1
|
Hu W, Chen ZM, Wang Y, Yang C, Wu ZY, You LJ, Zhai ZY, Huang ZY, Zhou P, Huang SL, Li XX, Yang GH, Bao CJ, Cui XB, Xia GL, Ou Yang MP, Zhang L, Wu WKK, Li LF, Tan LK, Zhang YX, Gong W. Single-cell RNA sequencing dissects the immunosuppressive signatures in Helicobacter pylori-infected human gastric ecosystem. Nat Commun 2025; 16:3903. [PMID: 40281037 PMCID: PMC12032416 DOI: 10.1038/s41467-025-59339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Helicobacter pylori (H. pylori) manipulates the host immune system to establish a persistent colonization, posing a serious threat to human health, but the mechanisms remain poorly understood. Here we integrate single-cell RNA sequencing and TCR profiling for analyzing 187,192 cells from 11 H. pylori-negative and 12 H. pylori-positive individuals to describe the human gastric ecosystem reprogrammed by H. pylori infection, as manifested by impaired antigen presentation and phagocytosis function. We further delineate a monocyte-to-C1QC+ macrophage differentiation trajectory driven by H. pylori infection, while T cell responses exhibit broad functional impairment and hyporesponsiveness with restricted clonal expansion capacity. We also identify an HLA-DRs- and CTLA4-expressing T cell population residing in H. pylori-inhabited stomach that potentially contribute to immune evasion. Together, our findings provide single-cell resolution information into the immunosuppressive microenvironment shaped by H. pylori infection, offering critical insights for developing novel therapeutic approaches to eliminate this globally prevalent pathogen.
Collapse
Affiliation(s)
- Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ze Min Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Wang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Chao Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zi Ying Wu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Li Juan You
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhi Yong Zhai
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhao Yu Huang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ping Zhou
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Si Lin Huang
- Department of Gastroenterology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Xia Xi Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gen Hua Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Chong Ju Bao
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiao Bing Cui
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gui Li Xia
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Mei Ping Ou Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Lin Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Long Fei Li
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Li Kai Tan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Xuan Zhang
- Department of Pharmacology and Therapeutics, King's College London, London, UK
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Hatefi A, Siavoshi F, Khalili-Samani S. Yeast's vacuole a privileged niche that protects intracellular bacteria against antibiotics. Arch Microbiol 2025; 207:82. [PMID: 40063265 DOI: 10.1007/s00203-025-04281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
Detection of Helicobacter pylori, Staphylococcus, Nocardia and Cyanobacteria inside the yeast Candida tropicalis raised the question whether treating yeast with antibiotics mix (ABM) eliminates intracellular bacteria. Live/Dead staining showed occurrence of viable bacteria inside the vacuole of C. tropicalis. Amplification of bacterial 16S rRNA genes from yeast DNA with the size of 521, 750, 606 and 450 bp were similar to those from control H. pylori, Staphylococcus, Nocardia and Cyanobacteria, respectively. To eliminate intracellular bacteria yeast cultures in yeast-glucose (YG) broth were treated with 32-1024 μg/mL of ABM (amoxicillin, ciprofloxacin, rifampin and metronidazole) for up to 24 h. Viability of treated yeast cells and their intracellular bacteria was assessed by colony count, Live/Dead staining and detection of bacterial 16S rRNA genes. Colony count of C. tropicalis exposed to 32-256 μg/mL of ABM (4.39-9.63) or 512-1024 μg/mL (9.67-9.77) were similar to their respected controls (p > 0.05). Amplification of similar bacterial genes from treated yeasts and controls confirmed persistent occurrence of intracellular bacteria. Micrographs of yeasts treated with 32-256 μg/mL of ABM showed intact yeasts and intracellular bacteria, however those treated with 512 and 1024 μg/mL showed occurrence of < 10% and > 10% yellow damaged yeasts, respectively that accumulated yellow rifampin. Fluorescence microscopy showed that both intact and damaged yeasts carried live bacteria inside their vacuole. Culture of treated yeasts on YG agar produced colonies with totally intact yeasts and intracellular bacteria. Yeast extruded antibiotics and reduced their effective concentration for killing intracellular bacteria. Establishment of bacteria inside the fungal vacuole cannot be disrupted with antibiotics.
Collapse
Affiliation(s)
- Atousa Hatefi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Saman Khalili-Samani
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Wang Z, Zhao S, Zhong X, Su Y, Song Y, Li J, Shi Y. Debate on the relationship between Helicobacter pylori infection and inflammatory bowel disease: a bibliometric analysis. Front Microbiol 2024; 15:1479941. [PMID: 39569001 PMCID: PMC11576472 DOI: 10.3389/fmicb.2024.1479941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Background Inflammatory bowel diseases (IBD) are chronic inflammation conditions affecting the gastrointestinal tract. Studies point out an association between Helicobacter pylori (H. pylori) infection and IBD. This study aims to visually assess the research trends and hotspots in the field of H. pylori infection and IBD, review mainstream perspectives in this field, and provide a foundation for future research and treatment. Methods We searched the Web of Science Core Collection Database for literature related to H. pylori and IBD, using VOS viewer to generate visual charts. Results A total of 246 publications were included, with articles being the predominant type of document. A significant increase in the number of publications was observed after 2011. China contributed the most of researches. Keyword clusters revealed that the researches primarily focused on immune mechanism, gut microbiome, diagnosis and treatment of IBD. Time trend results indicated that current researches centered on gut microbiota and immune mechanisms. Conclusion H. pylori infection may have a protective effect on IBD. The exact mechanisms remain unclear and may involve immunomodulation and changes of gut microbiota. Further researches are necessary for better understanding this relationship and its implications for clinical practice. Further researches and clinical practice should pay attention to this topic.
Collapse
Affiliation(s)
- Ziye Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Shiqing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xiaotian Zhong
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yi Su
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yahan Song
- Library, Peking University Third Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Wang X, Zhao G, Shao S, Yao Y. Helicobacter pylori triggers inflammation and oncogenic transformation by perturbing the immune microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189139. [PMID: 38897421 DOI: 10.1016/j.bbcan.2024.189139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The immune microenvironment plays a critical regulatory role in the pathogenesis of Helicobacter pylori (H. pylori). Understanding the mechanisms that drive the transition from chronic inflammation to cancer may provide new insights for early detection of gastric cancer. Although chronic inflammation is frequent in precancerous gastric conditions, the monitoring function of the inflammatory microenvironment in the progression from H. pylori-induced chronic inflammation to gastric cancer remains unclear. This literature review summarizes significant findings on how H. pylori triggers inflammatory responses and facilitates cancer development through the immune microenvironment. Furthermore, the implications for future research and clinical applications are also addressed. The review is divided into four main sections: inflammatory response and immune evasion mechanisms induced by H. pylori, immune dysregulation associated with gastric cancer, therapeutic implications, and future perspectives on H. pylori-induced gastric carcinogenesis with a focus on the immune microenvironment.
Collapse
Affiliation(s)
- Xiuping Wang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Guang Zhao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China; Department of Emergency Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yongliang Yao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China.
| |
Collapse
|
5
|
Fan J, Zhu J, Xu H. Strategies of Helicobacter pylori in evading host innate and adaptive immunity: insights and prospects for therapeutic targeting. Front Cell Infect Microbiol 2024; 14:1342913. [PMID: 38469348 PMCID: PMC10925771 DOI: 10.3389/fcimb.2024.1342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Marzhoseyni Z, Mousavi MJ, Ghotloo S. Helicobacter pylori antigens as immunomodulators of immune system. Helicobacter 2024; 29:e13058. [PMID: 38380545 DOI: 10.1111/hel.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Helicobacter pylori (H. pylori) is one of the most prevalent human pathogens and the leading cause of chronic infection in almost half of the population in the world (~59%). The bacterium is a major leading cause of chronic gastritis, gastric and duodenal ulcers, and two type of malignancies, gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Despite the immune responses mounted by the host, the bacteria are not cleared from the body resulting in a chronic infection accompanied by a chronic inflammation. Herein, a review of the literature discussing H. pylori antigens modulating the immune responses is presented. The mechanisms that are involved in the modulation of innate immune response, include modulation of recognition by pattern recognition receptors (PRRs) such as modulation of recognition by toll like receptors (TLR)4 and TLR5, modulation of phagocytic function, and modulation of phagocytic killing mediated by reactive oxygen species (ROS) and nitric oxide (NO). On the other hands, H. pylori modulates acquired immune response by the induction of tolerogenic dendritic cells (DCs), modulation of apoptosis, induction of regulatory T cells, modulation of T helper (Th)1 response, and modulation of Th17 response.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayeh Ghotloo
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Wang F, Wang Z, Tang J. The interactions of Candida albicans with gut bacteria: a new strategy to prevent and treat invasive intestinal candidiasis. Gut Pathog 2023; 15:30. [PMID: 37370138 DOI: 10.1186/s13099-023-00559-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The gut microbiota plays an important role in human health, as it can affect host immunity and susceptibility to infectious diseases. Invasive intestinal candidiasis is strongly associated with gut microbiota homeostasis. However, the nature of the interaction between Candida albicans and gut bacteria remains unclear. OBJECTIVE This review aimed to determine the nature of interaction and the effects of gut bacteria on C. albicans so as to comprehend an approach to reducing intestinal invasive infection by C. albicans. METHODS This review examined 11 common gut bacteria's interactions with C. albicans, including Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, Staphylococcus aureus, Salmonella spp., Helicobacter pylori, Lactobacillus spp., Bacteroides spp., Clostridium difficile, and Streptococcus spp. RESULTS Most of the studied bacteria demonstrated both synergistic and antagonistic effects with C. albicans, and just a few bacteria such as P. aeruginosa, Salmonella spp., and Lactobacillus spp. demonstrated only antagonism against C. albicans. CONCLUSIONS Based on the nature of interactions reported so far by the literature between gut bacteria and C. albicans, it is expected to provide new ideas for the prevention and treatment of invasive intestinal candidiasis.
