1
|
Kelleher SL. The ins and outs of mammary gland calcium and zinc transport: A brief review. JDS COMMUNICATIONS 2023; 4:240-244. [PMID: 37360130 PMCID: PMC10285217 DOI: 10.3168/jdsc.2022-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/31/2022] [Indexed: 06/28/2023]
Abstract
Milk is an excellent source of all macrominerals and trace elements, which are essential for proper function of a wide variety of vital processes. The concentrations of minerals in milk are influenced by numerous factors, including stage of lactation, time of day, nutritional and health status of the mother, as well as maternal genotype and environmental exposures. Additionally, tight regulation of mineral transport within the secretory mammary epithelial cell itself is critical for the production and secretion of milk. In this brief review, we focus on the current understanding of how the essential divalent cations calcium (Ca) and zinc (Zn) are transported in the mammary gland (MG) with a focus on molecular regulation and the consequence of genotype. A deeper grasp of mechanisms and factors affecting Ca and Zn transport in the MG is important to understanding milk production, mineral output, and MG health to inform intervention design and novel diagnostic and therapeutic strategies in production animals and humans.
Collapse
|
2
|
Hübner C, Keil C, Jürgensen A, Barthel L, Haase H. Comparison of Three Low-Molecular-Weight Fluorescent Probes for Measuring Free Zinc Levels in Cultured Mammary Cells. Nutrients 2023; 15:nu15081873. [PMID: 37111093 PMCID: PMC10141224 DOI: 10.3390/nu15081873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Free zinc is a critical regulator in signal transduction and affects many cellular processes relevant to cancer, including proliferation and cell death. Acting as a second messenger, altered free intracellular zinc has fundamental effects on regulating enzymes such as phosphatases and caspases. Therefore, the determination of free intracellular zinc levels is essential to assess its influence on the signaling processes involved in cancer development and progression. In this study, we compare three low-molecular-weight fluorescent probes, ZinPyr-1, TSQ, and FluoZin-3, for measuring free zinc in different mammary cell lines (MCF10A, MCF7, T47D, and MDA-MB-231). In summary, ZinPyr-1 is the most suitable probe for free Zn quantification. It responds well to calibration based on minimal fluorescence in the presence of the chelator TPEN (N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine) and maximal fluorescence by saturation with ZnSO4, resulting in the detection of free intracellular zinc in breast cancer subtypes ranging from 0.62 nM to 1.25 nM. It also allows for measuring the zinc fluxes resulting from incubation with extracellular zinc, showing differences in the zinc uptake between the non-malignant MCF10A cell line and the other cell lines. Finally, ZinPyr-1 enables the monitoring of sub-cellular distributions by fluorescence microscopy. Altogether, these properties provide a basis for the further exploration of free zinc in order to realize its full potential as a possible biomarker or even therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Christopher Hübner
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Anton Jürgensen
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Lars Barthel
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
3
|
Yoo H, Jung Y, Jang SH, Lee SJ, Lee O. Three-Dimensional Structure Analysis of Mouse Nails using Synchrotron Radiation. Microscopy (Oxf) 2021; 70:469-475. [PMID: 34002795 DOI: 10.1093/jmicro/dfab018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 11/12/2022] Open
Abstract
Until now, studies on nail disease have been performed through microscopic diagnosis and microscopic computed tomography (micro-CT). However, these kinds of conventional methods have some limitations. Firstly, the microscopic method is considered the gold standard for medical diagnosis. However, due to the use of fluorescent materials, the sample is damaged and it takes a long time to get results. Secondly, while micro-CT is a non-invasive method to get inner structure images of the sample with high resolution, the penetration and spatial resolution are insufficient for studying the microstructures of the sample, such as the sponge bone and the muscle fibers. In contrast, synchrotron radiation (SR) X-ray imaging technology has the advantage of very vividly demonstrating the anatomic structure of the sample with high penetration, sensitivity, and resolution. In this study, we compared the optical microscopic method using hematoxylin and eosin (H&E) staining and SR imaging to analyze the nail tissue in a mouse model. The results showed that SR could depict the inner structures of a mouse nail without physical damage. Additionally, we could divide the important anatomical structures nail unit into three parts with three-dimensional images: the nail bed, nail matrix, and hyponychium. The images showed that SR could be used for analyzing nails by visualizing the relatively clear and medically semantic structures in a three-dimensional section. We expect that the results of this study will be applied to study nail diseases and pharmaceutical research on their treatment.
Collapse
Affiliation(s)
- HyunJong Yoo
- Department of Computer Science & Engineering, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, Asan City, Chungnam-do 31538, Republic of Korea
| | - YongJu Jung
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, 22, Soonchunhyang-ro, Asan City, Chungnam-do 31538, Republic of Korea
| | - Sang-Hun Jang
- Department of Physical Therapy, College of Health and Life Science, Korea National University of Transportation, 50, Daehak-ro, Yonggang-ri, Jeungpyeong-gun, Chungbuk 27909, Republic of Korea
| | - Suk-Jun Lee
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Cheongju University, 298, Daesung-ro, Cheongju City 28503, Republic of Korea
| | - OnSeok Lee
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, 22, Soonchunhyang-ro, Asan City, Chungnam-do 31538, Republic of Korea.,Department of Software Convergence, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, Asan City, Chungnam 31538, Republic of Korea
| |
Collapse
|
4
|
Ghazvini Zadeh EH, Huang Z, Xia J, Li D, Davidson HW, Li WH. ZIGIR, a Granule-Specific Zn 2+ Indicator, Reveals Human Islet α Cell Heterogeneity. Cell Rep 2021; 32:107904. [PMID: 32668245 DOI: 10.1016/j.celrep.2020.107904] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/04/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Numerous mammalian cells contain abundant Zn2+ in their secretory granules, yet available Zn2+ sensors lack the desired specificity and sensitivity for imaging granular Zn2+. We developed a fluorescent zinc granule indicator, ZIGIR, that possesses numerous desired properties for live cell imaging, including >100-fold fluorescence enhancement, membrane permeability, and selective enrichment to acidic granules. The combined advantages endow ZIGIR with superior sensitivity and specificity for imaging granular Zn2+. ZIGIR enables separation of heterogenous β cells based on their insulin content and sorting of mouse islets into pure α cells and β cells. In human islets, ZIGIR facilitates sorting of endocrine cells into highly enriched α cells and β cells, reveals unexpectedly high Zn2+ activity in the somatostatin granule of some δ cells, and uncovers variation in the glucagon content among human α cells. We expect broad applications of ZIGIR for studying Zn2+ biology and Zn2+-rich secretory granules and for engineering β cells with high insulin content for treating diabetes.
Collapse
Affiliation(s)
- Ebrahim H Ghazvini Zadeh
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA
| | - ZhiJiang Huang
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA
| | - Jing Xia
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA; Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Daliang Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA
| | - Howard W Davidson
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wen-Hong Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA.
| |
Collapse
|
5
|
Han Y, Sanford L, Simpson DM, Dowell RD, Palmer AE. Remodeling of Zn 2+ homeostasis upon differentiation of mammary epithelial cells. Metallomics 2021; 12:346-362. [PMID: 31950952 DOI: 10.1039/c9mt00301k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zinc is the second most abundant transition metal in humans and an essential nutrient required for growth and development of newborns. During lactation, mammary epithelial cells differentiate into a secretory phenotype, uptake zinc from blood circulation, and export it into mother's milk. At the cellular level, many zinc-dependent cellular processes, such as transcription, metabolism of nutrients, and proliferation are involved in the differentiation of mammary epithelial cells. Using mouse mammary epithelial cells as a model system, we investigated the remodeling of zinc homeostasis during differentiation induced by treatment with the lactogenic hormones cortisol and prolactin. RNA-Seq at different stages of differentiation revealed changes in global gene expression, including genes encoding zinc-dependent proteins and regulators of zinc homeostasis. Increases in mRNA levels of three zinc homeostasis genes, Slc39a14 (ZIP14) and metallothioneins (MTs) I and II were induced by cortisol but not by prolactin. The cortisol-induced increase was partially mediated by the nuclear glucocorticoid receptor signaling pathway. An increase in the cytosolic labile Zn2+ pool was also detected in lactating mammary cells, consistent with upregulation of MTs. We found that the zinc transporter ZIP14 was important for the expression of a major milk protein, whey acid protein (WAP), as knockdown of ZIP14 dramatically decreased WAP mRNA levels. In summary, our study demonstrated remodeling of zinc homeostasis upon differentiation of mammary epithelial cells resulting in changes in cytosolic Zn2+ and differential expression of zinc homeostasis genes, and these changes are important for establishing the lactation phenotype.
