomedical Research, Population Council, New York, New York
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, New York
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, New York
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York
| | - James Blanchard
- Tulane National Primate Research Center, Covington, Louisiana
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory, Frederick Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory, Frederick Maryland
| | | | | | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, New York
| |
Collapse
|
30
|
Byrareddy SN, Ayash-Rashkovsky M, Kramer VG, Lee SJ, Correll M, Novembre FJ, Villinger F, Johnson WE, von Gegerfelt A, Felber BK, Ruprecht RM. Live attenuated Rev-independent Nef¯SIV enhances acquisition of heterologous SIVsmE660 in acutely vaccinated rhesus macaques. PLoS One 2013; 8:e75556. [PMID: 24098702 PMCID: PMC3787041 DOI: 10.1371/journal.pone.0075556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/14/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Rhesus macaques (RMs) inoculated with live-attenuated Rev-Independent Nef¯ simian immunodeficiency virus (Rev-Ind Nef¯SIV) as adults or neonates controlled viremia to undetectable levels and showed no signs of immunodeficiency over 6-8 years of follow-up. We tested the capacity of this live-attenuated virus to protect RMs against pathogenic, heterologous SIVsmE660 challenges. METHODOLOGY/PRINCIPAL FINDINGS Three groups of four RM were inoculated with Rev-Ind Nef¯SIV and compared. Group 1 was inoculated 8 years prior and again 15 months before low dose intrarectal challenges with SIVsmE660. Group 2 animals were inoculated with Rev-Ind Nef¯SIV at 15 months and Group 3 at 2 weeks prior to the SIVsmE660 challenges, respectively. Group 4 served as unvaccinated controls. All RMs underwent repeated weekly low-dose intrarectal challenges with SIVsmE660. Surprisingly, all RMs with acute live-attenuated virus infection (Group 3) became superinfected with the challenge virus, in contrast to the two other vaccine groups (Groups 1 and 2) (P=0.006 for each) and controls (Group 4) (P=0.022). Gene expression analysis showed significant upregulation of innate immune response-related chemokines and their receptors, most notably CCR5 in Group 3 animals during acute infection with Rev-Ind Nef¯SIV. CONCLUSIONS/SIGNIFICANCE We conclude that although Rev-Ind Nef¯SIV remained apathogenic, acute replication of the vaccine strain was not protective but associated with increased acquisition of heterologous mucosal SIVsmE660 challenges.
Collapse
Affiliation(s)
- Siddappa N. Byrareddy
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mila Ayash-Rashkovsky
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Victor G. Kramer
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Sandra J. Lee
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Mick Correll
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Francis J. Novembre
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Francois Villinger
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Welkin E. Johnson
- Biology Department, Boston College, Boston, Massachusetts, United States of America
| | - Agneta von Gegerfelt
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, Frederick, Maryland, United States of America
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, Frederick, Maryland, United States of America
| | - Ruth M. Ruprecht
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
31
|
Johnston C, Koelle DM, Wald A. Current status and prospects for development of an HSV vaccine. Vaccine 2013; 32:1553-60. [PMID: 24016811 DOI: 10.1016/j.vaccine.2013.08.066] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/05/2013] [Accepted: 08/17/2013] [Indexed: 12/24/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) infects 530million people, is the leading cause of genital ulcer disease, and increases the risk of HIV-1 acquisition. Although several candidate vaccines have been promising in animal models, prophylactic and therapeutic vaccines have not been effective in clinical trials thus far. Null results from the most recent prophylactic glycoprotein D2 subunit vaccine trial suggest that we must reevaluate our approach to HSV-2 vaccine development. We discuss HSV-2 pathogenesis, immunity, and vaccine efforts to date, as well as the current pipeline of candidate vaccines and design of trials to evaluate new vaccine constructs.
Collapse
Affiliation(s)
- Christine Johnston
- Department of Medicine, University of Washington, Seattle, WA, United States; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Department of Laboratory Medicine, University of Washington, Seattle, WA, United States; Department of Global Health, University of Washington, Seattle, WA, United States; Benaroya Research Institute, Seattle, WA, United States
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, United States; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Department of Laboratory Medicine, University of Washington, Seattle, WA, United States; Department of Epidemiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
32
|
Nixon B, Fakioglu E, Stefanidou M, Wang Y, Dutta M, Goldstein H, Herold BC. Genital herpes simplex virus type 2 infection in humanized HIV-transgenic mice triggers HIV shedding and is associated with greater neurological disease. J Infect Dis 2013; 209:510-22. [PMID: 23990571 DOI: 10.1093/infdis/jit472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epidemiological studies consistently demonstrate synergy between herpes simplex virus type 2 (HSV-2) and human immunodeficiency virus type 1 (HIV-1). Higher HIV-1 loads are observed in coinfected individuals, and conversely, HIV-1 is associated with more-severe herpetic disease. A small animal model of coinfection would facilitate identification of the biological mechanisms underlying this synergy and provide the opportunity to evaluate interventions. METHODS Mice transgenic for HIV-1 provirus and human cyclin T1 under the control of a CD4 promoter (JR-CSF/hu-cycT1) were intravaginally infected with HSV-2 and evaluated for disease progression, HIV shedding, and mucosal immune responses. RESULTS HSV-2 infection resulted in higher vaginal HIV loads and genital tissue expression of HIV RNA, compared with HSV-uninfected JR-CSF/hu-cycT1 mice. There was an increase in genital tract inflammatory cells, cytokines, chemokines, and interferons in response to HSV-2, although the kinetics of the response were delayed in HIV-transgenic, compared with control mice. Moreover, the JR-CSF/hu-cycT1 mice exhibited earlier and more-severe neurological disease. The latter was associated with downregulation of secretory leukocyte protease inhibitor expression in neuronal tissue, a molecule with antiinflammatory, antiviral, and neuroprotective properties. CONCLUSIONS JR-CSF/hu-cycT1 mice provide a valuable model to study HIV/HSV-2 coinfection and identify potential mechanisms by which HSV-2 facilitates HIV-1 transmission and HIV modulates HSV-2-mediated disease.