Collapse
Affiliation(s)
- Fei Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China
| | - Zetian Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China.
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China.
| |
Collapse
|
8
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
9
|
Capitani N, Baldari CT. The Immunological Synapse: An Emerging Target for Immune Evasion by Bacterial Pathogens. Front Immunol 2022; 13:943344. [PMID: 35911720 PMCID: PMC9325968 DOI: 10.3389/fimmu.2022.943344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Similar to other pathogens, bacteria have developed during their evolution a variety of mechanisms to overcome both innate and acquired immunity, accounting for their ability to cause disease or chronic infections. The mechanisms exploited for this critical function act by targeting conserved structures or pathways that regulate the host immune response. A strategic potential target is the immunological synapse (IS), a highly specialized structure that forms at the interface between antigen presenting cells (APC) and T lymphocytes and is required for the establishment of an effective T cell response to the infectious agent and for the development of long-lasting T cell memory. While a variety of bacterial pathogens are known to impair or subvert cellular processes essential for antigen processing and presentation, on which IS assembly depends, it is only recently that the possibility that IS may be a direct target of bacterial virulence factors has been considered. Emerging evidence strongly supports this notion, highlighting IS targeting as a powerful, novel means of immune evasion by bacterial pathogens. In this review we will present a brief overview of the mechanisms used by bacteria to affect IS assembly by targeting APCs. We will then summarize what has emerged from the current handful of studies that have addressed the direct impact of bacterial virulence factors on IS assembly in T cells and, based on the strategic cellular processes targeted by these factors in other cell types, highlight potential IS-related vulnerabilities that could be exploited by these pathogens to evade T cell mediated immunity.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
10
|
Oster P, Vaillant L, McMillan B, Velin D. The Efficacy of Cancer Immunotherapies Is Compromised by Helicobacter pylori Infection. Front Immunol 2022; 13:899161. [PMID: 35677057 PMCID: PMC9168074 DOI: 10.3389/fimmu.2022.899161] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infects the gastric mucosa of a large number of humans. Although asymptomatic in the vast majority of cases, H pylori infection can lead to the development of peptic ulcers gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Using a variety of mechanisms, H pylori locally suppresses the function of the host immune system to establish chronic infection. Systemic immunomodulation has been observed in both clinical and pre-clinical studies, which have demonstrated that H pylori infection is associated with reduced incidence of inflammatory diseases, such as asthma and Crohn’s disease. The introduction of immunotherapies in the arsenal of anti-cancer drugs has revealed a new facet of H pylori-induced immune suppression. In this review, we will describe the intimate interactions between H pylori and its host, and formulate hypothtyeses describing the detrimental impact of H pylori infection on the efficacy of cancer immunotherapies.
Collapse
|
11
|
Mommersteeg M, Simovic I, Yu B, van Nieuwenburg S, Bruno IM, Doukas M, Kuipers E, Spaander M, Peppelenbosch M, Castaño-Rodríguez N, Fuhler G. Autophagy mediates ER stress and inflammation in Helicobacter pylori-related gastric cancer. Gut Microbes 2022; 14:2015238. [PMID: 34965181 PMCID: PMC8726742 DOI: 10.1080/19490976.2021.2015238] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Autophagy is a cellular degradation mechanism, which is triggered by the bacterium Helicobacter pylori. A single nucleotide polymorphism (SNP) in the autophagy gene ATG16L1 (rs2241880, G-allele) has been shown to dysregulate autophagy and increase intestinal endoplasmic reticulum (ER) stress. Here, we investigate the role of this SNP in H.pylori-mediated gastric carcinogenesis and its molecular pathways. ATG16L1 rs2241880 was genotyped in subjects from different ethnic cohorts (Dutch and Australian) presenting with gastric (pre)malignant lesions of various severity. Expression of GRP78 (a marker for ER stress) was assessed in gastric tissues. The effect of ATG16L1 rs2241880 on H.pylori-mediated ER stress and pro-inflammatory cytokine induction was investigated in organoids and CRISPR/Cas9 modified cell lines. Development of gastric cancer was associated with the ATG16L1 rs2241880 G-allele. Intestinal metaplastic cells in gastric tissue of patients showed increased levels of ER-stress. In vitro models showed that H.pylori increases autophagy while reducing ER stress, which appeared partly mediated by the ATG16L1 rs2241880 genotype. H.pylori-induced IL-8 production was increased while TNF-α production was decreased, in cells homozygous for the G-allele. The ATG16L1 rs2241880 G-allele is associated with progression of gastric premalignant lesions and cancer. Modulation of H.pylori-induced ER stress pathways and pro-inflammatory mediators by ATG16L1 rs2441880 may underlie this increased risk.
Collapse
Affiliation(s)
- M.C. Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - I. Simovic
- School of Biotechnology and Biomolecular Sciences, Unsw, Sydney, Australia
| | - B. Yu
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S.A.V. van Nieuwenburg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - I, M.J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M. Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - E.J. Kuipers
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M.C.W. Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M.P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - N. Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, Unsw, Sydney, Australia,CONTACT N. Castaño-Rodríguez School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | - G.M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands,G.M. Fuhler PhD Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Unsw, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Zhang Z, Chen S, Fan M, Ruan G, Xi T, Zheng L, Guo L, Ye F, Xing Y. Helicobacter pylori induces gastric cancer via down-regulating miR-375 to inhibit dendritic cell maturation. Helicobacter 2021; 26:e12813. [PMID: 33938607 DOI: 10.1111/hel.12813] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent studies and clinical samples have demonstrated that Helicobacter pylori could induce the downregulation of miR-375 in the stomach and promote gastric carcinogenesis. However, whether the immune cells are affected by Helicobacter pylori due to the downregulation of miR-375 is unclear. MATERIALS AND METHODS In this study, we constructed an overexpression and knockdown of miR-375 and Helicobacter pylori infection cell models in vitro. In addition, the maturity of dendritic cells (DCs) and the expression of IL-6, IL-10, and VEGF at the transcriptional and translational levels were analyzed. Changes in the JAK2-STAT3 signaling pathway were detected. In vivo, the number changes in CD4+ T and CD8+ T cells and the size changes of tumors via models of transplantable subcutaneous tumors were also analyzed. RESULTS A cell model of Helicobacter pylori and gastric cancer was used to identify the expression of miR-375 and the maturity of dendritic cells. This study found that Helicobacter pylori could downregulate miR-375, which regulates the expression of cytokines IL-6, IL-10, and VEGF in the stomach. MiR-375 regulated the expression of cytokines IL-6, IL-10, and VEGF through the JAK2-STAT3 signaling pathway in vitro. In addition, we found that Helicobacter pylori regulates the maturation of dendritic cells through miR-375. These results were further verified in vivo, and miR-375 diminishes tumor size was also demonstrated. This study showed that immature DCs caused a decrease in the number of CD4+ and CD8+ T cells. CONCLUSIONS This study demonstrated that Helicobacter pylori can inhibit miRNA-375 expression in the stomach. Downregulated miR-375 activates the JAK2-STAT3 pathway. Activating the JAK2-STAT3 signaling pathway promotes the secretion of IL-6, IL-10, and VEGF, leading to immature differentiation of DCs and induction of gastric cancer.
Collapse
Affiliation(s)
- Zhenxing Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Simiao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Menghui Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Guojing Ruan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Le Guo
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Feng Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Intracellular Presence of Helicobacter pylori and Its Virulence-Associated Genotypes within the Vaginal Yeast of Term Pregnant Women. Microorganisms 2021; 9:microorganisms9010131. [PMID: 33430099 PMCID: PMC7827377 DOI: 10.3390/microorganisms9010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND
Helicobacter pylori transmission routes are not entirely elucidated. Since yeasts are postulated to transmit this pathogen, this study aimed to detect and genotype intracellular H. pylori harbored within vaginal yeast cells. METHODS A questionnaire was used to determine risk factors of H. pylori infection. Samples were seeded on Sabouraud Dextrose Agar and horse blood-supplemented Columbia agar. Isolated yeasts were identified using and observed by optical microscopy searching for intra-yeast H. pylori. Total yeast DNA, from one random sample, was extracted to search for H. pylori virulence genes by PCR and bacterial identification by sequencing. RESULTS 43% of samples contained yeasts, mainly Candida albicans (91%). Microscopy detected bacteria such as bodies and anti-H. pylori antibodies binding particles in 50% of the isolated yeasts. Total DNA extracted showed that 50% of the isolated yeasts were positive for H. pylori 16S rDNA and the sequence showed 99.8% similarity with H. pylori. In total, 32% of H. pylori DNA positive samples were cagA+ vacAs1a vacAm1 dupA-. No relationship was observed between possible H. pylori infection risk factors and vaginal yeasts harboring this bacterium. CONCLUSION
H. pylori having virulent genotypes were detected within vaginal yeasts constituting a risk for vertical transmission of this pathogen.