Collapse
Affiliation(s)
- Yu Han
- Department of Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO 80303, USA. and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lynn Sanford
- Department of Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO 80303, USA. and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - David M Simpson
- Department of Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO 80303, USA. and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Amy E Palmer
- Department of Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO 80303, USA. and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
6
|
Milk-derived miRNA profiles elucidate molecular pathways that underlie breast dysfunction in women with common genetic variants in SLC30A2. Sci Rep 2019; 9:12686. [PMID: 31481661 PMCID: PMC6722070 DOI: 10.1038/s41598-019-48987-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Studies in humans and pre-clinical animal models show milk-derived miRNAs reflect mammary gland function during lactation. The zinc transporter SLC30A2/ZnT2 plays a critical role in mammary gland function; ZnT2-null mice have profound defects in mammary epithelial cell (MEC) polarity and secretion, resulting in sub-optimal lactation. Non-synonymous genetic variation in SLC30A2 is common in humans, and several common ZnT2 variants are associated with changes in milk components that suggest breast dysfunction in women. To identify novel mechanisms through which dysfunction might occur, milk-derived miRNA profiles were characterized in women harboring three common genetic variants in SLC30A2 (D103E, T288S, and Exon 7). Expression of ten miRNAs differed between genotypes, and contributed to distinct spatial separation. Studies in breast milk and cultured MECs confirmed expression of ZnT2 variants alters abundance of protein levels of several predicted mRNA targets critical for breast function (PRLR, VAMP7, and SOX4). Moreover, bioinformatic analysis identified two novel gene networks that may underlie normal MEC function. Thus, we propose that genetic variation in genes critical for normal breast function such as SLC30A2 has important implications for lactation performance in women, and that milk-derived miRNAs can be used to identify novel mechanisms and for diagnostic potential.
Collapse
|
7
|
Intracellular Zn 2+ transients modulate global gene expression in dissociated rat hippocampal neurons. Sci Rep 2019; 9:9411. [PMID: 31253848 PMCID: PMC6598991 DOI: 10.1038/s41598-019-45844-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022] Open
Abstract
Zinc (Zn2+) is an integral component of many proteins and has been shown to act in a regulatory capacity in different mammalian systems, including as a neurotransmitter in neurons throughout the brain. While Zn2+ plays an important role in modulating neuronal potentiation and synaptic plasticity, little is known about the signaling mechanisms of this regulation. In dissociated rat hippocampal neuron cultures, we used fluorescent Zn2+ sensors to rigorously define resting Zn2+ levels and stimulation-dependent intracellular Zn2+ dynamics, and we performed RNA-Seq to characterize Zn2+-dependent transcriptional effects upon stimulation. We found that relatively small changes in cytosolic Zn2+ during stimulation altered expression levels of 931 genes, and these Zn2+ dynamics induced transcription of many genes implicated in neurite expansion and synaptic growth. Additionally, while we were unable to verify the presence of synaptic Zn2+ in these cultures, we did detect the synaptic vesicle Zn2+ transporter ZnT3 and found it to be substantially upregulated by cytosolic Zn2+ increases. These results provide the first global sequencing-based examination of Zn2+-dependent changes in transcription and identify genes that may mediate Zn2+-dependent processes and functions.
Collapse
|
8
|
Rayman JB, Karl KA, Kandel ER. TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn 2. Cell Rep 2019; 22:59-71. [PMID: 29298433 DOI: 10.1016/j.celrep.2017.12.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/08/2017] [Accepted: 12/11/2017] [Indexed: 01/09/2023] Open
Abstract
Stress granules are non-membranous structures that transiently form in the cytoplasm during cellular stress, where they promote translational repression of non-essential RNAs and modulate cell signaling by sequestering key signal transduction proteins. These and other functions of stress granules facilitate an adaptive cellular response to environmental adversity. A key component of stress granules is the prion-related RNA-binding protein, T cell intracellular antigen-1 (TIA-1). Here, we report that recombinant TIA-1 undergoes rapid multimerization and phase separation in the presence of divalent zinc, which can be reversed by the zinc chelator, TPEN. Similarly, the formation and maintenance of TIA-1-positive stress granules in arsenite-treated cells are inhibited by TPEN. In addition, Zn2+ is released in cells treated with arsenite, before stress granule formation. These findings suggest that Zn2+ is a physiological ligand of TIA-1, acting as a stress-inducible second messenger to promote multimerization of TIA-1 and subsequent localization into stress granules.
Collapse
Affiliation(s)
- Joseph B Rayman
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Kevin A Karl
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute at Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Eric R Kandel
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute at Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
9
|
Zinc regulates ERp44-dependent protein quality control in the early secretory pathway. Nat Commun 2019; 10:603. [PMID: 30723194 PMCID: PMC6363758 DOI: 10.1038/s41467-019-08429-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/09/2019] [Indexed: 01/14/2023] Open
Abstract
Zinc ions (Zn2+) are imported into the early secretory pathway by Golgi-resident transporters, but their handling and functions are not fully understood. Here, we show that Zn2+ binds with high affinity to the pH-sensitive chaperone ERp44, modulating its localization and ability to retrieve clients like Ero1α and ERAP1 to the endoplasmic reticulum (ER). Silencing the Zn2+ transporters that uptake Zn2+ into the Golgi led to ERp44 dysfunction and increased secretion of Ero1α and ERAP1. High-resolution crystal structures of Zn2+-bound ERp44 reveal that Zn2+ binds to a conserved histidine-cluster. The consequent large displacements of the regulatory C-terminal tail expose the substrate-binding surface and RDEL motif, ensuring client capture and retrieval. ERp44 also forms Zn2+-bridged homodimers, which dissociate upon client binding. Histidine mutations in the Zn2+-binding sites compromise ERp44 activity and localization. Our findings reveal a role of Zn2+ as a key regulator of protein quality control at the ER-Golgi interface. Zinc ions (Zn2+) are imported by Golgi-resident transporters but the function of zinc in the early secretory pathway has remained unknown. Here the authors find that Zn2+ regulates protein quality control in the early secretory pathway by demonstrating that the pH-sensitive chaperone ERp44 binds Zn2+ and solving the Zn2+-bound ERp44 structure.
Collapse
|
10
|
Vaden RM, Guillen KP, Salvant JM, Santiago CB, Gibbons JB, Pathi SS, Arunachalam S, Sigman MS, Looper RE, Welm BE. A Cancer-Selective Zinc Ionophore Inspired by the Natural Product Naamidine A. ACS Chem Biol 2019; 14:106-117. [PMID: 30571086 DOI: 10.1021/acschembio.8b00977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present data demonstrating the natural product mimic, zinaamidole A (ZNA), is a modulator of metal ion homeostasis causing cancer-selective cell death by specifically inducing cellular Zn2+-uptake in transformed cells. ZNA's cancer selectivity was evaluated using metastatic, patient-derived breast cancer cells, established human breast cancer cell lines, and three-dimensional organoid models derived from normal and transformed mouse mammary glands. Structural analysis of ZNA demonstrated that the compound interacts with zinc through the N2-acyl-2-aminoimidazole core. Combination treatment with ZnSO4 strongly potentiated ZNA's cancer-specific cell death mechanism, an effect that was not observed with other transition metals. We show that Zn2+-dyshomeostasis induced by ZNA is unique and markedly more selective than other known Zn2+-interacting compounds such as clioquinol. The in vivo bioactivity of ZNA was also assessed and revealed that tumor-bearing mice treated with ZNA had improved survival outcomes. Collectively, these data demonstrate that the N2-acyl-2-aminoimidazole core of ZNA represents a powerful chemotype to induce cell death in cancer cells concurrently with a disruption in zinc homeostasis.
Collapse
Affiliation(s)
- Rachel M. Vaden
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | | | - Justin M. Salvant
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Celine B. Santiago
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Joseph B. Gibbons
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | | | | | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ryan E. Looper
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | | |
Collapse
|
11
|
Superiority of SpiroZin2 Versus FluoZin-3 for monitoring vesicular Zn 2+ allows tracking of lysosomal Zn 2+ pools. Sci Rep 2018; 8:15034. [PMID: 30302024 PMCID: PMC6177427 DOI: 10.1038/s41598-018-33102-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022] Open
Abstract
Small-molecule fluorescent probes are powerful and ubiquitous tools for measuring the concentration and distribution of analytes in living cells. However, accurate characterization of these analytes requires rigorous evaluation of cell-to-cell heterogeneity in fluorescence intensities and intracellular distribution of probes. In this study, we perform a parallel and systematic comparison of two small-molecule fluorescent vesicular Zn2+ probes, FluoZin-3 AM and SpiroZin2, to evaluate each probe for measurement of vesicular Zn2+ pools. Our results reveal that SpiroZin2 is a specific lysosomal vesicular Zn2+ probe and affords uniform measurement of resting Zn2+ levels at the single cell level with proper calibration. In contrast, FluoZin-3 AM produces highly variable fluorescence intensities and non-specifically localizes in the cytosol and multiple vesicular compartments. We further applied SpiroZin2 to lactating mouse mammary epithelial cells and detected a transient increase of lysosomal free Zn2+ at 24-hour after lactation hormone treatment, which implies that lysosomes play a role in the regulation of Zn2+ homeostasis during lactation. This study demonstrates the need for critical characterization of small-molecule fluorescent probes to define the concentration and localization of analytes in different cell populations, and reveals SpiroZin2 to be capable of reporting diverse perturbations to lysosomal Zn2+.