Collapse
|
33
|
Zhao CC, Gao XQ, Xue J, Cong Z, Zhang WL, Chen T, Wu FX, Xiong J, Ju B, Su A, Wei Q, Qin C. Interleukin-21 up-regulates interleukin-21R expression and interferon gamma production by CD8+ cells in SHIV-infected macaques. Exp Biol Med (Maywood) 2013; 238:400-9. [PMID: 23760006 DOI: 10.1177/1535370213477978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Interleukin-21 (IL-21) is produced primarily by CD4+ T cells and regulates immunity against human/simian immunodeficiency virus (HIV/SIV) infection. Activated CD8+ cells and their secreted interferon-gamma (IFN-γ) are crucial for the control of acute HIV/SIV infection. However, whether IL-21 can regulate IFN-γ production by CD8+ cells remains controversial. Rhesus macaques (RMs, n = 8) were infected with SHIV and the levels of plasma IL-21, IFN-γ and the frequency of peripheral blood activated T cells were measured longitudinally. Following infection with SHIV, the levels of plasma IL-21 and IFN-γ increased, peaked at 17 days postinfection and declined later. Furthermore, IL-21 induced IL-21 receptor (IL-21R) and IFN-γ, perforin, but not granmyze B, expression in CD8+ cells from four selected SHIV-infected RMs. The regulatory effect of IL-21 on CD8+ cell function appeared to be associated with increased levels of STAT3, but not STAT5, phosphorylation in CD8+ cells from SHIV-infected RMs. In parallel, treatment with soluble IL-21R/Fc, an inhibitor of IL-21-induced activation of JAK1/3 and STAT3, abrogated IL-21-induced STAT3 activation and IFN-γ production in CD8+ cells from SHIV-infected RMs in vitro. Our data indicated that IL-21 was a positive regulator of IFN-γ-secreting CD8+ cells and increased the STAT3 phosphorylation, regulating T-cell immunity against acute SHIV infection in RMs. Our findings may provide a new basis for the development of immunotherapies for the control of SHIV/HIV infection.
Collapse
Affiliation(s)
- Chang-cheng Zhao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang Dist, Beijing 100021
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhou Y, Bao R, Haigwood NL, Persidsky Y, Ho WZ. SIV infection of rhesus macaques of Chinese origin: a suitable model for HIV infection in humans. Retrovirology 2013; 10:89. [PMID: 23947613 PMCID: PMC3765527 DOI: 10.1186/1742-4690-10-89] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/06/2013] [Indexed: 12/15/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection of Indian-origin rhesus macaques (RM) has been widely used as a well-established nonhuman primate (NHP) model for HIV/AIDS research. However, there have been a growing number of studies using Chinese RM to evaluate immunopathogenesis of SIV infection. In this paper, we have for the first time reviewed and discussed the major publications related to SIV or SHIV infection of Chinese RM in the past decades. We have compared the differences in the pathogenesis of SIV infection between Chinese RM and Indian RM with regard to viral infection, immunological response, and host genetic background. Given AIDS is a disease that affects humans of diverse origins, it is of importance to study animals with different geographical background. Therefore, to examine and compare results obtained from RM models of Indian and Chinese origins should lead to further validation and improvement of these animal models for HIV/AIDS research.