Collapse
|
14
|
Shah A, Talley NJ, Koloski N, Macdonald GA, Kendall BJ, Shanahan ER, Walker MM, Keely S, Jones MP, Morrison M, Holtmann GJ. Duodenal bacterial load as determined by quantitative polymerase chain reaction in asymptomatic controls, functional gastrointestinal disorders and inflammatory bowel disease. Aliment Pharmacol Ther 2020; 52:155-167. [PMID: 32412673 DOI: 10.1111/apt.15786] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Small intestinal bacterial overgrowth may play a role in gastrointestinal and non-gastrointestinal diseases. AIMS To use quantitative polymerase chain reaction (qPCR) to determine and compare bacterial loads of duodenal biopsies in asymptomatic controls, and patients with functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) including ulcerative colitis (UC) and Crohn's disease (CD). To define effects of gastric acid inhibition on bacterial load, explore links of bacterial load and gastrointestinal symptoms in response to a standardised nutrient challenge and compare bacterial load with glucose breath test results. METHODS In 237 patients (63 controls, 84 FGID and 90 IBD), we collected mucosal samples under aseptic conditions during endoscopy extracted and total DNA. Bacterial load metric was calculated utilising qPCR measurements of the bacterial 16S rRNA gene, normalised to human beta-actin expression. Standard glucose breath test and nutrient challenge test were performed. RESULTS The duodenal microbial load was higher in patients with FGID (0.22 ± 0.03) than controls (0.07 ± 0.05; P = 0.007) and patients with UC (0.01 ± 0.05) or CD (0.02 ± 0.09), (P = 0.0001). While patients treated with proton pump inhibitors (PPI) had significantly higher bacterial loads than non-users (P < 0.05), this did not explain differences between patient groups and controls. Bacterial load was significantly (r = 0.21, P < 0.016) associated with the symptom response to standardised nutrient challenge test. Methane, but not hydrogen values on glucose breath test were associated with bacterial load measured utilising qPCR. CONCLUSIONS Utilising qPCR, a diagnosis of FGID and treatment with PPI were independently associated with increased bacterial loads. Increased bacterial loads are associated with an augmented symptom response to a standardised nutrient challenge.
Collapse
Affiliation(s)
- Ayesha Shah
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Faculty of Medicine and Faulty of Health and Behavioural Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Nicholas J Talley
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Natasha Koloski
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Faculty of Medicine and Faulty of Health and Behavioural Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Graeme A Macdonald
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Faculty of Medicine and Faulty of Health and Behavioural Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Bradley J Kendall
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Faculty of Medicine and Faulty of Health and Behavioural Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Erin R Shanahan
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Faculty of Medicine and Faulty of Health and Behavioural Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Marjorie M Walker
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Simon Keely
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Michael P Jones
- Psychology Department, Macquarie University, Ryde, NSW, Australia
| | - Mark Morrison
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Diamantina Institute, University of Queensland, Brisbane, Qld, Australia
| | - Gerald J Holtmann
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Faculty of Medicine and Faulty of Health and Behavioural Sciences, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
15
|
Sit WY, Chen YA, Chen YL, Lai CH, Wang WC. Cellular evasion strategies of Helicobacter pylori in regulating its intracellular fate. Semin Cell Dev Biol 2020; 101:59-67. [PMID: 32033828 PMCID: PMC7102552 DOI: 10.1016/j.semcdb.2020.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori colonizes human stomach mucosa and its infection causes gastrointestinal diseases with variable severity. Bacterial infection stimulates autophagy, which is a part of innate immunity used to eliminate intracellular pathogens. Several intracellular bacteria have evolved multipronged strategies to circumvent this conserved system and thereby enhance their chance of intracellular survival. Nonetheless, studies on H. pylori have produced inconsistent results, showing either elevated or reduced clearance efficiency of intracellular bacteria through autophagy. In this review, we summarize recent studies on the mechanisms involved in autophagy induced by H. pylori and the fate of intracellular bacteria.
Collapse
Affiliation(s)
- Wei Yang Sit
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Lun Chen
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Nursing, Asia University, Taichung, Taiwan; Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo, Taiwan.
| | - Wen-Ching Wang
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
16
|
Blaser N, Backert S, Pachathundikandi SK. Immune Cell Signaling by Helicobacter pylori: Impact on Gastric Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:77-106. [PMID: 31049845 DOI: 10.1007/5584_2019_360] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori represents a highly successful colonizer of the human stomach. Infections with this Gram-negative bacterium can persist lifelong, and although in the majority of cases colonization is asymptomatic, it can trigger pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The interaction of the bacteria with the human host modulates immune responses in different ways to enable bacterial survival and persistence. H. pylori uses various pathogenicity-associated factors such as VacA, NapA, CGT, GGT, lipopolysaccharide, peptidoglycan, heptose 1,7-bisphosphate, ADP-heptose, cholesterol glucosides, urease and a type IV secretion system for controlling immune signaling and cellular functions. It appears that H. pylori manipulates multiple extracellular immune receptors such as integrin-β2 (CD18), EGFR, CD74, CD300E, DC-SIGN, MINCLE, TRPM2, T-cell and Toll-like receptors as well as a number of intracellular receptors including NLRP3, NOD1, NOD2, TIFA and ALPK1. Consequently, downstream signaling pathways are hijacked, inducing tolerogenic dendritic cells, inhibiting effector T cell responses and changing the gastrointestinal microbiota. Here, we discuss in detail the interplay of bacterial factors with multiple immuno-regulatory cells and summarize the main immune evasion and persistence strategies employed by H. pylori.
Collapse
Affiliation(s)
- Nicole Blaser
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Suneesh Kumar Pachathundikandi
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
17
|
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects the gastric epithelia of its human host. Everyone who is colonized with these pathogenic bacteria can develop gastric inflammation, termed gastritis. Additionally, a small proportion of colonized people develop more adverse outcomes, including gastric ulcer disease, gastric adenocarcinoma, or gastric mucosa-associated lymphoid tissue lymphoma. The development of these adverse outcomes is dependent on the establishment of a chronic inflammatory response. The development and control of this chronic inflammatory response are significantly impacted by CD4+ T helper cell activity. Noteworthy, T helper 17 (Th17) cells, a proinflammatory subset of CD4+ T cells, produce several proinflammatory cytokines that activate innate immune cell antimicrobial activity, drive a pathogenic immune response, regulate B cell responses, and participate in wound healing. Therefore, this review was written to take an intricate look at the involvement of Th17 cells and their affiliated cytokines (interleukin-17A [IL-17A], IL-17F, IL-21, IL-22, and IL-26) in regulating the immune response to H. pylori colonization and carcinogenesis.
Collapse
|
18
|
Xiong Q, Yang M, Li P, Wu C. Bacteria Exploit Autophagy For Their Own Benefit. Infect Drug Resist 2019; 12:3205-3215. [PMID: 31632106 PMCID: PMC6792943 DOI: 10.2147/idr.s220376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a lysosomal degradation pathway to clear long-lived proteins, protein aggregates, and damaged organelles. Certain microorganisms can be eliminated by an autophagic degradation process termed xenophagy. However, many pathogens deploy highly evolved mechanisms to evade autophagic degradation. What is more, series of pathogens have developed different strategies to exploit autophagy to ensure their survival. These bacteria could induce autophagy and/or prevent autophagosomes fusion with lysosomes through secreted effector proteins or utilizing host components, thereby maintaining the localization of the bacteria within the autophagosomes where they replicate. Here, we review the current knowledge of the mechanisms developed by the bacteria to benefit from autophagy for their survival.
Collapse
Affiliation(s)
- Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Min Yang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
19
|
Yang F, Ge G, Shen W, Chen L. The influence of the Chuyou Yuyang granule on the Toll-like receptor/nuclear factor-κB signal pathway in Helicobacter pylori-positive peptic ulcer patients. J Cell Biochem 2019; 120:13745-13750. [PMID: 31034651 DOI: 10.1002/jcb.28647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/07/2018] [Accepted: 02/07/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND The cure rate of Helicobacter pylori (HP)-positive peptic ulcer has appeared to downward trend, and the resistance of the ulcer relapse has become a hot issue. METHODS Hematoxylin and eosin staining was used to detect the repair of the damaged tissues in patients after treatment with the Chuyou Yuyang granule (CYYY). Elisa was used to analyze the expression of cytokine interleukin 18 (IL-18) and tumor necrosis factor α (TNF-α) in the patients' serum. Western blot analysis was used to explore the mechanism of the CYYY. Reverse-transcription polymerase chain reaction (RT-PCR) was used to detect the expression of microRNA-155a (miR-155a) and miR-146a in the blood of the patients and to confirm whether CYYY could cure peptic ulcer through regulation of miR-155a and miR-146a. RESULTS The damaged gastric mucosal tissues of ulcer patients were significantly repaired by treating with CYYY. The pro-inflammatory cytokine IL18 and TNF-α were notably repressed after treating with CYYY. In addition, CYYY played a key role in regulation of the Toll-like receptor (TLR4)/nuclear factor-κB (NF-κB) signal pathway and the expression of miR-155a and miR-146a. CONCLUSION CYYY was a highly effective therapeutic method for peptic ulcer patients by inhibiting the activation of the TLR4/NF-κB signal pathway and suppressing the expression of miR-155a and miR-146a.