Collapse
|
12
|
Fudge DH, Black R, Son L, LeJeune K, Qin Y. Optical Recording of Zn 2+ Dynamics in the Mitochondrial Matrix and Intermembrane Space with the GZnP2 Sensor. ACS Chem Biol 2018; 13:1897-1905. [PMID: 29912548 DOI: 10.1021/acschembio.8b00319] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The zinc ion (Zn2+) is emerging as an important signaling molecule. Here, we engineered an improved Zn2+ probe GZnP2 based on a previously developed fluorescent sensor GZnP1 to provide a higher fluorescent readout (2-fold higher) that is proportional to cellular labile Zn2+ concentrations. We further developed a set of GZnP2 derived imaging tools to determine the labile Zn2+ concentrations in the mitochondrial matrix, mitochondrial intermembrane space (IMS), and cytosol in four different cell lines (HeLa, Cos-7, HEK293, and INS-1). The labile Zn2+ concentration in the matrix was less than 1 pM, while the labile Zn2+ concentration in the IMS was comparable to the cytosol (∼100 pM). With these sensors, we showed that upon exposure to high Zn2+, only the cytosol and the IMS were overloaded with Zn2+, while the mitochondrial matrix was unable to sequester excess labile Zn2+ in depolarized INS-1 cells. This work highlighted the importance of distinguishing the labile Zn2+ concentrations and dynamics between the mitochondrial matrix and IMS.
Collapse
Affiliation(s)
- Dylan H. Fudge
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| | - Raymond Black
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| | - Lea Son
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| | - Kate LeJeune
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| |
Collapse
|
13
|
A genetic variant in SLC30A2 causes breast dysfunction during lactation by inducing ER stress, oxidative stress and epithelial barrier defects. Sci Rep 2018; 8:3542. [PMID: 29476070 PMCID: PMC5824919 DOI: 10.1038/s41598-018-21505-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/30/2018] [Indexed: 11/25/2022] Open
Abstract
SLC30A2 encodes a zinc (Zn) transporter (ZnT2) that imports Zn into vesicles in highly-specialized secretory cells. Numerous mutations and non-synonymous variants in ZnT2 have been reported in humans and in breastfeeding women; ZnT2 variants are associated with abnormally low milk Zn levels and can lead to severe infantile Zn deficiency. However, ZnT2-null mice have profound defects in mammary epithelial cell (MEC) polarity and vesicle secretion, indicating that normal ZnT2 function is critical for MEC function. Here we report that women who harbor a common ZnT2 variant (T288S) present with elevated levels of several oxidative and endoplasmic reticulum (ER) stress markers in their breast milk. Functional studies in vitro suggest that substitution of threonine for serine at amino acid 288 leads to hyperphosphorylation retaining ZnT2 in the ER and lysosomes, increasing ER and lysosomal Zn accumulation, ER stress, the generation of reactive oxygen species, and STAT3 activation. These changes were associated with decreased abundance of zona occludens-1 and increased tight junction permeability. This study confirms that ZnT2 is important for normal breast function in women during lactation, and suggests that women who harbor defective variants in ZnT2 may be at-risk for poor lactation performance.
Collapse
|
14
|
Hershfinkel M. The Zinc Sensing Receptor, ZnR/GPR39, in Health and Disease. Int J Mol Sci 2018; 19:ijms19020439. [PMID: 29389900 PMCID: PMC5855661 DOI: 10.3390/ijms19020439] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
A distinct G-protein coupled receptor that senses changes in extracellular Zn2+, ZnR/GPR39, was found in cells from tissues in which Zn2+ plays a physiological role. Most prominently, ZnR/GPR39 activity was described in prostate cancer, skin keratinocytes, and colon epithelial cells, where zinc is essential for cell growth, wound closure, and barrier formation. ZnR/GPR39 activity was also described in neurons that are postsynaptic to vesicular Zn2+ release. Activation of ZnR/GPR39 triggers Gαq-dependent signaling and subsequent cellular pathways associated with cell growth and survival. Furthermore, ZnR/GPR39 was shown to regulate the activity of ion transport mechanisms that are essential for the physiological function of epithelial and neuronal cells. Thus, ZnR/GPR39 provides a unique target for therapeutically modifying the actions of zinc in a specific and selective manner.
Collapse
Affiliation(s)
- Michal Hershfinkel
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, POB 653, Ben-Gurion Ave. Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
15
|
Bafaro E, Liu Y, Xu Y, Dempski RE. The emerging role of zinc transporters in cellular homeostasis and cancer. Signal Transduct Target Ther 2017; 2:17029. [PMID: 29218234 PMCID: PMC5661630 DOI: 10.1038/sigtrans.2017.29] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/21/2022] Open
Abstract
Zinc is an essential micronutrient that plays a role in the structural or enzymatic functions of many cellular proteins. Cellular zinc homeostasis involves the opposing action of two families of metal transporters: the ZnT (SLC30) family that functions to reduce cytoplasmic zinc concentrations and the ZIP (SLC39) family that functions to increase cytoplasmic zinc concentrations. Fluctuations in intracellular zinc levels mediated by these transporter families affect signaling pathways involved in normal cell development, growth, differentiation and death. Consequently, changes in zinc transporter localization and function resulting in zinc dyshomeostasis have pathophysiological effects. Zinc dyshomeostasis has been implicated in the progression of cancer. Here we review recent progress toward understanding the structural basis for zinc transport by ZnT and ZIP family proteins, as well as highlight the roles of zinc as a signaling molecule in physiological conditions and in various cancers. As zinc is emerging as an important signaling molecule in the development and progression of cancer, the ZnT and ZIP transporters that regulate cellular zinc homeostasis are promising candidates for targeted cancer therapy.
Collapse
Affiliation(s)
- Elizabeth Bafaro
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Yuting Liu
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert E Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
16
|
Lee S, Kelleher SL. Molecular regulation of lactation: The complex and requisite roles for zinc. Arch Biochem Biophys 2016; 611:86-92. [DOI: 10.1016/j.abb.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/10/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022]
|
17
|
Chandler P, Kochupurakkal BS, Alam S, Richardson AL, Soybel DI, Kelleher SL. Subtype-specific accumulation of intracellular zinc pools is associated with the malignant phenotype in breast cancer. Mol Cancer 2016; 15:2. [PMID: 26728511 PMCID: PMC4700748 DOI: 10.1186/s12943-015-0486-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/11/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Zinc (Zn) hyper-accumulates in breast tumors and malignant cell lines compared to normal mammary epithelium. The mechanisms responsible for Zn accumulation and the consequence of Zn dysregulation are poorly understood. METHODS Microarrays were performed to assess differences in the expression of Zn transporters and metallothioneins (MTs) in human breast tumors and breast cancer cell lines. Real-time PCR and immunoblotting were employed to profile Zn transporter expression in representative luminal (T47D), basal (MDA-MB-231), and non-malignant (MCF10A) cell lines. Zn distribution in human tumors was assessed by X-ray fluorescence imaging. Zn distribution and content in cell lines was measured using FluoZin-3 imaging, and quantification and atomic absorption spectroscopy. Functional consequences of ZnT2 over-expression in MDA-MB-231 cells including invasion, proliferation, and cell cycle were measured using Boyden chambers, MTT assays, and flow cytometry, respectively. RESULTS Gene expression profiling of human breast tumors and breast cancer cell lines identified subtype-specific dysregulation in the Zn transporting network. X-ray fluorescence imaging of breast tumor tissues revealed Zn hyper-accumulation at the margins of Luminal breast tumors while Zn was more evenly distributed within Basal tumors. While both T47D and MDA-MB-231 cells hyper-accumulated Zn relative to MCF10A cells, T47D cells accumulated 2.5-fold more Zn compared to MDA-MB-231 cells. FluoZin-3 imaging indicated that Zn was sequestered into numerous large vesicles in T47D cells, but was retained in the cytoplasm and found in fewer and larger, amorphous sub-cellular compartments in MDA-MB-231 cells. The differences in Zn localization mirrored the relative abundance of the Zn transporter ZnT2; T47D cells over-expressed ZnT2, whereas MDA-MB-231 cells did not express ZnT2 protein due to proteasomal degradation. To determine the functional relevance of the lack of ZnT2 in MDA-MB-231cells, cells were transfected to express ZnT2. ZnT2 over-expression led to Zn vesicularization, shifts in cell cycle, enhanced apoptosis, and reduced proliferation and invasion. CONCLUSIONS This comprehensive analysis of the Zn transporting network in malignant breast tumors and cell lines illustrates that distinct subtype-specific dysregulation of Zn management may underlie phenotypic characteristics of breast cancers such as grade, invasiveness, metastatic potential, and response to therapy.