Collapse
Affiliation(s)
- Yu Zhou
- The Center for Animal Experiment/ ABSL-III Laboratory, State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, Hubei 430071, P,R, China
| | | | | | | | | |
Collapse
|
35
|
Kenney J, Rodríguez A, Kizima L, Seidor S, Menon R, Jean-Pierre N, Pugach P, Levendosky K, Derby N, Gettie A, Blanchard J, Piatak M, Lifson JD, Paglini G, Zydowsky TM, Robbiani M, Fernández Romero JA. A modified zinc acetate gel, a potential nonantiretroviral microbicide, is safe and effective against simian-human immunodeficiency virus and herpes simplex virus 2 infection in vivo. Antimicrob Agents Chemother 2013; 57:4001-9. [PMID: 23752515 PMCID: PMC3719770 DOI: 10.1128/aac.00796-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/06/2013] [Indexed: 11/20/2022] Open
Abstract
We previously showed that a prototype gel comprising zinc acetate (ZA) in carrageenan (CG) protected mice against vaginal and rectal herpes simplex virus 2 (HSV-2) challenge as well as macaques against vaginal simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) challenge. In this work, we modified buffers and cosolvents to obtain a stable, nearly iso-osmolal formulation and evaluated its safety and efficacy against SHIV-RT and HSV-2. In vitro toxicity to lactobacilli and Candida albicans was determined. Macaques were given daily doses of ZA and CG (ZA/CG) or CG alone vaginally for 14 days and challenged with SHIV-RT 24 h later. Mice were challenged vaginally or rectally with HSV-2 immediately after a single gel treatment to measure efficacy or vaginally 12 h after daily gel treatment for 7 days to evaluate the gel's impact on susceptibility to HSV-2 infection. The modified ZA/CG neither affected the viability of lactobacilli or C. albicans nor enhanced vaginal HSV-2 infection after daily ZA/CG treatment. Vaginal SHIV-RT infection of macaques was reduced by 66% (P = 0.006) when macaques were challenged 24 h after the last dose of gel. We observed 60% to 80% uninfected mice after vaginal (P < 0.0001) and rectal (P = 0.008) high-dose HSV-2 challenge. The modified ZA/CG gel is safe and effective in animal models and represents a potential candidate to limit the transmission of HIV and HSV-2.
Collapse
Affiliation(s)
- Jessica Kenney
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Aixa Rodríguez
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Larisa Kizima
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Samantha Seidor
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Radhika Menon
- Center for Biomedical Research, Population Council, New York, New York, USA
| | | | - Pavel Pugach
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Keith Levendosky
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, USA
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Gabriela Paglini
- Instituto de Virología J.M.Vanella, Facultad de Ciencias Médicas-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Thomas M. Zydowsky
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - José A. Fernández Romero
- Center for Biomedical Research, Population Council, New York, New York, USA
- Instituto de Virología J.M.Vanella, Facultad de Ciencias Médicas-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
36
|
Abstract
Microbicides represent a potential intervention strategy for preventing HIV transmission. Vaginal microbicides would meet the need for a discreet method that women could use to protect themselves against HIV. Although early-generation microbicides failed to demonstrate efficacy, newer candidates are based on more potent antiretroviral (ARV) products. Positive data from the CAPRISA 004 trial of tenofovir gel support use in women and represent a turning point for the field. This article reviews current progress in development of ARV-based microbicides. We discuss the consensus on selection criteria, the potential for drug resistance, rationale for drug combinations, and the use of pharmacokinetic (PK)/pharmacodynamic (PD) assessment in product development. The urgent need for continued progress in development of formulations for sustained delivery is emphasized. Finally, as the boundaries between different prevention technologies become increasingly blurred, consideration is given to the potential synergy of diverse approaches across the prevention landscape.
Collapse
Affiliation(s)
- Robin J Shattock
- Centre for Infection and Immunity, Division of Clinical Sciences, St. George's, University of London, London SW17 0RE, United Kingdom.
| | | |
Collapse
|
37
|
Abstract
HSV infections are prevalent worldwide. A vaccine to prevent genital herpes would have a significant impact on this disease. Several vaccines have shown promise in animal models; however, so far these have not been successful in human clinical studies. Prophylactic HSV vaccines to prevent HSV infection or disease have focused primarily on eliciting antibody responses. Potent antibody responses are needed to result in sufficiently high levels of virus-specific antibody in the genital tract. Therapeutic vaccines that reduce recurrences need to induce potent T-cell responses at the site of infection. With the increasing incidence of HSV-1 genital herpes, an effective herpes vaccine should protect against both HSV-1 and HSV-2. Novel HSV vaccines, such as replication-defective or attenuated viruses, have elicited humoral and cellular immune responses in preclinical studies. These vaccines and others hold promise in future clinical studies.
Collapse
Affiliation(s)
- Lesia K Dropulic
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
38
|
Jasny E, Geer S, Frank I, Vagenas P, Aravantinou M, Salazar A, Lifson J, Piatak M, Gettie A, Blanchard J, Robbiani M. Characterization of peripheral and mucosal immune responses in rhesus macaques on long-term tenofovir and emtricitabine combination antiretroviral therapy. J Acquir Immune Defic Syndr 2012; 61:425-35. [PMID: 22820802 PMCID: PMC3494791 DOI: 10.1097/qai.0b013e318266be53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The goal of antiretroviral therapy (ART) is to suppress virus replication to limit immune system damage. Some have proposed combining ART with immune therapies to boost antiviral immunity. For this to be successful, ART must not impair physiological immune function. METHODS We studied the impact of ART (tenofovir and emtricitabine) on systemic and mucosal immunity in uninfected and simian immunodeficiency (SIV)-infected Chinese rhesus macaques. Subcutaneous ART was initiated 2 weeks after tonsillar inoculation with SIVmac239. RESULTS There was no evidence of immune dysregulation as a result of ART in either infected or uninfected animals. Early virus-induced alterations in circulating immune cell populations (decreased central memory T cells and myeloid dendritic cells) were detected, but normalized shortly after ART initiation. ART-treated animals showed marginal SIV-specific T-cell responses during treatment, which increased after ART discontinuation. Elevated expression of CXCL10 in oral, rectal, and blood samples and APOBEC3G mRNA in oral and rectal tissues was observed during acute infection and was down regulated after starting ART. ART did not impact the ability of the animals to respond to tonsillar application of polyICLC with increased CXCL10 expression in oral fluids and CD80 expression on blood myeloid dendritic cells. CONCLUSION Early initiation of ART prevented virus-induced damage and did not impede mucosal or systemic immune functions.