Collapse
Affiliation(s)
- Fang Yang
- Department of Stomach (Gastroenterology), Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Guiping Ge
- Department of Stomach (Gastroenterology), Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Wen Shen
- Department of Stomach (Gastroenterology), Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Liang Chen
- Department of Stomach (Gastroenterology), Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| |
Collapse
|
20
|
Hu W, Zhang L, Li MX, Shen J, Liu XD, Xiao ZG, Wu DL, Ho IHT, Wu JCY, Cheung CKY, Zhang YC, Lau AHY, Ashktorab H, Smoot DT, Fang EF, Chan MTV, Gin T, Gong W, Wu WKK, Cho CH. Vitamin D3 activates the autolysosomal degradation function against Helicobacter pylori through the PDIA3 receptor in gastric epithelial cells. Autophagy 2019; 15:707-725. [PMID: 30612517 PMCID: PMC6526874 DOI: 10.1080/15548627.2018.1557835] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a common human pathogenic bacterium. Once infected, it is difficult for the host to clear this organism using the innate immune system. Increased antibiotic resistance further makes it challenging for effective eradication. However, the mechanisms of immune evasion still remain obscure, and novel strategies should be developed to efficiently eliminate H. pylori infection in stomachs. Here we uncovered desirable anti-H. pylori effect of vitamin D3 both in vitro and in vivo, even against antibiotic-resistant strains. We showed that H. pylori can invade into the gastric epithelium where they became sequestered and survived in autophagosomes with impaired lysosomal acidification. Vitamin D3 treatment caused a restored lysosomal degradation function by activating the PDIA3 receptor, thereby promoting the nuclear translocation of PDIA3-STAT3 protein complex and the subsequent upregulation of MCOLN3 channels, resulting in an enhanced Ca2+ release from lysosomes and normalized lysosomal acidification. The recovered lysosomal degradation function drives H. pylori to be eliminated through the autolysosomal pathway. These findings provide a novel pathogenic mechanism on how H. pylori can survive in the gastric epithelium, and a unique pathway for vitamin D3 to reactivate the autolysosomal degradation function, which is critical for the antibacterial action of vitamin D3 both in cells and in animals, and perhaps further in humans. Abbreviations: 1,25D3: 1α, 25-dihydroxyvitamin D3; ATG5: autophagy related 5; Baf A1: bafilomycin A1; BECN1: beclin 1; CagA: cytotoxin-associated gene A; CFU: colony-forming unit; ChIP-PCR: chromatin immunoprecipitation-polymerase chain reaction; Con A: concanamycin A; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; CTSD: cathepsin D; GPN: Gly-Phe-β-naphthylamide; H. pylori: Helicobacter pylori; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MCOLN1: mucolipin 1; MCOLN3: mucolipin 3; MCU: mitochondrial calcium uniporter; MOI: multiplicity of infection; NAGLU: N-acetyl-alpha-glucosaminidase; PDIA3: protein disulfide isomerase family A member 3; PMA: phorbol 12-myristate 13-acetate; PRKC: protein kinase C; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; SS1: Sydney Strain 1; TRP: transient receptor potential; VacA: vacuolating cytotoxin; VD3: vitamin D3; VDR: vitamin D receptor.
Collapse
Affiliation(s)
- Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China;,Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China,Institute of Digestive Diseases, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming Xing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao Dong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhan Gang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ding Lan Wu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Idy H. T. Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Justin C. Y. Wu
- Institute of Digestive Diseases, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China,Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Cynthia K. Y. Cheung
- Institute of Digestive Diseases, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China,Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Chen Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Alaster H. Y. Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC, USA,Cancer Center, Howard University, Washington, DC, USA,Howard University Hospital, Howard University, Washington, DC, USA
| | - Duane T. Smoot
- Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - Evandro F. Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA,Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China,Tony Gin Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Hong Kong
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China;,Wei Gong Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - William K. K. Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China,Institute of Digestive Diseases, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China,William K. K. Wu FRCPath, Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China,CONTACT Chi Hin Cho Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
21
|
Immunohistochemical Expression of Xenophagy Proteins in Helicobacter pylori and None Helicobacter pylori Gastritis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Chmiela M, Walczak N, Rudnicka K. Helicobacter pylori outer membrane vesicles involvement in the infection development and Helicobacter pylori-related diseases. J Biomed Sci 2018; 25:78. [PMID: 30409143 PMCID: PMC6225681 DOI: 10.1186/s12929-018-0480-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori - (H. pylori) play a role in the pathogenesis of gastritis, gastric and duodenal ulcers as well as gastric cancer. A possible involvement of outer membrane vesicles (OMVs) produced by H. pylori in the distribution of bacterial antigens through the gastric epithelial barrier and their role in the development of local and systemic host inflammatory and immune responses has been suggested. OMVs contain various biologically active compounds, which internalize into host cells affecting signaling pathways and promoting apoptosis of gastric epithelial and immunocompetent cells. OMVs-associated H. pylori virulence factors may strengthen or downregulate the immune responses leading to disease development. This review describes the biological importance of H. pylori OMVs and their role in the course of H. pylori infections, as well as H. pylori related local and systemic effects.
Collapse
Affiliation(s)
- Magdalena Chmiela
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Natalia Walczak
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Karolina Rudnicka
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland.
| |
Collapse
|
23
|
Yu Y, Zhu S, Li P, Min L, Zhang S. Helicobacter pylori infection and inflammatory bowel disease: a crosstalk between upper and lower digestive tract. Cell Death Dis 2018; 9:961. [PMID: 30237392 PMCID: PMC6148320 DOI: 10.1038/s41419-018-0982-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori has coexisted with humans for approximately 60,000 years and greater than 50% of the global population is infected with H. pylori. H. pylori was successfully cultured in vitro in 1983 and studies of H. pylori have achieved substantial advances over the last 35 years. Since then, H. pylori has been characterized as the primary pathogenic factor for chronic gastritis, peptic ulcer, and gastric malignancy. Numerous patients have received H. pylori eradication treatment, but only 1-2% of H. pylori-infected individuals ultimately develop gastric cancer. Recently, numerous epidemiological and basic experimental studies suggested a role for chronic H. pylori infection in protecting against inflammatory bowel disease (IBD) by inducing systematic immune tolerance and suppressing inflammatory responses. Here we summarize the current research progress on the association between H. pylori and IBD, and further describe the detailed molecular mechanism underlying H. pylori-induced dendritic cells (DCs) with the tolerogenic phenotype and immunosuppressive regulatory T cells (Tregs). Based on the potential protective role of H. pylori infection on IBD, we suggest that the interaction between H. pylori and the host is complicated, and H. pylori eradication treatment should be administered with caution, especially for children and young adults.
Collapse
Affiliation(s)
- Yang Yu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China.
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China.
| |
Collapse
|
24
|
Lai CH, Huang JC, Cheng HH, Wu MC, Huang MZ, Hsu HY, Chen YA, Hsu CY, Pan YJ, Chu YT, Chen TJ, Wu YF, Sit WY, Liu JS, Chiu YF, Wang HJ, Wang WC. Helicobacter pylori cholesterol glucosylation modulates autophagy for increasing intracellular survival in macrophages. Cell Microbiol 2018; 20:e12947. [PMID: 30151951 DOI: 10.1111/cmi.12947] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Cholesterol-α-glucosyltransferase (CGT) encoded by the type 1 capsular polysaccharide biosynthesis protein J (capJ) gene of Helicobacter pylori converts cellular cholesterol into cholesteryl glucosides. H. pylori infection induces autophagy that may increase bacterial survival in epithelial cells. However, the role of H. pylori CGT that exploits lipid rafts in interfering with autophagy for bacterial survival in macrophages has not been investigated. Here, we show that wild-type H. pylori carrying CGT modulates cholesterol to trigger autophagy and restrain autophagosome fusion with lysosomes, permitting a significantly higher bacterial burden in macrophages than that in a capJ-knockout (∆CapJ) mutant. Knockdown of autophagy-related protein 12 impairs autophagosome maturation and decreases the survival of internalised H. pylori in macrophages. These results demonstrate that CGT plays a crucial role in the manipulation of the autophagy process to impair macrophage clearance of H. pylori.
Collapse
Affiliation(s)
- Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo, Taiwan.,Graduate Institute of Biomedical Sciences, School of Medicine, Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| | - Ju-Chun Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Hsin-Hung Cheng
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Meng-Chen Wu
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Mei-Zi Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Ying Hsu
- Graduate Institute of Biomedical Sciences, School of Medicine, Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Yu-An Chen
- Graduate Institute of Biomedical Sciences, School of Medicine, Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Chung-Yao Hsu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Jiun Pan
- Graduate Institute of Biomedical Sciences, School of Medicine, Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Yen-Ting Chu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Tsan-Jan Chen
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Fang Wu
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei Yang Sit
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Jai-Shin Liu
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo, Taiwan
| | - Hung-Jung Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wen-Ching Wang
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
25
|
Bosschem I, Flahou B, Van Deun K, De Koker S, Volf J, Smet A, Ducatelle R, Devriendt B, Haesebrouck F. Species-specific immunity to Helicobacter suis. Helicobacter 2017; 22. [PMID: 28124467 DOI: 10.1111/hel.12375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Helicobacter (H.) suis is mainly associated with pigs, but is also the most prevalent gastric non-H. pylori Helicobacter species found in humans. Both H. pylori and H. suis may cause persistent infection of the stomach. Several immune evasion mechanisms have been proposed for H. pylori, which focus to a great extent on its major virulence factors, which are absent in H. suis. The aim of this study was to gain more knowledge on immune evasion by H. suis. MATERIALS AND METHODS Cytokine expression kinetics were monitored in the stomach of BALB/c mice experimentally infected with H. suis. The cytokine expression profile in the stomach of naturally H. suis-infected pigs was also determined. Subsequently, the effect of H. suis on murine and porcine dendritic cell (DC) maturation and their ability to elicit T-cell effector responses was analyzed. RESULTS Despite a Th17/Th2 response in the murine stomach, the inflammatory cell influx was unable to clear H. suis infection. H. suis-stimulated murine bone marrow-derived dendritic cells induced IL-17 secretion by CD4+ cells in vitro. Natural H. suis infection in pigs evoked increased expression levels of IL-17 mRNA in the antrum and IL-10 mRNA in the fundus. In contrast to mice, H. suis-stimulated porcine monocyte-derived dendritic cells were unable to express MHCII molecules on their cell surface. These semimature DCs induced proliferation of T-cells, which showed an increased expression of TGF-β and FoxP3 mRNA levels. CONCLUSIONS Helicobacter suis might evade host immune responses by skewing toward a Treg-biased response.