Collapse
Affiliation(s)
- Paige Chandler
- The Interdisciplinary Graduate Program in Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
- The Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
| | - Bose S Kochupurakkal
- Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Samina Alam
- The Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
- The Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
| | - Andrea L Richardson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - David I Soybel
- The Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
- The Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
| | - Shannon L Kelleher
- The Interdisciplinary Graduate Program in Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA.
- The Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA.
- The Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA.
- The Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
18
|
Alam S, Hennigar SR, Gallagher C, Soybel DI, Kelleher SL. Exome Sequencing of SLC30A2 Identifies Novel Loss- and Gain-of-Function Variants Associated with Breast Cell Dysfunction. J Mammary Gland Biol Neoplasia 2015; 20:159-72. [PMID: 26293594 DOI: 10.1007/s10911-015-9338-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 07/22/2015] [Indexed: 11/29/2022] Open
Abstract
The zinc (Zn) transporter ZnT2 (SLC30A2) is expressed in specialized secretory cells including breast, pancreas and prostate, and imports Zn into mitochondria and vesicles. Mutations in SLC30A2 substantially reduce milk Zn concentration ([Zn]) and cause severe Zn deficiency in exclusively breastfed infants. Recent studies show that ZnT2-null mice have low milk [Zn], in addition to profound defects in mammary gland function during lactation. Here, we used breast milk [Zn] to identify novel non-synonymous ZnT2 variants in a population of lactating women. We also asked whether specific variants induce disturbances in intracellular Zn management or cause cellular dysfunction in mammary epithelial cells. Healthy, breastfeeding women were stratified into quartiles by milk [Zn] and exonic sequencing of SLC30A2 was performed. We found that 36% of women tested carried non-synonymous ZnT2 variants, all of whom had milk Zn levels that were distinctly above or below those in women without variants. We identified 12 novel heterozygous variants. Two variants (D(103)E and T(288)S) were identified with high frequency (9 and 16%, respectively) and expression of T(288)S was associated with a known hallmark of breast dysfunction (elevated milk sodium/potassium ratio). Select variants (A(28)D, K(66)N, Q(71)H, D(103)E, A(105)P, Q(137)H, T(288)S and T(312)K) were characterized in vitro. Compared with wild-type ZnT2, these variants were inappropriately localized, and most resulted in either 'loss-of-function' or 'gain-of-function', and altered sub-cellular Zn pools, Zn secretion, and cell cycle check-points. Our study indicates that SLC30A2 variants are common in this population, dysregulate Zn management and can lead to breast cell dysfunction. This suggests that genetic variation in ZnT2 could be an important modifier of infant growth/development and reproductive health/disease. Importantly, milk [Zn] level may serve as a bio-reporter of breast function during lactation.
Collapse
Affiliation(s)
- Samina Alam
- Department of Cellular and Molecular Physiology, The Pennsylvania State University Hershey College of Medicine, Hershey, PA, USA
- Department of Surgery, The Pennsylvania State University Hershey College of Medicine, Hershey, PA, USA
| | - Stephen R Hennigar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Carla Gallagher
- Department of Public Health Sciences, The Pennsylvania State University Hershey College of Medicine, Hershey, PA, USA
| | - David I Soybel
- Department of Cellular and Molecular Physiology, The Pennsylvania State University Hershey College of Medicine, Hershey, PA, USA
- Department of Surgery, The Pennsylvania State University Hershey College of Medicine, Hershey, PA, USA
| | - Shannon L Kelleher
- Department of Cellular and Molecular Physiology, The Pennsylvania State University Hershey College of Medicine, Hershey, PA, USA.
- Department of Pharmacology, The Pennsylvania State University Hershey College of Medicine, Hershey, PA, USA.
- Department of Surgery, The Pennsylvania State University Hershey College of Medicine, Hershey, PA, USA.
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
19
|
Hennigar SR, Velasquez V, Kelleher SL. Obesity-Induced Inflammation Is Associated with Alterations in Subcellular Zinc Pools and Premature Mammary Gland Involution in Lactating Mice. J Nutr 2015; 145:1999-2005. [PMID: 26203096 PMCID: PMC4548167 DOI: 10.3945/jn.115.214122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/24/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Lactation failure is common in overweight and obese women; however, the precise mechanism remains unknown. OBJECTIVE We tested the hypothesis that obesity-induced inflammation in the mammary gland (MG) redistributes subcellular zinc pools to promote cell death of mammary epithelial cells (MECs) and premature involution. METHODS Female DBA/2J mice were fed a high-fat (obese; 45% kcal from fat, n = 60) or control diet (lean; 10% kcal from fat, n = 50) for 5 wk and bred. MG cytokines and macrophage infiltration were determined by reverse transcriptase-polymerase chain reaction and F4/80 staining, respectively. Zinc concentration was analyzed by atomic absorption spectroscopy, and zinc transporters and markers of endoplasmic reticulum (ER) stress, autophagy, and involution were measured by immunoblot. To confirm effects of inflammation, tumor necrosis factor-α (TNF) or vehicle was injected into adjacent MGs of lean lactating C57BL/6 mice (n = 5) and cultured MECs (HC11 cells) were treated with TNF in vitro. RESULTS Seventy-seven percent of obese mice failed to lactate (lean: 39%; P < 0.001). Obese mice capable of lactating had greater macrophage infiltration (obese: 135 ± 40.4 macrophages/mm(2); lean: 63.8 ± 8.9 macrophages/mm(2); P < 0.001) and elevated TNF expression (P < 0.05), concurrent with lower zrt- irt-like protein 7 abundance (P < 0.05) and higher ER zinc concentration (obese: 0.36 ± 0.004 μg Zn/mg protein; lean: 0.30 ± 0.02 μg Zn/mg protein; P < 0.05) compared with lean mice. Heat shock protein 5 (HSPA5) expression (P < 0.05) was suppressed in the MG of obese mice, which was consistent with HSPA5 suppression in TNF-injected MGs (P < 0.01) and MECs treated with TNF in vitro (P < 0.01). Moreover, obesity increased lysosomal activity (P < 0.05) and autophagy in the MG, which corresponded to increased zinc transporter 2 abundance and lysosomal zinc concentration compared with lean mice (obese: 0.20 ± 0.02 μg Zn/mg protein; lean: 0.14 ± 0.01 μg Zn/mg protein; P < 0.05). Importantly, MGs of obese mice exhibited markers of apoptosis (P = 0.05) and involution (P < 0.01), which were not observed in lean mice. CONCLUSIONS Diet-induced obesity created a proinflammatory MG microenvironment in mice, which was associated with zinc-mediated ER stress and autophagy and the activation of premature involution.
Collapse
Affiliation(s)
- Stephen R Hennigar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA; and
| | - Vanessa Velasquez
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA; and
| | - Shannon L Kelleher
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA; and Departments of Cell and Molecular Physiology, Pharmacology, and Surgery, Penn State Hershey College of Medicine, Hershey, PA
| |
Collapse
|
20
|
Hennigar SR, Kelleher SL. TNFα Post-Translationally Targets ZnT2 to Accumulate Zinc in Lysosomes. J Cell Physiol 2015; 230:2345-50. [DOI: 10.1002/jcp.24992] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/18/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Stephen R. Hennigar
- Department of Nutritional Sciences; The Pennsylvania State University; University Park; Pennsylvania
| | - Shannon L. Kelleher
- Department of Nutritional Sciences; The Pennsylvania State University; University Park; Pennsylvania
- Department of and Cell and Molecular Physiology; Penn State Hershey College of Medicine; Hershey Pennsylvania
- Department of Pharmacology; Penn State Hershey College of Medicine; Hershey Pennsylvania
- Department of Surgery; Penn State Hershey College of Medicine; Hershey Pennsylvania
| |
Collapse
|
21
|
Lee S, Hennigar SR, Alam S, Nishida K, Kelleher SL. Essential Role for Zinc Transporter 2 (ZnT2)-mediated Zinc Transport in Mammary Gland Development and Function during Lactation. J Biol Chem 2015; 290:13064-78. [PMID: 25851903 DOI: 10.1074/jbc.m115.637439] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 01/28/2023] Open
Abstract
The zinc transporter ZnT2 (SLC30A2) imports zinc into vesicles in secreting mammary epithelial cells (MECs) and is critical for zinc efflux into milk during lactation. Recent studies show that ZnT2 also imports zinc into mitochondria and is expressed in the non-lactating mammary gland and non-secreting MECs, highlighting the importance of ZnT2 in general mammary gland biology. In this study we used nulliparous and lactating ZnT2-null mice and characterized the consequences on mammary gland development, function during lactation, and milk composition. We found that ZnT2 was primarily expressed in MECs and to a limited extent in macrophages in the nulliparous mammary gland and loss of ZnT2 impaired mammary expansion during development. Secondly, we found that lactating ZnT2-null mice had substantial defects in mammary gland architecture and MEC function during secretion, including fewer, condensed and disorganized alveoli, impaired Stat5 activation, and unpolarized MECs. Loss of ZnT2 led to reduced milk volume and milk containing less protein, fat, and lactose compared with wild-type littermates, implicating ZnT2 in the regulation of mammary differentiation and optimal milk production during lactation. Together, these results demonstrate that ZnT2-mediated zinc transport is critical for mammary gland function, suggesting that defects in ZnT2 not only reduce milk zinc concentration but may compromise breast health and increase the risk for lactation insufficiency in lactating women.