Collapse
Affiliation(s)
- E. Jasny
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - S. Geer
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - I. Frank
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - P. Vagenas
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - M. Aravantinou
- Center for Biomedical Research, Population Council, New York, New York, USA
| | | | - J.D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Frederick, Maryland, USA
| | - M Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Frederick, Maryland, USA
| | - A. Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, USA
| | - J. Blanchard
- Tulane National Primate Research Center (TNPRC), Tulane University, Covington, Louisiana, USA
| | - M. Robbiani
- Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
39
|
Evolutionary dynamics of the interferon-induced transmembrane gene family in vertebrates. PLoS One 2012; 7:e49265. [PMID: 23166625 PMCID: PMC3499546 DOI: 10.1371/journal.pone.0049265] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/04/2012] [Indexed: 12/16/2022] Open
Abstract
Vertebrate interferon-induced transmembrane (IFITM) genes have been demonstrated to have extensive and diverse functions, playing important roles in the evolution of vertebrates. Despite observance of their functionality, the evolutionary dynamics of this gene family are complex and currently unknown. Here, we performed detailed evolutionary analyses to unravel the evolutionary history of the vertebrate IFITM family. A total of 174 IFITM orthologous genes and 112 pseudogenes were identified from 27 vertebrate genome sequences. The vertebrate IFITM family can be divided into immunity-related IFITM (IR-IFITM), IFITM5 and IFITM10 sub-families in phylogeny, implying origins from three different progenitors. In general, vertebrate IFITM genes are located in two loci, one containing the IFITM10 gene, and the other locus containing IFITM5 and various numbers of IR-IFITM genes. Conservation of evolutionary synteny was observed in these IFITM genes. Significant functional divergence was detected among the three IFITM sub-families. No gene duplication or positive selection was found in IFITM5 sub-family, implying the functional conservation of IFITM5 in vertebrate evolution, which is involved in bone formation. No IFITM5 locus was identified in the marmoset genome, suggesting a potential association with the tiny size of this monkey. The IFITM10 sub-family was divided into two groups: aquatic and terrestrial types. Functional divergence was detected between the two groups, and five IFITM10-like genes from frog were dispersed into the two groups. Both gene duplication and positive selection were observed in aquatic vertebrate IFITM10-like genes, indicating that IFITM10 might be associated with the adaptation to aquatic environments. A large number of lineage- and species-specific gene duplications were observed in IR-IFITM sub-family and positive selection was detected in IR-IFITM of primates and rodents. Because primates have experienced a long history of viral infection, such rapid expansion and positive selection suggests that the evolution of primate IR-IFITM genes is associated with broad-spectrum antiviral activity.
Collapse
|
40
|
Aravantinou M, Singer R, Derby N, Calenda G, Mawson P, Abraham CJ, Menon R, Seidor S, Goldman D, Kenney J, Villegas G, Gettie A, Blanchard J, Lifson JD, Piatak M, Fernández-Romero JA, Zydowsky TM, Teleshova N, Robbiani M. The nonnucleoside reverse transcription inhibitor MIV-160 delivered from an intravaginal ring, but not from a carrageenan gel, protects against simian/human immunodeficiency virus-RT Infection. AIDS Res Hum Retroviruses 2012; 28:1467-75. [PMID: 22816564 PMCID: PMC3484820 DOI: 10.1089/aid.2012.0080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
We previously showed that a carrageenan (CG) gel containing 50 μM MIV-150 (MIV-150/CG) reduced vaginal simian/human immunodeficiency virus (SHIV)-RT infection of macaques (56%, p>0.05) when administered daily for 2 weeks with the last dose given 8 h before challenge. Additionally, when 100 mg of MIV-150 was loaded into an intravaginal ring (IVR) inserted 24 h before challenge and removed 2 weeks after challenge, >80% protection was observed (p<0.03). MIV-160 is a related NNRTI with a similar IC(50), greater aqueous solubility, and a shorter synthesis. To objectively compare MIV-160 with MIV-150, herein we evaluated the antiviral effects of unformulated MIV-160 in vitro as well as the in vivo protection afforded by MIV-160 delivered in CG (MIV-160/CG gel) and in an IVR under regimens used with MIV-150 in earlier studies. Like MIV-150, MIV-160 exhibited potent antiviral activity against SHIV-RT in macaque vaginal explants. However, formulated MIV-160 exhibited divergent effects in vivo. The MIV-160/CG gel offered no protection compared to CG alone, whereas the MIV-160 IVRs protected significantly. Importantly, the results of in vitro release studies of the MIV-160/CG gel and the MIV-160 IVR suggested that in vivo efficacy paralleled the amount of MIV-160 released in vitro. Hundreds of micrograms of MIV-160 were released daily from IVRs while undetectable amounts of MIV-160 were released from the CG gel. Our findings highlight the importance of testing different modalities of microbicide delivery to identify the optimal formulation for efficacy in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland
| | | | | | | | | |
Collapse
|
41
|
Kenney J, Singer R, Derby N, Aravantinou M, Abraham CJ, Menon R, Seidor S, Zhang S, Gettie A, Blanchard J, Piatak M, Lifson JD, Fernández-Romero JA, Zydowsky TM, Robbiani M. A single dose of a MIV-150/Zinc acetate gel provides 24 h of protection against vaginal simian human immunodeficiency virus reverse transcriptase infection, with more limited protection rectally 8-24 h after gel use. AIDS Res Hum Retroviruses 2012; 28:1476-84. [PMID: 22737981 DOI: 10.1089/aid.2012.0087] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previously we showed that repeated vaginal application of a MIV-150/zinc acetate carrageenan (MIV-150/ZA/CG) gel and a zinc acetate carrageenan (ZA/CG) gel significantly protected macaques from vaginal simian human immunodeficiency virus reverse transcriptase (SHIV-RT) infection. Gels were applied either daily for 2 weeks or every other day for 4 weeks, and the animals were challenged 4-24 h later. Herein, we examined the effects of a single vaginal dose administered either before or after virus challenge. Encouraged by the vaginal protection seen with MIV-150/ZA/CG, we also tested it rectally. Vaginal applications of MIV-150/ZA/CG, ZA/CG, and CG gel were performed once 8-24 h before, 1 h after, or 24 h before and 1 h after vaginal challenge. Rectal applications of MIV-150/ZA/CG and CG gel were performed once 8 or 24 h before rectal challenge. While vaginal pre-challenge and pre/post-challenge application of MIV-150/ZA/CG gel offered significant protection (88%, p<0.002), post-challenge application alone did not significantly protect. ZA/CG gel reduced infection prechallenge, but not significantly, and the effect was completely lost post-challenge. Rectal application of MIV-150/ZA/CG gel afforded limited protection against rectal challenge when applied 8-24 h before challenge. Thus, MIV-150/ZA/CG gel is a highly effective vaginal microbicide that demonstrates 24 h of protection from vaginal infection and may demonstrate efficacy against rectal infection when given close to the time of HIV exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland
| | | | | | | |
Collapse
|
42
|
Singer R, Mawson P, Derby N, Rodriguez A, Kizima L, Menon R, Goldman D, Kenney J, Aravantinou M, Seidor S, Gettie A, Blanchard J, Piatak M, Lifson JD, Fernández-Romero JA, Robbiani M, Zydowsky TM. An intravaginal ring that releases the NNRTI MIV-150 reduces SHIV transmission in macaques. Sci Transl Med 2012; 4:150ra123. [PMID: 22956201 PMCID: PMC4391747 DOI: 10.1126/scitranslmed.3003936] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microbicides may prevent HIV and sexually transmitted infections (STIs) in women; however, determining the optimal means of delivery of active pharmaceutical ingredients remains a major challenge. We previously demonstrated that a vaginal gel containing the non-nucleoside reverse transcriptase inhibitor MIV-150 partially protected macaques from SHIV-RT (simian/HIV reverse transcriptase) infection, and the addition of zinc acetate rendered the gel significantly protective. We test the activity of MIV-150 without the addition of zinc acetate when delivered from either ethylene vinyl acetate (EVA) or silicone intravaginal rings (IVRs). MIV-150 was successfully delivered, because it was detected in vaginal fluids and tissues by radioimmunoassay in pharmacokinetic studies. Moreover, EVA IVRs significantly protected macaques from SHIV-RT infection. Our results demonstrate that MIV-150-containing IVRs have the potential to prevent HIV infection and highlight the possible use of IVRs for delivering drugs that block HIV and other STIs.
Collapse
Affiliation(s)
- Rachel Singer
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Paul Mawson
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Aixa Rodriguez
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Larisa Kizima
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Radhika Menon
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Daniel Goldman
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Samantha Seidor
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10065, USA
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Thomas M. Zydowsky
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| |
Collapse
|
43
|
Abstract
From the publication of the first AIDS issue onwards, major advances have been made in the field of innate immunity during HIV infection. Innate immunity can be defined as the first and unspecific lines of defense constitutively present and ready to be mobilized upon infection. Although a large body of literature adamantly highlights that innate immunity is a critical weapon of defense against HIV and its simian parents (simian immunodeficiency virus, SIV), innate immunity is still underexplored. Focusing on innate immunity may open new paths for the development of innovative therapeutics and vaccine strategies against HIV. Understanding innate immunity may shed light on the natural protection occurring in rare HIV-1-infected individuals who control their infection. This review focuses on innate mechanisms sensing HIV-1 entry and controlling HIV-1 infection, as well as promoting inflammation and shaping adaptive immunity.