Collapse
Affiliation(s)
- Iris Bosschem
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kim Van Deun
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Stefaan De Koker
- Department of Biomedical molecular biology, Faculty of Sciences, Ghent University, Gent, Belgium
| | - Jiri Volf
- Veterinary Research Institute, Brno, Czech Republic
| | - Annemieke Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
26
|
Abadi ATB. Strategies used by helicobacter pylori to establish persistent infection. World J Gastroenterol 2017; 23:2870-2882. [PMID: 28522905 PMCID: PMC5413782 DOI: 10.3748/wjg.v23.i16.2870] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative and motile bacterium that colonizes the hostile microniche of the human stomach, then persists for the host's entire life, if not effectively treated. Clinically, H. pylori plays a causative role in the development of a wide spectrum of diseases including chronic active gastritis, peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Due to the global distribution of H. pylori, it is no exaggeration to conclude that smart strategies are contributing to adaptation of the bacterium to its permanent host. Thirty-four years after the discovery of this bacterium, there are still many unanswered questions. For example, which strategies help the bacterium to survive in this inhospitable microniche? This question is slightly easier to answer if we presume the same clinical concept for both persistent infection and disease. Understanding the mechanisms governing H. pylori persistence will improve identification of the increased risk of diseases such as gastric cancer in patients infected with this bacterium. A well-defined and long-term equilibrium between the human host and H. pylori allows bacterial persistence in the gastric microniche; although this coexistence leads to a high risk of severe diseases such as gastric cancer. To escape the bactericidal activity of stomach acid, H. pylori secretes large amounts of surface-associated and cytosolic urease. The potential to avoid acidic conditions and immune evasion are discussed in order to explain the persistence of H. pylori colonization in the gastric mucosa, and data on bacterial genetic diversity are included. Information on the mechanisms related to H. pylori persistence can also provide the direction for future research concerning effective therapy and management of gastroduodenal disorders. The topics presented in the current review are important for elucidating the strategies used by H. pylori to help the bacterium persist in relation to the immune system and the many unfavorable features of living in the gastric microniche.
Collapse
|
27
|
Kalisperati P, Spanou E, Pateras IS, Korkolopoulou P, Varvarigou A, Karavokyros I, Gorgoulis VG, Vlachoyiannopoulos PG, Sougioultzis S. Inflammation, DNA Damage, Helicobacter pylori and Gastric Tumorigenesis. Front Genet 2017; 8:20. [PMID: 28289428 PMCID: PMC5326759 DOI: 10.3389/fgene.2017.00020] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram negative bacterium that colonizes the stomach of almost half human population. It has evolved to escape immune surveillance, establishes lifelong inflammation, predisposing to genomic instability and DNA damage, notably double strand breaks. The epithelial host cell responds by activation of DNA damage repair (DDR) machinery that seems to be compromised by the infection. It is therefore now accepted that genetic damage is a major mechanism operating in cases of H. pylori induced carcinogenesis. Here, we review the data on the molecular pathways involved in DNA damage and DDR activation during H. pylori infection.
Collapse
Affiliation(s)
- Polyxeni Kalisperati
- Gastroenterology Unit, Department of Pathophysiology, School of Medicine, National and Kapodistrian University Athens, Greece
| | - Evangelia Spanou
- Gastroenterology Unit, Department of Pathophysiology, School of Medicine, National and Kapodistrian University Athens, Greece
| | - Ioannis S Pateras
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University Athens, Greece
| | - Penelope Korkolopoulou
- 1st Department of Pathology, Laiko Hospital, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | | | - Ioannis Karavokyros
- 1st Department of Surgery, Laiko Hospital, University of Athens, School of Medicine Athens, Greece
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian UniversityAthens, Greece; Biomedical Research Foundation of the Academy of AthensAthens, Greece; Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, The University of ManchesterManchester, UK
| | | | - Stavros Sougioultzis
- Gastroenterology Unit, Department of Pathophysiology, School of Medicine, National and Kapodistrian University Athens, Greece
| |
Collapse
|
28
|
Liao WC, Huang MZ, Wang ML, Lin CJ, Lu TL, Lo HR, Pan YJ, Sun YC, Kao MC, Lim HJ, Lai CH. Statin Decreases Helicobacter pylori Burden in Macrophages by Promoting Autophagy. Front Cell Infect Microbiol 2017; 6:203. [PMID: 28144585 PMCID: PMC5239775 DOI: 10.3389/fcimb.2016.00203] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors, have been found to provide protective effects against several bacterial infectious diseases. Although the use of statins has been shown to enhance antimicrobial treated Helicobacter pylori eradication and reduce H. pylori-mediated inflammation, the mechanisms underlying these effects remain unclear. In this study, in vitro and ex vivo macrophage models were established to investigate the molecular pathways involved in statin-mediated inhibition of H. pylori-induced inflammation. Our study showed that statin treatment resulted in a dose-dependent decrease in intracellular H. pylori burden in both RAW264.7 macrophage cells and murine peritoneal exudate macrophages (PEMs). Furthermore, statin yielded enhanced early endosome maturation and subsequent activation of the autophagy pathway, which promotes lysosomal fusion resulting in degradation of sequestered bacteria, and in turn attenuates interleukin (IL)-1β production. These results indicate that statin not only reduces cellular cholesterol but also decreases the H. pylori burden in macrophages by promoting autophagy, consequently alleviating H. pylori-induced inflammation.
Collapse
Affiliation(s)
- Wei-Chih Liao
- Graduate Institute of Clinical Medical Science, China Medical UniversityTaichung, Taiwan; Department of Pulmonary and Critical Care Medicine, China Medical University HospitalTaichung, Taiwan
| | - Mei-Zi Huang
- Department of Medical Laboratory Science and Biotechnology, China Medical UniversityTaichung, Taiwan; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Michelle Lily Wang
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University Taichung, Taiwan
| | - Chun-Jung Lin
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical UniversityTaichung, Taiwan; Department of Urology, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Tzu-Li Lu
- Department of Medical Laboratory Science and Biotechnology, China Medical University Taichung, Taiwan
| | - Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University Kaohsiung, Taiwan
| | - Yi-Jiun Pan
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University Taichung, Taiwan
| | - Yu-Chen Sun
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Taoyuan, Taiwan
| | - Min-Chuan Kao
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Hui-Jing Lim
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Graduate Institute of Basic Medical Science, School of Medicine, China Medical UniversityTaichung, Taiwan; Department of Nursing, Asia UniversityTaichung, Taiwan; Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Children's Hospital and Chang Gung Memorial HospitalTaoyuan, Taiwan
| |
Collapse
|
29
|
Kimmey JM, Stallings CL. Bacterial Pathogens versus Autophagy: Implications for Therapeutic Interventions. Trends Mol Med 2016; 22:1060-1076. [PMID: 27866924 DOI: 10.1016/j.molmed.2016.10.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022]
Abstract
Research in recent years has focused significantly on the role of selective macroautophagy in targeting intracellular pathogens for lysosomal degradation, a process termed xenophagy. In this review we evaluate the proposed roles for xenophagy in controlling bacterial infection, highlighting the concept that successful pathogens have evolved ways to subvert or exploit this defense, minimizing the actual effectiveness of xenophagy in innate immunity. Instead, studies in animal models have revealed that autophagy-associated proteins often function outside of xenophagy to influence bacterial pathogenesis. In light of current efforts to manipulate autophagy and the development of host-directed therapies to fight bacterial infections, we also discuss the implications stemming from the complicated relationship that exists between autophagy and bacterial pathogens.
Collapse
Affiliation(s)
- Jacqueline M Kimmey
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
30
|
Singh A, Blaskovic D, Joo J, Yang Z, Jackson SH, Coleman WG, Yan M. Investigating the Role of Helicobacter pylori PriA Protein. Helicobacter 2016; 21:295-304. [PMID: 26817518 PMCID: PMC8483055 DOI: 10.1111/hel.12283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND In bacteria, PriA protein, a conserved DEXH-type DNA helicase, plays a central role in replication restart at stalled replication forks. Its unique DNA binding property allows it to recognize and stabilize stalled forks and the structures derived from them. PriA plays a very critical role in replication fork stabilization and DNA repair in E. coli and N. gonorrhoeae. In our in vivo expression technology screen, priA gene was induced in vivo when Helicobacter pylori infects mouse stomach. MATERIALS AND METHODS We decided to elucidate the role of H. pylori PriA protein in survival in mouse stomach, survival in gastric epithelial cells and macrophage cells, DNA repair, acid stress, and oxidative stress. RESULTS The priA null mutant strain was unable to colonize mice stomach mucosa after long-term infections. Mouse colonization was observed after 1 week of infection, but the levels were much lower than the wild-type HpSS1 strain. PriA protein was found to be important for intracellular survival of epithelial cell-/macrophage cell-ingested H. pylori. Also, a priA null mutant was more sensitive to DNA-damaging agents and was much more sensitive to acid and oxidative stress as compared to the wild-type strain. CONCLUSIONS These data suggest that the PriA protein is needed for survival and persistence of H. pylori in mice stomach mucosa.