Collapse
Affiliation(s)
- Sooyeon Lee
- From the Interdisciplinary Graduate Physiology Program and Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, Departments of Cellular and Molecular Physiology
| | - Stephen R Hennigar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Samina Alam
- Departments of Cellular and Molecular Physiology, Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania 17033
| | - Keigo Nishida
- Laboratory for Homeostatic Network, RCAI, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan, and Laboratory of Immune Regulation, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Shannon L Kelleher
- From the Interdisciplinary Graduate Physiology Program and Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, Departments of Cellular and Molecular Physiology, Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania 17033, Pharmacology, and
| |
Collapse
|
22
|
Finney LA, Jin Q. Preparing adherent cells for X-ray fluorescence imaging by chemical fixation. J Vis Exp 2015:52370. [PMID: 25867691 PMCID: PMC4401319 DOI: 10.3791/52370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
X-ray fluorescence imaging allows us to non-destructively measure the spatial distribution and concentration of multiple elements simultaneously over large or small sample areas. It has been applied in many areas of science, including materials science, geoscience, studying works of cultural heritage, and in chemical biology. In the case of chemical biology, for example, visualizing the metal distributions within cells allows us to study both naturally-occurring metal ions in the cells, as well as exogenously-introduced metals such as drugs and nanoparticles. Due to the fully hydrated nature of nearly all biological samples, cryo-fixation followed by imaging under cryogenic temperature represents the ideal imaging modality currently available. However, under the circumstances that such a combination is not easily accessible or practical, aldehyde based chemical fixation remains useful and sometimes inevitable. This article describes in as much detail as possible in the preparation of adherent mammalian cells by chemical fixation for X-ray fluorescent imaging.
Collapse
Affiliation(s)
- Lydia A Finney
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory;
| | - Qiaoling Jin
- Department of Physics and Astronomy, Northwestern University
| |
Collapse
|
23
|
ZnT2 is a critical mediator of lysosomal-mediated cell death during early mammary gland involution. Sci Rep 2015; 5:8033. [PMID: 25620235 PMCID: PMC4306139 DOI: 10.1038/srep08033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/22/2014] [Indexed: 01/13/2023] Open
Abstract
Mammary gland involution is the most dramatic example of physiological cell death. It occurs through an initial phase of lysosomal-mediated cell death (LCD) followed by mitochondrial-mediated apoptosis. Zinc (Zn) activates both LCD and apoptosis in vitro. The Zn transporter ZnT2 imports Zn into vesicles and mitochondria and ZnT2-overexpression activates cell death in mammary epithelial cells (MECs). We tested the hypothesis that ZnT2-mediated Zn transport is critical for mammary gland involution in mice. Following weaning, ZnT2 abundance increased in lysosomes and mitochondria, which paralleled Zn accumulation in each of these organelles. Adenoviral expression of ZnT2 in lactating mouse mammary glands in vivo increased Zn in lysosomes and mitochondria and activated LCD and apoptosis, promoting a profound reduction in MECs and alveoli. Injection of TNFα, a potent activator of early involution, into the mammary gland fat pads of lactating mice increased ZnT2 and Zn in lysosomes and activated premature involution. Exposure of cultured MECs to TNFα redistributed ZnT2 to lysosomes and increased lysosomal Zn, which activated lysosomal swelling, cathepsin B release, and LCD. Our data implicate ZnT2 as a critical mediator of cell death during involution and importantly, that as an initial involution signal, TNFα redistributes ZnT2 to lysosomes to activate LCD.
Collapse
|
24
|
Silanikove N, Shapiro F, Merin U, Leitner G. The intracellular source, composition and regulatory functions of nanosized vesicles from bovine milk-serum. RSC Adv 2015. [DOI: 10.1039/c5ra07599h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A hypothesis that the source of milk-serum derived vesicles (MSDVs) is the Golgi apparatus (GA) was examined.
Collapse
Affiliation(s)
- N. Silanikove
- Biology of Lactation Laboratory
- Agricultural Research Organization
- The Volcani Center
- Bet Dagan 50250
- Israel
| | - Fira Shapiro
- Biology of Lactation Laboratory
- Agricultural Research Organization
- The Volcani Center
- Bet Dagan 50250
- Israel
| | - Uzi Merin
- Department of Food Quality and Safety
- Agricultural Research Organization
- The Volcani Center
- Bet Dagan 50250
- Israel
| | - Gabriel Leitner
- National Mastitis Reference Center
- Kimron Veterinary Institute
- Bet Dagan 50250
- Israel
| |
Collapse
|
25
|
Abstract
Metal ion assimilation is essential for all forms of life. However, organisms must properly control the availability of these nutrients within the cell to avoid inactivating proteins by mismetallation. To safeguard against an imbalance between supply and demand in eukaryotes, intracellular compartments contain metal transporters that load and unload metals. Although the vacuoles of Saccharomyces cerevisiae and Arabidopsis thaliana are well established locales for the storage of copper, zinc, iron, and manganese, related compartments are emerging as important mediators of metal homeostasis. Here we describe these compartments and review their metal transporter complement.
Collapse
Affiliation(s)
| | - Sabeeha S Merchant
- From the Department of Chemistry and Biochemistry and the Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| |
Collapse
|
26
|
Carter KP, Young AM, Palmer AE. Fluorescent sensors for measuring metal ions in living systems. Chem Rev 2014; 114:4564-601. [PMID: 24588137 PMCID: PMC4096685 DOI: 10.1021/cr400546e] [Citation(s) in RCA: 1592] [Impact Index Per Article: 144.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Kyle P. Carter
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Alexandra M. Young
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Amy E. Palmer
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| |
Collapse
|
27
|
McCormick NH, Hennigar SR, Kiselyov K, Kelleher SL. The biology of zinc transport in mammary epithelial cells: implications for mammary gland development, lactation, and involution. J Mammary Gland Biol Neoplasia 2014; 19:59-71. [PMID: 24338187 DOI: 10.1007/s10911-013-9314-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023] Open
Abstract
Zinc plays a critical role in a vast array of cellular functions including gene transcription, protein translation, cell proliferation, differentiation, bioenergetics, and programmed cell death. The mammary gland depends upon tight coordination of these processes during development and reproduction for optimal expansion, differentiation, and involution. For example, zinc is required for activation of matrix metalloproteinases, intracellular signaling cascades such as MAPK and PKC, and the activation of both mitochondrial-mediated apoptosis and lysosomal-mediated cell death. In addition to functional needs, during lactation the mammary gland must balance providing optimal zinc for cellular requirements with the need to secrete a substantial amount of zinc into milk to meet the requirements of the developing neonate. Finally, the mammary gland exhibits the most profound example of programmed cell death, which is driven by both apoptotic and lysosomal-mediated cell death. Two families of zinc-specific transporters regulate zinc delivery for these diverse functions. Members of the ZIP family of zinc transporters (ZIP1-14) import zinc into the cytoplasm from outside the cell or from subcellular organelles, while members of the ZnT family (ZnT1-10) export zinc from the cytoplasm. Recently, the ion channel transient receptor potential mucolipin 1 (TRPML1) has also been implicated in zinc transport. Herein, we review our current understanding of the molecular mechanisms through which mammary epithelial cells utilize zinc with a focus on the transport of zinc into discrete subcellular organelles for specific cellular functions during mammary gland development, lactation, and involution.
Collapse
Affiliation(s)
- Nicholas H McCormick
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
28
|
Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells. Exp Cell Res 2014; 321:190-200. [DOI: 10.1016/j.yexcr.2013.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 11/15/2022]
|
29
|
Methods to Evaluate Zinc Transport into and out of the Secretory and Endosomal–Lysosomal Compartments in DT40 Cells. Methods Enzymol 2014; 534:77-92. [DOI: 10.1016/b978-0-12-397926-1.00005-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Subramanian Vignesh K, Landero Figueroa JA, Porollo A, Caruso JA, Deepe GS. Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity 2013; 39:697-710. [PMID: 24138881 DOI: 10.1016/j.immuni.2013.09.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/23/2013] [Indexed: 11/29/2022]
Abstract
Macrophages possess numerous mechanisms to combat microbial invasion, including sequestration of essential nutrients, like zinc (Zn). The pleiotropic cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) enhances antimicrobial defenses against intracellular pathogens such as Histoplasma capsulatum, but its mode of action remains elusive. We have found that GM-CSF-activated infected macrophages sequestered labile Zn by inducing binding to metallothioneins (MTs) in a STAT3 and STAT5 transcription-factor-dependent manner. GM-CSF upregulated expression of Zn exporters, Slc30a4 and Slc30a7; the metal was shuttled away from phagosomes and into the Golgi apparatus. This distinctive Zn sequestration strategy elevated phagosomal H⁺ channel function and triggered reactive oxygen species generation by NADPH oxidase. Consequently, H. capsulatum was selectively deprived of Zn, thereby halting replication and fostering fungal clearance. GM-CSF mediated Zn sequestration via MTs in vitro and in vivo in mice and in human macrophages. These findings illuminate a GM-CSF-induced Zn-sequestration network that drives phagocyte antimicrobial effector function.