Collapse
|
44
|
Teleshova N, Derby N, Martinelli E, Pugach P, Calenda G, Robbiani M. Simian immunodeficiency virus interactions with macaque dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:155-81. [PMID: 22975875 DOI: 10.1007/978-1-4614-4433-6_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter summarizes advances in the following areas: (1) dendritic cell (DC)-mediated simian immunodeficiency virus (SIV) transmission, (2) role of DCs in innate and adaptive immunity against SIV, and (3) approaches to harness DC function to induce anti-SIV responses. The nonhuman primate (NHP) model of human immunodeficiency virus (HIV) infection in rhesus macaques and other Asian NHP species is highly relevant to advance the understanding of virus-host interactions critical for transmission and disease pathogenesis. HIV infection is associated with changes in frequency, phenotype, and function of the two principal subsets of DCs, myeloid DCs and plasmacytoid DCs. DC biology during pathogenic SIV infection is strikingly similar to that observed in HIV-infected patients. The NHP models provide an opportunity to dissect the requirements for DC-driven SIV infection and to understand how SIV distorts the DC system to its advantage. Furthermore, the SIV model of mucosal transmission enables the study of the earliest events of infection at the portal of entry that cannot be studied in humans, and, importantly, the involvement of DCs. Nonpathogenic infection in African NHP hosts allows investigations into the role of DCs in disease control. Understanding how DCs are altered during SIV infection is critical to the design of therapeutic and preventative strategies against HIV.
Collapse
Affiliation(s)
- Natalia Teleshova
- HIV and AIDS Program, Center for Biomedical Research, Population Council, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Fernández-Romero JA, Abraham CJ, Rodriguez A, Kizima L, Jean-Pierre N, Menon R, Begay O, Seidor S, Ford BE, Gil PI, Peters J, Katz D, Robbiani M, Zydowsky TM. Zinc acetate/carrageenan gels exhibit potent activity in vivo against high-dose herpes simplex virus 2 vaginal and rectal challenge. Antimicrob Agents Chemother 2012; 56:358-68. [PMID: 22064530 PMCID: PMC3256046 DOI: 10.1128/aac.05461-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/26/2011] [Indexed: 12/24/2022] Open
Abstract
Topical microbicides that block the sexual transmission of HIV and herpes simplex virus 2 (HSV-2) are desperately needed to reduce the incidence of HIV infections worldwide. Previously we completed phase 3 testing of the carrageenan-based gel Carraguard. Although the trial did not show that Carraguard is effective in preventing HIV transmission during vaginal sex, it did show that Carraguard is safe when used weekly for up to 2 years. Moreover, Carraguard has in vitro activity against human papillomavirus (HPV) and HSV-2 and favorable physical and rheological properties, which makes it a useful vehicle to deliver antiviral agents such as zinc acetate. To that end, we previously reported that a prototype zinc acetate carrageenan gel protects macaques against vaginal challenge with combined simian-human immunodeficiency virus reverse transcriptase (SHIV-RT). Herein, we report the safety and efficacy of a series of zinc acetate and/or carrageenan gels. The gels protected mice (75 to 85% survival; P < 0.001) against high-dose (10(6)-PFU) HSV-2 vaginal or rectal challenge. In contrast, zinc acetate formulated in HEC (hydroxyethylcellulose; or the Universal Placebo) failed to protect mice against the high-dose vaginal HSV-2 challenge (similar to aqueous zinc acetate solution and the placebo controls). The gels were found to be effective spreading gels, exhibited limited toxicity in vitro, caused minimal damage to the architecture of the cervicovaginal and rectal mucosae in vivo, and induced no increased susceptibility to HSV-2 infection in a mouse model. Our results provide a strong rationale to further optimize and evaluate the zinc acetate/carrageenan gels for their ability to block the sexual transmission of HIV and HSV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - David Katz
- Duke University, Durham, North Carolina, USA
| | | | | |
Collapse
|
46
|
Henning T, Fakile Y, Phillips C, Sweeney E, Mitchell J, Patton D, Sturdevant G, Caldwell HD, Secor WE, Papp J, Hendry RM, McNicholl J, Kersh E. Development of a pigtail macaque model of sexually transmitted infection/HIV coinfection using Chlamydia trachomatis, Trichomonas vaginalis, and SHIV(SF162P3). J Med Primatol 2011; 40:214-23. [PMID: 21781129 PMCID: PMC3402033 DOI: 10.1111/j.1600-0684.2011.00488.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sexually transmitted infections (STIs) are associated with an increased risk of HIV infection. To model the interaction between STIs and HIV infection, we evaluated the capacity of the pigtail macaque model to sustain triple infection with Trichomonas vaginalis, Chlamydia trachomatis, and SHIV(SF162P3). METHODS Seven SHIV(SF162P3) -infected pigtail macaques were inoculated with T. vaginalis only (n = 2), C. trachomatis only (n = 1), both T. vaginalis and C. trachomatis (n = 2), or control media (no STI; n = 2). Infections were confirmed by culture and/or nucleic acid testing. Genital mucosa was visualized by colposcopy. RESULTS Characteristic gynecologic signs were observed for both STIs, but not in control animals. Manifestations were most prominent at days 7-10 post-infection. STIs persisted between 4 and 6 weeks and were cleared with antibiotics. CONCLUSIONS These pilot studies demonstrate the first successful STI-SHIV triple infection of pigtail macaques, with clinical presentation of genital STI symptoms similar to those observed in humans.