Collapse
Affiliation(s)
- Aparna Singh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Dusan Blaskovic
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jungsoo Joo
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Zhen Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Sharon H. Jackson
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD
| | - William G. Coleman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD,National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD
| | - Ming Yan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
31
|
Role of Regulatory T-cells in Different Clinical Expressions of Helicobacter pylori Infection. Arch Med Res 2016; 47:245-54. [DOI: 10.1016/j.arcmed.2016.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
|
32
|
Yang XJ, Si RH, Liang YH, Ma BQ, Jiang ZB, Wang B, Gao P. Mir-30d increases intracellular survival of Helicobacter pylori through inhibition of autophagy pathway. World J Gastroenterol 2016; 22:3978-3991. [PMID: 27099441 PMCID: PMC4823248 DOI: 10.3748/wjg.v22.i15.3978] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/14/2016] [Accepted: 02/20/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To determine if mir-30d inhibits the autophagy response to Helicobacter pylori (H. pylori) invasion and increases H. pylori intracellular survival. METHODS The expression of mir-30d was detected by quantitative polymerase chain reaction (PCR), and autophagy level was examined by transmission electron microscopy, western blot, and GFP-LC3 puncta assay in human AGS cells and GES-1 cells. Luciferase reporter assay was applied to confirm the specificity of mir-30d regulation on the expression of several core molecules involved in autophagy pathway. The expression of multiple core proteins were analyzed at both the mRNA and protein level, and the intracellular survival of H. pylori after different treatments was detected by gentamicin protection assay. RESULTS Autophagy level was increased in AGS and GES-1 cells in response to H. pylori infection, which was accompanied by upregulation of mir-30d expression (P < 0.05, vs no H. pylori infection). In the two gastric epithelial cell lines, mimic mir-30d was found to repress the autophagy process, whereas mir-30d inhibitor increased autophagy response to H. pylori invasion. mir-30d mimic decreased the luciferase activity of wild type reporter plasmids carrying the 3' untranslated region (UTR) of all five tested genes (ATG2B, ATG5, ATG12, BECN1, and BNIP3L), whereas it had no effect on the mutant reporter plasmids. These five genes are core genes of autophagy pathway, and their expression was reduced significantly after mir-30d mimic transfection (P < 0.05, vs control cells without mir-30d mimic treatment). Mir-30d mimic transfection and direct inhibition of autophagy increased the intracellular survival of H. pylori in AGS cells. CONCLUSION Mir-30d increases intracellular survival of H. pylori in gastric epithelial cells through inhibition of multiple core proteins in the autophagy pathway.
Collapse
|
33
|
Yap TWC, Gan HM, Lee YP, Leow AHR, Azmi AN, Francois F, Perez-Perez GI, Loke MF, Goh KL, Vadivelu J. Helicobacter pylori Eradication Causes Perturbation of the Human Gut Microbiome in Young Adults. PLoS One 2016; 11:e0151893. [PMID: 26991500 PMCID: PMC4798770 DOI: 10.1371/journal.pone.0151893] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/04/2016] [Indexed: 02/08/2023] Open
Abstract
Background Accumulating evidence shows that Helicobacter pylori protects against some metabolic and immunological diseases in which the development of these diseases coincide with temporal or permanent dysbiosis. The aim of this study was to assess the effect of H. pylori eradication on the human gut microbiome. Methods As part of the currently on-going ESSAY (Eradication Study in Stable Adults/Youths) study, we collected stool samples from 17 H. pylori-positive young adult (18–30 years-old) volunteers. The same cohort was followed up 6, 12 and 18 months-post H. pylori eradication. The impact of H. pylori on the human gut microbiome pre- and post-eradication was investigated using high throughput 16S rRNA gene (V3-V4 region) sequencing using the Illumina Miseq followed by data analysis using Qiime pipeline. Results We compared the composition and diversity of bacterial communities in the fecal microbiome of the H. pylori-positive volunteers, before and after H. pylori eradication therapy. The 16S rRNA gene was sequenced at an average of 150,000–170,000 reads/sample. The microbial diversity were similar pre- and post-H. pylori eradication with no significant differences in richness and evenness of bacterial species. Despite that the general profile of the gut microbiome was similar pre- and post-eradication, some changes in the bacterial communities at the phylum and genus levels were notable, particularly the decrease in relative abundance of Bacterioidetes and corresponding increase in Firmicutes after H. pylori eradication. The significant increase of short-chain fatty acids (SCFA)-producing bacteria genera could also be associated with increased risk of metabolic disorders. Conclusions Our preliminary stool metagenomics study shows that eradication of H. pylori caused perturbation of the gut microbiome and may indirectly affect the health of human. Clinicians should be aware of the effect of broad spectrum antibiotics used in H. pylori eradication regimen and be cautious in the clinical management of H. pylori infection, particularly in immunocompromised patients.
Collapse
Affiliation(s)
- Theresa Wan-Chen Yap
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Han-Ming Gan
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
- Monash University Malaysia Genomics Facility, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Yin-Peng Lee
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
- Monash University Malaysia Genomics Facility, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Alex Hwong-Ruey Leow
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ahmad Najib Azmi
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, 55100, Kuala Lumpur, Malaysia
| | - Fritz Francois
- New York University Cancer Institute, New York, NY, 10016, United States of America
- Department of Medicine, New York University School of Medicine, New York, NY 10016, United States of America
| | - Guillermo I. Perez-Perez
- Department of Medicine, New York University School of Medicine, New York, NY 10016, United States of America
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, United States of America
| | - Mun-Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
34
|
Kronsteiner B, Bassaganya-Riera J, Philipson C, Viladomiu M, Carbo A, Abedi V, Hontecillas R. Systems-wide analyses of mucosal immune responses to Helicobacter pylori at the interface between pathogenicity and symbiosis. Gut Microbes 2016; 7:3-21. [PMID: 26939848 PMCID: PMC4856448 DOI: 10.1080/19490976.2015.1116673] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori is the dominant member of the gastric microbiota in over half of the human population of which 5-15% develop gastritis or gastric malignancies. Immune responses to H. pylori are characterized by mixed T helper cell, cytotoxic T cell and NK cell responses. The presence of Tregs is essential for the control of gastritis and together with regulatory CX3CR1+ mononuclear phagocytes and immune-evasion strategies they enable life-long persistence of H. pylori. This H. pylori-induced regulatory environment might contribute to its cross-protective effect in inflammatory bowel disease and obesity. Here we review host-microbe interactions, the development of pro- and anti-inflammatory immune responses and how the latter contribute to H. pylori's role as beneficial member of the gut microbiota. Furthermore, we present the integration of existing and new data into a computational/mathematical model and its use for the investigation of immunological mechanisms underlying initiation, progression and outcomes of H. pylori infection.
Collapse
Affiliation(s)
- Barbara Kronsteiner
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | | | - Monica Viladomiu
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | | | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| |
Collapse
|
35
|
Deen NS, Gong L, Naderer T, Devenish RJ, Kwok T. Analysis of the Relative Contribution of Phagocytosis, LC3-Associated Phagocytosis, and Canonical Autophagy During Helicobacter pylori Infection of Macrophages. Helicobacter 2015; 20:449-59. [PMID: 25864465 DOI: 10.1111/hel.12223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Previous findings have suggested that Helicobacter pylori induces autophagic processes and subsequently takes refuge in autophagosomes, thereby contributing to persistent infection. Recently, a noncanonical form of autophagy, LC3 (microtubule-associated protein 1 light chain 3)-associated phagocytosis (LAP), has been shown to be required for efficient clearance of some intracellular bacteria. Whether H. pylori infection induces LAP had not been examined previously. In this study, we determined the extent to which H. pylori infection induces canonical autophagy or LAP in macrophages, and the involvement of the H. pylori cag pathogenicity island (cagPAI) with these processes. METHODS Immunofluorescence confocal microscopy was used to analyze the formation of GFP-LC3 puncta and their colocalization with H. pylori. Transmission electron microscopy was used to detect the ultrastructure of H. pylori-containing compartments. RESULTS The majority of intracellular bacteria (85-95%) were found in phagosomes that were LC3-negative, with a small proportion (4-14%) appearing "free" in the cytosol. Only a very small percentage (0.5-6%) of intracellular H. pylori was sequestered in autophagosomes. Furthermore, no statistically significant difference in the relative distribution of H. pylori in the various compartments was observed between wild-type and cagPAI-mutant bacteria. CONCLUSIONS In macrophages, H. pylori infection does not induce LAP, but can induce canonical autophagy, which entraps a very small fraction of intracellular bacteria. We propose that this subpopulation of intracellular H. pylori might have escaped from phagosomes into the cytosol before being sequestered by autophagosomes. The cagPAI of H. pylori has only minor influence, if any, on the extent of these processes.
Collapse
Affiliation(s)
- Nadia S Deen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Lan Gong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Rodney J Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Terry Kwok
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
36
|
Papadopoulos A, Gorvel JP. Subversion of mouse dendritic cell subset function by bacterial pathogens. Microb Pathog 2015; 89:140-9. [PMID: 26453826 DOI: 10.1016/j.micpath.2015.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play an important role as sentinels of the immune system in initiating and controlling the quality of adaptive immune responses. Located at entry points of the host they can sense and alert the body from dangers such as infection by pathogenic bacteria. Considering their strategic localization it is not surprising that DCs have evolved in a series of DC subtypes, which are well adapted to their microenvironment. Nowadays, the advent of the identification of specific DC subtypes has opened the way for the study of pathogen-DCs interactions and the involved mechanisms of these interactions. Due to key aspect of DCs, several bacterial pathogens have taken advantage of these cells and developed mechanisms to subvert DC function and thereby evade the immune system. This review brings recent insights into DC-pathogenic bacteria cross-talk using the mouse model of infection with an emphasis on DC subtypes.