Collapse
Affiliation(s)
- Kavitha Subramanian Vignesh
- Department of Molecular Genetics, Biochemistry, Microbiology and Immunology, University of Cincinnati, OH 45267, USA; Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
31
|
Qin Y, Miranda JG, Stoddard CI, Dean KM, Galati DF, Palmer AE. Direct comparison of a genetically encoded sensor and small molecule indicator: implications for quantification of cytosolic Zn(2+). ACS Chem Biol 2013; 8:2366-71. [PMID: 23992616 DOI: 10.1021/cb4003859] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent sensors are powerful tools for visualizing and quantifying molecules and ions in living cells. A variety of small molecule and genetically encoded sensors have been developed for studying intracellular Zn(2+) homeostasis and signaling, but no direct comparisons exist, making it challenging for researchers to identify the appropriate sensor for a given application. Here we directly compare the widely used small molecule probe FluoZin-3 and a genetically encoded sensor, ZapCY2. We demonstrate that, in contrast to FluoZin-3, ZapCY2 exhibits a well-defined cytosolic localization, provides estimates of Zn(2+) concentration with little variability, does not perturb cytosolic Zn(2+) levels, and exhibits rapid Zn(2+) response dynamics. ZapCY2 was used to measure Zn(2+) concentrations in 5 different cell types, revealing higher cytosolic Zn(2+) levels in prostate cancer cells compared to normal prostate cells (although the total zinc is reduced in prostate cancer cells), suggesting distinct regulatory mechanisms.
Collapse
Affiliation(s)
- Yan Qin
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - Jose G. Miranda
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - Caitlin I. Stoddard
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - Kevin M. Dean
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - Domenico F. Galati
- Department
of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, UCB
347, Boulder, Colorado 80309, United States
| | - Amy E. Palmer
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| |
Collapse
|
32
|
Itsumura N, Inamo Y, Okazaki F, Teranishi F, Narita H, Kambe T, Kodama H. Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant. PLoS One 2013; 8:e64045. [PMID: 23741301 PMCID: PMC3669329 DOI: 10.1371/journal.pone.0064045] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/05/2013] [Indexed: 12/16/2022] Open
Abstract
Zinc concentrations in breast milk are considerably higher than those of the maternal serum, to meet the infant's requirements for normal growth and development. Thus, effective mechanisms ensuring secretion of large amounts of zinc into the milk operate in mammary epithelial cells during lactation. ZnT2 was recently found to play an essential role in the secretion of zinc into milk. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction) secretion of zinc into the breast milk, and infants fed on the milk develop transient neonatal zinc deficiency. We identified two novel missense mutations in the SLC30A2/ZnT2 gene in a Japanese mother with low milk zinc concentrations (>90% reduction) whose infant developed severe zinc deficiency; a T to C transition (c.454T>C) at exon 4, which substitutes a tryptophan residue with an arginine residue (W152R), and a C to T transition (c.887C>T) at exon 7, which substitutes a serine residue with a leucine residue (S296L). Biochemical characterization using zinc-sensitive DT40 cells indicated that the W152R mutation abolished the abilities to transport zinc and to form a dimer complex, indicating a loss-of-function mutation. The S296L mutation retained both abilities but was extremely destabilized. The two mutations were found on different alleles, indicating that the genotype of the mother with low milk zinc was compound heterozygous. These results show novel compound heterozygous mutations in the SLC30A2/ZnT2 gene causing zinc deficiency in a breast-fed infant.
Collapse
Affiliation(s)
- Naoya Itsumura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuji Inamo
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Fumiko Okazaki
- Department of Food Science, Kyoto Women's University, Kyoto, Japan
| | - Fumie Teranishi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroshi Narita
- Department of Food Science, Kyoto Women's University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroko Kodama
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
- Department of Health and Dietetics, Faculty of Health and Medical Sciences, Teikyo Heisei University, Tokyo, Japan
| |
Collapse
|
33
|
Kukic I, Lee JK, Coblentz J, Kelleher SL, Kiselyov K. Zinc-dependent lysosomal enlargement in TRPML1-deficient cells involves MTF-1 transcription factor and ZnT4 (Slc30a4) transporter. Biochem J 2013; 451:155-63. [PMID: 23368743 PMCID: PMC3654546 DOI: 10.1042/bj20121506] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Zinc is critical for a multitude of cellular processes, including gene expression, secretion and enzymatic activities. Cellular zinc is controlled by zinc-chelating proteins and by zinc transporters. The recent identification of zinc permeability of the lysosomal ion channel TRPML1 (transient receptor potential mucolipin 1), and the evidence of abnormal zinc levels in cells deficient in TRPML1, suggested a role for TRPML1 in zinc transport. In the present study we provide new evidence for such a role and identify additional cellular components responsible for it. In agreement with the previously published data, an acute siRNA (small interfering RNA)-driven TRPML1 KD (knockdown) leads to the build-up of large cytoplasmic vesicles positive for LysoTracker™ and zinc staining, when cells are exposed to high concentrations of zinc. We now show that lysosomal enlargement and zinc build-up in TRPML1-KD cells exposed to zinc are ameliorated by KD of the zinc-sensitive transcription factor MTF-1 (metal-regulatory-element-binding transcription factor-1) or the zinc transporter ZnT4. TRPML1 KD is associated with a build-up of cytoplasmic zinc and with enhanced transcriptional response of mRNA for MT2a (metallothionein 2a). TRPML1 KD did not suppress lysosomal secretion, but it did delay zinc leak from the lysosomes into the cytoplasm. These results underscore a role for TRPML1 in zinc metabolism. Furthermore, they suggest that TRPML1 works in concert with ZnT4 to regulate zinc translocation between the cytoplasm and lysosomes.
Collapse
Affiliation(s)
- Ira Kukic
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey K. Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Coblentz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shannon L. Kelleher
- Departments of Nutrition, Surgery and Cell & Molecular Physiology, The Pennsylvania State University, State College, PA, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
34
|
McRae R, Lai B, Fahrni CJ. Subcellular redistribution and mitotic inheritance of transition metals in proliferating mouse fibroblast cells. Metallomics 2013; 5:52-61. [PMID: 23212029 PMCID: PMC3769613 DOI: 10.1039/c2mt20176c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synchrotron X-ray fluorescence microscopy of non-synchronized NIH 3T3 fibroblasts revealed an intriguing redistribution dynamics that defines the inheritance of trace metals during mitosis. At metaphase, the highest density areas of Zn and Cu are localized in two distinct regions adjacent to the metaphase plate. As the sister chromatids are pulled towards the spindle poles during anaphase, Zn and Cu gradually move to the center and partition into the daughter cells to yield a pair of twin pools during cytokinesis. Colocalization analyses demonstrated high spatial correlations between Zn, Cu, and S throughout all mitotic stages, while Fe showed consistently different topographies characterized by high-density spots distributed across the entire cell. Whereas the total amount of Cu remained similar compared to interphase cells, mitotic Zn levels increased almost 3-fold, suggesting a prominent physiological role that lies beyond the requirement of Zn as a cofactor in metalloproteins or messenger in signaling pathways.
Collapse
Affiliation(s)
- Reagan McRae
- School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, U.S.A
| | - Barry Lai
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, U.S.A
| |
Collapse
|
35
|
Park JG, Qin Y, Galati DF, Palmer AE. New sensors for quantitative measurement of mitochondrial Zn(2+). ACS Chem Biol 2012; 7:1636-40. [PMID: 22850482 DOI: 10.1021/cb300171p] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zinc (Zn(2+)) homeostasis plays a vital role in cell function, and the dysregulation of intracellular Zn(2+) is associated with mitochondrial dysfunction. Few tools exist to quantitatively monitor the buffered, free Zn(2+) concentration in mitochondria of living cells ([Zn(2+)](mito)). We have validated three high dynamic range, ratiometric, genetically encoded, fluorescent Zn(2+) sensors that we have successfully used to precisely measure and monitor [Zn(2+)](mito) in several cell types. Using one of these sensors, called mito-ZapCY1, we report observations that free Zn(2+) is buffered at concentrations about 3 orders of magnitude lower in mitochondria than in the cytosol and that HeLa cells expressing mito-ZapCY1 have an average [Zn(2+)](mito) of 0.14 pM, which differs significantly from other cell types. These optimized mitochondrial Zn(2+) sensors could improve our understanding of the relationship between Zn(2+) homeostasis and mitochondrial function.