Collapse
Affiliation(s)
- Tara Henning
- Division of HIV/AIDS Prevention, CDC, Atlanta, GA, USA
| | - Yetunde Fakile
- Division of Sexually Transmitted Disease Prevention, CDC, Atlanta, GA, USA
| | - Christi Phillips
- Division of Sexually Transmitted Disease Prevention, CDC, Atlanta, GA, USA
| | | | | | - Dorothy Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Gail Sturdevant
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Harlan D. Caldwell
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - W. Evan Secor
- Division of Parasitic Diseases and Malaria, CDC, Atlanta, GA, USA
| | - John Papp
- Division of Sexually Transmitted Disease Prevention, CDC, Atlanta, GA, USA
| | | | | | - Ellen Kersh
- Division of HIV/AIDS Prevention, CDC, Atlanta, GA, USA
| |
Collapse
|
47
|
Singer R, Derby N, Rodriguez A, Kizima L, Kenney J, Aravantinou M, Chudolij A, Gettie A, Blanchard J, Lifson JD, Piatak M, Fernández-Romero JA, Zydowsky TM, Robbiani M. The nonnucleoside reverse transcriptase inhibitor MIV-150 in carrageenan gel prevents rectal transmission of simian/human immunodeficiency virus infection in macaques. J Virol 2011; 85:5504-12. [PMID: 21411526 PMCID: PMC3094984 DOI: 10.1128/jvi.02422-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/08/2011] [Indexed: 01/20/2023] Open
Abstract
Development of a microbicide that prevents rectal transmission of human immunodeficiency virus (HIV) is a vital component in reducing HIV spread. We recently demonstrated that a formulation of the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan reduced vaginal infection of macaques with simian immunodeficiency virus SIVmac239 with HIV-1(HxB2) reverse transcriptase (SHIV-RT). Herein, we performed the first testing of MIV-150-carrageenan against rectal infection. Rhesus macaques were treated rectally with MIV-150-carrageenan or methyl cellulose (MC) placebo gel up to 4 h prior to rectal challenge with 10³ or 10(4) 50% tissue culture infective doses (TCID₅₀) of SHIV-RT. Infection was assessed by measuring plasma virus RNA as well as T and B cell responses. MIV-150-carrageenan protected all animals challenged with 10³ TCID(₅₀ when gel was applied either 30 min or 4 h prior to challenge, while 100% of the MC-treated animals became infected (n = 4 each; P < 0.03). Partial protection (2 of 4 animals) by MIV-150-carrageenan was observed for rectal challenge with 10-fold more virus applied 4 h after the gel. Sequencing of the RT gene from plasma virus RNA isolated at peak viremia confirmed that both of these animals (like infected MC controls) were infected with wild-type virus. Infection correlated with the development of SIV-specific T and B cell responses. MIV-150 was detected in the rectal fluids and tissues 4 h after gel application but was not detected in the blood at any time (0.5 to 24 h). These data are promising for the development of NNRTI-containing gels to prevent rectal HIV transmission.
Collapse
Affiliation(s)
- R. Singer
- Center for Biomedical Research, Population Council, New York, New York
| | - N. Derby
- Center for Biomedical Research, Population Council, New York, New York
| | - A. Rodriguez
- Center for Biomedical Research, Population Council, New York, New York
| | - L. Kizima
- Center for Biomedical Research, Population Council, New York, New York
| | - J. Kenney
- Center for Biomedical Research, Population Council, New York, New York
| | - M. Aravantinou
- Center for Biomedical Research, Population Council, New York, New York
| | - A. Chudolij
- Center for Biomedical Research, Population Council, New York, New York
| | - A. Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York
| | - J. Blanchard
- Tulane National Primate Research Center (TNPRC), Tulane University, Covington, Louisiana
| | - J. D. Lifson
- AIDS and Cancer Virus Program, SAIC—Frederick, National Cancer Institute at Frederick, Frederick, Maryland
| | - M. Piatak
- AIDS and Cancer Virus Program, SAIC—Frederick, National Cancer Institute at Frederick, Frederick, Maryland
| | | | - T. M. Zydowsky
- Center for Biomedical Research, Population Council, New York, New York
| | - M. Robbiani
- Center for Biomedical Research, Population Council, New York, New York
| |
Collapse
|
48
|
Martinelli E, Tharinger H, Frank I, Arthos J, Piatak M, Lifson JD, Blanchard J, Gettie A, Robbiani M. HSV-2 infection of dendritic cells amplifies a highly susceptible HIV-1 cell target. PLoS Pathog 2011; 7:e1002109. [PMID: 21738472 PMCID: PMC3128120 DOI: 10.1371/journal.ppat.1002109] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 04/23/2011] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) increases the risk of HIV-1 infection and, although several reports describe the interaction between these two viruses, the exact mechanism for this increased susceptibility remains unclear. Dendritic cells (DCs) at the site of entry of HSV-2 and HIV-1 contribute to viral spread in the mucosa. Specialized DCs present in the gut-associated lymphoid tissues produce retinoic acid (RA), an important immunomodulator, able to influence HIV-1 replication and a key mediator of integrin α₄β₇ on lymphocytes. α₄β₇ can be engaged by HIV-1 on the cell-surface and CD4⁺ T cells expressing high levels of this integrin (α₄β₇ (high)) are particularly susceptible to HIV-1 infection. Herein we provide in-vivo data in macaques showing an increased percentage of α₄β₇ (high) CD4⁺ T cells in rectal mucosa, iliac lymph nodes and blood within 6 days of rectal exposure to live (n = 11), but not UV-treated (n = 8), HSV-2. We found that CD11c⁺ DCs are a major target of HSV-2 infection in in-vitro exposed PBMCs. We determined that immature monocyte-derived DCs (moDCs) express aldehyde dehydrogenase ALDH1A1, an enzyme essential for RA production, which increases upon HSV-2 infection. Moreover, HSV-2-infected moDCs significantly increase α₄β₇ expression on CD4⁺ T lymphocytes and HIV-1 infection in DC-T cell mixtures in a RA-dependent manner. Thus, we propose that HSV-2 modulates its microenviroment, influencing DC function, increasing RA production capability and amplifying a α₄β₇ (high)CD4⁺ T cells. These factors may play a role in increasing the susceptibility to HIV-1.