Collapse
Affiliation(s)
- Alexia Papadopoulos
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
37
|
Alipour N, Gaeini N, Taner A, Yıldız F, Masseret S, Malfertheiner P. Retracted: Vacuoles ofAcanthamoeba castellaniiBehave as a Specialized Shelter (host) forHelicobacter pylori. Helicobacter 2015. [DOI: 10.1111/hel.12233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Affiliation(s)
- Nader Alipour
- Department of Biotechnology; METU; Ankara Turkey
- Department of Medical Microbiology; Faculty of Medicine; Giresun university; Giresun Turkey
| | - Nasrin Gaeini
- Department of Radiology; Trakya University; Edirne Turkey
| | - Abbas Taner
- Department of Medical Microbiology; Yuksek ihtisas university; Ankara Turkey
| | - Fatih Yıldız
- Department of Biotechnology; METU; Ankara Turkey
| | - Sadegh Masseret
- Digestive Disease Research Center of Tehran Medical Science university; Shariati hospital; Tehran IRAN
| | - Peter Malfertheiner
- Digestive Disease Department; Otto von Guarig Clinical University; Magdeburg Germany
| |
Collapse
|
38
|
Saniee P, Siavoshi F. Endocytotic uptake of FITC-labeled anti-H. pylori egg yolk immunoglobulin Y in Candida yeast for detection of intracellular H. pylori. Front Microbiol 2015; 6:113. [PMID: 25852651 PMCID: PMC4362214 DOI: 10.3389/fmicb.2015.00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/29/2015] [Indexed: 01/24/2023] Open
Abstract
Intracellular life of Helicobacter pylori inside Candida yeast vacuole describes the establishment of H. pylori in yeast as a pre-adaptation to life in human epithelial cells. IgY-Hp conjugated with fluorescein isothiocyanate (FITC) has been previously used for identification and localization of H. pylori inside the yeast vacuole. Here we examined whether FITC-IgY-Hp internalization into yeast follows the endocytosis pathway in yeast. Fluorescent microscopy was used to examine the entry of FITC-IgY-Hp into Candida yeast cells at different time intervals. The effect of low temperature, H2O2 or acetic acid on the internalization of labeled antibody was also examined. FITC-IgY-Hp internalization initiated within 0-5 min in 5-10% of yeast cells, increased to 20-40% after 30 min-1 h and reached >70% before 2 h. FITC-IgY-Hp traversed the pores of Candida yeast cell wall and reached the vacuole where it bound with H. pylori antigens. Internalization of FITC-IgY-Hp was inhibited by low temperature, H2O2 or acetic acid. It was concluded that internalization of FITC-IgY-Hp into yeast cell is a vital phenomenon and follows the endocytosis pathway. Furthermore, it was proposed that FITC-IgY-Hp internalization could be recruited for localization and identification of H. pylori inside the vacuole of Candida yeast.
Collapse
Affiliation(s)
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
39
|
Halder P, Datta C, Kumar R, Sharma AK, Basu J, Kundu M. The secreted antigen, HP0175, of Helicobacter pylori links the unfolded protein response (UPR) to autophagy in gastric epithelial cells. Cell Microbiol 2015; 17:714-29. [PMID: 25439545 DOI: 10.1111/cmi.12396] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 11/11/2014] [Accepted: 11/15/2014] [Indexed: 12/13/2022]
Abstract
Autophagy is an intracellular catabolic process that is required to maintain cellular homeostasis. Pathogen-elicited host cell autophagy may favour containment of infection or may help in bacterial survival. Pathogens have developed the ability to modulate host autophagy. The secreted antigen HP0175, a peptidyl prolyl cis,trans isomerase of Helicobacter pylori, has moonlighting functions with reference to host cells. Here we show that it executes autophagy in gastric epithelial cells. Autophagy is dependent on the unfolded protein response (UPR) that activates the expression of PKR-like ER kinase (PERK). This is accompanied by phosphorylation of eukaryotic initiation factor 2α (eIF-2α) and transcriptional activation of ATF4 and CHOP. Knockdown of UPR-related genes inhibits the conversion of LC3I to LC3II, a marker of autophagy. The autophagy-inducing ability of H. pylori is compromised when cells are infected with an isogenic hp0175 mutant. Autophagy precedes apoptosis. Silencing of BECLIN1 augments cleavage of caspase 3 as well as apoptosis. Increased apoptosis of gastric epithelial cells is known to be linked to H. pylori-mediated gastric inflammation and carcinogenesis. To the best of our knowledge, this study provides the first demonstration of how HP0175 endowed with moonlighting functions links UPR-dependent autophagy and apoptosis during H. pylori infection.
Collapse
|
40
|
Lina TT, Alzahrani S, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE. Immune evasion strategies used by Helicobacter pylori. World J Gastroenterol 2014; 20:12753-12766. [PMID: 25278676 PMCID: PMC4177461 DOI: 10.3748/wjg.v20.i36.12753] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/07/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is perhaps the most ubiquitous and successful human pathogen, since it colonizes the stomach of more than half of humankind. Infection with this bacterium is commonly acquired during childhood. Once infected, people carry the bacteria for decades or even for life, if not treated. Persistent infection with this pathogen causes gastritis, peptic ulcer disease and is also strongly associated with the development of gastric cancer. Despite induction of innate and adaptive immune responses in the infected individual, the host is unable to clear the bacteria. One widely accepted hallmark of H. pylori is that it successfully and stealthily evades host defense mechanisms. Though the gastric mucosa is well protected against infection, H. pylori is able to reside under the mucus, attach to gastric epithelial cells and cause persistent infection by evading immune responses mediated by host. In this review, we discuss how H. pylori avoids innate and acquired immune response elements, uses gastric epithelial cells as mediators to manipulate host T cell responses and uses virulence factors to avoid adaptive immune responses by T cells to establish a persistent infection. We also discuss in this review how the genetic diversity of this pathogen helps for its survival.
Collapse
|
41
|
Abstract
BACKGROUND Gastric cancer is the second most common cause of cancer deaths worldwide. The vast majority of gastric cancers are inflammation-related cancers caused by infection with Helicobacter pylori. H. pylori-induced oxidative stress damages DNA, resulting in genetic instability. In addition, H. pylori itself can cause DNA damage and epigenetic changes that trigger genetic instability and neoplastic transformation. SUMMARY H. pylori strain-specific components act in combination with host factors and environmental and dietary factors to greatly enhance the inflammatory response and thus the cancer risk. Variations in several key factors, such as the cag pathogenicity island and the VacA protein, can trigger a greater inflammatory response in host cells. Genetic polymorphisms in the host such as in the IL-1β gene, and chromosomes 9p21.3 and 10q23 also play a contributing role. Finally, diet is a major external factor that modulates the risk of gastric cancer. KEY MESSAGE The majority of gastric cancers are inflammation-related cancers caused by infection with H. pylori. Eradication of H. pylori is important for the prevention and treatment of gastric cancer. PRACTICAL IMPLICATIONS H. pylori eradication results in healing of gastritis and prevention of further H. pylori-induced genetic damage. Eradication of H. pylori prior to development of atrophic gastritis can prevent the development of gastric cancer. Japan has undertaken a nationwide program to identify and eliminate H. pylori, along with surveillance for those who underwent H. pylori eradication too late to eliminate cancer risk. Population-wide eradication of H. pylori will result in gastric cancer becoming a vanishingly rare disease.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Hong Lu
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - David Y. Graham
- Department of Medicine, Michael E. DeBakey VAMC and Baylor College of Medicine, Houston, Tex., USA
| |
Collapse
|
42
|
Hardbower DM, Peek RM, Wilson KT. At the Bench: Helicobacter pylori, dysregulated host responses, DNA damage, and gastric cancer. J Leukoc Biol 2014; 96:201-12. [PMID: 24868089 DOI: 10.1189/jlb.4bt0214-099r] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori infection is the strongest known risk factor for the development of gastric cancer. Given that ∼50% of the global population is infected with this pathogen, there is great impetus to elucidate underlying causes that mediate progression from infection to cancer. Recent evidence suggests that H. pylori-induced chronic inflammation and oxidative stress create an environment conducive to DNA damage and tissue injury. DNA damage leads to genetic instability and eventually, neoplastic transformation. Pathogen-encoded virulence factors induce a robust but futile immune response and alter host pathways that lower the threshold for carcinogenesis, including DNA damage repair, polyamine synthesis and catabolism, antioxidant responses, and cytokine production. Collectively, such dysregulation creates a protumorigenic microenvironment within the stomach. This review seeks to address each of these aspects of H. pylori infection and to call attention to areas of particular interest within this field of research. This review also seeks to prioritize areas of translational research related to H. pylori-induced gastric cancer based on insights garnered from basic research in this field. See related review by Dalal and Moss, At the Bedside: H. pylori, dysregulated host responses, DNA damage, and gastric cancer.