Collapse
Affiliation(s)
- J. Genevieve Park
- Department of Chemistry
and Biochemistry and BioFrontiers Institute and ‡Department of Molecular, Cellular,
and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yan Qin
- Department of Chemistry
and Biochemistry and BioFrontiers Institute and ‡Department of Molecular, Cellular,
and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Domenico F. Galati
- Department of Chemistry
and Biochemistry and BioFrontiers Institute and ‡Department of Molecular, Cellular,
and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Amy E. Palmer
- Department of Chemistry
and Biochemistry and BioFrontiers Institute and ‡Department of Molecular, Cellular,
and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
36
|
Paunesku T, Wanzer MB, Kirillova EN, Muksinova KN, Revina VS, Lyubchansky ER, Grosche B, Birschwilks M, Vogt S, Finney L, Woloschak GE. X-ray fluorescence microscopy for investigation of archival tissues. HEALTH PHYSICS 2012; 103:181-186. [PMID: 22951477 PMCID: PMC3716449 DOI: 10.1097/hp.0b013e31824e7023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Several recent efforts in the radiation biology community worldwide have amassed records and archival tissues from animals exposed to different radionuclides and external beam irradiation. In most cases, these samples come from lifelong studies on large animal populations conducted in national laboratories and equivalent institutions throughout Europe, North America, and Japan. While many of these tissues were used for histopathological analyses, much more information may still be obtained from these samples. A new technique suitable for imaging of these tissues is x-ray fluorescence microscopy (XFM). Following development of third generation synchrotrons, XFM has emerged as an ideal technique for the study of metal content, speciation, and localization in cells, tissues, and organs. Here the authors review some of the recent XFM literature pertinent to tissue sample studies and present examples of XFM data obtained from tissue sections of beagle dog samples, which show that the quality of archival tissues allows XFM investigation.
Collapse
Affiliation(s)
- T Paunesku
- Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Ward 13-007, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
McCormick NH, Kelleher SL. ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. Am J Physiol Cell Physiol 2012; 303:C291-7. [PMID: 22621784 DOI: 10.1152/ajpcell.00443.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zinc (Zn) transporter 4 (ZnT4) plays a key role in mammary gland Zn metabolism. A mutation in ZnT4 (SLC30A4) that targets the protein for degradation is responsible for the "lethal milk" (lm/lm) mouse phenotype. ZnT4 protein is only detected in the secreting mammary gland, and lm/lm mice have ∼35% less Zn in milk, decreased mammary gland size, and decreased milk secretion. However, the precise contribution of ZnT4 is unknown. We used cultured mouse mammary epithelial cells (HC11) and determined that ZnT4 was localized to the trans-Golgi network (TGN) and cell membrane and transported Zn from the cytoplasm. ZnT4-mediated Zn import into the TGN directly contributed to labile Zn accumulation as ZnT4 overexpression increased FluoZin3 fluorescence. Moreover, ZnT4 provided Zn for metallation of galactosyltransferase, a Zn-dependent protein localized within the TGN that is critical for milk secretion, and carbonic anhydrase VI, a Zn-dependent protein secreted from the TGN into milk. We further noted that ZnT4 relocalized to the cell membrane in response to Zn. Together these studies demonstrated that ZnT4 transports Zn into the TGN, which is critical for key secretory functions of the mammary cell.
Collapse
Affiliation(s)
- Nicholas H McCormick
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
38
|
Dempsey C, McCormick NH, Croxford TP, Seo YA, Grider A, Kelleher SL. Marginal maternal zinc deficiency in lactating mice reduces secretory capacity and alters milk composition. J Nutr 2012; 142:655-60. [PMID: 22357740 PMCID: PMC3301987 DOI: 10.3945/jn.111.150623] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/16/2011] [Accepted: 12/27/2011] [Indexed: 11/14/2022] Open
Abstract
Dietary analysis predicts that marginal Zn deficiency is common in women of reproductive age. The lack of reliable biomarkers limits the capacity to assess Zn status and consequently understand effects of maternal Zn deficiency. We determined effects of marginal maternal Zn deficiency on mammary gland function, milk secretion, and milk composition in mice. Mice (n = 12/diet) were fed marginal (ZD; 15 mg Zn/kg diet) or adequate (ZA; 30 mg Zn/kg diet) Zn diets for 30 d prior to conception through mid-lactation. Mice fed the ZD had a higher plasma Zn concentration (~20%; P < 0.05) but lower milk Zn concentration (~15%; P < 0.05) compared with mice fed the ZA. ZnT2 abundance was higher (P < 0.05) in mice fed the ZD compared with mice fed the ZA; no effect on ZnT4 abundance was detected. The Zn concentration of mammary gland mitochondria tended to be ~40% greater in mice fed ZD (P = 0.07); this was associated with apoptosis and lower milk secretion (~80%; P < 0.01). Total milk protein was ~25% higher (P < 0.05), although the abundance of the major milk proteins (caseins and whey acidic protein) was lower (P < 0.05) in mice fed the ZD. Proteomic analysis of milk proteins revealed an increase (P < 0.05) in four proteins in mice fed the ZD. These findings illustrate that marginal maternal Zn deficiency compromises mammary gland function and milk secretion and alters milk composition. This suggests that lactating women who consume inadequate Zn may not produce and/or secrete an adequate amount of high quality milk to provide optimal nutrition to their developing infant.
Collapse
Affiliation(s)
| | | | | | | | - Arthur Grider
- Department of Foods and Nutrition, University of Georgia, Athens, GA
| | - Shannon L. Kelleher
- Department of Nutritional Sciences
- Department of Surgery, and
- Department of Cell and Molecular Physiology, The Pennsylvania State University, University Park, PA; and
| |
Collapse
|
39
|
Kelleher SL, Velasquez V, Croxford TP, McCormick NH, Lopez V, MacDavid J. Mapping the zinc-transporting system in mammary cells: molecular analysis reveals a phenotype-dependent zinc-transporting network during lactation. J Cell Physiol 2012; 227:1761-70. [PMID: 21702047 DOI: 10.1002/jcp.22900] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammary epithelial cell transitions from a non-secreting to a terminally differentiated, secreting cell during lactation. Zinc (Zn) is a key modulator of phenotypic transition as it regulates over 300 biological functions including transcription, translation, energy transformation, intracellular signaling, and apoptosis. In addition, Zn must be redirected from normal cellular functions into the secretory compartment, as many components of the secretory system are Zn-dependent and an extraordinary amount of Zn is secreted (1-3 mg Zn/day) into milk. Herein, we utilized a "systems biology" approach of genomic and proteomic profiling to explore mechanisms through which Zn is reallocated during phenotype transition in the lactating mammary gland from mice and cultured mammary cells. Nine Zn transporters play key roles in Zn redistribution within the network during lactation. Protein abundance of six Zip (Zip3, Zip5, Zip7, Zip8, Zip10, Zip11) and three ZnT (ZnT2, ZnT4, ZnT9) proteins was expanded >2-fold during lactation, which was not necessarily reflected by changes in mRNA expression. Our data suggest that Zip5, Zip8, and Zip10 may be key to Zn acquisition from maternal circulation, while multiple Zip proteins reuptake Zn from milk. Confocal microscopy of cultured mammary cells identified the Golgi apparatus (modulated in part by ZnT5, Zip7, and Zip11) and the late endosomal compartment (modulated in part by ZnT2 and Zip3) as key intracellular compartments through which Zn is reallocated during lactation. These results provide an important framework for understanding the "Zn-transporting network" through which mammary gland Zn pools are redistributed and secreted into milk.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Murgia C, Grosser D, Truong-Tran AQ, Roscioli E, Michalczyk A, Ackland ML, Stoltenberg M, Danscher G, Lang C, Knight D, Perozzi G, Ruffin RE, Zalewski P. Apical localization of zinc transporter ZnT4 in human airway epithelial cells and its loss in a murine model of allergic airway inflammation. Nutrients 2011; 3:910-28. [PMID: 22254085 PMCID: PMC3257720 DOI: 10.3390/nu3110910] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/09/2011] [Accepted: 10/13/2011] [Indexed: 01/05/2023] Open
Abstract
The apical cytoplasm of airway epithelium (AE) contains abundant labile zinc (Zn) ions that are involved in the protection of AE from oxidants and inhaled noxious substances. A major question is how dietary Zn traffics to this compartment. In rat airways, in vivo selenite autometallographic (Se-AMG)-electron microscopy revealed labile Zn-selenium nanocrystals in structures resembling secretory vesicles in the apical cytoplasm. This observation was consistent with the starry-sky Zinquin fluorescence staining of labile Zn ions confined to the same region. The vesicular Zn transporter ZnT4 was likewise prominent in both the apical and basal parts of the epithelium both in rodent and human AE, although the apical pools were more obvious. Expression of ZnT4 mRNA was unaffected by changes in the extracellular Zn concentration. However, levels increased 3-fold during growth of cells in air liquid interface cultures and decreased sharply in the presence of retinoic acid. When comparing nasal versus bronchial human AE cells, there were significant positive correlations between levels of ZnT4 from the same subject, suggesting that nasal brushings may allow monitoring of airway Zn transporter expression. Finally, there were marked losses of both basally-located ZnT4 protein and labile Zn in the bronchial epithelium of mice with allergic airway inflammation. This study is the first to describe co-localization of zinc vesicles with the specific zinc transporter ZnT4 in airway epithelium and loss of ZnT4 protein in inflamed airways. Direct evidence that ZnT4 regulates Zn levels in the epithelium still needs to be provided. We speculate that ZnT4 is an important regulator of zinc ion accumulation in secretory apical vesicles and that the loss of labile Zn and ZnT4 in airway inflammation contributes to AE vulnerability in diseases such as asthma.