Collapse
Affiliation(s)
- Elena Martinelli
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Hugo Tharinger
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, Unites States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, Unites States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, Unites States of America
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| |
Collapse
|
49
|
Ariën KK, Jespers V, Vanham G. HIV sexual transmission and microbicides. Rev Med Virol 2011; 21:110-33. [PMID: 21412935 DOI: 10.1002/rmv.684] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 12/12/2022]
Abstract
Pathogens often rely on the contacts between hosts for transmission. Most viruses have adapted their transmission mechanisms to defined behaviours of their host(s) and have learned to exploit these for their own propagation. Some viruses, such as HIV, the human papillomavirus (HPV), HSV-2 and HCV, cause sexually transmitted infections (STIs). Understanding the transmission of particular viral variants and comprehending the early adaptation and evolution is fundamental to eventually inhibiting sexual transmission of HIV. Here, we review the current understanding of the mechanisms of sexual transmission and the biology of the transmitted HIV. Next, we present a timely overview of candidate microbicides, including past, ongoing and future clinical trials of HIV topical microbicides.
Collapse
Affiliation(s)
- Kevin K Ariën
- Virology Unit, Department of Microbiology, Institute of Tropical Medicine, Antwerpen, Belgium.
| | | | | |
Collapse
|
50
|
Kenney J, Aravantinou M, Singer R, Hsu M, Rodriguez A, Kizima L, Abraham CJ, Menon R, Seidor S, Chudolij A, Gettie A, Blanchard J, Lifson JD, Piatak M, Fernández-Romero JA, Zydowsky TM, Robbiani M. An antiretroviral/zinc combination gel provides 24 hours of complete protection against vaginal SHIV infection in macaques. PLoS One 2011; 6:e15835. [PMID: 21246052 PMCID: PMC3016413 DOI: 10.1371/journal.pone.0015835] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/29/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Repeated use, coitus-independent microbicide gels that do not contain antiretroviral agents also used as first line HIV therapy are urgently needed to curb HIV spread. Current formulations require high doses (millimolar range) of antiretroviral drugs and typically only provide short-term protection in macaques. We used the macaque model to test the efficacy of a novel combination microbicide gel containing zinc acetate and micromolar doses of the novel non-nucleoside reverse transcriptase inhibitor MIV-150 for up to 24 h after repeated gel application. METHODS AND FINDINGS Rhesus macaques were vaginally challenged with SHIV-RT up to 24 h after repeated administration of microbicide versus placebo gels. Infection status was determined by measuring virologic and immunologic parameters. Combination microbicide gels containing 14 mM zinc acetate dihydrate and 50 µM MIV-150 afforded full protection (21 of 21 animals) for up to 24 h after 2 weeks of daily application. Partial protection was achieved with the MIV-150 gel (56% of control at 8 h after last application, 11% at 24 h), while the zinc acetate gel afforded more pronounced protection (67% at 8-24 h). Marked protection persisted when the zinc acetate or MIV-150/zinc acetate gels were applied every other day for 4 weeks prior to challenge 24 h after the last gel was administered (11 of 14 protected). More MIV-150 was associated with cervical tissue 8 h after daily dosing of MIV-150/zinc acetate versus MIV-150, while comparable MIV-150 levels were associated with vaginal tissues and at 24 h. CONCLUSIONS A combination MIV-150/zinc acetate gel and a zinc acetate gel provide significant protection against SHIV-RT infection for up to 24 h. This represents a novel advancement, identifying microbicides that do not contain anti-viral agents used to treat HIV infection and which can be used repeatedly and independently of coitus, and underscores the need for future clinical testing of their safety and ability to prevent HIV transmission in humans.
Collapse
Affiliation(s)
- Jessica Kenney
- Population Council, New York, New York, United States of America
| | | | - Rachel Singer
- Population Council, New York, New York, United States of America
| | - Mayla Hsu
- Population Council, New York, New York, United States of America
| | - Aixa Rodriguez
- Population Council, New York, New York, United States of America
| | - Larisa Kizima
- Population Council, New York, New York, United States of America
| | - Ciby J. Abraham
- Population Council, New York, New York, United States of America
| | - Radhika Menon
- Population Council, New York, New York, United States of America
| | - Samantha Seidor
- Population Council, New York, New York, United States of America
| | - Anne Chudolij
- Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | | | | | - Melissa Robbiani
- Population Council, New York, New York, United States of America
| |
Collapse
|