Collapse
Affiliation(s)
- Dana M Hardbower
- Departments of Pathology, Microbiology, and Immunology and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Cancer Biology, and
| | - Keith T Wilson
- Departments of Pathology, Microbiology, and Immunology and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Cancer Biology, and Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
43
|
Siavoshi F, Saniee P. Vacuoles of Candida yeast as a specialized niche for Helicobacter pylori. World J Gastroenterol 2014; 20:5263-5273. [PMID: 24833856 PMCID: PMC4017041 DOI: 10.3748/wjg.v20.i18.5263] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/09/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) are resistant to hostile gastric environments and antibiotic therapy, reflecting the possibility that they are protected by an ecological niche, such as inside the vacuoles of human epithelial and immune cells. Candida yeast may also provide such an alternative niche, as fluorescently labeled H. pylori were observed as fast-moving and viable bacterium-like bodies inside the vacuoles of gastric, oral, vaginal and foodborne Candida yeasts. In addition, H. pylori-specific genes and proteins were detected in samples extracted from these yeasts. The H. pylori present within these yeasts produce peroxiredoxin and thiol peroxidase, providing the ability to detoxify oxygen metabolites formed in immune cells. Furthermore, these bacteria produce urease and VacA, two virulence determinants of H. pylori that influence phago-lysosome fusion and bacterial survival in macrophages. Microscopic observations of H. pylori cells in new generations of yeasts along with amplification of H. pylori-specific genes from consecutive generations indicate that new yeasts can inherit the intracellular H. pylori as part of their vacuolar content. Accordingly, it is proposed that yeast vacuoles serve as a sophisticated niche that protects H. pylori against the environmental stresses and provides essential nutrients, including ergosterol, for its growth and multiplication. This intracellular establishment inside the yeast vacuole likely occurred long ago, leading to the adaptation of H. pylori to persist in phagocytic cells. The presence of these bacteria within yeasts, including foodborne yeasts, along with the vertical transmission of yeasts from mother to neonate, provide explanations for the persistence and propagation of H. pylori in the human population. This Topic Highlight reviews and discusses recent evidence regarding the evolutionary adaptation of H. pylori to thrive in host cell vacuoles.
Collapse
|
44
|
Kaebisch R, Mejías-Luque R, Prinz C, Gerhard M. Helicobacter pyloriCytotoxin-Associated Gene A Impairs Human Dendritic Cell Maturation and Function through IL-10–Mediated Activation of STAT3. THE JOURNAL OF IMMUNOLOGY 2013; 192:316-23. [DOI: 10.4049/jimmunol.1302476] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Greenfield LK, Jones NL. Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis. Trends Microbiol 2013; 21:602-12. [PMID: 24156875 DOI: 10.1016/j.tim.2013.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori infection represents the strongest known risk factor for the development of gastric cancer. The vacuolating cytotoxin (VacA) plays a key role in disease pathogenesis by exerting pleiotrophic effects on the host. One effect of acute VacA exposure is the induction of autophagy. However, prolonged exposure to the toxin disrupts autophagy by preventing maturation of the autolysosome. Novel insights into the mechanism and consequences of this phenomenon have emerged, but many aspects remain largely unknown. Current evidence supports a scenario in which H. pylori-suppressed autophagy facilitates intracellular survival and persistence of the pathogen, while also generating an environment favoring carcinogenesis.
Collapse
Affiliation(s)
- Laura K Greenfield
- Departments of Paediatrics and Physiology, University of Toronto, Cell Biology Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | | |
Collapse
|
46
|
Helicobacter pylori infection in a pig model is dominated by Th1 and cytotoxic CD8+ T cell responses. Infect Immun 2013; 81:3803-13. [PMID: 23897614 DOI: 10.1128/iai.00660-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infection is the leading cause for peptic ulcer disease and gastric adenocarcinoma. Mucosal T cell responses play an important role in mediating H. pylori-related gastric immunopathology. While induced regulatory T (iTreg) cells are required for chronic colonization without disease, T helper 1 (Th1) effector responses are associated with lower bacterial loads at the expense of gastric pathology. Pigs were inoculated with either H. pylori strain SS1 or J99. Phenotypic and functional changes in peripheral blood mononuclear cell (PBMC) populations were monitored weekly, and mucosal immune responses and bacterial loads were assessed up to 2 months postinfection. Both H. pylori strains elicited a Th1 response characterized by increased percentages of CD4(+)Tbet(+) cells and elevated gamma interferon (IFN-γ) mRNA in PBMCs. A subset of CD8(+) T cells expressing Tbet and CD16 increased following infection. Moreover, a significant increase in perforin and granzyme mRNA expression was observed in PBMCs of infected pigs, indicating a predominant cytotoxic immune response. Infiltration of B cells, myeloid cells, T cells expressing Treg- and Th17-associated transcription factors, and cytotoxic T cells was found in the gastric lamina propria of both infected groups. Interestingly, based on bacterial reisolation data, strain SS1 showed greater capacity to colonize and/or persist in the gastric mucosa than did strain J99. This novel pig model of infection closely mimics human gastric pathology and presents a suitable avenue for studying effector and regulatory responses toward H. pylori described in humans.
Collapse
|
47
|
Lai CH, Hsu YM, Wang HJ, Wang WC. Manipulation of host cholesterol by Helicobacter pylori for their beneficial ecological niche. Biomedicine (Taipei) 2013. [DOI: 10.1016/j.biomed.2012.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
48
|
Deen NS, Huang SJ, Gong L, Kwok T, Devenish RJ. The impact of autophagic processes on the intracellular fate of Helicobacter pylori: more tricks from an enigmatic pathogen? Autophagy 2013; 9:639-52. [PMID: 23396129 DOI: 10.4161/auto.23782] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is a Gram-negative pathogen that colonizes the gastric epithelium of 50-60% of the world's population. Approximately one-fifth of the infected individuals manifest severe diseases such as peptic ulcers or gastric cancer. H. pylori infection has proven difficult to cure despite intensive antibiotic treatment. One possible reason for the relatively high resistance to antimicrobial therapy is the ability of H. pylori to reside inside host cells. Although considered by most as an extracellular pathogen, H. pylori can invade both gastric epithelial cells and immunocytes to some extent. The intracellular survival of H. pylori has been implicated in its ability to persist in the stomach, evade host immune responses and resist eradication by membrane-impermeable antibiotics. Interestingly, recent evidence suggests that macroautophagy, a cellular self-degradation process characterized by the formation of double-membraned autophagosomes, plays an important role in determining the intracellular fate of H. pylori. Detailed understanding of the interaction between H. pylori and host cell autophagic processes is anticipated to provide novel insights into the molecular mechanisms of macroautophagy and H. pylori pathogenesis, opening new avenues for the therapeutic intervention of autophagy-related and H. pylori-related disorders.
Collapse
Affiliation(s)
- Nadia S Deen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
| | | | | | | | | |
Collapse
|
49
|
Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc Natl Acad Sci U S A 2013; 110:3047-52. [PMID: 23382221 DOI: 10.1073/pnas.1211248110] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infection with the gastric bacterial pathogen Helicobacter pylori is typically contracted in early childhood and often persists for decades. The immunomodulatory properties of H. pylori that allow it to colonize humans persistently are believed to also account for H. pylori's protective effects against allergic and chronic inflammatory diseases. H. pylori infection efficiently reprograms dendritic cells (DCs) toward a tolerogenic phenotype and induces regulatory T cells (Tregs) with highly suppressive activity in models of allergen-induced asthma. We show here that two H. pylori virulence determinants, the γ-glutamyl transpeptidase GGT and the vacuolating cytotoxin VacA, contribute critically and nonredundantly to H. pylori's tolerizing effects on murine DCs in vitro and in vivo. The tolerance-promoting effects of both factors are independent of their described suppressive activity on T cells. Isogenic H. pylori mutants lacking either GGT or VacA are incapable of preventing LPS-induced DC maturation and fail to drive DC tolerization as assessed by induction of Treg properties in cocultured naive T cells. The Δggt and ΔvacA mutants colonize mice at significantly reduced levels, induce stronger T-helper 1 (Th1) and T-helper 17 (Th17) responses, and/or trigger more severe gastric pathology. Both factors promote the efficient induction of Tregs in vivo, and VacA is required to prevent allergen-induced asthma. The defects of the Δggt mutant in vitro and in vivo are phenocopied by pharmacological inhibition of the transpeptidase activity of GGT in all readouts. In conclusion, our results reveal the molecular players and mechanistic basis for H. pylori-induced immunomodulation, promoting persistent infection and conferring protection against allergic asthma.
Collapse
|
50
|
Shiu J, Blanchard TG. Dendritic cell function in the host response to Helicobacter pylori infection of the gastric mucosa. Pathog Dis 2013; 67:46-53. [PMID: 23620119 DOI: 10.1111/2049-632x.12014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) play an important role as antigen-presenting cells that direct the nature of the adaptive immune response. Subtypes are differentiated by lineage, tissue, marker expression and function. Their function in promoting regulatory T cells in the gut to maintain immunologic homeostasis is well documented, but their role in the Helicobacter pylori-infected stomach is less clear. Some analyses of bone marrow-derived DCs stimulated with H. pylori have demonstrated proinflammatory potential based on secretion of IL-12 or IL-23 or activation of Th1 and Th17 cells. Other analyses indicate that H. pylori-activated DCs are less responsive compared with other gastrointestinal bacteria and activate DCs to promote Treg development. DC depletion in mice supports a role for DCs in down-regulating H. pylori-induced gastritis. These data indicate that gastric DCs recognize H. pylori much like DCs in the gut that recognize commensal organisms and promote a regulatory T-cell response. This is consistent with a growing body of literature documenting the prevalence and function of Treg cells in the host response to H. pylori. Research is now focused on characterizing how H. pylori induces such activity in DCs and identifying the mechanisms by which H. pylori-activated DCs activate Treg cells.
Collapse
Affiliation(s)
- Jessica Shiu
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|