Collapse
Affiliation(s)
- Chiara Murgia
- INRAN-National Research Institute on Food & Nutrition, Roma 00178, Italy; (C.M.); (G.P.)
| | - Dion Grosser
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia; (D.G.); (A.Q.T.-T.); (E.R.); (C.L.); (R.E.R.)
| | - Ai Q. Truong-Tran
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia; (D.G.); (A.Q.T.-T.); (E.R.); (C.L.); (R.E.R.)
| | - Eugene Roscioli
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia; (D.G.); (A.Q.T.-T.); (E.R.); (C.L.); (R.E.R.)
| | - Agnes Michalczyk
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Burwood, Victoria 3125, Australia; (A.M.); (M.L.A.)
| | - Margaret Leigh Ackland
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Burwood, Victoria 3125, Australia; (A.M.); (M.L.A.)
| | - Meredin Stoltenberg
- Institute of Biomedicine, Neurobiology, Aarhus University, DK-8000 Aarhus C, Denmark; (M.S.); (G.D.)
| | - Gorm Danscher
- Institute of Biomedicine, Neurobiology, Aarhus University, DK-8000 Aarhus C, Denmark; (M.S.); (G.D.)
| | - Carol Lang
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia; (D.G.); (A.Q.T.-T.); (E.R.); (C.L.); (R.E.R.)
| | - Darryl Knight
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, St Paul’s Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada;
| | - Giuditta Perozzi
- INRAN-National Research Institute on Food & Nutrition, Roma 00178, Italy; (C.M.); (G.P.)
| | - Richard E. Ruffin
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia; (D.G.); (A.Q.T.-T.); (E.R.); (C.L.); (R.E.R.)
| | - Peter Zalewski
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia; (D.G.); (A.Q.T.-T.); (E.R.); (C.L.); (R.E.R.)
- Author to whom correspondence should be addressed; ; Tel.: +61-8-8222-7344; Fax: +61-8-8222-6042
| |
Collapse
|
41
|
Liu J, Kohler JE, Blass AL, Moncaster JA, Mocofanescu A, Marcus MA, Blakely EA, Bjornstad KA, Amarasiriwardena C, Casey N, Goldstein LE, Soybel DI. Demand for Zn2+ in acid-secreting gastric mucosa and its requirement for intracellular Ca2+. PLoS One 2011; 6:e19638. [PMID: 21698273 PMCID: PMC3115935 DOI: 10.1371/journal.pone.0019638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/07/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS Recent work has suggested that Zn(2+) plays a critical role in regulating acidity within the secretory compartments of isolated gastric glands. Here, we investigate the content, distribution and demand for Zn(2+) in gastric mucosa under baseline conditions and its regulation during secretory stimulation. METHODS AND FINDINGS Content and distribution of zinc were evaluated in sections of whole gastric mucosa using X-ray fluorescence microscopy. Significant stores of Zn(2+) were identified in neural elements of the muscularis, glandular areas enriched in parietal cells, and apical regions of the surface epithelium. In in vivo studies, extraction of the low abundance isotope, (70)Zn(2+), from the circulation was demonstrated in samples of mucosal tissue 24 hours or 72 hours after infusion (250 µg/kg). In in vitro studies, uptake of (70)Zn(2+) from media was demonstrated in isolated rabbit gastric glands following exposure to concentrations as low as 10 nM. In additional studies, demand of individual gastric parietal cells for Zn(2+) was monitored using the fluorescent zinc reporter, fluozin-3, by measuring increases in free intracellular concentrations of Zn(2+) {[Zn(2+)](i)} during exposure to standard extracellular concentrations of Zn(2+) (10 µM) for standard intervals of time. Under resting conditions, demand for extracellular Zn(2+) increased with exposure to secretagogues (forskolin, carbachol/histamine) and under conditions associated with increased intracellular Ca(2+) {[Ca(2+)](i)}. Uptake of Zn(2+) was abolished following removal of extracellular Ca(2+) or depletion of intracellular Ca(2+) stores, suggesting that demand for extracellular Zn(2+) increases and depends on influx of extracellular Ca(2+). CONCLUSIONS This study is the first to characterize the content and distribution of Zn(2+) in an organ of the gastrointestinal tract. Our findings offer the novel interpretation, that Ca(2+) integrates basolateral demand for Zn(2+) with stimulation of secretion of HCl into the lumen of the gastric gland. Similar connections may be detectable in other secretory cells and tissues.
Collapse
Affiliation(s)
- JingJing Liu
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan E. Kohler
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy L. Blass
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Juliet A. Moncaster
- Molecular Aging & Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anca Mocofanescu
- Molecular Aging & Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew A. Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Eleanor A. Blakely
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kathleen A. Bjornstad
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Chitra Amarasiriwardena
- Channing Laboratories, Brigham and Women's Hospital, Harvard Medical School, and the Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Noel Casey
- Molecular Aging & Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Biometals and Metallomics, Boston University, Boston, Massachusetts, United States of America
| | - Lee E. Goldstein
- Molecular Aging & Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Biometals and Metallomics, Boston University, Boston, Massachusetts, United States of America
| | - David I. Soybel
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Kelleher SL, McCormick NH, Velasquez V, Lopez V. Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr 2011; 2:101-11. [PMID: 22332039 PMCID: PMC3065755 DOI: 10.3945/an.110.000232] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zinc (Zn) is an essential micronutrient required for over 300 different cellular processes, including DNA and protein synthesis, enzyme activity, and intracellular signaling. Cellular Zn homeostasis necessitates the compartmentalization of Zn into intracellular organelles, which is tightly regulated through the integration of Zn transporting mechanisms. The pancreas, prostate, and mammary gland are secretory tissues that have unusual Zn requirements and thus must tightly regulate Zn metabolism through integrating Zn import, sequestration, and export mechanisms. Recent findings indicate that these tissues utilize Zn for basic cellular processes but also require Zn for unique cellular needs. In addition, abundant Zn is transported into the secretory pathway and a large amount is subsequently secreted in a tightly regulated manner for unique biological processes. Expression of numerous members of the SLC30A (ZnT) and SLC39A (Zip) gene families has been documented in these tissues, yet there is limited understanding of their precise functional role in Zn metabolism or their regulation. Impairments in Zn secretion from the pancreas, prostate, and mammary gland are associated with disorders such as diabetes, infertility, and cancer, respectively. In this review, we will provide a brief summary of the specific role of Zn in each tissue and describe our current knowledge regarding how Zn metabolism is regulated. Finally, in each instance, we will reflect upon how this information shapes our current understanding of the role of Zn in these secretory tissues with respect to human health and disease.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802-6110, USA.
| | | | | | | |
Collapse
|
43
|
Seo YA, Kelleher SL. Functional analysis of two single nucleotide polymorphisms in SLC30A2 (ZnT2): implications for mammary gland function and breast disease in women. Physiol Genomics 2010; 42A:219-27. [PMID: 20858712 DOI: 10.1152/physiolgenomics.00137.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Zinc transporter 2 (ZnT2) plays a major role in zinc (Zn) export from the mammary gland. Recently, we determined that ZnT2 is associated with secretory vesicles reflecting its role in Zn secretion during lactation. Herein, we identified two distinct single nucleotide polymorphisms (SNPs) in SLC30A2, which encodes ZnT2. SNP1 (rs35235055) results in a leucine-to-proline substitution (Leu(23)Pro), while SNP2 (rs35623192) results in an arginine-to-cysteine substitution (Arg(340)Cys). We examined the localization and function of each SNP in cells generated to express these polymorphic variants. SNP1 was mislocalized to lysosomes, while SNP2 was mislocalized to the Golgi apparatus. FluoZin-3 fluorescence illustrated increased lysosomal accumulation of Zn in cells expressing SNP1 concomitant with the abrogation of Zn secretion. In contrast, ectopic expression of SNP2 was associated with the expansion of cytoplasmic Zn pools, elevated reactive oxygen species, and increased Zn efflux. Taken together, our data indicate that polymorphic variants in ZnT2 distinctly alter mammary cell Zn metabolism. We speculate that these SNPs may compromise mammary cell function, which may have important implications in human health and breast disease.
Collapse
Affiliation(s)
- Young Ah Seo
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | |
Collapse
|